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Recommended books and resources

There are a large variety of good textbooks and lecture notes on general relativity. This course
borrows from a number of them, in various different places. An assortment of textbooks that

have been used in writing these notes are:
o Wald, General Relativity

A very thorough introduction to the subject.

e Weinberg, Gravitation and cosmology

e Carroll, An introduction to general relativity, spacetime and geometry.

Aimed more at particle physicists. We will follow this in the cosmology section and borrow

bits for elsewhere.
e Hartle, Gravity, an introduction to Einstein’s general relativity
e Misner, Thorne and Wheeler, Gravitation
It is a very big book.
e Nakahara, Geometry, Topology and Physics

An excellent book for learning about geometry and topology and will be useful for the

differential geometry section of the notes.

There are also a number of useful lecture notes online. In particular:
e Joe Kier’s lecture notes from 2020

e David Tong’s lecture notes

e Sean Carroll’s lecture notes

e Harvey Reall’s lecture notes



Conventions

e We will use the god-given signature convention of mostly plus (—, 4, +, +). This may differ
with the convention you have used in other courses, especially field theory courses. This
convention is preferable when thinking about geometry as it gives positive spatial distances.
For quantum field theory the other convention is preferable since it ensures that energies
and frequencies are positive. You may map between the two conventions through Wick

rotation, essentially allowing the coordinates to become complex.

e Spacetime indices will be taken to be greek letters from the middle of the alphabet: u, v, p, ...
and run over 0, 1,2, 3. Latin indices 4, j, k, .. run over the spatial directions and take values
1,2,3.

e We employ Einstein summation convention, repeated indices are summed over, unless oth-

erwise stated.

e We work in units where the speed of light ¢ is set to 1. Occasionally it is instructive to

reintroduce ¢ which can be done by dimensional analysis.
e The Minkowski metric will be denoted by 7,, = diagonal(—1,1,1,1),,.

o After introducing curvature we will take the metric to be g, and the determinant will be

det(gw) = g.
Useful formulae

e The Lagrangian for the geodesic equation of a massive test particle is

dzH dz# dzv
_ I - _ _ =
ﬁ( a '’ ) \/ 9B I

with A an arbitrary parameter along the worldline.

e The geodesic equation for a massive particle is

d2zH u dx¥ dx? B dx¥ dx? _

&z g =0 el g =

where 7 is the proper time. For light, the first equation takes the same form just replacing

7 with an affine parameter. The second is modified by —1 — 0.



e The Christoffel symbols (Levi-Civita connection) are

1
I, = 59“” (&,gg,, + 0p9or — &,gl,p) .

e The Riemann tensor is

RY, ., = 0, — 0,10, + T \TA, =TV T, .

vpo
— Symmetries

R,prcr = _R,uzzapa
R,ul/pa = Rpcf/,w .

— Bianchi identity 1

R',py + Ry, + R, =0.

vpo + pov ovp

— Bianchi Identity 2
VuRU)\,,p + V,,RU)\W + VPR"/\W =0.

e Ricci tensor
— PP
R, =R v
e Ricci scalar
v
R = R,,g"".
e Einstein tensor
1

G" =R" — JRg"".

e Finstein—Hilbert action plus cosmological constant,

S = 1671TG/d4x\/?g(R+A).

Under a variation g,, — guv + 69, we have
09" = —g""9"? 090,

09 = 99" 09w ,
SRy = V017, — V017, .



1 Introduction

Gravity is one of the four! fundamental forces alongside electromagnetism, the strong nuclear
force and the weak nuclear force. Of these forces gravity is by far the weakest force, the ratio
of the gravitational force to electric force acting on an electron is 10736.2 Despite this gravity
plays a dominant role in shaping the large scale structure of the universe. This is because
the strong and weak forces have a very short range, while, though electromagnetism is a long
range force, it is both attractive and repulsive. For bodies of macroscopic dimensions the
repulsion of like charges is approximately balanced by the attraction of oppositely charges,
you don’t see big clumps of highly charged bodies in nature. On the other hand, gravity is
only an attractive force, thus for sufficiently large bodies the gravitational field of the sum of
all its constituents adds up to become the dominant force.

The leading candidate for a theory of gravity for some time was Newton’s theory of
gravitation. This however, is a non-relativistic theory of gravity and therefore is incompatible
with special relativity: it is not invariant under Lorentz transformations. One can see this
with a little thought experiment. What would happen if the sun suddenly disappeared? For
8 minutes, the time it takes for light to travel from the sun to Earth, we would be completely
oblivious. This is because special relativity tells us that no signal can travel faster than light:
the Earth must continue on its orbit for these 8 minutes, after which, it is flung out of the
solar system leading to almost certain death for all life on Earth. However, Newton’s theory
of gravity acts instantaneously, we would be flung out of the solar system immediately. In
Newton’s theory, the force on one mass depends on the location of the other mass at the same
time.

Einstein’s breakthrough lead to a conceptual revolution in the way that we view space-
time. The fact that objects with the same initial conditions travel along the same curve,
independent of their mass, hints that the curve that is followed is a property of the geometry
of spacetime rather than a force acting on the body. General relativity (GR) understands
gravity as the curvature of spacetime and the trajectories within spacetime as geodesics on
this curved space. Or as John Wheeler once said, “Mass tells space how to curve, while curved
space tells matter how to move”.

The aim of this course is to introduce you to General relativity and by the end of it to

'One could add currently known to physics at this point for safety.

2You can see this very clearly by holding two magnets together, gravity is not strong enough to pull one
magnet to the floor. A current research direction conjectures that in any quantum theory of gravity, the
strength of gravity is weaker relative to any other gauge force [1].



allow you to perform calculations. Among other topics we will see how gravity bends light,
the corrections to the motion of the planets and a black hole. This is a large topic and we
will therefore omit many interesting directions, but this will lay the foundation for further
study and for the follow up course General Relativity II.

The notes are organised as follows. We begin by reviewing special relativity and Newto-
nian gravity in section 2. To understand general relativity properly we need to understand
the underlying geometry of spacetime. This requires knowledge of the sophisticated tools of
differential geometry to describe curved spacetime, which we will study in sections 3 and 4.
With these new tools we are finally in a position to introduce Einstein’s equations and physics
in curved spacetime in section 5. The Schwarzschild solution is the go to solution of general
relativity and we will use it as a testing ground for studying many interesting topics in GR

including black holes, the motion of the planets and the bending of light in section 6.



2 Special relativity and Newtonian gravity

We begin with a whirlwind exploration of special relativity. This section is by no means meant
to be an introduction to special relativity, more a refresher on the subject and to emphasise
the pertinent points. For example we will immediately assume that the reader is familiar
with the Einstein summation convention, that is repeated indices are summed over and one
should be an ‘up’ index and the other a ‘lower’ index. For readers in need of a more thorough
introduction there are a number of excellent texts to consult. For example the notes by Joe
Minahan, the book ‘Special Relativity: An Introduction with 200 Problems and Solutions’
by Michael Tsamparlis and Bernard Schutz’s book, ‘A First Course in General Relativity’.
By the end of the 18th century two areas of physics that were in conflict had emerged:
Newtonian mechanics and Electromagnetism. Newtonian mechanics has a notion of absolute
time and the equations of motion are invariant under Galilean coordinate transformations.
The transformation law between two coordinate systems, the latter moving at a uniform speed

v in the x direction of the former, is
2y, 2) = (t,x —vt,y, 2). (2.1)

Galilean transformations imply that the speed of light should change in different reference
frames moving with respect to each other. This is incompatible with Maxwell’s equations
describing electromagnetism where the speed of light is fixed. A resolution to this problem was
proposed by conjecturing a preferred frame, the frame of the physical medium in which light
propagates, called the Ether. The speed of light in any other rest frame would then be modified
by the Newtonian addition of velocities. An experiment by Michelson and Morley in 1887 to
detect the Ether failed, the speed of light does not satisfy the Newtonian law of addition of

velocities. Either Newtonian mechanics or Maxwell’s equations required modification.

2.1 Special relativity

Finstein gave the resolution to this problem in 1905 with the introduction of special relativity.
In special relativity a key role is played by the so-called inertial reference frame. Such a frame

satisfies three key properties:

1. There is a universal time coordinate which can be synchronised everywhere in the inertial

frame.

2. The spatial slices are Euclidean space, satisfying the usual Euclidean axioms.
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3. A body with no external forces will move with constant velocity within the frame with

respect to the clocks and measuring sticks of the frame.

We can construct an infinite number of such frames and we need to understand how to map

between them. This is where Einstein’s two postulates for special relativity are needed:

1. The laws of physics in any inertial reference frame are identical.

2. The speed of light in a vacuum in two different reference frames does not change and is

given by 3 ¢ = 299782458m s .

For the second postulate it is important to note the word vacuum. The speed of light
through different mediums is less than ¢, this is why we have refraction when light travels
through glass for example. In [2] they even managed to stop light propagating temporarily
before letting it propagate again.

The group of spacetime coordinate transformations which map inertial reference frames to
inertial reference frames are the Lorentz transformations. One may then rephrase the principle
of special relativity to be that the laws of nature are invariant under Lorentz transformations.
This requires the abandonment of the Newtonian idea of absolute time. Events which are
simultaneous in one inertial reference frame need not be simultaneous in another frame (see

problem sheets 0 and 1 for examples to work through).

2.1.1 Lorentz transformations

A Lorentz transformation is a linear transformation from one spacetime coordinate system

x# = (ct,z,y, z) to another z/*, of the form
o't = A3V (2.2)
where A is a constant matrix, i.e. spacetime independent, and satisfies
A" N Ny = Mpor - (2.3)

The matrix 7 is the famed Minkowski metric, which in our signature, is given by

-1000
0100
0010
0001

Nuv = diag(_L L1, 1)MV = (2'4)

3There is a nice mnemonic (the number of letters in each word is the value here) to remember this: We
guarantee certainty clearly referring to this light mnemonic.

11



The set of matrices satisfying (2.3) is the group O(1,3).* We could also add in constant
shifts of the coordinates, z* = A", a¥ + a*, with a* a constant four-vector. This would
enhance the Lorentz group to the Poincaré group. For our purposes we will only need to
consider the Lorentz group though and so we set a* = 0 from now on.

From the definition of the Lorentz group it follows that it leaves the line element, (some-

times also called length element, invariant interval)
ds? = 1, detdz” (2.5)
invariant.® This is merely the proper distance between the two spacetime events: (¢,z,y, z)

and (t+dt,x + dz,y +dy, z + dz). Here, d stands for an infinitesimal displacement, you also

see 0 and A to mean the same thing.

Aside: The group O(1,3) described above is sometimes called the homogeneous Lorentz
group. It admits a proper subgroup defined by imposing

A% >1, detA=1. (2.6)

The proper subgroup restricts to all transformations which can be smoothly joined to the
identity. The improper Lorentz transformations involve either space inversion det A =
—1, A% > 1, or time reversal det A = 1, A% < 1. Space and time inversions are known
not to be exact symmetries of nature and therefore when we say Lorentz transformation
what we really mean is the proper Lorentz transformations.

We now want to understand what types of transformations the proper Lorentz group

admits. There is a further subgroup consisting of spatial rotations taking the form:

with R an SO(3) matrix: RRT =1, det R = 1. The remaining transformations are known as

boosts which mix the space and time directions. Examples of the two types of transformation

are®
1 0 0 0 cosh¢ —sinh¢ 00
ARotation _ 0 cos® sinf 0 ABoost _ | ~ sinh¢ cosh¢ 00 (2.8)
0 —sinf cosf 0 |’ 0 0 10 '
0 0 0 1 0 0 01

“More generally one could consider O(p, ¢) which satisfy (2.3) but now with 1 having p —1’s and ¢ +1’s.

®One can show that the Lorentz transformations are the only non-singular coordinate transformations that
leave ds? invariant. Here non-singular means that both 2’(x) and z(z’) are well behaved differential functions
and thus g;”,‘: has an inverse. When we consider ds> = 0 there is an enhancement of the symmetry group.
You will show this in problem sheet 1.

5Note that we only work with the proper Lorentz group.
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The first is a rotation in the x,y directions and the second is a boost in the x direction. The
rotation parameter is compact 6 € [0,27) while the boost parameter, known as the rapidity
is non-compact ¢ € (—o0,00). Altogether the Lorentz group has six parameters, split evenly
between boost and rotations. Rotations commute amongst themselves but do not commute
with boosts, thus the Lorentz group is non-abelian.

Rather than considering the matrices A in (2.8) it is useful to consider their generators.”

These are matrices T which satisfy
A = %" (2.9)

where 6, are constant parameters. The generators for the two matrices appearing in (2.8) are

0000 0i00

TRotation: 00710 ’ TBoost: 1000 7 (210)
0i 00 0000
0000 0000

with similar expressions for the other generators.

Exercise 2.1: Addition of rapidity

1. Compute the addition of the rapidity under two successive boosts along the x axis.
2. Show that the generators in (2.10) give the matrices in equation (2.8)
3. Compute the commutator of the generators ((2.10)) of a boost along x and y.

4. Compute the commutator of the generators ((2.10)) for a boost along x and rotation

in the z-y-plane.

5. Compute the commutator of the generators ((2.10))of a boost along x and rotation in

the y-z-plane.

The interpretation of the rotations is clear from our understanding of Galilean symmetries
but what is the interpretation of the boosts? You may not be surprised but this corresponds
to changing coordinates to that of a frame moving with a constant velocity with respect to
the first.

Under a boost in the z-direction the transformed coordinates are

t' =tcosh¢p —xsinh¢, 2’ = —tsinh¢g+ xcosho. (2.11)

"We are considering the Lie Algebra of the Lie Group.
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The point ' = 0 is then moving, as viewed from the original frame, with velocity
x
V== tanh ¢ . (2.12)

Motivated by this it is useful to perform the replacement ¢ = arctanh v in the transformations

to obtain

with v = (1—0?)"1/2, (2.13)

Exercise 2.2: Addition of velocity
Compute the addition of the velocity under two successive boosts along the x axis. You

should contrast this with the addition of rapidities.

Understanding these transformation lead to a whole range of interesting phenomena from
time dilation to length contraction. In problem sheet 0 and 1 you will review some of these

problems. There will also be some worked examples given in these notes in section A.

2.1.2 Causal structure and worldlines

The invariance of the proper distance between spacetime events allows us to make the follow-

ing definition:

Definition 1 (Timelike, Null, Spacelike) The interval between two spacetime events xt

and x* + dz* is
Timelike separated if ds®> <0,
Null or Lightlike separated if ds®> =0, (2.14)

Spacelike separated if ds® > 0.

This can be visualised by studying a spacetime diagram. Focussing only on the ¢, z coordinates
and suppressing the y, z directions we may associate to every point p in spacetime a light
cone, see figure 1. For simplicity let the point p be the origin, this is of course just a shift
in the coordinate, remember our a*’s that we removed earlier. Then the path light takes
passing through the point p is given by x = £t. These straight lines moving at the speed
of light define the light cone. Points lying on the cone are null/lightlike separated from our
point p. We can divide the light cone into two cones, the future and past light cones. Those
points residing in the light cones are timelike separated while those outside the light cones

are spacelike separated. To fully complete the diagram into a cone we should add in the y, z

14



4

FUTURE

Future Light
Cone

Past Light
Cone

Figure 1: The lightcone diagram. The pink areas are time-like separated from the point
at the centre, while points in the blue area are space-like separated. The dotted lines are
light-like separated.

directions, from which we can see the conical structure. In figure 1 we have sketched the light
cone in the ¢, z-plane

There is a slight subtlety about this diagram which we should point out. If we perform a
boost of out coordinates in the z-direction and map this onto the light-cone it seems that the
light-cone begins to close up, see figure 1. This is a Euclidean viewpoint however, whereas this
properly resides in Lorentzian space. From a Lorentzian viewpoint the axes remain orthogonal
and it is not difficult to see that the lines ¢t = 42 get mapped precisely to the lines ¢’ = +a’.

Thus, we see that our classification in terms of timelike, null and spacelike separated points

15



is also preserved under Lorentz transformations from this viewpoint.

Note that when we are looking at the distance between points we are drawing straight
lines between the points and computing the distance of this line. This works in Minkowski
space but when we introduce curved spacetime this is no longer correct since the notion of
a straight line in this sense ceases to exist. We should really think about computing the
tangent of a path between the two points, for straight lines the tangent lies along the curve
but for more general curves this is no longer true. Let us define a path v in our spacetime
and parametrise it by A € [A1, A2]. We may choose local inertial coordinates so that we may

define our curve as (), note that X is arbitrary and need not be identified with the time

dzt

coordinate. We can then compute the tangent to the curve, <f5-. For a spacelike curve, that

is one which for every infinitesimal interval it is spacelike, we define the (change of) proper

length to be
A2 dat dav
As :/ N —— ——dA. 2.15
A AN da ( )

There is no such analogue along a null curve since ds? = 0. For a timelike curve, one in which

the infinitesimal intervals are all time like, we define the proper time 7 via:

A2 daH dxv
AT :/ —Myy————dA\, (2.16
A H22an d )

where this is understood to be the change in proper time after following the curve from x#(\;)
to z#(A2). One may worry that this depends on the parametrisation of the curve, however it is
a simple exercise (exercise 2.3) to show that the above is independent of the parametrisation
of the curve.

Exercise 2.3: Reparamterisation invariance
Show that the definition of the change in proper time in equation 2.16 is independent

of the parametrisation of the curve, i.e. under the change A — A\(o).

The proper time is useful because of the clock postulate.

Clock Postulate An accurate clock moving along a timelike worldline measures the

proper time along the worldline.

This point of view makes the “twin paradox” and similar puzzles clear. Two worldlines
which have two intersections at different events will have proper times which measure their
respective proper times, however these numbers in general will be different since the paths

are different.

16



It is often convenient to parametrise a timelike curve by the proper time since for a

timelike path we have:
dat(7) dz¥ (1)
i dr dr

=-1. (2.17)

Exercise 2.4: Parametrising a timelike curve
Show that it is always possible to find a parametrisation of a timelike curve so that it

satisfies (2.17), and moreover that it is unique up to constant shifts.

Massive paths Let us now consider the worldlines of massive particles, these follow timelike
paths. From our earlier discussion we will use the proper time as the parameter along the
path with the path starting at 7 = 0 for simplicity. The tangent vector is known as the

four-velocity U*:

dz#
U = —. 2.18
dr ( )
This is automatically normalised, 7, U*U" = —1 since we parametrised the curve using the
proper time! We may define the energy-momentum four-vector as
p =mU", (2.19)

with m the mass of the particle. The mass is a fixed quantity independent of inertial frame,
this is what you may have been used to calling the rest mass. The energy is defined simply to
be p¥, and as one component of a four-vector is not invariant under Lorentz transformations.
Note that in the particle’s rest frame we have p® = m (recall ¢ = 1) and so this is the celebrated
E = mc?. Note that the energy in the rest frame is the norm of the energy momentum four

vector. In a general frame we have
E? — plp; =m?, (2.20)
which is the general version of Einstein’s famous formula.

2.1.3 Some more formal aspects: vectors, one-forms and tensors

Vectors and Vector fields To probe the structure of Minkowski space it is necessary to
introduce the concepts of vectors and tensors. We will give a full treatment of this subject
later in section 3 introducing only the necessary notation for the moment. You may be used
to thinking of a vector as something stretching from one point to another and which can be
freely moved around. In relativity this is no longer true and so we must be more careful by

what we mean by a vector.

17



To each point p in spacetime we associate the set of all possible vectors located at that
point. A useful class of vectors to consider are the tangent vectors to curves going through
the point p. In an n-dimensional spacetime there are n independent such vectors and they

span a vector space called the tangent space at p, and denoted by T,.

Definition 2 (Vector space) A wvector space, V is a set of elements, v € V, which we call
vectors, that may be added together or multiplied by elements of a field, F (e.g real or complex
numbers). The operations of the vector addition and multiplication must satisfy the following

axioms:

1. Associativity

u+ (v+w)=(u+v)+w, Yu,v,w, eV, (2.21)

2. Commutativity

u+v=v+u VYu,v,eV, (2.22)
3. Identity element. There exists a 0 € V' such that

v+0=v, YoeV, (2.23)

4. Inverse elements. For every v € V there exists a —v € V' such that

v+ (—v)=0=(—v)+v, (2.24)

5. Compatability of scalar multiplication with field multiplication.

a(bv) = (ab)v, Ya,beF, andveV (2.25)

6. Identity element of scalar multiplication. There exists a 1 € F such that

lv=v, YeV, (2.26)

7. Distributivity of scalar multiplication.

alu+v)=au+av, Yae€lF, andu,veV, (2.27)

8. Distributivity of scalar multiplication.

(a+bu=av+bv, Va,beF andveV (2.28)

18



A vector is a perfectly well-defined geometric object defined at the point p. We may
also define a wvector field to be a set of vectors with exactly one defined at each point in
spacetime. The set of all the tangent spaces T}, of a manifold® M is known as the tangent
bundle T'(M). This is a 2n-dimensional manifold which is an example of a fiber bundle. It is
important to emphasise that neither the vector nor the vector field transform under Lorentz
transformations.

It is often useful to decompose vectors into components in terms of some basis of the
tangent space. Recall that a basis is a set of vectors which both spans the vector space and
is linearly independent. There are an infinite number of possible bases, but each will have
the same number of basis elements, the dimension of the manifold here. Let us imagine that
at every point in our n-dimensional space we set up a basis with n vectors €,. Then any
vector V' can be expanded in terms of this basis as V' = V*#¢,. Here V# are known as the
components of the vector. This is sometimes sloppily called a vector or contravariant vector,
however this is not correct, V is the vector and V# are the components of the vector.

A standard example of a vector in spacetime, and one that will appear frequently, is
the tangent to a curve. We can specify a curve by specifying the coordinates in terms of a

parameter, x#(\). The tangent vector has components

dz#(A)
VH = 2.29
g (2:29)
and the vector is
V =Vke,. (2.30)

Under a Lorentz transformation the coordinates transform according to (2.2), and from this
we may deduce the transformation of the components of the four-vector V#. When the

coordinate system is transformed as in (2.2), the components transform as
VH 5 V= AF VY. (2.31)

Since the vector itself does not change under Lorentz transformations, and the parametrisation

with A is unaltered, it follows that the basis vectors transform according to
ey = A”Héﬁ, : (2.32)

This is just multiplication by the inverse of the Lorentz transformation which transforms the
coordinates, therefore
éL =A,"é,. (2.33)

8We will define a manifold later in section 3.
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To summarise, we have introduced a set of coordinates labelled by upper indices which trans-
form in a certain way under Lorentz transformations. We then considered vector components
with upper indices which transformed in the same way as the coordinates. The basis vectors
associated with the coordinate system transformed via the inverse matrix and were labelled
by a lower index. These transformations leave invariant the vector, that is summing over the

vector components with the basis vectors.

Co-vectors and one-forms Once we have a vector space we can define an associated
vector space known as the dual vector space. It is usually denoted with an asterisk, so that
the dual vector space of the Tangent space T}, is T);. The dual space is the space of all linear
maps from the original vector space to the real numbers, so that if w € T} then by the

definition of a linear map”
w(@V + W) =aw(V)+bw(W) e R, (2.34)

for all VW € T}, and a,b € R. It follows that T} is a vector space itself and since it is finite

dimensional its dual vector space is T),. We may introduce a basis of dual vectors or by fixing

o (e,) = o-. (2.35)

w=w,o". (2.36)

Typically one refers to the elements of T}, as contravariant four vectors and elements of
Ty as covariant vectors, or even one-forms, (a name that will make more sense after we have
introduced differential geometry in section 3). The set of all cotangent spaces over M is called
the cotangent bundle T*(M). The action of a dual vector field on a vector field is no longer
a single number but a scalar, depending on the spacetime position. A scalar has no indices
and is left invariant under Lorentz transformations.
The component notation is useful when considering the action of a dual vector on a
vector:
w(V) = w, V0" (é,) = w, VVH = w,VH. (2.37)
Since the action of a co-vector on a vector is a constant it is invariant under Lorentz trans-

formations and we must have

w VH* =w A V7 =w, VE. (2.38)

9We require a linear map, f : V — W to be additive f(u+v) = f(u)+ f(v) for all u,v € V and homogeneous
of degree 1 so that f(cu) = cf(u) for all w € V and ¢ € F.
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If we were dealing with vector and co-vector fields it would be a scalar. It is from here that
we can obtain the transformation of the dual vector: a covariant four-vector is a quantity
which transforms as

wy = wy, = A w,, (2.39)
where

A = muen” APy (2.40)
with n#¥ the inverse of 7,,,, which are numerically the same.

Exercise 2.5: The inverse of the Lorentz transformation
Using the properties of the Lorentz transformation show that A" is the inverse of A¥,.

The simplest example of a co-vector is the gradient of a scalar function,
09
dp = —6". 241
b=10 (2.41)

You can see that the components indeed transform in the correct way.
Observe that the metric 7 can be used to raise and lower indices. This allows us to
transform a contravariant vector into a co-vector and vice-versa. The metric then acts as a

map from Tj,(M) — T; (M), while the inverse metric acts as a map from T;(M) — T),(M).
Exercise 2.6: Raising and lowering indices
e Show that 7, V" transforms as the components of a co-vector if V" transforms as the

components of a vector.

e Show that n#*”V,, transforms as the components of a vector if V, transforms as the

components of a co-vector.

