B2.2 Commutative Algebra
Sheet 3 — HT26
Sections 1-10

Section A

1. Let R be a subring of a ring 7. Suppose that 7" is integral over R. Let p be a prime
ideal of R and let qq, g2 be prime ideals of T" such that ¢y N R = g2 N R = p. Show that
if q1 g 2 then qd1 = q2.

Solution: The ring R/p is can be viewed as a subring of 7//q; and by assumption we
have (q2 mod q1) N R/p = (0). We may thus assume without loss of generality that R

and T to be domains and that q; and p are zero ideals.

Now let e € go \ {0} and let P(z) € R[x] be a non-zero monic polynomial such that
P(e) = 0. Since T is a domain, we may assume that the constant coefficient of P(x)
is non-zero (otherwise, replace P(z) by P(z)/x* for a suitable k > 1). But then the
constant term P(0) is a linear combination of positive powers of e (since P(e) = 0), so
P(0) € RNqy = (0). This is a contradiction.

2. Let R be a subring of a ring T" and suppose that 7" is integral over R. Let p be prime ideal
of R and let q be a prime ideal of 7. Suppose that N R =p. Let p; Cpy C--- C pi
be primes ideal of R and suppose that p; = p. Show that there are prime ideals
q1 € gz C -+ C qg of T such that q; = q and such that ;"R =p, foralli € {1,... k}.

Solution: By induction on k, we only need to treat the case k = 2. Consider the
extension of rings R/p C T'/q. This is also an integral extension. Furthermore, there is
a unique prime ideal pj, in R/p, which corresponds to p, via the quotient map. By the
Going-up Theorem, there is a prime ideal q5 in 7'/q, which is such that g, N R/p = pi,.

The prime ideal g5 corresponding to ¢/, via the quotient map has the required properties.
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Section B
3. Show that Z is integrally closed and that the integral closure of Z in Q(z) is Z]i].
4. Let A be aring and let U(z) € A[z]| be a non zero monic polynomial. Then there exists

a ring B containing A, which is integral over A and such that

deg(U)

Ur)= ][] (@—b)

i=1

for some b; € B, where we set H?iglw)(a: —b;) = 1if deg(U) = 0.

5. Let S be aring and let R C .S be a subring of S. Suppose that R is integrally closed in
S. Let P(z) € R[z] and suppose that P(x) = Q(x)J(z), where Q(x), J(z) € S[z| and
(Q(x) and J(x) are monic. Show that Q(x), J(z) € R[z]. Use this to give a new proof
of the fact that if T'(z) € Z[z] and T(z) = Ti(z)T2(x), where T (x), To(z) € Qx| are
monic polynomials, then T} (x), Tz(x) € Zx].

6. Let R be a ring. Show that the two following conditions are equivalent:

(a) R is a Jacobson ring.

(b) If p € Spec(R) and R/p contains an element b such that (R/p)[b~!] is a field, then
R/p is a field.

Here we write (R/p)[b~] for the localisation of R/p at the multiplicative subset 1,b,?, . . ..
7. Let k be field and let R be a finitely generated algebra over k. Show that the two

following conditions are equivalent:

(a) Spec(R) is finite.

(b) R is finite over k.

8. Let k be an algebraically closed field. Let P, ..., P; € k[xy,...,2z4]. Suppose that the

set
{(y17'-'ayd) € kd|P’i(y17'-'7yd) =0Vi € {177d}}
is finite. Show that
Spec(k[zy, ..., zq]/(P1, ..., Py))

is finite.
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Section C

9.

10.

Let R be a noetherian ring and let 7" be a finitely generated R-algebra. Let G be a
finite subgroup of the group of automorphisms of T as a R-algebra. Let T¢ be the fixed
point set of G (ie the subset of T', which is fixed by all the elements of G).

(a) Show that T is integral over TC.

(b) Show that T¢ is a subring of T, which contains the image of R and that T¢ is
finitely generated over R.

