B2.2 Commutative Algebra
Sheet 4 — HT26
Sections 1-11

Section A

1. Let R be a noetherian domain. Let m be a maximal ideal in R. Let r € R~ {0} and
suppose that (r) is an m-primary ideal. Show that height((r)) = 1.

Solution: By assumption, the nilradical of () is m. Since the nilradical is the inter-
section of all the prime ideals containing (r), we see that every prime ideal containing
(r) also contains m. On the other hand, a prime ideal containing m must be equal to m.
We conclude that m is the only prime ideal containing (). In particular, m is minimal
among the prime ideals containing (r) and thus height((r)) = height(m) < 1 by Krull’s
principal ideal theorem. On the other hand, height(m) = 1, since we have the chain
m D (0) (note that R is a domain).

2. Let R be a PID. Show that dim R < 1, and that dim R = 0 if and only if R is a field.

Solution: We have the prime ideal (0), since R is a domain. If R is a field, then we

have no other prime ideals, and dim R = 0.

If R is not a field, then it has at least one non-trivial proper prime ideal. Every such

ideal is maximal (see Sheet 0), and hence dim R = 1.

3. Let R be a noetherian ring. Let p,p’ be prime ideals of R and suppose that p C p’.
There exists a prime ideal q such that p C q C p’ and ¢ is maximal among prime ideals

with this property.

Solution: Suppose that the conclusion does not hold. Let g; be any prime ideal such
that p C q; C p (we might eg take q; = p). By assumption, there exists a prime ideal
g2 such that q; C g2 C p. Applying the assumption again to o, we obtain a prime ideal
q3 such that g2 C g3 C p. Continuing in this way we obtain an ascending sequence of
ideals

g1 C g Cqs C ...

However, this sequence must stop since R is noetherian. This is a contradiction, so one

of the prime ideals g; must have the property mentioned in the lemma.
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4. Let K be a field and let p be a non zero prime ideal of K[x]. Then height(p) = 1. In

particular, we have dim(K|z]) = 1.

Solution: This follows from the fact that non-zero prime ideals of K[z| are maximal

and from the fact that the zero ideal in K[z] is prime, since K[z] is a domain.
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Section B

d.

Let R be a ring and let Ry be the prime ring of R (see the preamble of the notes for
the definition). Suppose that R is a finitely generated Rg-algebra. Suppose also that R
is a field. Prove that R is a finite field.

. Let R be an integrally closed domain. Let K = Frac(R). Let L|K be an algebraic field

extension. Show that an element e € L is integral over R if and only if the minimal

polynomial of e over K has coefficients in R.

Let R be a PID. Let ¢1,cy € R be two distinct irreducible elements and let ¢ = ¢y - ¢s.
Show that (c¢) = (x,¢1)* - (z,c2)* and that the ideals (x,¢;) are prime, as ideals in

R[z]/(c — 2?).

. Let R be a ring (not necessarily noetherian). Suppose that dim(R) < oo. Show that

dim(R[z]) < 1+ 2dim(R).

. Let A (resp. B) be a noetherian local ring with maximal ideal mu (resp. mp). Let

¢: A — B be a ring homomorphism and suppose that ¢(m4) C mp (such a homomor-

phism is said to be ‘local’).
Suppose that

(a) B is finite over A via ¢;

(b) the map m4 — mp/m% induced by ¢ is surjective;
(c) the map A/my — B/mp induced by ¢ is bijective.

Prove that ¢ is surjective. [Hint: use Nakayama’s lemma twice].
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Section C

10.

(a) Let R be a noetherian domain. Let I be a proper ideal of R. Then [1,.,I" = 0.

(b) Let R be a noetherian ring and let I be an ideal of R. Let M be a finitely
generated R-module. Suppose that [ is contained in the Jacobson radical of R.
Then (), -, "M = 0.

n=>0

Solution: Part (a) is clear.

If r € 141 then r is a unit (a similar reasoning was made during the proof of Nakayama’s
lemma). Indeed, if r is not a unit, then r is contained in some maximal ideal m. But
then 1 is also contained in m, since I C m, which is a contradiction. Hence ker(ry;) =0

and the result follows from Krull’s theorem.

11. Let ¢: R — T be a ring homomorphism. Let p € Spec(R) and let I be the ideal
generated by ¢(p) in 7.
Write ¢: R/p — T'/1 for the ring homomorphism induced by ¢ and let S = (R/p)~{0}.
Write ¥g: Frac(R/p) — (T'/1)ys) for the induced ring homomorphism. Finally, write
p: T — (T/1)ys) for the natural ring homomorphism.
(a) Show that Spec(p)(Spec((T/1)y(s))) consists precisely of the prime ideals q of T,
such that ¢~1(q) = p.
(b) Show that the correspondence between
e prime ideals q such that ¢~!(q) = p, and
e prime ideals of (T/1)ys)
respects inclusion in both directions.
(c¢) Deduce that when T'= R[x] we have
(T/Dy(s) = (Rlz]/plx])wes) =~ (R/p)[2](rp)- = Frac(R/p)[x].
Solution: We have a commutative diagram of rings
o
T—T/1 (T/)s)
¢>T 1/{ wST
R R/p Frac(R/p)
leading to a commutative diagram of spectra
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Spec(p)

Spec(T') «—— Spec(T'/I) «—— Spec((T'/1)y(s))
lSpeC(d)) lSpeC(ﬁf’) lspec(ws)
Spec(R) «—— Spec(R/p) «— Spec(Frac(R/p))

The lemma is saying that the fibre of Spec(¢) above p is precisely the image of Spec(p).

Note first that Spec(Frac(R/p)) consists of one point, since Frac(R/p) is a field. The
image of Spec(Frac(R/p)) in Spec(R/p) is the ideal (0) C R/p and the preimage of the
ideal (0) € R/p in R is p. Thus the image of Spec(p) is contained in the fibre of Spec(¢)

above p, since the diagram is commutative.

Now suppose that q € Spec(T) and that ¢~'(q) = p (i.e., q lies inside the fibre of
Spec(¢) above p).

Then q O I and there is thus an ideal q’ € Spec(T'/I), such that q is the image of ¢’
in Spec(7T'). On the other hand, we know that /~'(q’) is the 0 ideal, since ¢~(q) = p
and the diagram of rings is commutative. In other words, we have ¢’ N (S) = (). We

conclude that ' lies in the image of the map Spec((T'/1)ys)) — Spec(T/I).
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