
B2.2 Commutative Algebra

Sheet 3 — HT26

Sections 1-10

Section A

1. Let R be a subring of a ring T . Suppose that T is integral over R. Let p be a prime

ideal of R and let q1, q2 be prime ideals of T such that q1 ∩R = q2 ∩R = p. Show that

if q1 ⊆ q2 then q1 = q2.

Solution: The ring R/p is can be viewed as a subring of T/q1 and by assumption we

have (q2 mod q1) ∩ R/p = (0). We may thus assume without loss of generality that R

and T to be domains and that q1 and p are zero ideals.

Now let e ∈ q2 ∖ {0} and let P (x) ∈ R[x] be a non-zero monic polynomial such that

P (e) = 0. Since T is a domain, we may assume that the constant coefficient of P (x)

is non-zero (otherwise, replace P (x) by P (x)/xk for a suitable k ⩾ 1). But then the

constant term P (0) is a linear combination of positive powers of e (since P (e) = 0), so

P (0) ∈ R ∩ q2 = (0). This is a contradiction.

2. Let R be a subring of a ring T and suppose that T is integral over R. Let p be prime ideal

of R and let q be a prime ideal of T . Suppose that q ∩ R = p. Let p1 ⊆ p2 ⊆ · · · ⊆ pk

be primes ideal of R and suppose that p1 = p. Show that there are prime ideals

q1 ⊆ q2 ⊆ · · · ⊆ qk of T such that q1 = q and such that qi∩R = pi for all i ∈ {1, . . . , k}.

Solution: By induction on k, we only need to treat the case k = 2. Consider the

extension of rings R/p ⊆ T/q. This is also an integral extension. Furthermore, there is

a unique prime ideal p′2 in R/p, which corresponds to p2 via the quotient map. By the

Going-up Theorem, there is a prime ideal q′2 in T/q, which is such that q′2 ∩ R/p = p′2.

The prime ideal q2 corresponding to q
′
2 via the quotient map has the required properties.
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Section B

3. Show that Z is integrally closed and that the integral closure of Z in Q(i) is Z[i].

4. Let A be a ring and let U(x) ∈ A[x] be a non zero monic polynomial. Then there exists

a ring B containing A, which is integral over A and such that

U(x) =

deg(U)∏
i=1

(x− bi)

for some bi ∈ B, where we set
∏deg(U)

i=1 (x− bi) = 1 if deg(U) = 0.

5. Let S be a ring and let R ⊆ S be a subring of S. Suppose that R is integrally closed in

S. Let P (x) ∈ R[x] and suppose that P (x) = Q(x)J(x), where Q(x), J(x) ∈ S[x] and

Q(x) and J(x) are monic. Show that Q(x), J(x) ∈ R[x]. Use this to give a new proof

of the fact that if T (x) ∈ Z[x] and T (x) = T1(x)T2(x), where T1(x), T2(x) ∈ Q[x] are

monic polynomials, then T1(x), T2(x) ∈ Z[x].

6. Let R be a ring. Show that the two following conditions are equivalent:

(a) R is a Jacobson ring.

(b) If p ∈ Spec(R) and R/p contains an element b such that (R/p)[b−1] is a field, then

R/p is a field.

Here we write (R/p)[b−1] for the localisation ofR/p at the multiplicative subset 1, b, b2, . . . .

7. Let k be field and let R be a finitely generated algebra over k. Show that the two

following conditions are equivalent:

(a) Spec(R) is finite.

(b) R is finite over k.

8. Let k be an algebraically closed field. Let P1, . . . , Pd ∈ k[x1, . . . , xd]. Suppose that the

set

{(y1, . . . , yd) ∈ kd |Pi(y1, . . . , yd) = 0 ∀i ∈ {1, . . . , d}}

is finite. Show that

Spec(k[x1, . . . , xd]/(P1, . . . , Pd))

is finite.
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Section C

9. Let R be a noetherian ring and let T be a finitely generated R-algebra. Let G be a

finite subgroup of the group of automorphisms of T as a R-algebra. Let TG be the fixed

point set of G (ie the subset of T , which is fixed by all the elements of G).

(a) Show that T is integral over TG.

(b) Show that TG is a subring of T , which contains the image of R and that TG is

finitely generated over R.