Note that because of the map between contravariant and covariant vectors via the

Minkowski metric we can define an inner product on two vectors as
n(V,W) = nu VW, (2.42)

Two vectors whose inner product vanishes are called orthogonal. Since it is a scalar the dot
product is left invariant under Lorentz transformations and therefore orthogonality is basis
and frame independent. We can define the norm of a vector to be the inner product with
itself. Unlike in Euclidean geometry this is not positive definite, instead
<0, VHis timelike,
if 7, V¥V 1is { =0, V* is lightlike or null, (2.43)
>0, VH#is spacelike,
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This is the more mathematical definition of these concepts from our earlier discussion.

Tensors One may extend the notion of a vector and co-vector to a tensor. A tensor of type

(rank) (k,1), is a multilinear map from a collection of dual vectors and vectors to R:

T: Tyx.xTyxTyx.xT,—R, (2.44)

for example a scalar is a tensor of rank (0,0), a co-vector is a rank (0,1) tensor and a
contravariant vector is a tensor of rank (1,0). The space of all tensors of a fixed rank (k,[)
forms a vector space. To construct a basis for this space it is useful to define the tensor
product ®@. If T is a (k,[)-tensor and S a (m,n)-tensor then 7' ® S is a (k + m,[ + n) tensor
defined to be

T® S(wW, . .w® L wktm yO yO i) (2.45)
= T(wW, . w® VO yO)gtD | ktm) )y ity

Let T be a tensor of rank (k,l), then under a Lorentz transformation its components

transform as
!

=AML AN AT (2.46)
1 k

THL- Bk
viyp

Vy...1

One can uses tensors to construct additional tensors either by taking linear combinations of
tensors with the same upper and lower indices, direct products, contraction, or differentiation.
Note that the order of the indices of a tensor matters.

Some tensors that will appear regularly are: the metric which is a (0, 2) tensor, with the
inverse being a (2,0) tensor, the Kronecker delta 6, which is a (1,1) tensor, and finally the
Levi-Civita tensor which is a (0,4) tensor. Not only can the metric be used to raise and lower
indices of a tensor, it can also be used to contract indices. Contraction takes a (k,l) tensor
toa (k— 1,1 —1) tensor by

™e,, =5, . (2.47)

2.1.4 Newton’s law in special relativity and energy momentum

We now want the special relativity version of Newton’s second law. The requirement that it
be tensorial puts some stringent constraints on the possible form, we must introduce a force
four-vector f* satisfying
= md—2m“(7') = ip“(T). (2.48)
dr2 dr

For electromagnetism and the Lorentz force law (f = ¢(E + v x B) ) we find

fr=qU"F,", (2.49)
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where F' is the field strength of the electromagnetism gauge field and ¢ is the charge of the
particle and U* its four-velocity.

Although p* provides a complete description of the energy and momentum of a particle
for extended systems it is necessary to go further and define the energy-momentum tensor, or
stress tensor, T*. This is a symmetric (2, 0) tensor which tells us all we need to know about
the energy like aspects of a system: energy density, pressure, stress etc.. Consider a fluid.
This is a continuum of matter described macroscopic quantities such as temperature, pressure,
entropy, viscosity, etc. We will work with perfect fluids which are completely characterised
by their pressure and density. This in particular means that they are isotropic (same in every
direction) in the rest frame.

To understand this let us first consider dust. This is a collection of particles which are
at rest with respect to each other, as a perfect fluid they have zero pressure. Since all the
particles have an equal velocity in any fixed inertial frame we can imagine a four-velocity field

U#(x) defined over all spacetime. We can define the number-flux four-vector
NF =nU" | (2.50)

where n is the number density of the particles as measured in their rest frame. Then N°
is the number density of particles as measured in any other frame, while N? is the flux of
particles in the ¢’th direction. Let us imagine each of the particles have the same mass m.

Then in the rest frame the energy density of the dust is given by
p=nm. (2.51)

This completely specifies the dust, however this only measures the energy density in the rest
frame, how do we measure it in other frames? Notice that both n and m are 0-components
of four-vectors in their rest frame: N* = (n,0,0,0) and p* = (m,0,0,0). Therefore p is the
u=0,v =0 component of the tensor p ® IV as measured in the rest frame. We are therefore

lead to define the energy momentum tensor for dust

Thoy =P'NY =nmUMUY = pUMU" (2.52)

where p is the energy density as measured in the rest frame.

We can now consider other perfect fluids. The key point is the isotropic in the rest
frame property which implies that the energy momentum tensor must take a diagonal form
in the rest frame, since there cannot be a net flux of momentum in an orthogonal direction.

Moreover the spacelike components must all be equal T = 722 = 733, there are only two
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independent components. We will take the two independent parameters to be the energy
density p and the pressure p (note that p is also used for momentum but will always come
with a superscript or subscript). In the rest frame the energy momentum tensor takes the

form
p000

0p0O0
00p0
000p

T = (2.53)

We want a formula which is good in any frame and therefore we want to write this in terms of
tensors. For dust we had T"" = pU*U*, so we may guess that there should be (p+ p)U*U*,
which gives p + p in the 00 component and zero elsewhere in the rest frame. To include the
remainder we should find something which is of the form pdiag(—1,1,1,1) this is of course
given by the Minkowski metric! The general form of the energy momentum tensor for a
perfect fluid is

T = (p+p)U*U" + pn™. (2.54)

This will be important when we consider the cosmology section of the course.

Some worked examples of the concepts of special relativity can be found in appendix A.

2.2 Newtonian gravity

Above we have reviewed special relativity, now we want to understand why special relativity is
incompatible with Newtonian gravity, in particular we will see that it is not Lorentz invariant.
To do this we can cast Newtonian gravity in terms of a field theory. The force acting on a

particle of mass m is
F=—-mVo(t,7), (2.55)

where the gravitational field ®(t, %) is determined by the surrounding matter distribution
p(t, &), through
V20(t, &) = AnGnp(t, T), (2.56)

where G is Newton’s constant with approximate value
Gy ~6.67 x 107 1 m3kg™1s72. (2.57)

This is simply a rewriting into field theory language of the inverse square law of Newton. For

example if there is a mass M concentrated at a single point at (¢, 6), then the mass density is

p(t, @) = M&®)(Z), (2.58)
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which gives the gravitational field,
(7)) = ——, re=2-%. (2.59)

This can be extended to more complicated matter distributions, either summing up contribu-
tions from the location of point-like particles or more generally by using the Greens function
for the Laplacian and the mass density

5(7) = / iz EPE) (2.60)

F— ]

Exercise 2.7: Newton’s theorem
Newton’s theorem states that the gravitational field outside of a spherically symmetric

mass distribution depends only on its total mass. Show this by using (2.55), (2.56) and

Gauss’ theorem.

We can now insert the gravitational force law into Newton’s second law of motion F' = ma.
At this point one should ask oneself whether the inertial mass appearing in Newton’s second
law is the same as the one appearing in the gravitational force law (2.55), there is no reason

that they need to be the same. Application of Newton’s second law gives

- ma
a=—

Vo, (2.61)

m;
with @ the acceleration Starting with Galileo, Christaan Huygens all the way to more recent
experimental data has shown that m; = mg to an accuracy of 107'3. This is known as the
weak equivalence principle. In the Newtonian theory this appears as an isolated unexplained
fact, however it is this experimental fact that underlies general relativity. Since all bodies
with the same initial conditions fall along the same curve regardless of their composition, we
can interpret that curve to be a property of the geometry of the spacetime not of a force

acting on the body.

2.2.1 Equivalence Principles

The Weak equivalence principle was one of the starting points for the development of GR. It is
motivated by thought experiments using Newtonian gravity. The exact equality of m; = mg
is one version of the weak equivalence principle. Newtonian gravity gives no explanation for
why this should be true. A theory of gravity should be able to explain this. Another way to

formulate the weak equivalence principle is:
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The weak equivalence principle
The trajectory of a freely falling test body depends only on its initial position and initial
velocity and is independent of the composition of the body.

A consequence of the weak equivalence principle is that it is not possible to tell the difference
between constant acceleration and a constant gravitational field. Suppose that you are in
a closed box and consider the two situations 1) you are on earth, 2) you are in a spaceship
undergoing constant acceleration.'® Within Newtonian mechanics there is no local experiment
that you can perform which distinguishes the two. One of the important words is local. You
can use tidal forces to distinguish between the two. Roughly if you drop two masses on Earth
they will ever so slightly come together because the direction gravity acts on them is slightly
different, they are pulled to the centre of the Earth. On a spaceship this is not the case and
they fall down never getting closer together. This however, is a non-local experiment, you
need to watch the masses fall for a while and for a distance. Note that it is not the mutual
gravitational force between the two test bodies that is bringing them together, rather it the
fact that they experience a non-uniform gravitational force. This is measured by tidal forces
and we will see the mathematics behind this in section 4.4.5.

This motivated Einstein’s equivalence principle:

Equivalence Principle
1. The weak equivalence principle is valid.

2. In a local inertial frame the results of all non-gravitational experiments will be
indistinguishable from the results of the same experiments in an inertial frame in
Minkowski spacetime.

The weak equivalence principle implies that 2) is valid for test bodies. The fact that test
bodies which include ordinary matter which is held together by the three other forces, gives

evidence that the electromagnetic and nuclear forces also obey 2).

Implications The equivalence principle has many implications. One is that it implies that
light is bent in a gravitational field. Consider a uniform gravitational field and a freely falling
lab. Inside the lab the Einstein equivalence principle says that light rays must move on
straight lines. But a straight line with respect to the lab corresponds to a curved path with

respect to a frame at rest relative to the Earth. The effect is small so we cannot demonstrate

9 Another version of this is 1) the box is in free fall 2) you are floating in deep space. Again there is no local
experiment that you can conduct to tell the difference.
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this in the classroom but with more sensitive equipment in a lab this has been experimentally

verified.

2.2.2 Planetary orbits in Newtonian mechanics

We now have all the technology we need to study the orbits of the planets within Newtonian
mechanics. Let us set up a coordinate system where the massive body of mass M is at r =0
and the planet of mass m is a distance r from that point. The Lagrangian describing the
system is

£= T 0P 90+ 20D - V), V) = —m]fG | (2.62)

To make this more tractable it is useful to change coordinates to polar coordinates rather

than Cartesian coordinates:
x=rsinfcos¢, y=rsinfsing, z=rcosb. (2.63)

The Lagrangian becomes

L= % (7’"2 + 7% (6% + sin? 9q52)> + m]\fG : (2.64)

We can now compute the equations of motion via the Euler—Lagrange equations: we find

i i M
P — r(l92 + sin? 9¢2) + —2G =0,
%(rQQ) —r?sinfcosf¢? = 0, (2.65)

%(TQ sin? 0¢) = 0.

First let us consider the equation. If we kick the particle off in the § = 5 plane with 6=0
then it will remain in that plane. We will make this choice from now on. The coordinate ¢
is an ignorable coordinate since it does not appear explicitly in the Lagrangian. Recall that
for every ignorable coordinate there is an associated conserved charge, in this case it will be

the angular momentum. We may define
1=1r29, (2.66)

which is conserved. We have now solved the last two equations of (2.65) and only the first

remains. Then we have
? MG _

r3 r2

0. (2.67)
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To proceed further it is useful to note that there is one more conserved quantity, the Energy
of the system. This follows since the Lagrangian is explicitly time independent, thus

m

E
=

(7’*2 + 7% (62 + sin® 9(]52)> +V(r), (2.68)

is conserved. We can now substitute 6 and d) into this final condition to obtain an equation
for 7 only:
1 > MG 1
E=_i?4+ & —— =+ Vy(r). 2.69
2r + o2 . 27“ + Vn(r) ( )
We can now study the orbits by looking at the Newtonian potential. At large distances
the attractive —r~! dominates, while the angular momentum prohibits the particle from

getting too close to the origin, see figure 2.

Vn(r)

Figure 2: A representative example of the Newtonian potential. There are three interesting
behaviours to consider. When E > 0 and the motion describes a fly-by coming from infinity
and heading back to infinity. For E = Vi (r,) < 0 the motion is a circular orbit. Finally for
0 > E > Vn(rs) we obtain elliptic orbits.

The potential has a minimum when

MG 12 12

V'(ry) — =0 =G

(2.70)

A
The planet can happily sit at » = 7, for all time on a circular orbit, note that £ < 0 in this
case. The planet could also oscillate back and forth around the minima. This happens when
E < 0 so that the planet cannot escape off to infinity. This describes an orbit where the
distance to the massive body varies, as you may expect this is the usual elliptic orbit. For

E > 0 the motion describes a flyby, the planet gets close to the massive body, never reaching
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it, before being flung off to infinity. Clearly such a planet would be dead and inhospitable for
life.

So far we have discussed the radial motion of the planet, this does not tell us about the
full motion however. We consider the orbit trajectory, the flyby motion is not so interesting
for us. We now need to solve the angular momentum equations (2.66). To solve the coupled

equations we start by employing a change of coordinates
u=r"1, (2.71)

and then view this as a function of ¢. This works nicely because

du . du
= — = lu2— 2.72
o= o= . (272)
where we have used (2.66). We have
. 1. du
The conservation of energy equation (2.69) becomes
du\2 GM\2 2E G*M?
== ) == = 2.74
(d¢)+<“ 12) ZERET (274)
This turns out to be straightforward to solve, the solution is
GM
u(¢) = ZT(l +ecos o). (2.75)
In the original radial coordinate we have
12 1
_ ) 2.76
r(®) GM 1+ ecos¢ ( )

This is the equation for a conic section with the eccentricity given by

/ 2F1[2

The shape of the orbit depends on the eccentricity. Motion with E > 0 is not in a bounded
orbit, tracing out a hyperbola for ¢ > 1 and a parabola for e = 1. Objects in orbit have e < 1
with elliptical orbits. An important thing to note about this solution is that the orbit does
not precess, its closest approach to the origin, known as the perihelion'! is always at the same

point it never moves and nor does the furthest point of the orbit, the aphelion. This disagrees

NStrictly this is for the closest approach to the sun. Helios is the word for the sun in greek, while peri
means around.
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with observations of Mercury’s orbit and is the first observational discrepancy of Newtonian

gravity.'?> We will compare this result with the result from general relativity in section 6.2.1.

2.3 Problems with Newtonian gravity and why we need GR

Newton’s theory of gravitation is successful in explaining the motions of the moon and planets.
Some irregularities in the orbit of Uranus remained unexplained until the irregularities were
used independently by John Couch Adams and Jean Joseph Le Verrier in 1846, to predict the
existence and position of Neptune. There were still issues with predictions from Newtonian
gravity and experimental data however. The precession of the perihelion of Mercury was one
such problem. It was shown to be out by 43” /century'?, recall that in the section above we
showed that the perihelion does not precess in Newtonian gravity. We will see later how GR
corrects this. A more obvious (and mathematical) problem arose after Einstein’s work on
special relativity in 1905. Newtonian gravity is incompatible with special relativity. A body
can, in principle, be accelerated to a speed greater than the speed of light. Moreover, effects
are instantaneous in Newtonian gravity clearly this is not allowed in special relativity where
the speed of light gives an upper bound on the transfer of information.

Despite Newtonian gravities’ failings it is sufficient for studying a large range of phenom-
ena. To understand when a relativistic theory is needed let us consider a circular orbit around
a star of mass M. The speed of the planet is easily computed by equating the centripetal

force with the gravitational force giving,

v _GM (2.78)

Relativistic effects become important when v ~ ¢ and therefore the dimensionless parameter
which governs corrections to Newtonian gravity is

GM

- (2.79)

1276 perform a more accurate computation one should also take into account the effect of the gravitation
fields of the other planets. This is notoriously difficult since one has to study a multi-body problem. Instead,
what one can do is imagine that the other planets form a shell of mass along their orbit, acting equally. One
can then evaluate the force due to this mass shell. This approximation works if one considers the problem over
a long enough time, but is poor if taken for a short time scale. Since planets closer to the sun have quicker
orbits over a long enough time this approximation will give a reasonable result and we can avoid trying to
solve this multi-body computation.

!3The ” stands for arcseconds, with 3600 arcseconds(=3600") in a degree.
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There is a convenient length scale which one can construct from a mass and the fundamental
constants known as the Schwarzschild radius,'*

2GM

c2

. (2.80)

rs =

Relativistic corrections to gravity are then necessary when rg ~ 2r. By this measure the
earth is not a relativistic system rg ~ 1072m and the corrections on the surface of the Earth
are of the order 1078, For satellites in orbit this is even smaller ~ 10~ however for GPS
satellites clocks with such high precision are needed that this effect can be seen and if GR
was not taken into account would stop working very soon. The sun has rg ~ 3km and for
Mercury the corrections are of order 1077, clearly very small but over a century the precession
of Mercury’s perihelion adds up to the previously quoted 43”.

General relativity is the theory that replaces both Newtonian gravity and special rela-
tivity. However, general relativity is not the final theory of gravity, one eventually needs a
theory of quantum gravity. General relativity breaks down for very extreme phenomena where
quantum effects become important, e.g. the Big Bang and inside black holes. If one views
gravity as a classical field theory and attempts to quantise it one finds that it is perturbatively
non-renormalizable (if you do the QFT courses these words will reappear). Essentially this
means that to obtain sensible observable results we must absorb infinities in computations by
introducing new parameters. For a renormalizable theory we need to introduce only a finite
number of these new parameters but for a non-renormalizable theory we need to introduce
an infinite number, rendering the theory unable to give meaningful predictions. A candidate
theory for quantum gravity, but no means the only candidate, is string theory. We still do not
know what quantum gravity really is! We should emphasise that a theory of quantum gravity
is only needed for these extreme phenomena and so for the large part general relativity is

sufficient.

14We will see this appear later when we consider the Schwarzschild solution in section 6.
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3 Differential Geometry

The study of general relativity is the study of curved spacetime and so to make progress
we need to learn some differential geometry. Our discussion will not be all encompassing,
there will be both topics and proofs that we omit. Instead we will build up all the necessary
mathematical structure, that we will need, in a logical order. As we proceed, many of the
objects that we will introduce may already be familiar to you, they will however take a
different guise in places. This section will have different levels of mathematical rigour, in
some sections we will be good mathematicians defining everything while in other places we
will give more physics inspired definitions. For a more formal course one should consult the
Manifolds and Riemannian geometry courses.

This section closely follows the excellent book by Nakahara [3] with some more physics

explanations and exmaples.

3.1 Manifolds

Before we begin to define a manifold we need to define a topological space. Do not worry

about these possibly scary sounding words, they are actually simple once the fear has cleared.

Definition 3 (Topological space) Let X be any set and T = {U;|i € I} denote a certain
collection of subsets of X. The pair (X,T) is called a topological space if T satisfies

1. Both the set X and the empty set O are open subsets: X € T and ) € T.

2. If J is any, possibly infinite, sub-collection of I, then the family {U;|j € J} satisfies
UjesU; € T.

3. If K is any finite sub-collection of I then the set {Ux|k € K} satisfies NpexUy € T.

Sometimes X alone is called a topological space, i.e. without associating to it a topology, here
we mean that a topology is associated. The sets U; are called open sets (we may sometimes
refer to them as coordinate patches, the reason why will become obvious later) and 7 gives
a topology to X. So when we talk about the open sets, what we really mean is does this set
appear in the topology?. Therefore what we call an open set depends on what topology we
have given the space.

Physical Explanation
We have a set of objects/elements X, for example the people in the lecture room. A

topology gives us a way to group the different objects in X with some requirements. Let

us now group people in the lecture room into subsets U;. For example one subset could be
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the set of all people who were born on a Thursday another could be those who woke up
before 7am this morning and so forth. Now we can define a topology T by taking a choice
of these different subsets, this is the ¢ € I. This space needs to satisfy some properties

though.

1. Both the empty set (nothingness) and the set X (everything) must be in 7. These

sets are then the trivial ones. I pick done of the room occupants or all of them.

2. If we take any subset of our J of the open sets U; then the combination (union) of
them all is one of the open sets U; in our topology. Essentially what this is saying is
that if we call all the people in the room who are in at least one of the subsets defined

by the J open sets then this also has to be an open set.

3. If we take a subset K and intersect them all then the intersection (elements common
to all sets) is also an open set U; in our topology. That is we take some subset K of
the open sets and ask who is in all of them. The remainder needs to also be an open

set in the topology.

Example 3.1: Topologies

a) If X is a set and T a collection of all subsets of X then this is a topological space, and

is known as the discrete topology.

b) Let X be a set and take 7 = {0, X}. This is then a topological space and the
topology is known as the trivial topology. While the discrete topology is too stringent,
this topology is too trivial.

c) Take X = R. All open subsets (a,b) (a,b may be Foo respectively) and their unions

define a topology known as the usual topology.

Exercise 3.1: Usual topology vs discrete topology
Consider the usual topology on R and show that if we allow for an infinite number of open

sets in condition 3 for the definition of a topological space, then the usual topology reduces

to the discrete topology.

Definition 4 (Metric) A metric d : X x X — R is a function that for any z,y,z € X

satisfies:

1. d(z,y) = d(y,z),
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2. d(z,y) > 0 with equality iff x =y,

3. d(z,y) +d(y,z) > d(z, z).

If X is endowed with a metric then X is made a topological space whose open sets are given

by open discs
Ue(z) = {y € X|d(z,y) <€}, (3.1)

and all possible unions. The topology T is called the metric topology determined by d.

Physical Explanation
A metric in this abstract sense does exactly what we would expect of a metric: it gives

us a way of understanding which elements are “close” together. This seems a bit strange
if we take a finite set but we can define such a thing. Let us take a set with two elements:

{z,y}. We take the discrete topology on the space. We can then define a metric via:

g(z,2) =0=g(y,y), 9g(z,y) =9g(y,z) =5, (3.2)

This then satisfies the axioms of a metric above.

Definition 5 (Neighbourhood) Suppose T gives a topology to X. Then N is a neighbour-
hood of the point x € X if N is a subset of X and N contains at least one open set U; which

contains x. Note that there is no requirement for N to be open, in the case where it is open

1t 1s called an open neighbourhood.

Physical Explanation
We want to have a notion of which elements are “close together”. Let us pick an element

2 in X that we are interested in. Our usual intuition of close together does not really work

with a finite group of elements. Instead we say that some subset N of X is a neighbourhood

(i.e. “close by”) of x if the element = appears in any of the open subsets making up N.

Definition 6 (Hausdorff space) A topological space (X, T) is a Hausdorff space if for an

arbitrary pair of distinct points x,y € X, there always exists neighbourhoods U, and U, such
that U, NU, = 0.

Example 3.2: A non-Hausdorff example
Let X ={A, B,C, D} define the sets

U():@, UlZ{A}7 UQ:{A,B}, U3:{A73707D}' (33)

Then the topology T = {Uy, U1, Us, Us} makes X a topological space but it is not Hausdorff.
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First note that both the empty set and X are in the topology T, satisfying point (1) of
the definition of a topological space. Note that the union of these sets is within 7 thereby
satisfying point (2). Finally the intersection of any of the sets is within 7 and therefore it
is a topological space. To see why it is not Hausdorff it suffices to show that we can pick
two points which have no open sets in which one of the points is in and that the intersection
of these open sets is not the empty set. There are a few choices we could make but an

obvious one is C, D. They both appear in only one open set and therefore the space cannot
be Hausdorff.

Most examples in physics that one encounters are Hausdorff spaces. We will assume this
is the case throughout in this course since it is a form of apotropaic magic: it protects us

from evil (=bad things occuring).

Definition 7 (Continuous) Let X and Y be topological spaces. A map f : X — Y is

continuous if the inverse image of an open set in 'Y is an open set in X.

Physical Explanation
We have two spaces and we want to have a good way of mapping between them. We

want to impose some nice properties on this map, the one we are interested in here is it

being continuous.

Note that a continuous function does not need to map an open set in X to an open set in
Y. For example take f : R — R with f(x) = 2% and the usual topology. This is a continuous

function that would fail this since (—¢, €) gets mapped to the closed set [0, €2).

Definition 8 (Closed, closure, interior, boundary) Let (X,T) be a topological space.

A subset A of X is closed if its complement X — A € T in X is an open set.

The closure of the subset A is the smallest closed set that contains A and is denoted by A.

The interior of A is the largest open subset of A and is denoted by A°.

The boundary b(A) of A is the complement of A° in A: b(A) = A — A°.

An open set is always disjoint from its boundary while a closed set always contains its bound-

ary. To make this a little more clear let us consider a concrete example.
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Example 3.3: Open and closed sets

e Let us consider R?, the two-dimensional plane, with the metric topology and let A be

the following open set, A = {(z,y) € R?|2? 4+ y? < 1}. Then the closure of A is
A= {(z,y) e R}z +4% < 1}. (3.4)

The interior of A is itself A° = A. The boundary is then the complement of A° in A,
thus
b(A) = {(z,y) € R*2® +4? = 1}. (3.5)

It therefore agrees with our usual understanding of these concepts.

e Consider the set X = {a,b,c,d, e, f} with topology

T ={X,0,{a},{c,d},{a,c,d},{b,c,d,e, f}}. (3.6)

By definition the sets, {a}, {c, d},{a,c,d},{b,c,d, e, f} are all open in (X, T).

Now let us consider the following sets and whether they are open or closed (or both).

First it is useful to work out the closed sets in our topology, they are X — 7 and thus

we have {X,0,{b,c,d,e, f},{a,b,e, f},{b,e, f},{a}}.

