

B2.2 Commutative Algebra

Sheet 4 — HT26

Sections 1-11

Section A

1. Let R be a noetherian domain. Let \mathfrak{m} be a maximal ideal in R . Let $r \in R \setminus \{0\}$ and suppose that (r) is an \mathfrak{m} -primary ideal. Show that $\text{height}((r)) = 1$.

Solution: By assumption, the nilradical of (r) is \mathfrak{m} . Since the nilradical is the intersection of all the prime ideals containing (r) , we see that every prime ideal containing (r) also contains \mathfrak{m} . On the other hand, a prime ideal containing \mathfrak{m} must be equal to \mathfrak{m} . We conclude that \mathfrak{m} is the only prime ideal containing (r) . In particular, \mathfrak{m} is minimal among the prime ideals containing (r) and thus $\text{height}((r)) = \text{height}(\mathfrak{m}) \leq 1$ by Krull's principal ideal theorem. On the other hand, $\text{height}(\mathfrak{m}) = 1$, since we have the chain $\mathfrak{m} \supset (0)$ (note that R is a domain).

2. Let R be a PID. Show that $\dim R \leq 1$, and that $\dim R = 0$ if and only if R is a field.

Solution: We have the prime ideal (0) , since R is a domain. If R is a field, then we have no other prime ideals, and $\dim R = 0$.

If R is not a field, then it has at least one non-trivial proper prime ideal. Every such ideal is maximal (see Sheet 0), and hence $\dim R = 1$.

3. Let R be a noetherian ring. Let $\mathfrak{p}, \mathfrak{p}'$ be prime ideals of R and suppose that $\mathfrak{p} \subset \mathfrak{p}'$. There exists a prime ideal \mathfrak{q} such that $\mathfrak{p} \subseteq \mathfrak{q} \subset \mathfrak{p}'$ and \mathfrak{q} is maximal among prime ideals with this property.

Solution: Suppose that the conclusion does not hold. Let \mathfrak{q}_1 be any prime ideal such that $\mathfrak{p} \subseteq \mathfrak{q}_1 \subset \mathfrak{p}$ (we might eg take $\mathfrak{q}_1 = \mathfrak{p}$). By assumption, there exists a prime ideal \mathfrak{q}_2 such that $\mathfrak{q}_1 \subset \mathfrak{q}_2 \subset \mathfrak{p}$. Applying the assumption again to \mathfrak{q}_2 , we obtain a prime ideal \mathfrak{q}_3 such that $\mathfrak{q}_2 \subset \mathfrak{q}_3 \subset \mathfrak{p}$. Continuing in this way we obtain an ascending sequence of ideals

$$\mathfrak{q}_1 \subset \mathfrak{q}_2 \subset \mathfrak{q}_3 \subset \dots$$

However, this sequence must stop since R is noetherian. This is a contradiction, so one of the prime ideals \mathfrak{q}_i must have the property mentioned in the lemma.

4. Let K be a field and let \mathfrak{p} be a non zero prime ideal of $K[x]$. Then $\text{height}(\mathfrak{p}) = 1$. In particular, we have $\dim(K[x]) = 1$.

Solution: This follows from the fact that non-zero prime ideals of $K[x]$ are maximal and from the fact that the zero ideal in $K[x]$ is prime, since $K[x]$ is a domain.

Section B

5. Let R be a ring and let R_0 be the prime ring of R (the image of \mathbb{Z} under the unique ring homomorphism $\mathbb{Z} \rightarrow R$). Suppose that R is a finitely generated R_0 -algebra. Suppose also that R is a field. Prove that R is a finite field.
6. Let R be an integrally closed domain. Let $K = \text{Frac}(R)$. Let $L|K$ be an algebraic field extension. Show that an element $e \in L$ is integral over R if and only if the minimal polynomial of e over K has coefficients in R .
7. Let R be a PID. Let $c_1, c_2 \in R$ be two distinct irreducible elements and let $c = c_1 \cdot c_2$. Show that $(c) = (x, c_1)^2 \cdot (x, c_2)^2$ and that the ideals (x, c_i) are prime, as ideals in $R[x]/(c - x^2)$.
8. Let R be a ring (not necessarily noetherian). Suppose that $\dim(R) < \infty$. Show that $\dim(R[x]) \leq 1 + 2\dim(R)$.
9. Let A (resp. B) be a noetherian local ring with maximal ideal \mathfrak{m}_A (resp. \mathfrak{m}_B). Let $\phi: A \rightarrow B$ be a ring homomorphism and suppose that $\phi(\mathfrak{m}_A) \subseteq \mathfrak{m}_B$ (such a homomorphism is said to be ‘local’).

Suppose that

- (a) B is finite over A via ϕ ;
- (b) the map $\mathfrak{m}_A \rightarrow \mathfrak{m}_B/\mathfrak{m}_B^2$ induced by ϕ is surjective;
- (c) the map $A/\mathfrak{m}_A \rightarrow B/\mathfrak{m}_B$ induced by ϕ is bijective.

Prove that ϕ is surjective. [Hint: use Nakayama’s lemma twice].

Section C

10. (a) Let R be a noetherian domain. Let I be a proper ideal of R . Then $\bigcap_{n \geq 0} I^n = 0$.