Solution: It is clear from the definitions that TG is a subring which contains the image

of R. Let t ∈ T . Then t satisfies the polynomial equation∏
g∈G

(t− g(t)) = 0

The polynomial Mt(x) =
∏

g∈G(x− g(t)) has coefficients in TG, because the coefficients

are symmetric polynomials in the variables g(t), and therefore are invariant under G.

Hence t is integral over TG. Since t was arbitrary, T is integral over TG. Since T is also

finitely generated as a TG-algebra (because it is finitely generated as an R-algebra), we

thus see that T is finite over TG (see after Lemma 8.3). Hence TG is finitely generated

over R by the Artin–Tate Theorem.

10. Let k be a field and let m be a maximal ideal of k[x1, . . . , xd]. Show that there are poly-

nomials P1(x1), P2(x1, x2), P3(x1, x2, x3), . . . , Pd(x1, . . . , xd) such that m = (P1, . . . , Pd).

Solution: By induction on d ⩾ 1. If d = 1 then this follows from the fact that k[x1] is

a PID. We suppose that the statement holds for d−1. Let K = k[x1, . . . , xd]/m. By the

weak Nullstellensatz, this is a finite field extension of k. Let ϕ : k[x1, . . . , xd] → K be

the natural surjective homomorphism of k-algebras. Let L = ϕ(k[x1, . . . , xd−1]). This is

a domain and by Lemma 8.9, L is a field, since it contains k and is contained inside an

integral extension of k. Let ψ : k[x1, . . . , xd−1] → L be the surjective homomorphism of

k-algebras arising by restricting ϕ. The map ψ induces a surjective homomorphism of

k-algebras

Ψ: k[x1, . . . , xd] ≃ (k[x1, . . . , xd−1])[xd] → L[xd]

and there is a surjective homomorphism of L-algebras

Λ: L[xd] → K

that sends xd to ϕ(xd). By construction, we have ϕ = Λ ◦ Ψ. In particular, we

have m = Ψ−1(Λ−1(0)). Since L[xd] is a PID and ϕ(xd) is algebraic over k, we have
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Λ−1(0) = (P (xd)) for some non zero polynomial P (xd) ∈ L[xd]. Now let Pd(x1, . . . , xd) ∈
(k[x1, . . . , xd−1])[xd] be a preimage by Ψ of P (xd).

We claim that m = (ker(Ψ), Pd). To see this, note that Ψ((ker(Ψ), Pd)) = (P (xd)) and

so we have (ker(Ψ), Pd) ⊆ m. On the other hand, if e ∈ m then Ψ(e) ∈ (P (xd)) and

thus there is an element e′ ∈ (Pd) such that Ψ(e) = Ψ(e′) (since Ψ is surjective). In

particular, we have e− e′ ∈ ker(Ψ), so that e ∈ (ker(Ψ), Pd).

Now by the inductive assumption, ker(Ψ) is generated by polynomials

P1(x1), P2(x1, x2), P3(x1, x2, x3), . . . , Pd−1(x1, . . . , xd−1)

and so m is generated by P1(x1), P2(x1, x2), P3(x1, x2, x3), . . . , Pd(x1, . . . , xd).

11. Let R be a domain. Show that R[x] is integrally closed if R is integrally closed.

Solution: Suppose that R is integrally closed in its fraction field K. The fraction field

of R[x] is K(x) = (K[x])(K[x] ∖ {1})−1. Let Q(x) ∈ K(x) and suppose that Q(x) is

integral over R[x]. Suppose for a contradiction that Q(x) ̸∈ R[x], and take Q(x) of

smallest possible degree. Clearly Q(x) is not the zero polynomial.

Then Q(x) is in particular integral over K[x] and we saw in the solution of Question 4,

sheet 2, that K[x] is integrally closed, since it is a PID. So we deduce that Q(x) ∈ K[x].

Now let

Qn + Pn−1Q
n−1 + · · ·+ P0 = 0

be a non trivial integral equation for Q with Pi ∈ R[x] for all n. Evaluating at x = 0

shows that the constant term of Q(x) is integral over R, and hence lies in R. Since

the integral closure of R[x] is a ring, we may subtract the constant term, and assume

that the constant term of Q is zero. But then we can also divide by a power of x, and

decrease the degree of Q. Contradiction.
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