1. {a}. Thisis both open, since it appears in T and closed since X —{a} = {b,¢,d, e, f} €
T. We can see that its closure is itself since it is closed and its interior is itself since
it is open.

2. {b,c}. This is not open since it does not appear in 7. We have X — {b,c} =
{a,d, e, f} which does not appear in 7 either and is therefore this set is not closed
either. The closure of {b, c} is the smallest closed sets that contains {b, ¢}, and from
the set of closed sets above we see that it is {b, ¢, d, e, f}. The interior is the largest

open subset of A, we see that this is necessarily the empty set ). The boundary is
therefore {b,c,d, e, f}.

3. {¢,d}. This is open since it appears in 7, but is not closed since {a, b, e, f} does not
appear in 7. The closure is {b, ¢, d, e, f}, while the interior is itself. The boundary
is therefore {b,e, f}.

4. {a,b,e, f}. This is not open since it does not appear in 7T, it is closed however since
X —{a,b,e, f} = {c,d} does appear in T. The closure is itself since it is a closed
set while the interior is {a}. Therefore the boundary is {b, e, f}.
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For completeness we give the following two definitions, though we will not call on them much:

Definition 9 (Covering) Let (X,T) be a topological space. A family {A;} of subsets of X

1s called a covering of X if

Jai=x. (3.7)

el
If all the A; happen to be the open sets of the topology T then the covering is called an open

covering.

Definition 10 (Compact) Consider a set X and all possible coverings of X. The set X
is compact if for every open covering {U;|i € I} there exists a finite subset J of I such that

{Ujlj € J} is also a covering of X.

Theorem 1 Let X be a subset of R™, then X is compact if and only if it is closed and
bounded.

Definition 11 (Connected, Arcwise connected, Simply connected) Let X be a topo-

logical space.

i) X is connected if it cannot be written as X = X1 U Xy where X1 and Xo are both open
and X1 N Xy = 0. Otherwise X is called disconnected.

i1) A topological space is called arcwise connected if for any points x,y € X there ezists a
continuous map f : [0,1] = X such that f(0) = x and f(1) =y. Only in a few pathological

cases is arcwise connectedness not equivalent to connectedness.

iii) A loop in a topological space X is a continuous map f :[0,1] — X such that f(0) = f(1).

If every loop in X can be continuously shrunk to a point, X is called simply connected.

Some simple examples are:

Example 3.4: Connectedness

e R2 — R is not arcwise connected.
e R? — {0} is arcwise connected but not simply connected.

o R?— {0} is arcwise connected and simply connected.

e The n-dimensional torus is arcwise connected but not simply connected.
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The main purpose of topology is to classify spaces. Suppose we have several figures,
we want to be able to say which are equal and which are different, and probably more
fundamentally what does being equal or different mean. In topology two figures are equivalent
if it is possible to deform them continuously into each other. We therefore construct an
equivalence relation under which geometrical objects are classified according to whether it is
possible to deform one into the other. Of course these are just words and we should define

this more mathematically. To wit let us define a homeomorphism

Definition 12 (Homeomorphism) Let X; and Xy be two topological spaces. A map f :
X1 — Xs is a homeomorphism if it is continuous and has an inverse f~': Xo — X which
is also continuous. If there exists a homeomorphism between X1 and Xo we say that X, and

Xs are homeomorphic to each other.

The classic example of two homeomorphic spaces are a donut and a coffee mug, see here for
a gif of this classic example courtesy of wikipedia.

One would like a quick way to understand whether two spaces are homeomorphic to each
other. Even today we cannot fully characterise the equivalence classes between spaces. One
modest statement that we can make is that if two spaces have different topological invariants
then they are not homeomorphic to each other. A topological invariant is conserved under
homeomorphisms. It may be a number such as the number of connected components of
the space, an algebraic structure such as a group or a ring which can be constructed from
the space, or something like connectedness, compactness or the Hausdorff property. If we
knew the complete class of topological invariants we could specify the equivalence classes
easily, however so far we only know a partial list. As such even if all the known topological
invariants of two spaces coincide these spaces may still not be homeomorphic.

We are now finally in a position to define a manifold. An n-dimensional manifold is
a space which looks locally like R™. Globally it need not be R™ but we may glue local
patches, each of which look like R™ together to get the full global space. A manifold is then
homeomorphic to R locally. The local homeomorphism allows us to give each point on the
manifold a set of n numbers called local coordinates. If the manifold is not homeomorphic
to R” then we need to cover it in more than one patch, and so we need to introduce several
local coordinates. We will require that the transition functions between these coordinates on
the overlapping region are smooth. In this way we can develop the usual notion of calculus on
a manifold. Topology is based on continuity, while manifolds is based on smoothness. With

that let us begin with our definitions again.
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Definition 13 (Differentiable manifold) M is an n-dimensional differentiable manifold

if it satisfies:
1. M is a Hausdorff topological space,
2. M is provided with a family of pairs {(Ui, pi)};
3. {U;} is a family of open sets which covers M: U;U; = M.
4. @i is a homeomorphism from U; onto an open subset U] of R",

5. Given U; and U; such that U; NU;j # 0, then the map ;; = @; o np;l from ¢;(U; N Uj)

to ¢i(U; N U;) is infinitely differentiable. 1;; is known as a transition function.

In figure 3 we have represented (well copied the image from Nakahara) the ideas above.

'(/’,‘j

|/
Y

Figure 3: Here we see the manifold M and two coordinate charts. The homeomorphisms
©; maps U; onto an open set of U/ C R™ providing coordinates for the point p € M. If
U; NU; # 0 the transition functions from one coordinate system to another is smooth.
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The pair (U;, ;) are called a chart and the collection of charts is called an atlas. The
subsets U; are called the coordinate neighbourhood while the ; is called the coordinate
function, or simply the coordinate. The homeomorphism ¢; is represented by n functions
wi(p) = {z*(p),...,2"(p)}, with this set {x*(p)} and u = 1,..,n also called the coordinate.
A point p € M exists independently of its coordinates, however we will often be sloppy and
denote the point p through its coordinates.

If U; and Uj overlap, two coordinate systems are assigned to the same point in U; N Uj.
Axiom 5 asserts that the transition function from one coordinate system to another be smooth
C*°. One may be alarmed by this but there is no reason for trepidation, it is analogous to
labelling a point by Euclidean coordinates and polar coordinates. The map ¢; assigns n
coordinates values z#, (1 < p < n) to a point p € U; N Uj, while ¢; assigns coordinates y* to
the same point. The transition function from y to z, z# = z#(y) is given by n functions of
n variables, and is the explicit form of the map v;; = ¢; o cpi_l. The differentiablility in the
definition is then in the usual sense we are familiar from calculus. All this leads to us being
able to move over M so long as we choose coordinates which vary in a smooth way over the
manifold.

If the union of two atlases {(U;,y;)} and {(Vj,7;)} is again an atlas, then these two
atlases are said to be compatible. The compatibility is an equivalence relation. This equiva-
lence class is called the differentiable structure. Mutually compatible atlases define the same
differentiable structure on M.

Let us briefly comment on manifolds with a boundary. We have assumed that the coor-
dinate neighbourhood U; is homeomorphic to an open set of R”. In some cases this is too
restrictive. If a topological space M is covered by a family of open sets {U;} each of which is
homeomorphic to an open set H" = {(x!,...,2") € R*|z" > 0}, M is said to be a manifold
with boundary. The analogous plot of figure 3 for the manifold with a boundary is given in
figure 4.

The set of points which are mapped to points with 2" = 0 is called the boundary of M
and is denoted by OM. The coordinates on M are given by n — 1 numbers (z!,..., 2”1 0).
We now need to be careful when we define smoothness on the overlaps. The map ;; :
0;j(U;NU;j) = ¢(U; N Uj) is defined on an open set of H™ in general, and 1);; is said to be

smooth if it is C° in an open set of R™ which contains ¢;(U; N Uj).

40



Y

(/',zp)

Figure 4: A manifold with a boundary. The point p is on the boundary. Note the subtle
difference, for a manifold without a boundary the left figure would be extended below z"=0.

Example 3.5: Charts on some manifolds

e R” is a differentiable manifold trivially. A single chart covers the whole space and we

take ¢ to be the identity map.

e Let n =1 and let us impose connectedness. Then there are two choices, either R or the
circle S'. Let us work out an atlas for S'. For concreteness let us embed the circle in
R? via 22 4+ y? = 1. We will need at least two charts. We can take them as in figure 5.
Define @' : (0,27) — S* by®

o0 — (cosf,sinb), (3.8)
whose image is S* — {(1,0)}. Similarly define p;' : (=7, 7) — S* by
050 — (cosf,sinb), (3.9)

whose image is S' — {(—1,0)}. Clearly both ¢; ' are invertible and all the maps are
continuous, thus the ¢;’s are homeomorphisms. The transition functions seem trivial for

this example but one must be careful to end up in the correct domain. The two charts
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overlap on the upper and lower hemispheres and therefore we have

o207 (0)) = {9 6 (0m) (3.10)

§—2r iffe(m2m)

The transition function isn’t defined at § = 0 or 8 = 7, nonetheless it is smooth on each

of the two overlapping open sets as required.

0 6 2m -7 06 =«
— O O— P> + P
P4 $2

Figure 5: Two charts on S?.

e We have seen that we can use two charts to describe an S', but this is a choice that we
have made. To show this let us consider a different Atlas on the unit S' consisting of

the four charts:

(3.11)

Note that the circle is defined by 22 + y?> = 1. Pictorially the charts are given in figure
6. We can see that the patches cover the S! from figure 6. Moreover we can see that the
©’s are continuous on ¢;(U;) (since it is just x or y) and that they are invertible. One
needs to be careful with mapping the point into the correct domain, for the inverse, for
example for ¢; we have

(Pl_l(y) = ( 1- y27y) ’ (312)

which is continuous on U;. Note that when we took the inverse, working out the point
on the circle, we needed to work out the value of = by solving the quadratic z? = 1 —y2.

We fix the sign by making sure we end up in the correct patch. Note that if we were
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mapping into Uy we would have included an additional minus sign. It remains to see
that the transition functions are infinitely differentiable. Consider Uy [ Us which is the
upper right quadrant in figure 6, with

y=v1—-22 withO<y<landO<z<l1. (3.13)

Then
p3op(y) =V1—y2, (3.14)

which is indeed infinitely differentiable. This shows that S! is a differentiable manifold

and we have seen this for two different atlases.

f
.,

Figure 6: Four charts on S'.

e Let us consider a slightly less trivial example, the n-dimensional sphere S™. We may
realise it by embedding it in R""!. (Note that embedding it in a higher-dimensional
space is just for convenience and not a necessary requirement for being a manifold, in
fact some n-dimensional spaces cannot be embedded in R"*!, for example hyperbolic

space.)

We can realise the n-dimensional sphere S™ in R"*! as

Z(xi)Q =1. (3.15)
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We can introduce coordinate neighbourhoods

U ={(2% 21, ..., 2") € §"z" > 0},

, (3.16)
Ui ={(2% 2!, ....,2") € S"|2" < 0}.
Next define the coordinate map @, : Ui — R™ to be
oip (22, wnx) = (xo, o xt T g ey (3.17)
and @;— : U;— — R" to be
i (20, .. 2t 2 e (3.18)

Note that the domains of ;4 and ¢;_ are different and they have no overlap. Instead
they are the projections of the hemispheres U;+ to the plane z' = 0. The transition
functions can be obtained simply from the above maps. As an example let us take S2,

then we have six coordinate neighbourhoods: Ug+,Uy+,U.+. The transition function

w(y—)(x—i-) = gDy_ @) @;i is given by
byt 0:2) > (VI— g2 = 22,2). (3.19)

This is infinitely differentiable on U,y NU,_.

“Until now we would just have taken the range to be 6 € [0,27) and been happy with this. However this
does not meet our requirement of being a chart since it is not an open set. This would present problems
later when we try to differentiate anything at 6 = 0. Recall that the derivative requires us to be able to
take limits from both sides, and since there is nothing smaller than 0 we are stuck.

We have seen that to describe n-dimensional spheres we need more than one chart. The
need to deal with multiple charts arises when we consider manifolds of non-trivial topology.
When we come to discuss general relativity we will care a lot about changing coordinates
and the limitations of the coordinate systems. In almost all situations that we will consider a
single set of coordinates generally covers enough of the space to tell us everything we need to
know. However as one progresses in physics, topology becomes more important. We will not

see much of this but you may see this in some of your other physics/mathematics courses.
3.2 Calculus on manifolds

The reason why differentiable manifolds are useful is because it allows us to use the usual

calculus we have developed on R™ for curved backgrounds. One of the key requirements is
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smoothness of the transition functions, which implies that the calculus is independent of the

chosen coordinates.

3.2.1 Differentiable maps

Let f: M — N be a map from an m-dimensional manifold M to an n-dimensional manifold
N. A point p € M is mapped to a point f(p) € N. We may take a chart (U, ) on M and
a chart (V,4¢) in N where for all p € U, f(p) € V. Moreover let o(U) = U' C R™ and
(V) =V’ CR" Then f has the following coordinate presentation:

Ypofop l:R™ 5 R™, (3.20)

If we write (p) = {z#} and ¥ (f(p)) = {y*} then, ¢ o f oy~ is just the usual vector-valued
function y = ¢ o fop~!(x) of m variables. Sometimes it is useful to abuse notation and write

y = f(z) or y* = f(x") when we know the coordinate systems on M and N that are in use.

Definition 14 (Smooth function) We say that a function f: M — R is smooth if the
map fo @ LU — R is smooth for all charts. We let the set of all smooth functions on M
be denoted by F(M).

Recall that smoothness in Calculus is defined by being infinitely differentiable, C'*°. that

is it has continuous derivatives over some domain.

Definition 15 (Smooth map, Differentiable map) We say that a map f: M — N be-

LU’ — V' is smooth for all charts

tween two manifolds is smooth if the map ¢ o f o ¢~
o : M — R and v : N — R*. Ify = o fop l(x)is C® then we say that f is

differentiable at p. This is actually independent of the coordinate system.

Note that our definition of a smooth function is a particular case of a smooth map as
defined directly above. There we have taken N = R and therefore we do not need the second

coordinate map .

Definition 16 (Diffeomorphism) Let f : M — N be a homeomorphism and 1 and ¢
coordinate functions. If1pofop™! is invertible and both, o fop™t and its inverse po f~Loyh™1
are C'*°, then f is called o diffeomorphism and M is said to be diffeomorphic to N and vice-
versa. This is denoted by M = N.

Since the map is invertible it follows that if M = N then dim M = dim N. Homeomor-

phisms classify spaces according to whether it is possible to deform one space into another
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continuously. Diffeomorphisms classify spaces into equivalence classes according to whether
it is possible to deform one space into the other smoothly. As such a diffeomorphism is
stronger than a homeomorphism, it requires that both the map and its inverse are smooth.
Two diffeomorphic manifolds are viewed as the same manifold.

The question as to whether a homeomorphism is a diffeomorphism is quite subtle and
far beyond the scope of this course, but let us give a small taste. Given a differentiable
structure on your manifold, this is defined as an equivalence of atlases, one must then ask is
it possible that a manifold admits different differentiable structures. This would mean that
we can pick two atlases on a manifold which are not compatible. Finding such examples is
non-trivial and it is known that it is only possible if dim(M) > 4. In 1956 Milnor showed that
the seven-sphere S7 admits different 28 differentiable structures. More bizarrely it has been
shown that R* has uncountably many pairwise non-diffeomorphic open subsets each of which
is homeomorphic to R*. Throughout this course we will assume that our manifold admits a

unique differentiable structure for simplicity.

3.2.2 Tangent Vectors

Having defined maps on a manifold we can define other objects on the manifold. The ele-
mentary notion of a vector no longer works: where is the origin? what is a straight line? etc.
There are two main ways

On a manifold a vector is defined to be a tangent vector to a curve in M.

Definition 17 (Tangent vector) A tangent vector X, is an object that differentiates func-

tions at a point p € M, X, : C°(M) — R which satisfies

1. Linearity: X,[f + g) = Xp[f] + Xplg] for all f,g € C°(M).
2. Xplf] =0 when f is a constant function.

3. Leibnitz identity: Xp(fg]l = f(p)Xplgl + Xp(flg(p) for all f,g € C°(M).

To define a tangent vector we need a curve 7 : (a,b) — M and a function f : M — R. For
simplicity let 0 € (a,b) and let us parametrise our curve by ¢t. We define the tangent vector
at v(0) to be the directional derivative of a function f(vy(¢)) along the curve ~(t) at ¢t = 0.
The tangent vector to v at v(0) is the linear map X, from the space of smooth functions of
M to R defined by
(3.21)
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In terms of local coordinates we have

_ Of dat(v(1))

Xl = g . (3.22)
Notice the abuse of notation, the first term should really be
Wev @) 21 323
and the second should be
%(s& oyt = dwg(ﬂ) : (3.24)

we will often employ this abuse of notation.

Exercise 3.2: Tangent vectors at p
Show that the set of all tangent vectors at p forms an n-dimensional vector space T},(M).

We have just found that the tangent vector can be written as

9 daz’(~(t))

X, =X} <axu> A (3.25)
e df(v(®)] of
"Y t — =
|, = g =Sl (3.26)

We define X, to be the tangent vector to M at p = ~(0) along the direction given by the
curve y(t). There is then a natural basis of T),(M) for us to take given by

(s

This is chart dependent since we chose a chart in the neighbourhood of p. Choosing a

u=1 ...,dim(M)}. (3.27)

different chart would give a different basis of T},(M). The basis defined in this way is called
the coordinate basis.

Let us see how the coordinate basis changes when we choose different coordinates. Let

p € U;NU; and let x = ¢;(p) and 2’ = ¢;(p) be two charts defined in the neighbourhood of
the point p. For a smooth function f we have:

0 0 _
(@) [f]= @(fOSO D)
= %[(f o Ho(pop™)

»(p)

47



Let F' = fo /™!, this is a function in the 2’ coordinates. Moreover note that ¢’ o =1 is

simplify the functions a/#(z), that is the primed coordinates in terms of the unprimed ones.

Hence it follows that we have:

0 0
__ F’
()| V1 = g (@@l
v ! /
_ Oz oF (/f ) (3.29)
Ozt lp(p) Ox ¢ (p)
ox'v 0
Ozt lp(p) O pm’
and therefore we have )
0 ox'" 0
dxklp Dk lpp) Oz Ip (3:30)

This then defines the transformation of one basis into another. It is now straightforward
to work out the transformation of the components of a vector X} into the components of

another basis X;;“ by using that the vector X, is invariant. It follows that:

v
i ox

P9k lo(p)

wo__
XV = (3.31)

Components of vectors that transform in this way are known as contravariant.

We have defined a tangent vector X as a differential operator acting on functions along
a curve passing through the point p, but there is some redundancy in this since two curves
passing can give the same tangent vector at p. This leads use to define an equivalence class

of curves on M.

Definition 18 (Equivalence class of curves) If two curves v1(t) and ~2(t) satisfy

(1) 71(0) =2(0) = p,

— dzt(92(1)

dat (71 (1))
(ii) 4 a

)

t=0

t=0
then ~v1(t) and v2(t) yield the same differential operator X at p. This allows us to define the
equivalence relation between curves at the point p, v1(t) ~ v2(t). We identify the tangent

vector X with the equivalence class of curves

0] = {5010 = 30) ang 0O _SIHON A

rather than a particular representative of the curve.
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All the equivalence classes of curves at a point p € M, i.e. all the tangent vectors at p, form
a vector space called the tangent space of M at p, T,(M). From our discussion above we can
take the basis of vectors for T),(M) to be e, = a%. It follows that dim 7),(M) = dim(M).

It is often convenient to use the coordinate basis, however the basis clearly depends on
the coordinates that we are using. At times it is convenient to use other bases, one such basis
which is a ‘non-coordinate bases’ is known as vielbeins. These are necessary when defining
spinors on curved backgrounds and can often make computations simpler. We will introduce
these later in the problem sheets.

Note that for two distinct points p and ¢ the tangent spaces T),(M) and T,(M) are
different. We cannot add vectors from one to a vector in the other. In fact even to compare
the vectors in T),(M) with the vectors in T;(M) we need to introduce the notion of parallel

transport, which will appear shortly.

3.2.3 Vector fields

So far we have defined tangent vectors at a single point, but what we really want is an object
with a choice of tangent vector for every point in our manifold. These objects are called fields.
A vector field X is defined to be a smooth assignment of tangent vectors X, to each
point p € M. Here we mean that if we feed a function into the vector field then we obtain
another function which is the differentiation of the first. The vector field is then smooth if,
starting with our smooth function f we obtain another smooth function X|[f]. Therefore a
vector field defines a map X : C°°(M) — C*°(M). To evaluate X|[f] at a point p we have

X[, = X111 (333)

We denote the space of all vector fields on M to be X (M).

3.2.4 One-forms

Since Tp(M) is a vector space, there exists a dual vector space to T,(M) whose element is
a linear function from 7),(M) — R. The dual space is called the cotangent space at p, and
is denoted by T, (M). An element w, of T;(M) is a map wy : T,(M) — R and is called a
dual vector/cotangent vector or in the context of differential forms a one-form. The simplest
example of a one-form is the differential df for a smooth function f on M. The action of a
vector Vj, on f is Vp[f] = p“% € R. The action of df € T,;(M) on V), € T,(M) is defined
by
of

Af, V) = Vylf = Vpi ot eR. (3.34)
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This is then R-linear in both V}, and f. In terms of the coordinate basis we have

of | .
and it is natural to regard {dz*} as a basis of Ty (M ). This is a dual basis since
0 oxt
dat', =) = 25 = o .
(da, ) = 5 = o (3.36)
We can then write an arbitrary one-form as
wp = wp udzt . (3.37)

If we take a vector V}, and a one-form w, we may define the inner product between one-forms

and vectors ( , ) : Ty(M) x T,(M) — R to be
(wp, Vp) = wp7MV”<dx“, (981:”> = wpuV, 0 = wp V. (3.38)

The inner product is defined between a vector and a covector. Since w, is defined without

reference to any coordinate system for a point p € U; N U; we have
wp = wp pdat = w,  da’™, (3.39)

with = and 2z’ as before. Then we have

a 1Y
W, = wua%y , (3.40)

which is the transformation of the components of a co-vector.

We will often denote the set of one-forms to be Q) (M).

3.2.5 Tensors

Definition 19 (Tensor) A tensor at the point p of type (q,r) is a multilinear object which
maps q elements of Ty(M) and r elements of T),(M) to R:

T : @ITH(M) @ Ty(M) — R. (3.41)
We define ’7;)((”)(M) to be the set of (q,r) tensors at p € M.

An element of 7(@") (M) can be written in terms of the coordinate bases described above as

0 0
_ H1-.-Hq V1 Vr
T=T R TR s dz¥...dz"" . (3.42)
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Let V; = V! Bi# with 1 <4 <r and wj = w;,dz* with 1 < j < ¢ then the action of T is
T(wiy oy wqi Vi, o Vo) = T wipy g VI VYT (3.43)

The transformation of the components of a tensor under a change of coordinates follows
simply from the transformation of the components of a contravariant vector and a covariant

vector. We have

1 1! V1 v

Iy _ it ox'™  Qx'Ma Oz ox"r (3.44)
= o T .
1Vr ozt Jxba Jpr  Ox'vr

Note that in all cases given the placement of indices this is really the only type of transfor-
mation that we can really have.

As before we can define a Tensor field of type (q,7) to be a smooth assignment of an
element of 7,""(M) at each point p € M. The set of tensor fields of type (¢,r) on M is
denoted by 72" (M).

Operations on Tensor fields There are a variety of different operations we can do on
tensor fields to generate new tensor fields. We can add or subtract them, multiply by smooth
functions. This is just the statement that tensors at a point p form a vector space. These
operations preserve the rank of the tensor but there are operations we can do which do not
preserve the rank.

Given a tensor field S of rank (g,r) and a tensor field T of rank (s,?) we may take the
tensor product of the two tensor fields together to form a tensor field S®T of rank (q+s, r+1).
The tensor product S ® T is defined by

S ®T(w1, ooy Was M1 "77787X17 ...,Xr,Yl, ,Y;) = S(wl, ..,wq,Xl, ...,XT)T(T]l, ..,ns,Yl, ,Y;) .
(3.45)

In terms of components we have:

(S ® T),u1.-./tql/1..V5p1mpTglmat = Sulmqul...prTulnys . (346)

01...0¢

Given an (g¢,r) tensor we may define a (¢ — 1,7 — 1) tensor through contraction. To do
this we replace one of the 77 (M) entries with a basis vector 6* and the corresponding T, (M)

entry with the dual vector €, and then sum over the indices. For example we have

n
S(wr, we1, X1, 000, Xpo1) = > T(wr, wg1,0", X1, .., Xpo1,6) . (3.47)
pn=1
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The placement of either of the basis vector/co-vector is arbitrary and moving it around we
obtain a typically different tensor, again of rank (¢ — 1,7 — 1). In terms of components we
have

M1 e fhg—1 M1 fbg—10
S ! Vi.Vp_1 — T ! Vi.Up_10 - (3.48)

Another operation we can do is to symmetrise and anti-symmetrise the tensor. For

example given a rank (0,r) tensor 7" we can define the symmetrisation of T to be
1
SIT(Xy, o, Xp)] = > T(Xp)s - Xo(r) 5 (3.49)
O'GST
and the anti-symmetrisation to be
1 .
AT (X, X)) = > sign(0)T(Xo (1), - Xor) » (3.50)
O'EST

where S, is the permutation group of r objects. In components we have

1
S[T]HI/‘LT = ﬁ Z T/‘o’(l)"'ﬂo‘(r) = T(Nl---HT‘)’ (351)
" oES,
and
1 .
A[T]/—’lln-a/‘r = ﬁ Z Slgn(a)Tﬂa‘(l)mﬂa(r) = T[Hl---ﬂ'f] (352)
" oEeS,

Note that it only makes sense to symmetrise and anti-symmetrise over objects of the same
type, or the same placement of indices. We also divide by the symmetry factor r! which is
the number of permutations, this ensures that if an object is (anti-)symmetric then (anti-

)symmetrisation acts as the identity.