(b) Let R be a noetherian ring and let I be an ideal of R . Let M be a finitely generated R -module. Suppose that I is contained in the Jacobson radical of R . Then $\bigcap_{n \geq 0} I^n M = 0$.

Solution: Part (a) is clear.

If $r \in 1+I$ then r is a unit (a similar reasoning was made during the proof of Nakayama's lemma). Indeed, if r is not a unit, then r is contained in some maximal ideal \mathfrak{m} . But then 1 is also contained in \mathfrak{m} , since $I \subseteq \mathfrak{m}$, which is a contradiction. Hence $\ker(r_M) = 0$ and the result follows from Krull's theorem.

11. Let $\phi: R \rightarrow T$ be a ring homomorphism. Let $\mathfrak{p} \in \text{Spec}(R)$ and let I be the ideal generated by $\phi(\mathfrak{p})$ in T .

Write $\psi: R/\mathfrak{p} \rightarrow T/I$ for the ring homomorphism induced by ϕ and let $S = (R/\mathfrak{p}) \setminus \{0\}$. Write $\psi_S: \text{Frac}(R/\mathfrak{p}) \rightarrow (T/I)_{\psi(S)}$ for the induced ring homomorphism. Finally, write $\rho: T \rightarrow (T/I)_{\psi(S)}$ for the natural ring homomorphism.

(a) Show that $\text{Spec}(\rho)(\text{Spec}((T/I)_{\psi(S)}))$ consists precisely of the prime ideals \mathfrak{q} of T , such that $\phi^{-1}(\mathfrak{q}) = \mathfrak{p}$.

(b) Show that the correspondence between

- prime ideals \mathfrak{q} such that $\phi^{-1}(\mathfrak{q}) = \mathfrak{p}$, and
- prime ideals of $(T/I)_{\psi(S)}$

respects inclusion in both directions.

(c) Deduce that when $T = R[x]$ we have

$$(T/I)_{\psi(S)} = (R[x]/\mathfrak{p}[x])_{\psi(S)} \simeq (R/\mathfrak{p})[x]_{(R/\mathfrak{p})^*} = \text{Frac}(R/\mathfrak{p})[x].$$

Solution: We have a commutative diagram of rings

$$\begin{array}{ccccc}
 & & \rho & & \\
 & T & \longrightarrow & T/I & \longrightarrow (T/I)_{\psi(S)} \\
 \phi \uparrow & & \uparrow \psi & & \uparrow \psi_S \\
 R & \longrightarrow & R/\mathfrak{p} & \longrightarrow & \text{Frac}(R/\mathfrak{p})
 \end{array}$$

leading to a commutative diagram of spectra

$$\begin{array}{ccccc}
 & & \text{Spec}(\rho) & & \\
 & \swarrow & & \searrow & \\
 \text{Spec}(T) & \longleftarrow & \text{Spec}(T/I) & \longleftarrow & \text{Spec}((T/I)_{\psi(S)}) \\
 \downarrow \text{Spec}(\phi) & & \downarrow \text{Spec}(\psi) & & \downarrow \text{Spec}(\psi_S) \\
 \text{Spec}(R) & \longleftarrow & \text{Spec}(R/\mathfrak{p}) & \longleftarrow & \text{Spec}(\text{Frac}(R/\mathfrak{p}))
 \end{array}$$

The lemma is saying that the fibre of $\text{Spec}(\phi)$ above \mathfrak{p} is precisely the image of $\text{Spec}(\rho)$.

Note first that $\text{Spec}(\text{Frac}(R/\mathfrak{p}))$ consists of one point, since $\text{Frac}(R/\mathfrak{p})$ is a field. The image of $\text{Spec}(\text{Frac}(R/\mathfrak{p}))$ in $\text{Spec}(R/\mathfrak{p})$ is the ideal $(0) \subseteq R/\mathfrak{p}$ and the preimage of the ideal $(0) \subseteq R/\mathfrak{p}$ in R is \mathfrak{p} . Thus the image of $\text{Spec}(\rho)$ is contained in the fibre of $\text{Spec}(\phi)$ above \mathfrak{p} , since the diagram is commutative.

Now suppose that $\mathfrak{q} \in \text{Spec}(T)$ and that $\phi^{-1}(\mathfrak{q}) = \mathfrak{p}$ (i.e., \mathfrak{q} lies inside the fibre of $\text{Spec}(\phi)$ above \mathfrak{p}).

Then $\mathfrak{q} \supseteq I$ and there is thus an ideal $\mathfrak{q}' \in \text{Spec}(T/I)$, such that \mathfrak{q} is the image of \mathfrak{q}' in $\text{Spec}(T)$. On the other hand, we know that $\psi^{-1}(\mathfrak{q}')$ is the 0 ideal, since $\phi^{-1}(\mathfrak{q}) = \mathfrak{p}$ and the diagram of rings is commutative. In other words, we have $\mathfrak{q}' \cap \psi(S) = \emptyset$. We conclude that \mathfrak{q}' lies in the image of the map $\text{Spec}((T/I)_{\psi(S)}) \rightarrow \text{Spec}(T/I)$.