Solution: It is clear from the definitions that 7'¢ is a subring which contains the image

of R. Let t € T. Then t satisfies the polynomial equation

[I¢t—g@)=0

geG
The polynomial M;(z) = [[,cq(x — g(t)) has coefficients in T, because the coefficients
are symmetric polynomials in the variables ¢(t), and therefore are invariant under G.
Hence ¢ is integral over T¢. Since ¢ was arbitrary, T is integral over 7. Since T is also
finitely generated as a T%-algebra (because it is finitely generated as an R-algebra), we
thus see that T is finite over T“ (see after Lemma 8.3). Hence T is finitely generated
over R by the Artin—Tate Theorem.

Let & be a field and let m be a maximal ideal of k[x, ..., z,4]. Show that there are poly-
nomials Py (z1), Py(xy1, x2), Ps(x1, 22, x3), . .., Pa(x1,...,24) such that m = (Py,..., Py).

Solution: By induction on d > 1. If d = 1 then this follows from the fact that k[x;] is
a PID. We suppose that the statement holds for d— 1. Let K = k[z1,...,x4)/m. By the
weak Nullstellensatz, this is a finite field extension of k. Let ¢: k[xy,..., x4 — K be
the natural surjective homomorphism of k-algebras. Let L = ¢(k[xy,...,24-1]). This is
a domain and by Lemma 8.9, L is a field, since it contains k£ and is contained inside an
integral extension of k. Let ¢: k[z1,...,24-1] — L be the surjective homomorphism of
k-algebras arising by restricting ¢. The map 1 induces a surjective homomorphism of
k-algebras
U klxy, ..., xq = (klz1, ..., 2q-1]))[zd] = L]xg)

and there is a surjective homomorphism of L-algebras
A L[Qfd] — K

that sends z4 to ¢(z4). By construction, we have ¢ = A o W. In particular, we
have m = U=1(A71(0)). Since L[z4] is a PID and ¢(x,) is algebraic over k, we have
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A71(0) = (P(z4)) for some non zero polynomial P(z4) € Llxg]. Now let Py(xy,...,x4) €
(k[z1,...,24-1])[z4] e a preimage by ¥ of P(z4).

We claim that m = (ker(¥), P;). To see this, note that WU((ker(¥), P;)) = (P(x4)) and
so we have (ker(¥), P;) € m. On the other hand, if e € m then V(e) € (P(x4)) and
thus there is an element € € (FP,) such that ¥(e) = W(e') (since ¥ is surjective). In
particular, we have e — ¢’ € ker(V), so that e € (ker(V), Py).

Now by the inductive assumption, ker(V¥) is generated by polynomials
Pi(z1), Pa(w1, 22), Ps(w1, 29, 23), ..., Pa1 (21, ..., %a1)

and so m is generated by P;(z1), Py(x1,x2), Ps(21, 9, 23), ..., Py(x1, ..., 2q).

11. Let R be a domain. Show that R[z] is integrally closed if R is integrally closed.

Solution: Suppose that R is integrally closed in its fraction field K. The fraction field
of Rlz] is K(z) = (K[z])(K[z] ~ {1})~!. Let Q(x) € K(z) and suppose that Q(z) is
integral over R[z]. Suppose for a contradiction that Q(x) ¢ R[z], and take Q(x) of

smallest possible degree. Clearly Q(z) is not the zero polynomial.

Then Q(x) is in particular integral over K[x] and we saw in the solution of Question 4,
sheet 2, that K[z] is integrally closed, since it is a PID. So we deduce that Q(z) € K|z].

Now let
Q"+ PaQ 4+ P =0

be a non trivial integral equation for @ with P; € R[z] for all n. Evaluating at z = 0
shows that the constant term of Q(z) is integral over R, and hence lies in R. Since
the integral closure of R[z] is a ring, we may subtract the constant term, and assume
that the constant term of () is zero. But then we can also divide by a power of z, and

decrease the degree of (). Contradiction.
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