3.2.6 Induced maps

Definition 20 (Push-forward/differential map) A smooth map f : M — N naturally

induces a map fy called the differential map or push-forward,
fe : Tp(M) — Ty (N) . (3.53)

The explicit form of fs is obtained by the definition of the directional derivative along a curve.
Let g € F(N) then gof € F(M). A vector V € T,(M) acts on go f to give a number V[go f].
We can now define fiV € Ty, (N) by

(f:V)lgl = Vige f. (3.54)

See figure 7 for a pictorial representation.
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Figure 7: A map f: M — N induces the differential map fi : T,(M) — Ty, (N). Note
that the mapping is performed by mapping the curve ¢(t) between the two manifolds using
the map f.

[Aside: Note that we do not require the map f to be invertible here, just smooth, so it need
not be a diffeomorphism. We will however require this later so let us just assume it from now
on.]

We can write this more explicitly by introducing coordinates. Let us introduce the charts

(U,¢) on M and (V,1) on N, then

(fVlgo v~ ()] =Vigo fop™ (2)], (3.55)

where x = ¢(p) and y = ¥ (f(p)). Let V = V“% and f.V = Waay%, then in components it

reads
Iy (z)
oxh

This is nothing but the Jacobian of the map f: M — N that we are all familiar with. So far

We = yH (3.56)

we have done this for vector fields, but this can easily be extended to tensors of type (g,0)
without additional thought. Let us consider an example to put this into practice:
Example 3.6: Push forward

Let (x!,2?) and (y',y?,4%) be coordinates on M and N respectively, and let V =

a% + ba%Q. Take the map f: M — N whose coordinate representation is

f(a',2?) = (a', 2%, /1 - (21)% — (22)2). (3.57)
Then . )
dy* 0 d 0 y y?\ 0
=yVr = — —g— — — (aZ Z )
FV =V e = g1 + Vg (a2 +0%) 5 (3.58)
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Definition 21 (Pull-back) A smooth map f also induces a map between cotangent space
fr: T}"(p)(N) - T,(M), (3.59)

which is called the pull-back. If we take V € T,,(M) and w € T} (N) then the pull-back of
w by f* is defined to be

In components we have
N oy

The pull-back can be extended to tensors of type (0, 7).

We have defined the push-forward and pull-back for tensors of type (¢q,0) and (0,7)
respectively. Note that the push-forward induces a map in the same direction as the map f
while the pull-back induces a map in the opposite direction to the original map. If f is a
diffeomorphism f : M — N, then we also have the inverse f~! : N — M and therefore we

can transport any object from M to N and back to our hearts content.

3.3 Flows and Lie derivatives

Definition 22 (Integral Curve) Let X be a vector field on M. An integral curve z(t) of

X is a curve in M whose tangent vector at x(t) is X|,. Given a chart (U, ), this means that

dat(t)
dt

= X" (x(t)), (3.62)

where z#(t) is the pu’th component of p(x(t)) and X = X+-2.

oxk *

As always we have very much abused notation, using x to denote a point in M as well
as its coordinates. Finding an Integral curve is equivalent to solving the ODE with initial
conditions z#(0) = xy. The existence and uniqueness theorems for ODEs implies that there

is always a unique solution, at least locally, with the given initial data.

Physical Explanation
Given a vector field X the integral curve is the curve through your manifold which has

tangent vector X at every point.

Definition 23 (Flow) Let o(t,xo) be an integral curve of X which passes through the point

xo at t =0, and denote the coordinate by o*(t,xp). The flow equation becomes

%U“(t,xo) — XP(o(t, 30)), (3.63)
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with the initial condition
(0, zg) = zf . (3.64)

Then the map o : R x M — M is called a flow generated by X € X(M).

Physical Explanation
The flow gives a way for us to move points on the manifold along the curves defined by

our vector field X. We can think of it as given an initial point z{, we move it to the point

ot(t, zy). By construction this new point is on the integral curve defined by X which passes

through the initial point zf.

From the definition one can show that a flow satisfies the rule

U(t,O‘M(S,.I‘(])) = U(t+8,3§‘0) ) (365)
for any s,t € R. This follows from the uniqueness of the ODE with fixed initial condition.

Theorem 2 For any point x € M, there exists a differentiable map o : R x M — M such
that

(i) 0(0,2) =« ,
(ii) t— o(t,z) is a solution of (3.63) and (3.64),
(i1i) o(t,o"(s,x)) =o(t+s,x) .
Note that the initial point is denoted by x to emphasise that o is a map R x M — M.

Example 3.7: Integral Curves

e Let M = R? and let X(z,y) = —ya% + :ca% be a vector field in M. Then
o(t, (ro,y0)) = (wocost — yosint, zgsint + yo cost), (3.66)

is a flow generated by X. The flow through (z,yp) is a circle whose centre is at the

origin. Clearly o(t, (zo,y0)) = (z0,%0) if t = 2mn,n € Z. If (xo,y0) = (0,0), the flow
stays at (0,0).

e Consider the sphere S? in polar coordinates with the vector field X = 04. The integral

curves are:
do
dt

d¢ _

=1
dt ’

0, (3.67)
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and this has solution:

0=0p, ¢d=d¢o+t. (3.68)

The associated diffeomorphism is o, : (6,¢) — (0,¢ + t), and the flow lines are simply

the lines of constant latitude on the sphere.

3.3.1 One-parameter group of transformations

For fixed t € R a flow o(t,z) is a diffeomorphism from M to M which we denoted by

ot : M — M. This map is made into a commutative group by the following rules:
1. oi(os(x)) = orrs(x) i.e. op00s = 0445, (Associative)
2. op=identity map (Unit element),

3. 0_4 = (o)t (Inverse).

Exercise 3.3: Flow defines a commutative group
Show that a flow defines a commutative group.

This group is called the one-parameter group of transformations. Locally the group looks
like the additive group R, although they may not be isomorphic globally. For example in
the example above (see equation (3.66)) we had that oo+ = 0 and we find that the one-

parameter group is isomorphic to SO(2) the multiplicative group of 2 x 2 real matrices of the

cosf —sind
3.69
(sinH cosf ) ( )
or U(1) the multiplicative group of complex numbers of unit modulus e*.

form,;

We can consider an infinitesimal transformation and see where it maps the point . Using
(3.63) and (3.64) we find
ot (x) = ot (e, x) = 2" + eX¥(x). (3.70)

The vector field X in this context is called the infinitesimal generator of the transformation
Ot.
Given a vector field X the corresponding flow o is often referred to as the exponentiation
of X and is denoted by
ol'(t,x) = exp(tX)zt. (3.71)
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To see why this is so, let us take a parameter ¢ and evaluate the coordinate of a point which
is separated from the initial point © = 0(0,x) by the parameter distance ¢ along the flow o.

The coordinate corresponding to the point o (¢, z) is

ol(t,x)

+ ...

2,d
i o

2
o) e

et o N L

= exp (t%)a”(s, x)

xt + t%a“(s,x)

(3.72)

s=0

s=0
The last expression can also be written as o#(t,xz) = exp(tX)z* as in the definition above.

Then the flow satisfies the following exponential properties:

1. 0(0,2) =z = exp(0X)x,

2. U(thf) = Xexp(tX)r = % (exp(tX)x) ,

3. o(t,o(s,z)) = o(t,exp(sX)z) = exp(tX) exp(sX)z =exp ((t + s)X)z = o(t + 5,2) .

3.3.2 Lie Derivatives

We have now defined maps using flows, but what are these good for? One use is to construct
the Lie derivative. This is a derivative which essentially tells us how something changes along
the integral curve of a vector.

Let o(t,x) and 7(t,x) be two flows generated by the vector fields X and Y respectively:

dot(s, )
ds

drt(t, x)

:XM(O-(Sa:E))v dt

= YH(r(t,z)). (3.73)

Let us evaluate the change of the vector field Y along o(s,z). To do this we need to compare
the vector Y at a point x with Y at a nearby point ' = o.(z), see figure 8. We cannot
simply take the difference between the components of Y at the two points since they belong
to different tangent spaces: T,(M) and T, (,)(M), and so the difference between the two
vectors is ill-defined. To define a sensible derivative, we first map Y|, (,) to T;;(M) by using
the push-forward (o)« : T, (z)(M) — Ty (M), after which the two vectors are in the same

tangent space and we can take the difference between them, see figure 8.

Definition 24 (Lie Derivative) The Lie derivative of a vector field Y along the flow o of
the vector field X is defined by
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1
LxY = lim = | (0-0)Y [, 0) - Y|x] . (3.74)

7(t, x')

Figure 8: To compare a vector Y|, with the vector Y\Ue(x) the latter must be transported
back to x by the differential map (o_¢)«, that is we use the push-forward.

This is still somewhat abstract, since it is a coordinate free expression, so let us write it
in components. By writing this in components we obtain another expression for the Lie

derivative of a vector field. Let (U, ¢) be a chart with the coordinates z and let X = X#-2_

OxH

and Y = Y“a% be vector fields defined on U. Then o.(z) has the coordinates z + e X*(x)

and

Y’O’g(df) = Y“(x'/ + fXV(x))eﬂ‘x+5X
~ [W(x) +6XV(x)aVW(x)}eM\w+€X, (3.75)

with e, = 8% = 0,. Mapping this vector at o.(x) to = using (0_c(x))« we obtain

(0—c(2))eY |go(a) = [Y“(:v) + eX)‘(as)G,\Y“(:U)] 0u (2" — X" (2))ev)a
_ [Y“(az) + eX’\(x)(%\Y“(z)} [5; - e@MX”(x)} evls (3.76)
=Y"(2)euls + €[ XH(2)0,Y" (z) — YH(2)0, X" (2)]ev]e + O(€?),

and therefore we find
LxY = (X' YY —YH0,X" e, . (3.77)

This motivates the introduction of the Lie bracket.
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Definition 25 (Lie bracket) The Lie bracket, [, |. For vector fields X,Y on M we have
(X, Y]f = X[YIf]] - YIXIf], (3.78)
for all f € F(M).

In components [X, Y] reads
(X1, Y — Y 9, X")e, (3.79)

and in terms of the Lie bracket the Lie derivative of Y along X is

LxY = [X,Y]. (3.80)

Exercise 3.4: Some properties of the Lie bracket
Show that the Lie bracket defines a vector field. In addition show that it satisfies the

following properties:

1. Bilinearity

(X, c1Y1 + eYs] = a1 [X, V1] + o[ X, Yo,

(3.81)
[C1X1 + CQXQ,Y] = [X1,Y] + CQ[XQ, Y] ,
for any constants c¢; and co.
2. Skew symmetry
(X, Y] =-[Y,X]. (3.82)
3. Jacobi Identity
(X, Y], Z1+[[Z2, X], Y]+ [[Y,Z], X] = 0, (3.83)
4. For X,Y vector fields and f a smooth function on M then
LixY = fIX,Y]-Y[f]X,
! (3.84)
Lx(fY)=[fIX, Y]+ X[f]Y
5. For f: M — N then
HX, Y] =[f.X, f.Y]. (3.85)
Exercise 3.5: Algebra of Lie derivative
Show that for vector fields X,Y, Z € X(M) we have
LxLyZ — Ly LxZ = [,[Xy]Z. (3.86)
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Geometrically the Lie bracket shows the non-commutativity of two flows. Let us take
the flows o(s,z) and 7(t,x) generated by X and Y respectively. If we first move a small
parameter distance € along the flow ¢ and then by ¢ along the second flow 7 we end up at a

point whose coordinates are
(8,0, 2)) =T (8 + 2¥ + X" (2))
~ah e XH(x) + 0YH (2 + eXY) (3.87)
~aph e XH () + 0YH () + ed XY (2)0,YH () .

If we instead first move along 7 and then move along o we find
ot (e, 7(6,x)) = at + 6YH(z) + eXH(z) + e0Y " (2)0, XH () . (3.88)
The difference between the two points is proportional to the Lie bracket
™(0,0(e,x)) — o (e, 7(6,2)) = ed[ X, Y]¥. (3.89)

The Lie bracket measures the failure of the parallelogram in figure 9 to close and therefore

for the two flows to commute. It is easy to see that
LxY =[XY]=0 < o(s7(t,x))=71(to(s2)). (3.90)
Lie Derivative for one-forms: We now want to define the Lie derivative of a one-form

w € QY(M) along X. This time we need to use the pull-back, and the Lie derivative of the

one-form w is

NI
Lxw=lim - [(06) o) — w\x} : (3.91)

e—0 €

where w|, € T} (M) is w at x. Introducing coordinates such that w = w,dz", we have
(06)* Wy (2) = wu(x)dat + €[ X (2)ywp(x) + 0, XY (x)w, (z)]dz* | (3.92)

which leads to
Lyw = (X”@,,w# + O#X”w,,)dx” . (3.93)

This remains a one-form, that is Lxw € T(M) since it is the difference of two one-forms at

the same point.
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(t, X)

Figure 9: Moving first along the flow o and then the flow 7 or first along 7 and then along o
we find that we may not end up at the same point. The difference is measured by the failure
of the Lie bracket to vanish.

This may also be extended to functions f on M. Then

Lxf = lim ~[f(o(x)) ~ f ()

= lim % [f(a# + eXH(x)) — F(z)] (3.94)
= Xt() o5 = x17),

which is just the usual directional derivative of f along X.

To extend this to more general tensors we need the following result:

Exercise 3.6: Properties of the Lie Derivative on tensors
1. Show that the Lie derivative satisfies:
Lx(t1 +t2) = Lxt1 + Lxta, (3.95)
where t1 and t9 are tensor fields of the same type.

2. Show that
Lx(t1 ®ty) = (,C)(tl) Rl +11 & (,Cxtg) , (3.96)

with t; and t2 tensors of arbitrary type.
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3.4 Differential forms

Not all tensors are created equally, some will play a more prominent role than others. One
class of interesting tensors are the p-forms, these are totally anti-symmetric (0, p) tensor fields.
To define them we must recall the definition of the anti-symmetrisation of a tensor. Consider
w e E(O’T)(M), then its (total) anti-symmetrisation is given by:
Alw(X1, .., X,)] = 1, > sign(o)w(Xo), - Xogr) - (3.97)
=

with sign(c) = +1 for an even permutation and —1 for an odd permutation.

Definition 26 (Differential form) A differential form of order r, or more succinctly an

r-form, is a totally anti-symmetric tensor of type (0,7).

Definition 27 (Wedge product) The Wedge product A of r one-forms is defined to be the

totally anti-symmetric tensor product of the one-forms

dztt Adxt? A Ldatr = Z sign(o)dzte® @ date@ @ .... @ date) (3.98)
UEST
Thus
dz# A dx¥ = dzt @ da¥ — da¥ @ da . (3.99)

The wedge product satisfies the following conditions
o dxMt A ... Adat = 0 if some index is repeated.

o dztt A ... Adatr =sign(o)date® AL Adate),

o dat A ... Adzr is linear in each dz*.

We will denote the vector space of r-forms at the point p € M by Q7 (M), (another common
notation is AZ(,T)(M )), a basis is provided by the set of all wedge products in (3.98). We can

then expand an element of Q7 (M) as

1
w = =Wy datt A A dTPT (3.100)
r!

m) choices of the set

where w,,, ., are taken to be totally anti-symmetric. Since there are (
r

{p1, ...t} out of (1,2, ...,m = dim(M)) the dimension of the vector space Qg)(M) is

(T) - T'(?:Lir)' . (3.101)
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We take Q9(M) = R and it follows that QL(M) = T*(M) from before. Moreover, since

we are anti-symmetrising all the indices if r exceeds m = dim(M) then it vanishes identi-

cally. Furthermore we have the identity (m) = ( > and it follows that dim €2 (M) =
r

m—-r

dim Q' ~"(M). Since (M) is a vector space it is isomorphic to Qér_m)(M).lg’

3.4.1 Exterior product

Definition 28 (Exterior product) The exterior product, A, is defined to be the follow-
ing map A @ QM) x Q(M) — QFT(M). Its action follows by trivial extension of the
wedge product defined above. Let w € QE(M) and € € Q,(M) be an g-form and and r-form
respectively. The action of the (q+ r)-form w A& on q + r vectors V; is

1 .
(WA V1o, Vogygr) = i Z sign(o)w (Va1ys s Vo(g)) € Va(g1)s -+ Vargr)) - (3.102)

0ESqtr

It follows that if ¢ +r > m = dim(M) then w A & vanishes. With this product we can define

and algebra
* — 00 1 m
Q, (M) = Qy(M) ® Q,(M) & ... ® Q' (M) (3.103)

Example 3.8: Wedge product
Let us take R? with coordinates (z,y,z) and consider the forms w; = f(x)dz + g(z)dy,

wy = sin(x — z)dy A dz and w3 = e*T¥T2dz then we have:
w1 Aws = f(x)sin(z — z)de Ady Adz,
w1 Aws = "V f(x)de Adz + " TV g(z)dy Adz, (3.104)

wy Awg =0.

Exercise 3.7: Properties of the Wedge product
From the properties of the wedge product show that for £ € Qf(M), n € Q) (M) and

w € (M) that
g/\n: (_1)qr77/\§,
ENE=D0 if ¢ odd, (3.105)

EAmMAw=EA(MAW).

15\When the manifold is equipped with a metric the isomorphism is provided by the Hodge star operation .
We will see the Hodge star later in section 4.1.3.
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We may assign an r-form smoothly at each point on a manifold M. We denote the space
of smooth r-forms on M by Q"(M), and take Q°(M) = F(M) to be the space of smooth

functions.

3.4.2 Exterior derivative

A useful map between p-forms and p + 1-forms is the exterior derivative:

Definition 29 (Exterior Derivative) The exterior derivative d, is a map Q" (M) — Q" F1(M),

whose action on an r-form is:
T

dw(Xh ey XT+1) = Z(_l)i+1XiW(X1, ey Xi7 ey X?”-i—l)

=1 o ) R (3.106)
+ Y (1) Hw([X, X, Xy Xy oy Xy, Xog1)
1<J
where the hats denote that this term should be removed.
We can write this in coordinates, consider the r-form
1
w= ﬁwm,,,mdx’“ Ao ANdahr (3.107)
then the exterior derivative
1 0 y " L
dyw = T\ g W dz” AdaHt A oA datr. (3.108)

It is common to drop the r subscript and simply write d, we will do this from now on. The
wedge product automatically anti-symmetrises the coefficient so it is indeed a (r + 1)-form
that we obtain.

Exercise 3.8: Exterior derivative property
Show that for & € Q}(M), n € Q) (M) we have

d(EAD) = dEAn + (~1)7€ Ady. (3.109)

Example 3.9: Exterior Derivative
Let us take R? with coordinates (x,v,2). The generic r-forms are

wo :f(xayvz)v

w1 = we(z,y, 2)dz + wy(x,y, 2)dy + w;(z,y, 2)dz,
(3.110)
wa = Way(x,y, 2)de Ady + wy.(2,y, 2)dy A dz + w.e(x, y, 2)dz Ade,

W3 = Wayz(2,y, 2)de Ady Adz.
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The exterior derivative of these forms is

o d 9
dCL)O - %f(l'ayv Z)dIL‘ + %f(xa Y, Z)dy + %f(QZ‘)y’ Z)dZ?

0 0 0 0 0 0
dwi = <8xwy - aywx)dx Ady + <8;wa — &wy> dy Adz + <8zw$ — (,)g;wz>dz Adx,
0 0 0
= | 53 Wyz 7. wWex 7 Wx ) 111
dws <8mwy + 8yw +5.v y> dz Ady Adz (3.111)

dw3:0.

In the usual 3d vector calculus you may identify these as ‘grad’ for d acting on the scalar,

‘curl’ for the one-form and the ‘divergence’ for the two-form.

From either the coordinate free expression (3.106) or the one using the coordinates in

(3.108), we can prove the important result that
=0, (dyy1dr =0). (3.112)

Using the coordinate form (3.108) we find

2w = ;axfgxawmmmdx” Adz? Adatt A LA datr. (3.113)
Using that the derivative term is symmetric in vo while the wedge product is anti-symmetric
in these indices it follows that this vanishes. Since d? = 0 it follows that an exact form is
always closed, though the converse need not be true. The failure of a closed form to be exact

tells us interesting information about the topology of the underlying manifold.

Aside: Cohomology
The exterior derivative induces the sequence

0% Q0 2 oty & L It gmry dm g (3.114)
with ¢ the inclusion map. This is known as the de Rahm complex. We let the set of
all closed r-forms on M be denoted by Z"(M), so that for d, : Q"(M) — Q" TY(M),
ker(d,) = Z"(M), and denote the set of all exact r-forms to be B"(M), i.e. the B" is the
image of Q"1 (M) under d"~1 : Q"~1(M) — Q"(M). Then the rth de-Rahm cohomology

group is defined to be
H' (M)=2Z"(M)/B"(M). (3.115)

This is the dual space of the homology group, though we will not have time to consider
either of these. The cohomology groups tell us important information about a manifold,
their dimensions are topological invariants. Let v" = dim(H"(M)), these are known as
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the Betti numbers of the manifold and are always finite. For a connected manifold one
always has by = 1, these are just the constant functions. The higher Betti numbers
are non-zero when the manifold has some interesting topology, for example on a round

two-sphere we have: v°(S?) = 1 = b%(S?) and b!(S?) = 0. The Euler characteristic of a
manifold can be given in terms of the Betti numbers by

m

X(M) = (1) (M). (3.116)

r=0

For the S? we find x(S?) =1 — 0+ 1 = 2 which is the correct result!

We have seen that every exact form is closed, however not every closed form is exact,

instead we have:

Theorem 3 (Poincaré’s lemma) If a coordinate neighbourhood U of a manifold M is con-
tractible to a point p € M, any closed form on U is also exact. In particular on M = R™,

closed implies exact.

Since we have been mapping our manifolds to R” this says that for a general manifold
any closed form is locally exact. That is if w is a closed r-form, then in any neighbourhood
U C M it is always possible to find n € Q"~!(M) such that w = dn on U. Since we cannot
generally cover the manifold with a single coordinate patch, it may not be possible to find
such an 7 everywhere on M. It is for this reason that we say the form is only locally exact
rather than globally exact.

Example 3.10: Exact forms
Let us consider some examples.

e Consider M = R. We can take a generic one-form to be w = f(z)dx, with f(x) some
function. This is trivially closed since it is a top form, it is also exact since we can write
T
g(z) :/ da’' f(2), (3.117)
0

such that w = dg(x). This is all very boring because of the Poincaré’s lemma.

e Now consider a circle, S'. We can obtain a circle by looking at the phase €¥ € C. We
can introduce the one-form w = d¢. Clearly this is once again closed since it is a top
form, and from the way that it is written it seems that it must be exact once again, this
however is not correct. The caveat is that ¢ is not a good coordinate everywhere on S*,
since it is not single valued, remember that we needed at least 2 patches on S'. As such

¢ is not a good smooth function and so it is not a zero-form. Therefore d¢ is closed but

not exact.
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e Next consider M = R2. The Poincaré lemma ensures that all closed forms are exact.

Wat happens if we remove a point? Consider instead R? — {0,0} and the one-form

+ dy. (3.118)

7 e+ -

.1'2 + y2 .’,13'2 + y2
This is not a smooth one-form on R?, since it blows up at the origin, however by re-
stricting to R? — {0, 0} we obtain a smooth one-form. A simple computation shows that
w is closed, but is it exact? If such a smooth function exists such that w = df then the
function f must satisfy:

af Y af x

_ - 3.119
Ox 24+ y2’ Oy a2+ ( )
The solution is

f(z,y) = arctan <£> + constant , (3.120)
x

so have we found an exact form? The answer is no, this is not a smooth function
everywhere on R? — {0,0}, along the line z = 0 it is ill-defined, and so w is not exact.
We see that removing a single point makes a big difference and closed no longer implies
exact. A similar story holds for R? and this is how magnetic monopoles sneak back into

physics despite being forbidden by Maxwell’s equations. See your favourite course on

electromagnetism.

3.4.3 Interior product

We can now go from Q7 (M) — Q"F1(M), what about the other way around? To do this we

have to define the Interior product.
Definition 30 (Interior product) LetY be a vector field and w € Q" (M) then
iyw(Xl,...,XT_l) Ew(Y,Xl,...,Xr_l). (3121)

If we introduce coordinates: Y = YH 5= then

1
(r—1)!

lyw = Y woup e datt Ao A datt (3.122)

Example 3.11:
Let us take R3 again with coordinates (z,y,2), and the usual coordinate basis, then we

have
i, (dzAdy) =dy, i, (dyAndz)=0, i (dzAdz)=—dz. (3.123)
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Using the interior product and exterior derivative gives a simple way of computing the

Lie derivative of a form along the vector field X. We have for any r-form w and vector field
X that:

Lxw= (dix +ixd)w. (3.124)

Exercise 3.9: Interior product identities
Show that the interior product satisfies the following;:

i3 =0,
ix(wAn) =ixwAn+ (1) wAixn, (3.125)

Lxixw =1ixLxw.

Hamiltonian mechanics in differential geometry We can now combine some of the
differential geometry we have learnt so far to reformulate classical Hamiltonian mechanics.
Recall that in classical mechanics the phase space is a manifold M parametrised by
coordinates (qi,pj) where ¢’ are the positions of particles and p; their momenta. Note
that M must be even dimensional here. The Hamiltonian H (g, p) is a function on M and
Hamilton’s equations are

. OH OH
b= d pi=——. 3.126
Phase space comes equipped with the Poisson bracket, defined on a pair of functions f, g
to act as of o of o
g g
{19t =555 55 (3.127)

d¢7 dp;  Opj g7’

from which the time evolution of a function is

f={fH}, (3.128)

with H the Hamiltonian. To obtain Hamilton’s equations one should input f = ¢* and
f = p; into the above.

Underlying this structure are forms. The key idea behind this is to convert the scalar
function H into a vector field Xy on M. Particles will then follow trajectories which are
the integral curves generated by Xg. To convert the scalar into a vector we introduce the
symplectic two-form w. This is a two-form which is closed dw = 0 and is non-degenerate,
WAWA ... \Nw # 0. A manifold equipped with such a two-form is called a symplectic
manifold.

Any two-form provides a map w : T,(M) — T,;(M), since given a vector field X we
can simply take the inner product with w to obtain a one-form, ixw. For our purposes
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we want to go in the opposite direction, we want to convert a scalar function into a
vector field. This is possible if the map w : T),(M) — T;(M) is an isomorphism. This is
equivalent to w being non-degenerate. In this case we can define a vector field Xy via

ix,w=—-dH. (3.129)
In coordinate notation we have
Xhwu, = —0,H . (3.130)
If we take the inverse to be w"” so that wtw,, = 6, then
X =w"o,H . (3.131)

The integral curves generated by Xpg obey

dz#(t)
dt

— XM = WO, H . (3.132)

These are the general form of Hamilton’s equations, just written without reference to
canonical coordinates. If we let z# = (q",pj) and choose the symplectic form to have
block diagonal form

1 .
wh? = (01 O) & w=dp' Adg; (3.133)

then the integral curves reduce precisely to Hamilton’s equations (3.126).
To define the Poisson structure, we first note that we can repeat the map for obtaining
a vector from a scalar for any function f, to obtain a vector field X. Then

{f,9} = w(Xy, Xy) = —w(Xy, Xy). (3.134)
This may be written in a multitude of different ways, we have

{f,9} = —ix,w(Xy) = df(Xy) = Xy(f) . (3.135)

It follows that the equation of motion in Poisson bracket structure is then

f={fH=Xu(f)=Lx,f. (3.136)

We see that the Lie derivative along X generates time evolution!

So far we have not explained why the symplectic two-form was taken to be closed.
This is required in order for the Poisson bracket to obey the Jacobi identity. It is also a
necessary (and sufficient) condition for the symplectic form to be invariant under Hamil-
tonian flow.
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3.4.4 Integration

We have learnt how to differentiate on a manifold using a vector field X, we now turn our
attention to integration? The key question we want to ask is what can we integrate on a

manifold M and how? The answer turns out to be our friends the differential forms.

Definition 31 (Orientation) 7o begin we need to define an orientation on a manifold. Let
M be a connected m-dimensional differentiable manifold. At a point p € M the tangent space
Tp,(M) is spanned by the basis {e,} = {a%} where x* is the local coordinate on the chart U;
which contains p. Take U; to be another chart such that UyNU; # 0 and such that p € U;NU;.
Then the tangent space T,(M) is spanned by both {e,} or {€,} = {%} The change of basis
is

€y = gj:eu =ANe,. (3.137)
If det(A) > 0 on U;NUj, the two bases {ey,} and {€,} are said to defined the same orientation
on U; NUj. If on the other hand det(A) < 0 then they define the opposite orientation.

Definition 32 (Orientable) Let M be a connected manifold covered by {U;}. The manifold
M is orientable if for any overlapping charts U;, U; there exist local coordinates {z"} for U;
and {y*} for U; such that det A = det (

positive in all intersections of charts.

‘gﬁ:) > 0. If M is non-orientable, A cannot be made

An example of a non-orientable manifold is the M&bius strip, see figure 10. To construct
a Mobius strip take two rectangles and glue them together with a twist of # on one of the
edges to glue.

If an m-dimensional manifold M is orientable there exists an m-form w which is nowhere
vanishing, called the volume form or volume element. It plays the role of the measure when
we integrate a function f € F(M) over M. Two volume elements are said to be equivalent
if there exists a strictly positive function h € F(M) such that w = hw'. A negative-definite
function b’ € F(M) gives and inequivalent orientation to M. Therefore for any orientable
manifold there are two inequivalent orientations, we may refer to one of them as right-handed
and the other as left-handed.

Since the volume form is a top form locally it can be written as
w = h(z)dz! A..d2™, (3.138)

with the requirement that h(z) # 0. For the volume form to not flip orientation we must be

able to patch this over the whole manifold without the handedness changing. Suppose that

70



»
>

Figure 10: To construct the Mobius strip we glue two rectangles together: A with A’ and
B with B’. When joining A with A" we twist by . The coordinate transformation on the
A, A’ intersection y' = 2! and y? = —22, which has Jacobian —1 and is thus not orientable.
We see that the cyclist going around the Mébius strip end up “up-side down” as they travel
around the strip.

we have two sets of coordinates z# and y” on the charts U; and U; respectively, then in the

new coordinates we have

Ozt oz™
5 Z/ldyl’l/\..../\a =
Yy Y

ou

oy”

w = h(z) dy”™ = h(z) det ( )dyl A Ady™ (3.139)

which makes clear that we may only define a volume form when the manifold is orientable,
since the determinant appears. For the Mobius strip we see that we begin with volume form
w = dz A dy but as we change charts this becomes w = —dxz A dy and so w is not of definite
handedness on the Mobius strip.

With our volume form in tow we can now define integration of a function f : M — R
over an orientable manifold M. Let us take the volume form to be w. Then in a coordinate

neighbourhood U; with coordinates x* we define the integration of an m-form fw to be
/ fw :/ f(goi_l(x)))h(goi_l(x))dxl...dxm. (3.140)
U; (Us)

Notice that the right-hand side is just ordinary integration we are familiar with, albeit in m
variables. Once the integral of f over U; is defined it can be extended to an integration over

all of M by making use of a partition of unity.

71



Definition 33 (Partition of unity) Tuake an open covering {U;} on M such that each point

of M is covered with a finite number of U;. If this is always possible we call M paracompact.'®

If a family of differentiable functions €;(p) satisfies
1. 0<e(p) <1,
2. €i(p)=0ifp¢ U,
3. e1(p) + e2(p) + ..... = 1 for every point p € M.
The family {€;(p)} is called a partition of unity for the covering {U;}.
From condition (3) it follows that

flp) = Z f(p)ei(p) = Z fi(p), £i(p) = ei(p) f(p) - (3.141)

Hence given a point p € M assumed paracompactness ensures that there are only a finite
number of terms in the summation over ¢, this was one of the magical properties we imposed

but forgot about. For each of the f;(p) we may define the integral over U; via (3.140), and

/M fw = ;/U fiw. (3.142)

Though a different choice of atlas gives a different set of coordinates and a different partition

therefore we have

of unity the integral as defined above stays the same.

Example 3.12: Integrating on a circle
Let us consider integrating a function on the circle. Let us take the atlas as given in (3.8)

and (3.9). Let Uy = S' — {(1,0)} and Uy = S* — {(~1,0)}. Then we may give a partition
of unity by fixing €(f) = sin2% and e3(6) = cos? g. Note that €1(0) = 0 and ex(m) = 0
and therefore they vanish at the removed points as required. Moreover €1(0) + €3(6) = 1
as required. Thus {¢;(6)} furnishes us with a partition of unity for the atlas {U;}. Let us

integrate the function f = cos? 6. Of course we know
2w
/ dfcos?0 =, (3.143)
0

but we should check with our partition of unity that we obtain the same result. We find

27 ™ 1 1
/ df cos? 0 = / df sin? o cos® 0 + / dé cos? o cos’ =T+ -m=". (3.144)
o 0 2 2 2" 3

—T

16We will assume this is the case whenever we integrate something in this course.
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So far we have left the function h(x) appearing in the volume-form arbitrary. Since this
gets multiplied by the Jacobian it changes between different coordinate patches and therefore
there is no canonical way to pick this. Once we endow the manifold with a metric, as we are
required to do in GR, there is a canonical choice that we can make.

We can also integrate forms over sub-manifolds of M, rather than the full manifold. A
manifold Y with dimension k < n is a sub-manifold of M if we can find a map o : ¥ - M
which is one-to-one and o, : T)(X) — T,y (M) is also one-to-one. We can then integrate a

k-form w on M over a k-dimensional sub-manifold ¥ by pulling the form back to X:

/ w:/a*w. (3.145)
o(X) by

For example consider a one-form A living on M and take C' to be a one-dimensional manifold
in M. We can introduce a map o : C' — M which defines a non-intersecting curve o(C') which

is a sub-manifold of M. We can then pull-back A onto the curve and integrate to obtain,

/ A:/ oA (3.146)
a(C) C

Let the curve trace out a path z#(7) in M then, in coordinates this reads

dax#
/J*A—/dTAu(a;)x, (3.147)
C dT

which is precisely the way in which a worldline of a particle couples to the electromagnetic
field.

Until now our focus has been on smooth manifolds without boundary. We saw that
this can be extended to manifolds with a boundary in section 3.1. There we have charts
¢ : M — U; where U; is an open subset of R™ = {(z!,...,2™)|z™ > 0}. The boundary is
denoted by OM, and is the sub-manifold fixed by ™ = 0.

Theorem 4 (Stokes Theorem) For a manifold M with a boundary, for any (m — 1)-form

/M dw = /aMw. (3.148)

Stoke’s theorem is the mother of all integral theorems. You may be familiar with the diver-

w we have

gence theorem, Green’s theorem, etc., this is the generalisation of those.

Exercise 3.10: Stoke’s Theorem
Show that this reduces to Stoke’s theorem on R3.

We will see integrals later in the course when we compute the mass of the Schwarzschild
black hole.
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4 Riemannian geometry

We now have all the necessary pre-requisites to introduce the most valuable player of general
relativity: the metric. The introduction of a metric brings a whole slew of new objects that
we can define. Here we will continue to talk about Riemannian geometry, this is spaces with

Euclidean signature, whereas what we really want to consider is Lorentzian geometry.

4.1 The metric

Definition 34 (Riemannian metric) Let M be a differentiable manifold.
A Riemannian metric g on M is a type (0,2) tensor field on M which at each point p € M

satisfies:
o Symmetric: g,(X,Y) = g,(Y, X),
o gp(X, X) >0 with equality iff X =0 ,

with X,Y € T,(M).

A tensor field g of type (0,2) is a pseudo-Riemannian metric if it satisfies the first condition

and
o Non-degenerate. If for any p € M ¢,(X,Y) =0 for all Y € T,(M) then X|, =0,

We may extend the tensor g, over the full manifold. With a choice of coordinates we can

write the metric as

9 = gu(x)dz" ® dz” . (4.1)

This defines the metric to be a smooth tensor field over our whole manifold, that is a
multi-linear map from T'(M) x T'(M) — F(M). We will often write this as the line element
ds?,

ds® = g, (2)datdz” (4.2)
in particular removing the tensor product. We can do this unambiguously because of the
symmetry property of the metric. This also captures our intuitive understanding of the
infinitesimal distance being measured by the infinitesimal coordinate separations dz* weighted

by the metric.

One can extract out the components by evaluating the metric on a pair of basis elements

G (1) = g((aiu, ;;) : (4.3)
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We may view g,, as a matrix, which by the symmetry property above is symmetric. This
implies that the matrix is diagonalisable, with real eigenvalues. If there are ¢ positive eigen-
values and j negative eigenvalues the pair (i, j) is called the index of the metric. If j = 1
the metric is called a Lorentz metric, for 7 = 0 we have a Fuclidean metric. The number of
negative entries is called the signature and by Sylvester’s law of inertia!”, this is independent
of the choice of basis. By an abuse of notation we will often call this symmetric matrix the
metric when really this is just components of the metric tensor field in some coordinate basis.

For most applications of differential geometry, we are interested in manifolds with signa-
ture 0, i.e. a Riemannian manifold. The simplest example which you are probably familiar
with, though maybe not in this language, is the metric on Euclidean space R™, which in

Cartesian coordinates has the metric
g=dz' ®@da! + ... +dz™ @ dz™, (4.4)
which in components reads g, = ..

4.1.1 Riemannian metric

A general Riemannian metric is a useful object to have in one’s tool belt. It gives us a way

of measuring the length of a vector X at each point

X[ =Vg(X, X). (4.5)
Moreover we may measure the angle between two vectors
9(X,Y) =|X||Y]|cosf. (4.6)

Furthermore, it can be used to measure the distance between two points p and ¢ along a curve

in M. For the curve o : [a,b] — M with o(a) = p and o(b) = ¢ the distance between the two

b
d(p, Q) _/ dt\/g(XaX)‘a(t)v (4'7)

where X is the tangent vector field to the curve. If the curve has coordinates z#(t) then

XH = ddi: and the distance is

points along the curve is

b
d(p,q) = dt\/g,uu O a (4.8)

Importantly this distance does not depend on the parametrisation of the curve, and only on

the curve itself.

17"This has nothing to do with inertia, Sylvester just wanted a law of inertia like Newton.
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Example 4.1: Metric on a two sphere
A less trivial example is the metric on a unit round two-sphere, denoted S2,

ds?(S?) = d6? + sin® Ade? . (4.9)
Here 0 € (0,7) and ¢ € [0,27). This is written in a chart which does not cover the full
5?2 to show that this is a smooth tensor field one must define a second patch whose union
with the above one covers S2. To see this one can first realise the S? by embedding the
two sphere in R? via:
2?4y 2t =1, (4.10)
First introduce polar coordinates as

x =sinfcos¢, y=sinfsing, z=cosh, (4.11)

which define § € (0,7) and ¢ € (0,27) uniquely. This covers all of the S? but for the line
of longitude y = 0,2 > 0 and the points (0,0,41). We can define a second chart using a

different set of polar coordinates:
r=—sinf cos¢’, y=coshl, z=sinfsing, (4.12)

where 0" € (0,7) and ¢’ € (0,27). The points (0,+1,0) and the line z = 0,2 < 0 is not
covered however one can see that the union of these two charts covers the S2. One can

check that this makes S? a manifold. Now in the chart the metric we obtain is
ds?(S?) = 0" +sin® 0'd¢’ . (4.13)

One can then check this defines a smooth tensor field.
We can use the metric to work out the circumference of the unit circle. Let us first
compute the path along the equator. This is the integral curve of the vector field X = Jy

which we computed in example 3.7. The form of the integral curve is
0N =060, o\ =A, (4.14)

and we can compute the length of the curve. We end up back where we are after A = 27

and so the path length is:

2 2
d= / \/ 02 + sin? 0p2d )\ = / sin fpd\ = 27 sindy . (4.15)
0 0

The equator has 6 = 5 and therefore we find that the circumference is 27 which is the
correct value for a unit sphere. If we wanted to work with a non-unit sphere we should
multiply the metric by a factor {2 with [ the radius. It is simple to see that the result in

this case would then be 27l.
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Exercise 4.1: Metric on S? from pull back
This metric in (4.9) is the pull back of the metric on Euclidean space to the S? defined by

the polar coordinates. Show this.

The possible issues with the tensor field (4.9) came from the need to change charts since
we cannot cover the S? with a single chart. The metric on S? will appear later in this
course and we will simply ignore any subtleties of the regularity of the metric in (4.9)
since, as we have just seen, these can be removed by properly considering the different
patches of the S2.

4.1.2 Lorentzian manifolds

For General Relativity we need to consider Lorentzian manifolds. The simplest example is

Minkowski space. This is R™~1 equipped with the metric
n=—-d2’®da® +de' @ da! + ... + dz™ P @ da™ !, (4.16)

which has components 7,,, = diag(—1,1,...,1). Note that on a Lorentzian manifold we take
the index to run over 0,1,..,m — 1.
At any point p on a general Lorentzian manifold it is always possible to find an orthonor-

mal basis {e,} of T,,(M) such that locally the metric looks like the Minkowski metric

guu‘p = Nuv - (417)

This is closely related to the equivalence principle we discussed in section 2.2.1, we will discuss
the coordinates, known as normal coordinates that allow us to do this shortly. The fact that
locally the metric looks like Minkowski space allows us to import some of the ideas of special

relativity, namely we can classify the elements of T),(M) into three classes
e g(X,X)>0— X is spacelike ,

e g(X,X)=0— X is lightlike or null ,

e g(X,X)<0— X is timelike .

At each point on M we can then draw light cones which are the null tangent vectors at that
point. The novelty is that the directions of these light cones can vary smoothly as we move
around the manifold. This specifies the causal structure of spacetime which determines which

regions of spacetime can interact together.
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As in the Riemannian case we can use the metric to determine the length of curves. The
nature of a curve is inherited from the nature of its tangent vector. A curve is called timelike
if its tangent vector is everywhere timelike. We then measure the proper time

b dz# dxv
T= dM/—guw———. 4.18
/a I qx "dx (4.18)
4.1.3 Why is the metric useful?

The existence of a metric comes with a large number of benefits.

The metric as an isomorphism The metric gives a natural isomorphism between vectors
and covectors, g : T;,(M) — T,;(M) for each p. In a coordinate basis we can write X = X*J,,

and map it to a one-form X = X, dx*, with the components given by
Xy =guwX". (4.19)

We will usually say that we use the metric to lower (or raise) an index. What we really mean
is that the metric provides an isomorphism between a vector space and its dual. Since g is
non-degenerate and is thus invertible we also have the inverse map. We take the inverse of
guv to be g so that ¢"’g,, = 6. This can then be thought of as the components of a
symmetric (2,0) tensor
Gg=9"0,®0,. (4.20)
Then
Xt =g"X,. (4.21)

The Volume form The metric also gives a natural volume form on the manifold M rather

than the variety of volume forms we had previously. On a Riemannian manifold we take the

vol(M) = y/det(g,,)dz" A ...dz™, (4.22)

and we use the shorthand /det(g,,) = \/g. On a Lorentzian manifold the determinant is

negative and therefore we take the volume form to be

volume form to be

vol(M) = /—gda® Ada' A ... Adz™ L (4.23)

As it is written it looks coordinate dependent however it is not. To see this recall that if we

change coordinates y = y(x) we have (see (3.40))

dy” . (4.24)
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Then
dz* AL Ada™ = Alyl..../\mymdy”1 A oA dy'™
B 1 m (1) o(m)
= D Ay A dyT DA LA dy

O'ESm

= Z sign(a)Alo(l)...Amg(m)dyl Ao Ady™

O'GSm

= det(A)dy' A ...dy™,

(4.25)

where in the penultimate line we have used the properties of the wedge product and in the

last line used the definition of the determinant. The metric components transform as

oyP 0y° .

Juv = @@gpdv (4.26)
and therefore
- -2
det(g,w) = det(gw)(det(A)) , (4.27)
and therefore this cancels with the transformation of the wedge product leaving
vol(M) = +/|g|dy* A ...dy™, (4.28)

which is therefore invariant.

We may rewrite the volume form as

1
vol(M) = ﬁvmmﬂmdx’“ A ... ANdxtm where Ut = V191 €01 g - (4.29)

Here €, .. 4, is the Levi-Civita symbol which is m-dimensional totally anti-symmetric tensor
giving 1 for an even permutation of the indices, —1 for an odd permutation and 0 when an
index is repeated. It follows that v, . ., is a tensor, while €,, . ,,, is not, instead it is a tensor
density (one needs to multiply by the square root of the determinant to obtain a tensor). Note
that we define e1#m to again be the totally anti-symmetric tensor with e = 1, i.e. we

do not raise the indices on € with the metric. Instead we have

1
piltim = gL ghmVmy o, = ——=elthm (4.30)

vl

Hodge dual On an oriented manifold M we can use the totally anti-symmetric tensor
density to define a map which takes a p-form w € QP(M) to a (m — p)-form *w € Q™ P(M).
We define this map to be

1
(*w)/il---/imfp = H |g|€M1...um7pV1...upwV1“Vp . (431)
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This is called the Hodge dual and is independent of coordinates. One can see that it satisfies
*(kw) = £(—1)PM Py (4.32)

with + for a Riemannian metric and — for a Lorentzian.'®

With the Hodge dual in tow we can define an inner product on each vector space Q" (M).

If w,n € Q"(M) then we define the inner product

(n,w) = /Mn A *w . (4.33)

With such an inner product one can look at operators on Q"(M) and their adjoints. The
differential operator we have introduced on r-forms is the exterior derivative. For w € Q"(M)
and o € Q"~1(M) the adjoint is defined via

(da,w) = (a,dTw), (4.34)
where the adjoint operator d : Q" (M) — Q"~1(M) is given by
df = £(=1)m+D-1 , d % . (4.35)
One can then define a Laplacian [ : Q"(M) — Q"(M) defined as'?
O=(d+d")?=dd"+d'd. (4.36)

It can be defined on both Riemannian manifolds and Lorentzian, however it is only positive

definite on Riemannian manifolds. On a function f the Laplacian acts as

07 = ———0,(VIglg" 0uf) . (4.37)

Vgl

80ne has actually seen the Hodge dual before, it was just hidden from view. Consider two vectors @ and
b in R3, We can take the cross product to obtain a third vector & as @ x b = ¢ This however mixes a lot
of different objects. This is equivalent in our new language to first use the metric to relate the vectors to
one-forms. The cross product it really the wedge product of the two one-forms to give a two-form. We then
take the Hodge dual of this two-form to obtain a one-form and then use the metric once again to extract out
a vector. This more complicated route is hidden since the metric is just the Kronecker delta and so we can
raise and lower indices with impunity. Going to curved space and a non-trivial metric these subtleties become
relevant.

19You may also see the Laplacian denoted by A rather than O.
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Aside: There is a beautiful interplay between the Eigenforms and Eigenvalues of the
Laplacian and the topology of the space that we will not cover. If one defines a har-
monic form to be one which is annihilated by the Laplacian [lw = 0, then there is an
isomorphism between the set of all harmonic forms and the cohomology group:

Harm" (M) = H"(M). (4.38)

The Betti numbers which were the dimensions of the cohomology groups are then just

the dimension of the group of harmonic r-forms on the manifold.

4.2 Connections and curvature

A vector field X is a directional derivative acting on a function f € F(M). However so far
we have not introduced such a derivative for tensors of type (g, 7). The Lie derivative is not
quite what we want since it also involves derivatives of the vector defining the direction and
so we want to introduce something additional. This other derivative is more useful than the
Lie derivative, but requires the introduction of a connection to map the vector spaces at one
point to vector spaces at another. The resultant object is known as the covariant derivative

and is distinct from the Lie derivative that we introduced previously.

Definition 35 (Affine connection) An affine connection, which we denote by V is a map
V:X(M)x X(M)— X(M), that is (X,Y) — VxY which satisfies

VxY+2)=VxY +VxZ, (4.39)
V(fX+gy)Z = fVXZ +gVy Z, (4.40)
Vx(fY) = X[f]Y + fVxY, (4.41)

for vector fields X,Y,Z € X(M) and functions f,g € F(M).

Let us take a chart (U, ) with coordinate x = ¢(p) and define m? functions T'*,, called

the connection coefficients by
Ve, =Ve, e, = e/\F)‘W, (4.42)

where {e,} = {8%} is the coordinate basis in 7),(M). The connection coefficients specify
how the basis vectors change from point to point, i.e. how to map the tangent space T},(M)

to Ty(M). Using the properties of the connection we can work out the general covariant
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derivative of a vector field
ny = VX(YMB#)
= X[Y"e, +Y"Vxe,

(4.43)
=X"0,(Y*)e, + X"YHV e,
= X" (9" 417,77 e,
We can strip off the overall X” to write
wo QYH
(v,,Y) = S HTA,Y7, (4.44)
so that
(VxY)¥ = X"V, Y# (4.45)

On a function the covariant derivative coincides with both the Lie derivative and the regular
partial derivative, however its action on vectors differs. While the Lie derivative £xY depends
on both X and its first derivative, the covariant derivative depends only on X. This is the
natural generalisation of the partial derivative on curved space.

We will often be sloppy and write
(VxY) =VxYH. (4.46)

Typically in older books, though some still like to use this stupid convention, one may see
the semi-colon notation

VYR =Y, (4.47)

We will refrain from using this convention to preserve our sanity.
At the moment the connection T'* vp 18 somewhat abstract. One may guess that it is a
tensor however this is not correct. To see this let us consider how it transforms under a

change of coordinates. Recall that the basis elements transform as

- : oxt

e, =NMNe,, with At = 9y (4.48)
Recall that a (1,2) tensor T%,, transforms as

T, = (A7hm A2, AP TH (4.49)
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We can compute the transformation of the connection. In the basis {€,} we have
Ve, & =TH, 6,
= VAG'pea <ATV67—)
= A7, (Vo (A7, )er + A7, Ve, ) (4.50)
— A7, (ATVF“UT + &,A“V) ex
= AUP (ATV]‘_‘HO'T + 8UAHV> (Ail)‘uné/ﬁ .

From this we obtain

f‘ﬂ = (A_I)MK,AO-,DATVFK/O'T + (A_l)'uﬁAaanAK

vp

(4.51)

v

The first term is the expected transformation term of a (1,2) tensor, however there is an
additional piece. This additional piece is independent of I' and depends only on the JA. This

is the characteristic transformation of a connection coefficient.

4.2.1 Differentiating other tensors

We can use the properties of the covariant derivative to extend its action to any tensor field.
Consider a one-form w, we want the covariant derivative to take the one-form and return
another one-form, V xw, as such we should check its action on a vector field Y € X(M). We

impose that the connection obeys the (generalised) Leibniz identity, so that
Vx(w(Y)) = (Vxw)(Y)+w(VxY). (4.52)
Since w(Y) is a function we know that
Vx(w(Y)) = X[w(¥)]. (4.53)
Using the Leibniz condition we have
(Vxw)(Y) = X(w(Y)) —w(VxY), (4.54)

and reducing to coordinates we find
XH(Vw), Y = XF0,(w, YY) —w, XH (GMY” + F”MPYP)

= X (O = T ) Y7 (455

We may then write

(Vuw), =Vw, = =T, Wy - (4.56)

—w
oxk P
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We can now extend this argument to an arbitrary tensor of rank (q,r), again imposing the
generalised Leibniz identity, and we find
0

oxH
1o Vi...Vq
o T op

V1.V V1...Vq " 0...Vq Vg V1..Vg—10
A\ o1...0r T propr T T g e T P1ovpr

1 (4.57)
o V1.V
—...—T NPTT qpl...p,«,lg .

In words, you first differentiate the tensor and then for each upper index you add in a +I'T

and for every down index a —I'T".
4.3 Torsion and curvature

Even though the connection is not a tensor we can use it to construct two tensors. The first is
a rank (1,2) tensor T known as Torsion, the second is a rank (1, 3) tensor known as curvature

or the Riemann tensor.

Definition 36 (Torsion tensor) The torsion tensor acts on X,Y € X(M) and w € QY(M)
by
T(w:X,Y)=w(VxY - VyX — [X,Y]). (4.58)
We may equivalently think of this as a map T : X (M) x X(M) — X (M) defined by
T(X,Y)=VxY — VyX — [X,Y]. (4.59)

Definition 37 (Curvature tensor) The curvature acts on X,Y, 7 € X(M) andw € QY (M)
as

R(w:X,Y,Z)=w(VxVyZ - VyVxZ - VxyZ) (4.60)

As for the torsion we may think of this as a map X (M) x X(M) to a differential operator
acting on X (M) as

R(X,Y)=VxVy —-VyVx — Vixy]- (4.61)

Exercise 4.2: Torsion and Curvature are tensors
Check that both the Torsion and Curvature tensors are actually tensors. There are two

ways of doing this.

1. Show that it is multi-linear in all arguments. For example show T'(w : fX,Y) =
fT(w:X,Y) for all f € F(M) and so forth.

2. Show that it transforms as a tensor should under a change of coordinates.

We can evaluate the tensors in a basis to obtain the component form. Let {67} = {dz"}

be a basis of the cotangent space and {e,} = {J,} be our basis for the tangent space.
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4.3.1 Component form of the torsion
In this basis the components of the torsion tensor are
10, =T ey, en)
=6 (Vue,, — Ve, — leu, ey])

(4.62)
J— lo} g
= 9”(F = T Vu)eo
=17, -T°,.
We therefore end up with
1, =1, -1°,,. (4.63)

So despite I'?,,, not being a tensor, the anti-symmetrised part is! The torsion tensor is clearly

anti-symmetric in the two lowered indices.

Definition 38 (Torsion free) We see that connections ', which are symmetric in the

v

lowered indices have T” w = 0 and are called torsion-free.

4.3.2 Component form of the Riemann tensor

A similar computation for the Riemann tensor gives

o o o A o A o
R puv =0, Vp—&,F M,+F l,pF W\—F MPF ) (4.64)

4.3.3 The Ricci identity
Consider the commutator of covariant derivatives acting on a vector field, we have

_ A P

V[MV,,}XU _8[M (V,,}XU) + FU[MWV,/]Z -T [/W]VPXU
A
=010 X7 4 (94,17,),) X7 + (91, XP)T7 ), + T, 500 X (4.65)
o A p__ TP o
+ 17\, X7 =T [HV]V,;X .

The first term of the second line vanishes, while the third and fourth cancel. The second term
on the second line and first on the third line combine to give the Riemann tensor while the

last gives the torsion. Putting everything together we have the Ricci identity

oV, V, X = R°,,, XP —T",V,X°. (4.66)

Similar identities hold when acting on other tensors and can be shown following similar steps

to the above.
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4.3.4 Levi—Civita connection

So far the discussion has not required a metric. When a metric exists we have the following

theorem.

Theorem 5 (Levi—Civita Connection) There erxists a unique, torsion free, connection
that is compatible with the metric g:
Vxg=0, (4.67)

for all vector fields X. This connection is called the Levi—Civita connection.

Proof: To prove this we first show uniqueness before constructing the connection. Sup-

pose that such a connection exists, then we have
X(9(v.2)) = Vx (9, 2)) = (Vxg) (Y, 2) + g(VxY. 2) + g(Y.VxZ).  (468)
Since Vxg = 0 we have
X(g(v,2)) = g(Y,Vx2) + g(VxV. 2). (4.69)
We may use our favourite trick and cyclically permute X, Y, Z to find

Y (9(2.X)) = 9(2,VyX) + 9(Vy 2, X).

(4.70)
Z(9(X,Y)) = g(X,V2Y) +9(V2X,Y).
By the no torsion condition we have
VxY -VyX =[X,Y], (4.71)

and therefore?Y

X(g(Y7 Z)) - g(vXZ7 Y) —|—g(VyX, Z) —i—g([X, Y],Z) )
Y(9(Z,X)) =g(VzY,X)+9(VyvX,Z) + g([Y. Z], X) , (4.72)
Z(9(X,Y)) = g(VzY,X) +g(VxZ,Y)+9([2, X],Y),

Adding the first and second and subtracting the third we find

oV X, 2) =5 [X(s(¥, 2)) + ¥ (5(2, X)) = Z(9(X. V) .
- g([X7Y]7 Z) - g([Y7 Z]?‘X) + g([ZvXLY)}

2ONote that in the X equation we eliminate the term g(VxY, Z) using the identity (4.71). Similarly for the
Y term we eliminate the g(Vy Z, X) and for Z we eliminate the g(VzX,Y) term.
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With a non-degenerate metric this specifies the connection uniquely.
It remains to be seen that the connection as defined does satisfy the properties of a
connection. We will present one of the terms to check. The most finicky one is VyxY =

FVxY, 50 let us present that one
oV 7vX,2) =3 | X @Y. 2) + 1Y (02, 5)) - 2(4(X. 1Y)
— g(X. Y1, 2) - g((Y.2), X) + 9(1Z.X]. 1Y)

:% [fX(g(Ya D))+ X(Ng(Y, 2)+FY (9(2, X))~ £ Z(9(X,Y)) = Z()g(X,Y)

_fg([Xa Y],Z)—X(f)q(y Z)_fg([Ya Z]vX)+Z(f)g(Y’ X)+fg([Za X],Y)

(4.74)

The coloured terms in the penultimate line cancel amongst themselves, leaving just the black
terms as required. The other properties follow similarly. This then proves the uniqueness and
has explicitly constructed such a connection.

In components we can evaluate

1
9(Vveu, e,) = F)\uugkp D) (8ugvp + Ougup — apgw) : (4.75)
Multiplying by the inverse metric we have
A 1 Ap
r, = 59 (Ougvp + Ovgup — Opgur) - (4.76)

The connection compatible with the metric is called the Levi—Civita connection while the
components of the Levi-Civita connection are called the Christoffel symbols.

There is a nice expression if you contract two indices of the Christoffel symbols, we have

1
., =——=0,V|yg| (4.77)
SERVAT
To see this note
1 1 _ 1
FMMV = igupavg,up = §tr(g 181/9) = 5t1‘(8,/ lOg g>7 (478)

for diagonalisable matrices we have trlog A = log det(A) and therefore we find

1 1
I, = 581, log det(g) = \/ﬁ&,\/det(g). (4.79)
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This implies that

1
VD, = V0, + D) V(0,00 + X0, /) = 0V ).
(4.80)

Using this result we can prove the divergence theorem:

/ dm:p\/|g|V#X“:/ d"tayAn, XH, (4.81)
M oM

where «;; is the pull-back of the metric to OM, v = det(y;;) and n, is an outward pointing
unit vector orthogonal to M. On a Lorentzian manifold this holds provided that OM is
either purely spacelike or purely timelike, which guarantees that v # 0.

4.4 Parallel transport and geodesics

We have introduced the connection but we are yet to explain what it connects. It connects
tangent spaces, or more generally any vector space at different points of the manifold. This
map is called parallel transport. Take a vector field X with some associated integral curve y

with coordinates z#(\) such that
_dat(N)

XH = 4.82
=5 (4.82)
We say that a tensor field T' is parallel transported along ~y if

VxT =0. (4.83)

Let ~ connect two points p,q € M. The condition (4.83) provides a map from the vector
space defined at p to the vector space defined at q. Consider a second vector field Y. In
components (4.83) reads

XV(0,Y*+TH,YP) =0. (4.84)

If we evaluate it on the curve v, we can write Y* = Y#(x())) and therefore the condition is
% + X"T",,)Y? =0. (4.85)
This defines a set of coupled ordinary differential equations, given an initial condition at
p = (A = 0) for example these can be solved to find a unique vector field at each point along
the curve. This is path dependent and depends on the connection and the underlying path
which was characterised by X here.
There is a subtle difference between what we are doing here and what we did with
the push-forward and pull-back, which we used to define the Lie derivative. Here X only
appears to define the map, there are no derivatives applied to X* as was for those maps. The

connection does the work of relating the vector spaces along the curve and not the vector X.
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4.4.1 Geodesics
Definition 39 (Affinely parametrised geodesic) An affinely parametrised geodesic is an
integral curve with tangent vector field X that obeys

VxX =0. (4.86)

Along the curve v with coordinates z* and tangent vector field X this implies

A2zt da¥ dx”
™ —— =0. 4.87
d)\2 ez dA dA ( )

We have thrown around the phrase affinely parametrised geodesic but what does this really
mean? Consider a curve parametrised by A and with tangent vector field X that satisfies
. . _dx
(4.87). Let us parametrise it by some other parameter 7 with A(7) and take f = G2 > 0. The
change in parametrisation leads to a different tangent vector to the curve since
dax# dx# Q _ xn d\

T dr  dadr dr’ (4.88)

We therefore have
VyY = Vix X = [Vx(fX) = fX[fIX + [*VxX = X[f]V. (4.89)

We see that (4.89) defines the same geodesic however it is not affinely parametrised, the right-
hand side of (4.87) no longer vanishes but is instead proportional to an arbitrary function
multiplied by the vector field.

We see conversely that if we work in the opposite direction, with a non-affinely parametrised
geodesic, that is a Y satisfying (4.89) then we can always perform a reparametrisation that
gives us an affinely parametrised geodesic, therefore there is no loss of generality for us to
consider affinely parametrised geodesics.

Observe that we still have some freedom to reparametrise our curve without ruining the
affine parametrisation, this requires X|[f] = 0. This is then equivalent to f being constant
along the curve and therefore we may take A = ar 4 b with a, b constants without ruining the
affine parametrisation. There is a two-parameter family of affine parameters for any affinely

parametrised geodesic.

Exercise 4.3: Geodesic equation from Euler—Lagrange
Consider the action of a particle following the path xz#(\):

dz* dzv

Using the Kuler-Lagrange equations show that generically you obtain the non-affinely
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parametrised geodesics from the action with respect to the Levi—Civita connection.

What is the affine parameter for a time-like geodesic?

If we choose the Levi-Civita connection, since Vxg = 0 it follows that for any vector

field Y which is parallel transported along a geodesic defined by X we have

T Y) = 0. (4.91)

The vector field Y makes the same angle with the tangent vector at each point along the
geodesic. Further, this holds true if we replace Y by X in the expression above. Since the
norm of the vector field X tangent to the geodesic classifies the character of the geodesic,
(timelike/null/spacelike), if we define a geodesic using a metric compatible connection, then
the nature of the geodesic does not change. This statement relies on us using a metric
compatible connection though, in this course we will always take such a connection and
therefore the nature of a geodesic is preserved throughout all spacetime.

Let us consider a timelike geodesic. When we vary the action (4.90) what are we extrem-
ising and is it a maximum of minimum? From our definition of the proper time, (4.18) we
see that we are extremising the proper time, and geodesics maximise the proper time. Why
is this true? Well given any time-like curve we can approximate it to arbitrary accuracy by
a null curve. We should consider jagged null curves that follow the time-like one, see figure
11. As we increase the number of null curves the approximation gets better and better, while
still having zero length. Timelike curves cannot therefore be curves with minimal proper time
since they are infinitesimally close to curves of zero length (and therefore zero proper time).
They must therefore maximise the proper time. This is why the twin who remains home in
the twin paradox ages more, they are on a geodesic (for most of the journey). We should
really say that this maximises the proper time locally. If we took a sphere, then there is more
than one geodesic between two points, we can either go the short way around or the long way
around. One is longer than the other (assuming the points are not opposite each other, i.e.

picking the poles), but both maximise locally the length functional.

4.4.2 Normal coordinates

Geodesics allow for the construction of a particularly useful coordinate system. This holds
independently of whether the Levi-Civita connection is employed or not, however it takes a
particularly simple form when it is used. On a Riemannian manifold, in the neighbourhood

of a point p € M we can always find coordinates such that

Guv(P) = O and F“Vp(p) =0. (4.92)
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Figure 11: We approximate the time-like curve with null curves. As we increase the number
of null curves the approximation gets better and better.

The same is true for Lorentzian manifolds with § — 7. These coordinates are known as
normal coordinates. If one uses the Levi—Civita connection the vanishing of the Christoffel
symbols implies that 0,9,,(p) = 0. As we move away from p this does not need to continue
to hold. It should be noted that one cannot generically make the derivative of the connection
coefficients vanish at p. This means that it is not possible to find coordinates such that the
Riemann tensor vanishes at the given point.

We can brute force this. Start with a metric g,, in coordinates Z# and try to find a new

set of coordinates z#(Z) which satisfy the required conditions. In the new coordinates we

have
oz 077 _
%wgpa— = g:U'V = 5/.1,11 . (493)
We can take the point p to be the origin of both coordinate systems and Taylor expand around
the point
oxr 1 9%zr
P =0+— - Pa¥ + ... 4.94
v * Bk lomo” + 2 0xhdz” om0 * ( )

Inserting the expansion into (4.93) together with the Taylor expansion of §,, we can try to
solve the resulting PDEs. The first order variation implies
oz’ 0z°
Oxt lz=0 Oxv

nga(p) = 5w/ . (495)

£=
We can always find 0Z/0z such that this is true, there are many choices. For dim M = m
there are m? independent coefficients of 92/dz. The equation above contains zm(m + 1)
conditions on these, since g is symmetric. This leaves us with %m(m — 1) parameters which
are un-fixed. Notice that this remainder is precisely the same number of components of the

rotational group of SO(m) or SO(1,m — 1), this is of course the group that leaves the flat
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metric unchanged and is therefore to be expected. Next consider the second order variations.
There are 3m?(m + 1) independent components of 0%#”/dx#0z” which is the same number
of components of 0,9, and so we can always choose the first derivative of the metric at p to
vanish. Consider now the second derivative term, requiring 0,05g,,, = 0 imposes %mQ(mqt 1)2
constraints. However the next term in the Taylor expansion is 93" /0xH0x"d0x° and has only
im?(m + 1)(m + 2) independent coefficients: there are not enough independent coefficients
to cancel all of the terms of the second derivative. The difference is the number of ways
of characterising the second derivative of the metric that cannot be undone by coordinate
transformations. This is precisely the number of independent components of the Riemann
tensor, this is

1 1 1
ZmQ(m +1)% - 6m2(m +1)(m+2) = ﬁmQ(m +1)(m—1). (4.96)

One can explicitly construct the normal coordinates using the exponential map and geodesics
flowing through the point p. One can consider all affinely parametrised geodesics through p
and label the point ¢ at a small fixed distance of the affine parameter by the coordinates of
the geodesic flowing through ¢. One then essentially uses geodesics to construct your basis

vectors. We will not consider this construction here.

The Equivalence principle Normal coordinates play an important role in GR. Any ob-
server at a point p who parametrises their immediate surroundings using normal coordinates
will experience a locally flat metric.

This is the mathematics underlying the Einstein equivalence principle. Any freely falling
observer, performing local experiments will not experience a gravitational field. Here free
falling means following a geodesic and therefore they can use normal coordinates. The lack
of gravitational field is the statement that g, (p) = 1.

There are limitations to the equivalence principle and the important word is local. There
is a way to distinguish whether there is a gravitational field at p or not. We simply compute
the Riemann tensor. This depends on the second derivative of the metric and will in general
be non-vanishing. However to measure the effects of the Riemann tensor one typically has to
compare the result of an experiment at p with the result at a nearby point ¢, this is then a

“non-local” observable, according to the equivalence principle.

4.4.3 Path dependence: Curvature and Torsion

We have introduced the curvature and torsion tensors but what are they really measuring?

For the Riemann tensor let us consider a vector Z,, € T,(M) and parallel transport it along
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a curve C' to some point r € M. In addition condition another curve C’ along which we can
parallel transport Z, to r. We will see that the difference between the two vectors at r is

determined by the Riemann tensor.

The meaning of curvature Let us construct our curves from two segments, generated
by linearly independent vector fields X,Y and let us take [X,Y] = 0. (Recall that this
implies that the parallelogram constructed from the vectors closes, see section 3.3.2). We take

the points to be close and pick normal coordinates z# = (7,0,0,...,0) so that the starting

point is at z¥(p) = 0, and the tangent vectors are aligned along the coordinates X = a%

and Y = 6%. The other corner points are z#(r) = (67,0,0,..), z*(s) = (0, 60,0, ...) and

a#(r) = (07,60,0,...), with 67 and Jo small, see figure 12.

Zs
5:(0.60) ) - X
/
u"'
/NY
l
| Zy
Il - \X
[  — 7
p:(0,0)

Figure 12: Parallel transporting a vector Z, along two different paths does not give the
same answer. From the lecture notes of Tong.

First parallel transport Z, along X to obtain Z,. Along the curve, by definition of the

parallel transport Z* satisfies
dz+

— 4 X'TH 7P =0. 4.97
dT + pv ( )
We can Taylor expand the solution as
dz+* 1d%2z+
Zh =7t + ——| 67+ = 672 + O(67°) . 4.98
s p+dTp7'+2d72pT+(7') (4.98)
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We can use normal coordinates at the point p which implies that ', (p) = 0 and therefore

ddZT - ‘p = 0. To calculate the second derivative we differentiate (4.97), to obtain

dzZ+ dr* dxv dzr
-~ — _(Xvgr—_PY 4 T gk XVIZ TH )
dr2 lr=0 ( dr + dr v+ dr = "/lp
o
_ _xvppdw (4.99)
dr P
— _XVX"2°0,T",
p

To get to the second line we have used that we are working in normal coordinates at p and

the final line is because T parametrises the integral curve of X. We find

1 g
72y = 74 — 5XVX720,T",

6134 ... (4.100)
p

Now we parallel transport again, this time along Y to the point r with resultant vector ZV.
The Taylor expansion is

1d2z+
2 do?

azr
Z0 =70+ E‘qéo’ +

‘ 5o + O(30%) . (4.101)
q

We can evaluate the first derivative % |q using the analogue of the parallel transport equation

(4.97),
dz*

do '¢

however since our normal coordinates are at p and not ¢ we cannot argue that this term

= —Y”Z”F“pl,’q, (4.102)

immediately vanishes, instead we can Taylor expand about p to get
Y”Zprﬂpy\q = Y”ZpX"&,F”pl,‘pdT + .. (4.103)

One should also expand Y” and Z" however to leading order they multiply I'*,, (p) = 0 ergo,
only contribute at the next order. For the second order term in the Taylor expansion (4.101)

there is a similar expression to before, we find

dQZN‘ — _YYY°ZPO.TH ‘ +
do? lq 7 e (4.104)
= -Y"Y7Z2P0,T",, | + ...
After the dust settles we have
14 1 14
Zl =7y —Y"ZPX70,T",, | 97d0 — 37 Y7ZPO,TH,, | 807 + ... (4.105)
and therefore
1
zp =2 = 0.1, [X”XUZ%T? +2YYZP X508 + Y”Y“Zﬂaaﬂ ] Yo (4.106)
p
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with ... cubic and higher terms. We can now consider the same computation for the path C’.

We merely need to swap the role of 7 <> 0 and X < Y, so that

1
20 =2 S0, [X”X”Zf’ar? 2XVZPY T S0bT + Y”Y”Z%aﬂ ‘p Yo (4.107)

and therefore
AZF = 78— 7 = (agrupy — 0, (VY ZPX7) 8007 + ..
=RF,, YV ZP X7 |p000T .

(4.108)

The final expression follows from the Riemann tensor expression in normal coordinates. Al-
though our calculation was performed in a certain choice of coordinates since the end result is
an equality between tensors it must hold in any coordinate system. This is a common trick,
normal coordinates generally simplify expressions.

The Riemann tensor tells us the path dependence of parallel transport. This is related
to the concept of holonomy. If we transport a vector around a closed loop we can ask how
it compares to the original vector. This is captured by the Riemann tensor. A particularly
easy example is to consider a two-sphere. We can draw a loop by considering the intersection
of three great circles. First go along the equator by 1/4 of the circumference. Then make
a m/2 turn and head to the north pole. At the north pole go south on another 7/2 angle.
You will end up with a triangle with angle 37w /2. Now consider parallel transporting a vector
along this loop. You will see that it changes direction when you get back to the start. Of
course one could take any path and the direction you end up facing depends on the path.
The set of all possible transformations of the vector at p along loops form a group known as
the holonomy group. For a Riemannian manifold with a metric this is a subgroup of SO(m)

while for a Lorentzian manifold it is a subgroup of SO(1,m — 1).

The meaning of Torsion Torsion will not play a role in this course since we will excusively
use the Levi-Civita connection which is torsion free. Before we completely rid ourselves of
the torsion let us first understand its geometric meaning.

Take two vectors X,Y € T,(M) and let us use coordinates z*. Starting at p € M we
can use these vectors to construct two points infinitesimally close to p, let them be r and s
respectively:

roat +eXt and s:al 4+ eyt (4.109)

We can now parallel transport X along Y to give a new vector X’ € Ty(M) and similarly

parallel transport Y along X to get a new vector Y’ € T,.(M). The new vectors have compo-
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nents

X'= (Xt — Dl Y'XP)D,, Y =(YF et X'YP)),. (4.110)

Each now defines a new point. Starting from s and moving in the direction X’ we get a new
point

q:at + (XH4+YH)e—TH, YV XP. (4.111)
Similarly if we sit at r and move in the direction of Y’ we get to a typically different point ¢

with coordinates

t:at + (XF 4+ YH)e—eTH, XYY, (4.112)

The two points are not the same when I'*,, # ', i.e. when the connection has torsion.

Torsion measures the failure of the parallelogram in figure 13 to close.

X/

p

Figure 13: We transport the two vectors X and Y along each other. The failure for the
parallelogram to close is measured by the torsion of the connection.

4.4.4 Explicit Example of path dependence

To bring everything we have learnt in the last few pages let us explicitly show path dependence

using the two sphere as an example. We draw a path consisting of four parts, two paths along
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constant latitude (constant §) and two paths along constant longitude (constant ¢) which are

joined up into a rectangle on the sphere, see figure 14

Figure 14: We consider parallel transporting a vector field around the rectangular looking
path. We will find that we do not ned up with the same vector field we started with.

We take the metric to be
ds? = d6? + sin? Ad¢? (4.113)

which in components is

uv
1 0 1 0
L, = , HY . 4114
In (0 sin? 0) g <0 .12> (4.114)
uv sin“ 6

Recall from example 4.1 that the metric in these coordinates is not well defined at the two
poles. One needs to use another coordinate patch to describe these two points. We will
continue to use this metric, staying away from the poles. (In the end we will take a limit to
one of the poles which remains well defined.)

The non-trivial Christoffel symbols following from the above metric are
I‘9¢¢ = —sinf cosf, T¢9¢:F¢¢9 =cotf. (4.115)

These can be easily computed by plugging the metric into the explicit formula in equation
4.76. There is a computationally simpler way to do it however which involves using the Euler
Lagrange equations and the equation for an affinely parametrised geodesic. Recall that an
affinely parametrised geodesic satisfies (4.87) and are the equations of motion following from
the Lagrangian:

L = g iti” . (4.116)
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We have
L=06%+sin?042, (4.117)

and therefore the Euler—Lagrange equations give:

0=10— cos@sin@gi?,
. N (4.118)
0=¢+2cott¢.
Comparing with (4.87) we easily read off that the non-trivial Christoffel symbols are as in
equation (4.115).
We can now consider the different paths we want to take. For constant longitude (¢

fixed) we have the path (6, ¢) : (ag, 5) — (au, ) is given by

o = (o + (a1 — ag)\, B) , A€0,1]. (4.119)
This has tangent vector field
_dzt

XM=
dA

For the constant latitude (fixed #) consider the end-points (0, ¢) : («, Bo) — (a, $1) which

= (o1 — ap, 0)". (4.120)

has path between them

' =a, Bo+ ANB1— Po), A€ [0,1], (4.121)
with tangent vector field
da#
XM =5 ﬁ - (0,61 — 50)“ . (4122)

The parallel transport of the vector field Y along the path with tangent vector field X is

given by
VxY =0, (4.123)
which in components can be written as:
d
JY“ + 1“”pUYPX‘7 =0. (4.124)

First consider parallel transport of Y along constant longitude (¢ =const) and take the path
in equation (4.119). For ease of notation let Q@ = a; — a. Now we just need to solve the
parallel transport equation. We have the two equations:
d 0 0 v
0=—Y"+17, Y"X",
dA (4.125)

d
— o] @
0= (1AY —+ T V/JYVXP_
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Plugging in our X and Christoffel symbols we find the two equations:
d

0=—Y?,
ddA (4.126)
= Y%+ QcotY?.
0 ) + Qcot b

The first can be solved simply by
Y=Yy, (4.127)

with YOG the initial value of Y at the initial point (cv, ¢g) of the path. The second is slightly
trickier to solve but one finds

yo—-_ ¢ 412
sin(ag + AQ) (4.128)

with ¢ an integration constant. We need to solve the initial condition which then fixes:

sin oy

yo —y?
U sin(ag + AQ)

(4.129)

with Y0¢ the initial vector field at (ag,¢g). We therefore find that moving along a path of
constant longitude we have that the vector field after a parameter time A is at

yo—yy, yb—yp S0
0> O sin(ag + AQ)

(4.130)
From this we can obtain the new transformed vector field at the end-point of our path by
substituting in A = 1.

Now consider the constant latitude path. We have X* = (0,¢1 — ¢9) = (0,w).The

resultant parallel transport equations are:

d
0=—Y?— wsinhcoshY?,
dA (4.131)

d
— “y¢ vy,
0 Y +wcotd

We now have a pair of coupled ODEs. Recall that along the path we are taking we have

0 = 0 and therefore to get uncouple the equations we take a second derivative of the first.

This gives:
d? 0 2 2 0
WY = —w”cos” OY" , (4.132)
which has solution:
VY = Asin(w cosGin\) + B cos(w cos Oy, \) (4.133)
and therefore for Y we find:
1
Y? = g~ (A cos(w cos inA) — Bsin(w cos OinA)) . (4.134)
M Uin
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We need to fix the initial conditions at A = 0 which fixes:
B=Y{, A=sin6y,Yy. (4.135)
Therefore we find that the parallel transported vector field is:
VY = sin GinYOd) sin(w cos Gin \) + YOG cos(w cos Oip ) ,
(4.136)

1
Yo = YO‘;S cos(w cos Oip A) — —

—— VY Oin ) .
sing Yo sin(w cos Oiy \)

We now have the transformation of a vector field along both the longitudinal direction and
the latitudinal direction. To fix the transformation of the vector field along the loop we need

to combine these. We want to perform the map:

(0o, p0) — (01, ¢0) — (01, 01) — (6o, 1) — (B0, ¢0) - (4.137)

For simplicity let the initial vector field at (6, ¢o) be Yy = 0, i.e. Y =1 7Y0¢ =0 and let
us transform this to each of the points using (4.130) and (4.136).

For the first transformation we find:
/=1, v/=o0. (4.138)

For the second, using (4.136) we find:

1
Yy = cos(wcosby), Y2¢ = —= sin(wcosf1), w=¢1 —¢o. (4.139)
Sin 01

For the third path we find:

1
Y{ = cos(wcosby), Yf = —— sin(w cos 61) . (4.140)
sin g

For the final path we have:

Y = — sin(w cos 01 ) sin(@ cos by ) + cos(w cos 0 ) cos(@ cos by)
. 1 (4.141)
Y/ =—— 7 (sinw cos 6) cos(w cos B) + cos(w cos B1) sin(@ cos bp) ,
sin 6y
where &0 = ¢g — ¢1 = —w. We may simplify this using trig identities to find:
1
Y = cos(w(cos by — cos b)), Yf =09 sin(w(cos By — cos b)) . (4.142)
s v

We immediately see that we need not obtain the same vector field once we have gone around
the loop! This is a consequence of curvature. We see that after going around the loop

the vector field we have obtained has been transformed. Thus this operation gives a map
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T,(M) — T,(M). The set of transformations is known as the Holonomy group. For our
example this is an SO(2) rotation. In general for a metric compatible connection the holonomy
is a subgroup of SO(m) for a Euclidean manifold and SO(1,m — 1) for a Lorentzian manifold.

Note that we can set 6y = 5, w = § and 6; = 0 which is then the triangle one can
make with three 90 degree angles starting from the equator.?! The resultant vector field is

YH* = (0,—1)*. which undergoes a 90 degree rotation.

4.4.5 Geodesic deviation

In Euclidean space or in Minkowski spacetime, geodesics which are initially parallel will
remain parallel forever. On a general curved manifold this notion of parallel is not possible,
instead we can study whether nearby geodesics move together or apart, and characterise their
relative acceleration.

Consider a one-parameter family of geodesics with coordinates z#(7 : o). Here 7 is the
affine parameter along the geodesics, all of which are tangent to the vector field X. Thus,
along the surface spanned by x*(7 : o) we have

oxH

or

= X", (4.143)

o

The parameter o labels the different geodesics, see figure 15. We can compute the tangent

vector in the o direction to be generated by a second vector field S so that

Ozt

w_ I
s Oo

, (4.144)

T

This tangent vector is known as the deviation vector, its job is to take us from one geodesic
to a nearby geodesic with the same affine parameter 7. The family of geodesics sweep out a
2d surface embedded in the manifold. We have freedom to choose coordinates so that on the
surface S = 2 and X = 2 consequently we have [X, S] = 0.

We can ask how neighbouring geodesics behave, do they converge, diverge, or remain the

same distance apart? Consider a torsion free connection so that
VxS —-VsX =[X,5]. (4.145)
Since [X, S] = 0, we have

VxVxS=VxVsX =VsVxX+ R(X,5X, (4.146)

2IRecall that the metric we took is bad at the poles §# = 0,6 = 7. Despite this we can take this limit and
still find a sensible result.
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— Constant o

—— Constant

Figure 15: The black lines are geodesics generated by X while the red lines label constant
7 and are generated by S with [X,S] = 0.

where we have used the expression for the Riemann tensor in (4.61). Since X is tangent to

geodesics we have Vx X = 0 and therefore

VxVxS=R(X,9X. (4.147)
In index notation we have
XV, (XPV,S") = R", ,, XV XPS7 . (4.148)
If we take an integral curve  associated to X as before we have
D28k Yoo
Dz = Bpe X" XS, (4.149)

with D/D7 the covariant derivative along the curve v, D/Dt = %—:Vﬂ. The left hand side
tells us how the deviation vector S changes as we move along the geodesic and it measures
the relative acceleration of neighbouring geodesics. From (4.149) we see that the relative
acceleration of neighbouring geodesics is measured by the Riemann tensor. This is nothing
other than the tidal forces mentioned previously. Note that the relative acceleration vanishes

for all families of geodesics if and only if the Riemann tensor vanishes.
4.5 Riemann tensor and its symmetries

We have just seen that the Riemann tensor is responsible for tidal forces, let us now study
this tensor in more detail. The components of the Riemann tensor are given in (4.64). It is

not hard to see that it is anti-symmetric in the final two indices:
R, =-R,,. (4.150)

This does not exhaust the symmetries however.
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Exercise 4.4: Symmetries of the Riemann tensor
Prove that the Riemann tensor satisfies the identities: If we lower an index then we

have
Ruupa = Rpa,uz/ ) (4.151)
Ruvpo) =0, (4.152)
ViuRoprw = 0. (4.153)

Hint: These expressions can be proven by using normal coordinates.

4.5.1 Ricci and Einstein tensors

Given arank (1, 3) tensor we can construct a rank (0, 2) tensor by contraction, for the Riemann

tensor the resultant (0,2)-rank tensor is called the Ricci tensor.

Definition 40 (Ricci tensor) The Ricci tensor is
R, =R, . (4.154)
It inherits symmetry in its indices from the properties of the Riemann tensor and therefore
RMV == RV’u . (4155)

We can play a similar game to create a scalar by contracting the indices again, the

resultant scalar is known as the Ricci-scalar.

Definition 41 (Ricci Scalar) The Ricci scalar is
R=g¢"R,, . (4.156)
Using the metric compatible connection, the Bianchi identity implies that

V(R %ng) —0. (4.157)

Definition 42 (Einstein tensor) The covariantly constant tensor
1
Guw = R — §Rg/w, (4.158)
is called the Einstein tensor.

This will appear in the next section when we consider GR and its conservation has physical

consequences.
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5 [Einstein’s equations

After defining all this mathematics we can now use it to introduce general relativity. Like the
other forces, gravity is also mediated by some field, in this case it is the metric g,,. It is a
dynamical object, not something fixed and therefore there must be some rules as to how it can
evolve. These are provided by the equations of motion following from the Einstein—Hilbert

action.

5.1 The Einstein—Hilbert action

We want to write down an action for the gravity. Differential geometry places some rigid
constraints on what this can be. We want the action to be diffeomorphism invariant, since
physics should not depend on the choice of coordinates. It should therefore depend on the
intrinsic properties of the metric.

Spacetime is a manifold M equipped with a metric of Lorentzian signature. The action is
an integral over M and so we require a volume-form. Thankfully the metric provides us with
a canonical volume-form, which is reparametrisation invariant with which we can integrate
any scalar. Given that we only have a metric there is not really much that we can construct.
The simplest non-trivial scalar we can construct is the Ricci scalar, and therefore we can

guess the action
Sgn = /d‘*:c\/ng. (5.1)

As a quick check since the Ricci scalar takes the form R ~ O + I'T" and the Levi—-Civita
connection is I' ~ Jg it follows that the action is second derivative in the metric. This is
like all other actions that we have considered previously, they all had two derivatives of our
fundamental field.

The equations of motion will follow from varying the action with respect to the metric.
We start with a fixed metric and see how the action varies as we shift according to

G () = g () + 0gu () . (5.2)

Writing the Ricci scalar as R = gV R, the Einstein—Hilbert action changes as

55 = [ @t (0= R + V=509 By + V09" SR (5.3)

It turns out that it is simpler to consider the variation with respect to the inverse metric, this

is of course equivalent to considering the variation with the metric since

9wy’’’ = (5fL, = (09w)gd”” +9uwdg”” =0, = 09"" =—-¢""9"0go - (5.4)
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The second term in the variation of the Einstein—Hilbert action is already proportional
to dg"”, so we need to consider the first and third terms only. First consider the variation
of the determinant term. To do this we must remember a few properties of a diagonalisable
matrix A, namely

logdet A =trlog A. (5.5)

(To prove this use that this is clearly true for a diagonal matrix since the determinant is
the product of the eigenvalues while the trace is the sum of the eigenvalues. Since both
the determinant and trace are invariant under conjugation it follows for any diagonalisable

matrix.) Thus we have

1 _ —1

after recalling the properties of the (matrix) Logarithm. Applying this to the metric we have

1
W=9=73 (=9)9""0guw = 5V =99"" 0y - (5.7)

i
V=5

Using the identity (5.4) we have

1
5v/—q = —5\/—gguyég‘“’, (5.8)

as claimed.

With this the variation of the Einstein—Hilbert action takes the form

1
5S = /d4$\/—g (RW - §Rgu,,) 0" + /99" R, (5.9)

and it remains to consider the final term only. We claim that this term is a total derivative and
can therefore be neglected by using Stoke’s theorem under suitable assumptions of spacetime

(no boundary). To confirm this we need to prove the following identity:

SRy = V017, — V617, (5.10)
where
1 g
5Fp;w = igp (V,u(sgal/ + Vu(sgua - Va5g,w) . (5.11)

We start by looking at the variation of the Christoffel symbols I'”,,,,. Though the Christof-
fel symbol is not a tensor the variation 6I'”,, is a tensor. This is because it is the difference
of two Christoffel symbols, one computed using the metric g, and one with g,, + dg,, and
the term in the transformation of the Christoffel which shows that it is not a tensor is in-

dependent of the metric and therefore cancels in the difference. This observation makes our
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lives a lot simpler. It implies that at any point p € M we can work in normal coordinates
such that 8,9,.], = 0 and therefore I, |, = 0. To linear order in the variation the change

in the Christoffel symbol evaluated at p is

5Fp,u,1/‘p = gpo (8/L5.gau + audgau - 80(5_9“,/) |p

(5.12)

N =N =

g (vu(sgm/ + VV(SQO'M - vadQ;w) |p

where we have used that in normal coordinates we can replace partial derivatives with co-
variant derivatives. Both the left and right hand side are tensors and therefore this holds
in any coordinate system, moreover the point p was arbitrary and therefore this holds in all
coordinate systems at all points p € M.

Next consider the variation of the Riemann tensor. In normal coordinates we have

R%,,, =0, —8,I° (5.13)

wp

and the variation is
(5RUWV = 8u(51“"l,p — 8Z,5I‘“up = Vyélw,/p — VZ,(SF"W, (5.14)

where we have once again used that in normal coordinates we can replace partial derivatives
with covariant derivatives. As before we have a tensorial equation and therefore this must
hold in any coordinate system not just normal coordinates. Contracting the o and p indices
we find

0Rp = V061", — V, 00" . (5.15)

It follows that
9" Ry = Vi (97017, — g8, ) = ¥, X", (5.16)

with X# the bracketed tensor. The variation of the Einstein—Hilbert action can then be

written as
1
0S8 = /d4a:\/—g [(RW - §Rgm,) gt + V“X“] . (5.17)

The final term is a total derivative after using the identity (4.80) and with suitable assump-
tions on spacetime can be neglected. Requiring that the action is extremised, so that §.5 = 0,

implies the equation of motion
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1
G = Ry — §Rg,w =0. (5.18)

These are the FEinstein field equations in the absence of matter. We may further simplify
them by first contracting with the inverse metric to find R = 0 and therefore in the absence

of matter Einstein’s equations are simply
R, =0. (5.19)

A metric obeying this equation is known as Ricci flat. Though this looks deceptively simple
this holds a very rich set of solutions, in fact not all solutions to this equation are known.
We threw away the boundary term in the usual cavalier way one does with such variational
principles. We may make this more rigorous by introducing the Gibbons—Hawking boundary
term to allow for M to admit a boundary. The addition of this term gives the same Einstein

field equations as before even for a manifold with a boundary.

5.1.1 Newton’s constant

As it stands the action we have given does not have the correct dimension, this will become a
problem when we want to couple to matter, so let us remedy this now. We take the coordinates
to have dimension of length [z] = L and therefore the metric is dimensionless. The Ricci scalar
involves two derivatives and therefore it has dimension [R] = L~2. Including the dimension
of the integration measure the current action in (5.1) has dimension [S] = L2. An action
should have dimension of Energy x time and therefore we should multiply the action by
an appropriate dimensionful constant. This constant is known as Newton’s constant. The
correct action is:

3

4 —
67Cn /d rv/—gR, (5.20)

where ¢ is of course the speed of light, and G is Newton’s constant

SEH =

Gy ~ 6.67 x 107 1Im3kg=1s72. (5.21)

This will not change the equation of motion in the vacuum but once we couple to matter this
will determine the strength of the coupling of the gravitational field to the matter.

If we are just interested in phenomena related to gravity it is sensible to set Gy = 1.
Instead if we want to consider other phenomena other than gravity this is not so sensible since

it defines the coupling of the forces. Instead the more useful convention is to pick & = 1, which
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equates energy with time. With this convention Newton’s constant has dimension [G] = m 2.

The corresponding energy scale is called the Planck mass and is given by

9 he

It is around 10'® GeV which is a very high energy scale and far beyond anything we can probe
experimentally. This is why the gravitational force is so weak, the coupling constant is much

smaller than that of the other forces.

5.1.2 Cosmological constant

We motivated the Einstein—Hilbert action as the simplest action one can write down. There is
in fact a simpler term we may write down other than the Einstein—Hilbert term we considered
previously. We may simply add a constant to the volume form. The resulting action is

1
167G N

/d‘*a:\/?g(R —2A). (5.23)

The constant A is known as the cosmological constant and has dimension [A] = L™2. The
minus sign in the action comes from thinking of the Lagrangian as T'—V with the cosmological
constant playing the role of the potential energy V.

Varying the action as before yields the Einstein equations
Rgul/ = _Ag;w . (5.24)

This time if we contract with the inverse metric we get R = 4A. Substituting this back into

the vacuum Einstein equations, in the presence of a cosmological constant they become

R/,Ll/ = Aguu . (525)

Metrics satisfying this property are known as Einstein metrics.

5.1.3 Higher derivative terms

The Einstein—Hilbert action with cosmological constant is the simplest thing we can write
down. We may construct other scalars from the Riemann tensor, however they will introduce
higher derivative terms. For example, there are three terms that we can add at four-derivative

level in the metric

Sictuty = [ Aoy (R + By R+ coRip R (5.26)
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with the ¢; dimensionless constants. Generic choices of the constants will not give rise to higher
derivative equations of motion with a well-defined initial value problem. Nonetheless there are
certain combinations which conspire to keep the equations second order in derivatives. This
goes by the name of Lovelock’s theorem and says that in four-dimensions the combination
1 4 2

g ), VIR — AR R 4 Ry R7) = X(M) (5.27)
where x(M) € Z, is the Euler character of M. Though not obvious, this is a total derivative,
and therefore does not affect the classical equations of motion. Higher derivative terms only
become relevant for fast varying fields. For us these terms will not be important and therefore

we stick to the 2-derivative action.

5.1.4 Diffeomorphisms

A natural question to ask is how many degrees of freedom are there in the metric? Since it is
a 4 x 4 symmetric matrix the naive guess is % x 4 x 5 = 10 however this is not quite correct.
Not all of these 10 components are physical. Two metrics which are related by a change of
coordinates x# — Z#(x) describe the same physical spacetime. This means that there is a
redundancy in any given representation of the metric which removes precisely 4 of the 10
degrees of freedom, leaving just 6 actual degrees of freedom.

This redundancy is implemented by diffeomorphisms. Recall that a diffeomorphism is a
map ¢ : M — M. We may use it to map all fields, including the metric on M to a new set
of fields on M. The end result is physically indistinguishable from the original, it describes
the same system just in a different set of coordinates. Such diffeomorphisms are analogous
to the gauge transformations of a gauge theory such as elcetromagnetism.

Let us look at how diffeomorphisms modify the action. Consider a diffeomorphism which

takes a point with coordinate z* to a nearby point with coordinates
at — gzt =t + Szt . (5.28)

We can view this either as an active change in which one point with coordinates x* is mapped
to another point with coordinates z# 4 dz* or as a passive transformation in which we use
two different coordinate patches to label the same point. Either viewpoint leads to the same
conclusion, here we will take the passive viewpoint.
We can think of the change of coordinates as being generated by an infinitesimal vector
field X,
ozt = —XH(x). (5.29)
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Under the change of coordinates the metric transforms as

o OxP 0x°
G () = G (T) = @@gw(%). (5.30)
We can invert the Jacobian matrix to find
ozt OxP
D = 6’; -0, X" = EE = 5z +0,X7, (5.31)

where the inverse holds to leading order in the variation X. Continuing to work infinitesimally

we have

Gu(Z) =(0f, + 0uX?)(0] + 0 X7)gpo ()

(5.32)
=0 (%) + Gup(2) 0 X + gup(x)0, X" .
We can also Taylor expand the left-hand side to find
G (%) = Gu (T + 67) = G () — X/\a)\g/w(m) . (5.33)

Comparing the different metrics at the same point x we find that the metric undergoes the

infinitesimal change
09w (%) = Guv () — g () = X’\ﬁ,\g#y + 9upOu XP + gup0u X" . (5.34)

This is precisely the Lie derivative of the metric. If we act with an infinitesimal diffeomorphism

along X then the metric changes as
69 = (Lxg)pw - (5.35)
We may rewrite equation (5.34) by lowering the index on X* to find
09 = 0u Xy + 0, Xy + XP(0p9u — Ougpr — Ovgpup) (5.36)
the last term is just the Christoffel symbols and therefore we have
O0guw = VX + Vi, X, (5.37)

We may put this together to see how the action changes. Under a general change of the

metric the Einstein—Hilbert action changes as

6S = / d*ax/—gG" 8, (5.38)

where we have discarded the boundary term. Insisting that 65 = 0 for any variation dg,,, gives

the equations of motion G* = (. In contrast, symmetries of the action are those variations
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dguv for which 65 = 0 for any choice of metric. Since diffeomorphisms are symmetries we
know that the action is invariant under changes of the form (5.37). Using the fact that G,

is symmetric we must have
58 =2 / d*z/—gG"'V, X, =0, foral X,(z). (5.39)
After integrating by parts we find that this results in the Bianchi identity
V,.G" =0. (5.40)

We learn that from the path integral perspective the Bianchi identity is a result of diffeomor-

phism invariance.

5.1.5 Coupling to matter

Until now the action has only involved gravity, and at most we can allow for test particles
moving on geodesics. Since they are test particles we ignore any back-reaction they produce
on spacetime. However matter is not just an actor doing what gravity says in spacetime,
it also back-reacts and affects the dynamics of spacetime. The first question to ask is how
does matter couple to the metric? We will consider matter that comes with a Lagrangian in

Minkowski spacetime.

Scalar Field Consider first a scalar field ¢(x). In flat spacetime the action takes the form

Sutar = [ (= 510,60, - V(9)) (5.41)

with 7* the inverse Minkowski metric.??

It is straightforward to generalise this to describe a field moving in curved spacetime,
we simply need to replace the Minkowski metric with the curved metric, replace partial
derivatives with covariant derivatives and introduce the volume form when we integrate in

the action. This means that we take

Suaar = [ A'2y/=5( = 50" V,09,6 - V(9). (542

Despite upgrading the partial derivatives to covariant ones this is somewhat redundant here
as they act the same on a scalar field: we keep it for later though.

Curved spacetime also introduces new possibilities for us to add to the action, for example
we could add a term such as ER¢? to the action which gives rise to extra couplings. We will

not interest ourselves in such terms here however.

22Note that the minus sign is due to our mostly plus signature convention, you may be more used to the
opposite convention when considering a field theory. The Lagrangian with take the form of kinetic energy
minus potential energy.
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Maxwell Theory The action of Maxwell theory from special relativity is

1
SMaxwell = _Z /d49€77up77MFuquo 9 (543)
with F,, = 0,A, — 0,A,. The electric and magnetic fields are encoded in F' via

0 —F, —Ey —E;
Ey 0 Bsy —Bs
F. = 5.44
W lEy-Bs 0 By |’ (5.44)

Es By —B; 0

and the Bianchi identity dF' = d2A = 0 yields two of the four Maxwell equations

—

V-B=0, V><§+%1::0. (5.45)

See problem sheet 1.
We may couple to curved space time through the minimal coupling outlined for the scalar

theory. The action is

1 1
SMaxwell = 1 /d4xv —ggupnguqua = _2/F A*E". (5.46)

We again take F' = dA, which in components reads F},, = 0,4, — 0,4, = V,A, =V, A,.
Antisymmetry implies that we may replace the covariant derivatives with normal derivatives.

The equations of motion are
VFE,, =0, & dxF=0. (5.47)

We have now seen the algorithm of how to couple matter to gravity for two examples, for
generic matter we follow the exact same rules. It remains to be seen how coupling to matter
change the Einstein equations of the previous section. We need to consider the combined

action
1
d*z/=g(R — 2A) + SMatter , 5.48
167TGN/ zy/—g( ) + SMatt (5.48)

where Shatter 1S the action for any matter fields in the theory minimally coupled to gravity.

When we vary the Einstein—Hilbert term we know that we will obtain the Einstein tensor,

what about Syatter?

Definition 43 (Energy-Momentum tensor) We define the Energy-Momentum tensor to

be
2 5£Matter

T = —
! V=g g

(5.49)
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By construction T}, is symmetric. Varying the full action with respect to the metric we have

1 1
/d4x\/—g(GW + Aguw)ogh” — = /d4m\/—gTW5g“”, (5.50)
167G N 2

from which we may read the following equation of motion

G + Mgy = 87GN Ty (5.51)

This is the Einstein equation describing gravity coupled to matter. Note that the presence of
the energy-momentum tensor says that the matter distribution sources the curvature of the
spacetime.

Example 5.1: Computing the energy momentum tensor

e For the scalar theory above the energy-momentum tensor is
1
T = VY0 = g (5V76V,0 + V(@) (5.52)
To see this observe that

1
£sca1ar = \/jg( - §glﬂ/a#¢8u¢ - V(¢)> ) (553)

where we have used that the connection on a scalar field is equivalent to the usual
derivative and therefore the variation with respect to the metric of the connection here
is trivial. Therefore
2 0
V=g 69+

T, = V=5~ 399V - V(9))]

_ 2 1 oV/=g( 1 . (5.54)
=T [ - 5\/ng#¢%}¢ + Sghv (— igp VoV — V(¢))}
= Vu(bvu¢ - guv(%vp¢vp¢ - V(¢))
If we restrict to flat space then
Ty = 36+ 5(V6) +V(9), (555)

with V the usual 3d spatial derivative. This is the energy density of a scalar field.
e For the Maxwell action we have
Ty = 9" FupFoo — igw,Fp"Fpo, (5.56)
see problem sheet 1 and replace n — g. In flat space we have
Too = ;[EZ + EQ} . (5.57)

This is the energy density of the magnetic and electric fields.
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6 Schwarzschild solution

Black holes are one of the most enigmatic objects and probably the reason why most of you
are here. Well the moment is finally upon us and we will take our first steps to understanding
black holes.

6.1 The Schwarzschild black hole

In 1915 Einstein had published his work on General relativity and made a comment saying
that he was not optimistic that the equations he had found could be solved other than
Minkowski space. Also in 1915, with the first world war raging in Europe, Karl Schwarzschild
was in the German army on the Russian front performing ballistic calculations, and suffering
from pemphigus a rare and painful autoimmune disease. Despite this, he worked on finding
solutions to general relativity and found the first exact (non-trivial) solution to Einstein’s field
equations.?® Schwarzschild’s breakthrough was to use a convenient system of coordinates,
taking a polar like coordinate system as opposed to Einstein’s rectangular coordinate system.

The metric that bears his name is
2GNM 2GNM\ !
ds? = — <1 - Gl:)dtz + (1 - Gf) dr? +r2(d6? +sin0de?) . (6.1)

This solves Einstein’s equations in a vacuum, R, = 0. The coordinate ranges are?

teR, 0<fO<m, 0<o¢<2m. (6.2)

The range of r is slightly more subtle. At r = 2GnyM something funky is happening since
the prefactor of dt? and dr? vanish and diverge respectively. For the moment we will keep
2GNM < r < oo and we are then safe. This value of the radial coordinate is called the
Schwarzschild radius and will play a prominent role when we view the Schwarzschild solution
as a black hole in section 6.3.

The depends on a single parameter M which is interpreted as the mass of the object.
Indeed using our results from problem sheet 1(or the Linearised equations and their Newtonian
limit we will see later in GR2)

goo = —(1 +2@), (6.3)

233chwarzschild died in 1916 having left military service due to his illness.

24There are singularities at §# = 0,7 however these are just the expected singularities from considering a
two-sphere and attempting to use just one coordinate patch, as we studied in example 4.1. We should be
careful about this but it is not a problem since we learnt earlier that this problem could be removed.
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with ® the Newtonian potential. For the Schwarzschild metric we have

M
oM (6.4)

r

which is the Newtonian potential for a point mass M at the origin.

We can compute the mass of the black hole by using Komar integrals, these will be
explained in the GR2 course, but we will give a flavour of it here. The Schwarzschild
solution admits a time-like Killing vector K = 0;: a Killing vector satisfies Lxg = 0
which is equivalent to V(,K,) = 0. To compute the Komar integral we must construct
the dual one-form to the time-like Killing vector,

2GM
K= goodt = — (1 - ¢ >dt. (6.5)
r
The Komar integral is given by
M ! / *d K (6.6)
Komar — 87TGN o ) .

where the S? is any sphere with a radius larger than the horizon at r = 2GyM where
the Killing vector has vanishing norm. Then

2GNM

K = -3

drAdt = *dK = —2GyMsin0df A dé. (6.7)

and therefore
Myxomar = M . (6.8)

Note that d x dK = 0 and therefore it obeys an equation similar to Mazwell’s equations
d*F = 0. These are Mazwell’s equations in the absence of any current and therefore one
would expect the electric charge to vanish. Yet this electric charge is precisely the mass
and this is mon-zero. For the solution the mass is localised at the origin r = 0 where the

field strength diverges. This allows for a mon-trivial value.

We may thus expect that this describes something physical only when M > 0. For M = 0

we find Minkowski space while for M < 0 the metric becomes unphysical.

6.1.1 Birkhoff’s theorem

The Schwarzschild solution turns out the be the unique spherically symmetric asymptotically
flat solution to the vacuum Einstein solutions, this fact is known as Birkhoff’s theorem. This
means that the Schwarzschild solution does not just describe the spacetime outside of a black
hole but outside any non-rotating, spherically symmetric object such as a star or planet.
We will sketch the proof of this fact since it allows us to get a feel for solving the Einstein

equations.
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The spherical symmetry of the metric means that it has an SO(3) isometry. If you hold
up a round sphere and rotate it it looks the same no matter which way you rotate it. If
instead you did the same with a golf ball, which has dimples then this rotational symmetry is
broken. The distinction between these two situations should be captured by the metric. The
metric on a round two-sphere will look the same wherever you sit on the sphere whereas the
metric on the golf ball will depend on where you are.

To define this mathematically we need to use the concept of a flow that we introduce a
number of lectures ago. A flow on a manifold M is a one-parameter family of diffeomorphisms
o : M — M, and may be associated to a vector field K € X' (M) at each point along the flow
which is tangent to the flow da ()

x
Kt = T (6.9)

The flow is said to be an isometry if the metric looks the same at each point along a given

flow line, mathematically this means that an isometry satisfies
Lkg=0, & V,K,+V,K,=0. (6.10)

A vector satisfying this equation is known as a Killing vector field. Sometimes it is simple to
see that a vector generates an isometry, particularly when it is an ignorable coordinate, i.e.
the metric does not depend on the coordinate. Sometimes, however, the Killing vectors are
not so obvious.

There is a group structure underlying the symmetries, well technically a Lie algebra

structure. This follows since the Lie derivative satisfies
LxLy —LyLx = ﬁ[ny] . (6.11)

Killing vectors form a Lie algebra of the isometry group of the manifold. (See problem sheet
3 where we consider the Killing vectors on the round three-sphere).

One can then prove that the SO(3) isometry implies that the metric must take the form
ds? = grr (7, p)AT? + 297, (7, p)ATdp + gpp (7, p)dp” + 12 (7, p)ds?(5?), (6.12)

where

ds?(S?) = d#? + sin” fd¢? (6.13)

is the metric on a round two-sphere. The SO(3) isometry then acts on the two-sphere and

leaves 7 and p untouched. This is called a foliation of the space by S? leaves.
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The size of the sphere is determined by (7, p) and it is convenient to redefine the coordi-
nates such that r is a coordinate, we can then eliminate the p coordinate in favour of r. The

metric becomes
ds® = grr (T, 7’)d7'2 + 2g.p (7, r)dTdr + gpr (T, r)dr2 + 7’2d32(52) . (6.14)

The only subtlety we could encounter in doing this change of coordinates is if it is not possible
to exchange p with r, for example r could have been independent of p. We can rule out these
cases by imposing that asymptotically the spacetime looks like Minkowski space.

The logic now is to remove the cross term d7dr by using a change of coordinates. If we
define £(7,7) then

df = —dr + —dr (6.15)

and therefore, we can pick a change of coordinates such that we can remove the cross term.

The resultant metric is

ds? = —e22(r) g2 4 260 gy 4 r’ds*(S?). (6.16)

We have included a minus sign since we are looking for a Lorentzian metric and then we can
introduce the exponential terms which are manifestly positive definite. This is the simplest
form of the metric that we can achieve just through coordinate transformations and we now
need to plug this into Einstein’s equations. Observe that we have used symmetries to restrict
the form of the metric and then used diffeomorphisms to write the metric in the simplest
form possible. This makes solving Einstein’s equations simpler, the correct ansatz and choice
of coordinates simplifies

We can compute the Christoffel symbols for the metric, the non-trivial ones are®®

I = 0, I’ = o, I, = e 72093,
I =20, I =0;8, I, =0.8,
1 1
Fere = —, FTGG = —'I"e_2ﬁ, F¢T¢ = —,
r r
0
.., = — —2p I‘e = —sinf 0 F¢ = cos . 6.17
b6 re , o6 sin 6 cos 0, 00 = S ( )

25You should see that you can do this. There is also a mathematica file on the course webpage where this
has been computed for you to check.
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It follows that the non-vanishing components of the Riemann tensor are
R = o720 (0281 (98)? — 000;8) + (9,00,8 — 02— (9,0)?)
R
t
Rogis =~
Rlg,g = —re 208,

Rt¢r¢ = —re” 2% gin? 00;5 ,

t  __..—28
gig = —Te ora,

re” 2% sin? 09,

(6.18)

Ry = re~ 2% sin® 09,3,
R0¢9¢ = (1 — 6_2'8) sin2 0.

From the Riemann tensor we can construct the Ricci tensor finding the non-trivial components
2
Ry = (028 + (948)" — 050058 + €2~ (%0 + (9,0)? = 00,8 + ~0,0)

2
Ry = — (a,%a + (8,0)% — 8,00, — ;&ﬂ) + 2620 (at?ﬁ + (9:8)% — agaafﬁ)
R — g(’)ﬁ (6.19)
tr r tHo
Rpg = e~ 28 (r(&«ﬁ — 8roz) — 1) +1,
Ryp = Rpgsin® 0.
Our job is to now solve Einstein’s equations in the vacuum, R,, = 0. There is an obvious

component to consider first, 7, which implies
0;8=0. (6.20)

If we now take the ¢ derivative of Ry and use the above condition we find

0;0,a0 =0, (6.21)
and therefore we have
B=p(r), a=fr)+gd). (6.22)
The first term in the metric is then
o2/ (r)+29(1) 72 ’ (6.23)
and by a redefinition of ¢ we can set
e9Ddf = dt, (6.24)
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and we end up with the metric
ds? = —e2/ M de? + 2P ar? 4 r2ds2(5?). (6.25)

We need to solve the remaining Einstein equations. Note that the metric is now independent
of t, this naturally comes out of the Einstein equations, we did not impose this! This implies
that any spherically symmetric vacuum metric possesses a timelike Killing vector. A metric
with this property is called stationary, in fact the Schwarzschild metric is also static we will
come back to this shortly.

We can now remove all ¢ derivatives and exchange o — f in the Ricci tensor components
and where we se  replace with just . We are free to add components and so we take the
combination

0= 0 Ry 4 Ryy = 2 (0,5(r) +0,5) (6.26)

We then have
f(r) = —=p(r) + const (6.27)

but we may rescale the time coordinate to set the constant to 0. Plugging this into Rgg we
find

e2f(r)(2rﬁrf(r) +1)=1 & o (Tle(T)) =1, (6.28)
which has solution
Q20— IS (6.29)
r

with rg an undetermined constant which we will set to be rg = 2Gny M. There is no remaining
freedom except to set rg to a certain value so the remaining components must vanish, and it
turns out that they do, so we have solved Einstein’s equations and derived the Schwarzschild

solution.
Stationary vs Static There are two different meanings to time independence of a metric.

Definition 44 Stationary A spacetime is stationary if it admits an everywhere timelike

Killing vector field K. We typically normalise it so that asymptotically K*> — —1.

Definition 45 A spacetime is static if, in addition to being stationary, it is invariant under
t — —t, where t is the coordinate along the integral curves of K. This rules out dtdx cross

terms in the metric with x any other coordinate except t.

We see that the Schwarzschild solution is static (and therefore also stationary).
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Theorem 6 Birkhoff’s theorem
The Schwarzschild solution is the unique spherically symmetric, asymptotically flat solu-

tion to Einstein’s equations in a vacuum.

The beauty of Birkhoft’s theorem lies in the fact that it must describe the spacetime around
any spherically symmetric object: black holes, stars, footballs. Moreover since we did not as-
sume time independence it equally applies to the spacetime around a collapsing star, provided

the collapse is spherically symmetric.

6.2 Geodesics of Schwarzschild

We now want to consider the geodesics of the Schwarzschild metric. We have computed
the Christoffel symbols above and could just substitute this into the geodesic equation (4.87)
however if one did not already have the Christoffel symbols this is not necessarily the quickest

method. Instead one should use the Euler-Lagrange equations for the Lagrangian

L= \/—guiri’, (6.30)

and parametrise with an affine parameter. With the choice of an affine parameter we can
then compute the Euler-Lagrange equations of £2? instead and obtain the same equations of

motion. We take

r_ dzt dx¥
~ TN A (6.31)
2GN M\ . 2GNM\ ! : : '
:—(1—N>t2+<1— N ) 2 4+ 12602 + 12 sin 092,
r r
with e = g—/'\. Since we are using an affine parameter this is equal to a constant € which we

may take to be —1 for time-like geodesics, 0 for null and 1 for space-like geodesics.
Before embarking on a brute force approach we should take a step back to see how
we can simplify the problem. The answer is to study the conserved quantities. Ignorable
coordinates, ones which do not appear explicitly, give rise to conserved quantities since from
the Euler-Lagrange equations®® we find
dL d dC
dor =0T dndir

26More precisely Killing vectors define conserved quantities for geodesics. Let K be a Killing vector then,
aL

FrIe
that the conserved quantities are simply p; and pg.

(6.32)

K, p" is conserved along a geodesic with p, = Here the Killing vectors are 0; and 0y and so we obtain
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The action has two such ignorable coordinates ¢ and ¢: giving

d .
2 = dj’; = 2r?sin?6¢,
(6.33)
o= —2(1 _ 2GNM>£.
dt r

Of course these should be identified with the angular momentum and energy respectively.

Next consider the equation for €, we find

d

5(7"29.) = 72 sinf cos 09> . (6.34)

Recall that in computing the motion in Newtonian gravity we noted that if we started the

particle at 0 = 5 with 6 = 0 then it remained in the plane, the same is true here and so we

can without loss of generality set 6 = 7.

We can now plug this into (6.31) and equate with our constant parameter € giving

2GyM\ ! 26Ny M\ !
€= — (1 _ 26N ) E? 4+ (1 _ 2w ) 2 422, (6.35)
r r
Rearranging we have
1'2+V()—E—2 (6.36)
5" efi(r) = <= .
with ) )
e eGyNM l *GyM
Vegt(r) = 5 + " 5,2 3 (6.37)

We should contrast this with the equivalent Newtonian expression in (2.69) for a massive

particle which was
GnM 12

We see that General relativity leads to additional corrections to the potential. The first

term is simply a constant shift and so does not play much of a role since we can absorb it
into a redefinition of the energy, the r—3 term is completely new and changes the Newtonian
potential at small distances. Note that the effective potential vanishes at r = 2Gny M which
is the Schwarzschild radius.

Let us reinstate the speed of light in the potential, we have

662 GGNM l2 _ Z2GNM

Vie(r) — €€ e 6.39
eit(r) 2 + r 272 r3c? (6.39)
then the equation for 7 is

1'2+V() LE? (6.40)

- r)=—-—. )

2 of 2 ¢
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We now want to analyse the different forms of trajectories that are possible. In figure 16
we have plotted the potential for various values of [, with fixed mass M, you should compare

the left-hand side one with the plot in figure 2 for the Newtonian potential.

Potential for goedesics of Massive particles v Potential for goedesics of Massless particles
eff(r

Ver (1) 20

4 6 8 10 12 14
' -05
-0.5 -1.0-
(a) Plots of the potential for massive (b) Plots of the potential for massless particles, € =
particles, ¢ = —1 and for GyM = 1. 0 and for Gy M = 1. The different plots correspond
The different plots correspond to in- to increasing [. Note the maximum at 3 = 3Gy M
creasing . in the massless case for all [.

Figure 16: Plots of the potential for massive and massless particles. Note that the plots

tends to —§ as 7 — oo. Moreover the potentials both vanish at 2 = 2GyM which is the

Schwarzschild radius. This should be compared to the corresponding Newtonian plot in figure
2.

Circular orbits will be at points where the potential has a turning point. Then we are
stuck in a circular orbit, which is stable if it corresponds to a minimum of the potential and

unstable if it corresponds to a maximum. Differentiating the potential we have
1
() = — (3Gw2M — PPr - Gy Mer?) (6.41)

which potentially has two zeroes at

P £ V1P 4+ 12GNIPMe

= 6.42
Tc 2GNMe ) ( )

depending on the range of the parameters, for € # 0 and
re =3GNM, (6.43)

for e = 0.
For the massless photon the orbit is at a maximum and is therefore unstable. A photon

can orbit in a circular orbit forever around the black hole, but any perturbation will send it
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flying off to either » = 0 or r = oco. This is known as the photon sphere. The focussing effects
mean that much of the light emitted from an accretion disc around a non-rotating black hole
emerges from the photon sphere. In practice, it seems likely that the photographs by the
Event Horizon Telescope do not have the required resolution to see this yet.

For massive particles there are different regimes depending on the angular momentum.
For large [ there will be two circular orbits, one stable and one unstable. In the [ — oo regime

they are at

re = (3G MM, G]lVQM) . (6.44)

The stable circular orbit gets further away while the unstable orbit approaches 3Gy M where
the photon sphere is located. As we decrease [ the two orbits come together and coincide

when the discriminant of the quadratic in (6.41) vanishes. This is at

I =V12Gy M, (6.45)
which gives
re = 6GNM . (6.46)

For smaller [ there are no circular orbits and so 6GnM is the smallest possible radius of a

stable circular orbit of the Schwarzschild metric. We have derived that:

The Schwarzschild solution possesses stable circular orbits for massive test masses for
r > 6G M and unstable circular orbits for 3GyM < r < 6GyM.
For massless particles/light there are unstable circular orbits at r. = 3Gy M.

We should comment that these are the motions of geodesics. For an accelerating observer
such as a rocket ship, there is nothing stopping them from dipping below r = 3Gy M and
then reemerging, so long as they stay away from r = 2G M.

Most experimental tests of general relativity involve the motion of test particles in the
solar system. More recently, with the advancements in technology, using gravitational waves
to test general relativity has also become possible. We will concentrate on three particular

tests: the precession of perihelia, the bending of light and gravitational red-shift.

6.2.1 Perihelion precession

We saw when we consider the orbits in Newtonian gravity that the non-circular orbits were
closed ellipses. Observation of the orbit of Mercury showed that the closed elliptic orbits
of Newtonian gravity were not realised, instead the orbit precessed. A non-trivial check of

General Relativity is then to show that the orbits of the planets precess. We can approximate

123



the metric of the sun to be the Schwarzschild metric and take the planet to follow the geodesic
of a massive particle.

The strategy is to describe the evolution of the radial coordinate r as a function of ¢. If
the orbit is a perfect ellipse r(¢) should be periodic with period 27, then the perihelion occurs
at the same point every orbit. Instead, for a non-closed ellipse the perihelion is shifted after
every orbit. We will see that General Relativity gives a slight modification of the Newtonian
result such that the orbit precesses.

First consider the radial equation of motion for a massive particle, (6.36), setting e = —1.

To get an equation for % we can use the chain rule and multiply the equation by

do 24
=¥ - 4
< ; A) - (6.47)
yielding
dr\? 1 2GyM 3 9 E?pt
<d¢> ﬁ — l2 re 4+ r° — 2GNM'I” = l2 (648)
Define the new variable )
l
p— .4
v GyMr’ (6.49)

which gives rise to the Newtonian circular orbit when # = 1. The equation of motion becomes

dz\? 12 263, M?z® B2
<$> - N (6.50)
d¢ Gy M l Gy M
Next differentiate with respect to ¢ to obtain
d’z 3G3, M?%z?

In the Newtonian calculation the term on the right-hand-side would be absent and we could
solve for x exactly. Here we will treat this as a perturbation around the Newtonian result.

We expand z into a Newtonian solution plus a small deviation

x =9+ 21, (6.52)
where the zeroth order part satisfies
(ig]—1+x0:0. (6.53)
The equation for the first order part becomes
(3;3321 + 1 = ?’G?lvfﬁxg. (6.54)
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A solution to the zeroth order equation is (see (2.75))

xg=1+ecosd, (6.55)

which recall describes a perfect ellipse with eccentricity e, e =1 — Z—i with a the semi-major

axis, the distance from the centre to the farthest point on the ellipse and the semi-minor axis
b the distance from the centre to the closest point. Plugging in the Newtonian solution into
the first order equation of motion we find
d?z, 3G3, M? 9
—— 4121 = ———(1+4+ecos . 6.56
A solution is given by

1
2 1+ —) + epsing — 662 cos2¢| . (6.57)

| 3G3 M2 {( &
Il = ——— 5

The first term is just a constant displacement while the third oscillates around 0. The
important effect is contained within the second term which accumulates over successive orbits.

Combining only this term with the zeroth-order solution we have
3G3, M*>
x:1+ecos¢+fg72e¢sin¢. (6.58)

We should emphasise that this is not a full solution, it is an approximation but it encapsulates

the part we are interested in. We may write

x =1+ ecos <(1 - a)¢> , (6.59)
where 5 o
3Gy M

= ?72 (6.60)

where one should view this as a series expansion around « = 0. It follows that during each

orbit the perihelion advances by an angle

2 M2
A¢p =2ra = % . (6.61)

We may replace the angular momentum in favour of the eccentricity by looking at the New-

tonian solution. An ordinary ellipse satisfies

(1—e€?)a
=— .62
" 1+ecosg’ (6.62)

with a the semi-major axis. This leads us to identify
> ~GyM(1 - ¢e*)a, (6.63)
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for the Newtonian orbit. Plugging this in and restoring the speed of light we find

67TGNM

M= i e

(6.64)

Historically the precession of mercury was the first test of GR. The apparent discrepancy
between observation and Newtonian gravity was known long before the advent of GR, and
a number of solutions had been proposed including additional planets. For the motion of

Mercury around the sun we have

Gy M

- =148 x 10°m,
C
a=5.79x10"m, (6.65)
e = 0.2056 .
This gives
AdMercury = 5.01 x 10~ radians /orbit = 0.103” /orbit (6.66)

with 7 denoting arcseconds. Mercury orbits once every 88 days and therefore
AdMercury = 43.0” /century . (6.67)

From our computation we conclude that the major axis of Mercury’s orbit precesses at a
rate of 43.0 arcseconds every 100 years. The observed value is 5601 arcseconds/100 years.
Much of that is due to the precession of equinoxes in our geocentric coordinate system: 5025
arcseconds/100 years. The gravitational perturbations of the other planets contributes an
additional 532 arcseconds/100 years leaving a 43 arcseconds/100 years to be explained by
GR which is does quite well.

6.2.2 Bending of light

We can now extend these results for null geodesics. We have seen that there is an unstable
circular orbit for light. What about other orbits? The fate of other light rays depends on the
relative value of their energy F to their angular momentum /. The maximum value of the

potential is
l2
54G?VM 27

and therefore the physics depends on how this compares with the right-hand side of (6.36).

Vil (74) = (6.68)

There are two possibilities we need to consider

o [/ < The energy of the light is lower than the angular momentum barrier. This

!
V2TGNM'
means that light emitted from r < r, cannot escape to infinity; it will orbit the star before
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falling back towards the origin. For light coming from infinity it will not fall into the star
but will instead bounce off the angular momentum barrier and return to infinity: the light

will be scattered.

o > The energy of light is greater than the angular momentum barrier. Light

l
V2TGNM®
can be emitted from r < r, and escape to infinity (this is only true for rg < r). Meanwhile

light coming from infinity is captured by the star/black hole.

To see this more clearly let us once again use the inverse parameter v = % The equation

of motion becomes

du 2 9 E?
(%) +u?(1 - 26N Mu) = . (6.69)
Differentiating again we find
d?u 9

We may once again work perturbatively. At zeroth order we can ignore the Gy M term on

the right-hand-side. Then to leading order we have

d?u 1 .

d?2—|—u:0, = uzgsm(b, (6.71)
for b a constant. Reinstating » we have rsin¢ = b: which is the equation of a horizontal
straight line, a distance b above the origin, see 17. The distance b is known as the impact

parameter.

Figure 17: Light bending in the Schwarzschild metric. The dashed line at the top is the
constant line rsin ¢ = b. The curved line is the geodesic.
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With the zeroth order solution we can now solve (6.70) in an expansion around G%M =p.
We have

u=ug+ Pfu + ... (6.72)
At first order we need to solve
d?uy 3sin?¢  3(1 — cos 2¢)
The general solution is
1
Uy :Acos¢+Bsin¢+%(3+c052¢), (6.74)

where the first two parts are the solutions of the homogeneous part and A, B two integration
constants. We should choose them so that the initial trajectory at ¢ = 7w agrees with the
straight line ug. For this to hold we must take A = % and B = 0 so that uy — 0 as ¢ — 7.
To leading order in 8 the solution is

GNM
2b2

1
u = Esind)—l— (3+4cos¢ + cos29). (6.75)

What angle does the particle escape to r = oo < u = 07 Before the correction this was at
¢ = 0, within our perturbative approach we can approximate sin ¢ ~ ¢ and cos ¢ ~ 1 to find
that the particle escapes at
4Gy M
o~

This means that the light is bent by gravity, this bending of light is known as gravitational

_ (6.76)

lensing.

For the sun, GNC Mo~ 1.48 km. If the light rays just graze the surface of the sun, then

the impact parameter is the radius of the sun Rs ~ 7 x 10° km. This gives a scattering
angle of ¢ ~ 8.6 x 107° radians or ¢ ~ 1.8”. The Newtonian prediction gives only half of this
contribution.

There is a difficulty in testing this prediction since things behind the sun are rarely visible.
By sheer coincide, the size of the moon in the sky is about the same size of the Sun which
leads to total solar eclipses. This means that during a solar eclipse the light from the sun is
blocked allowing for the measurement of stars whose light passes nearby the Sun. This can
then be compared with the positions of these stars 6 months later when the Sun is behind
the Earth and so the light from the star sources is not lensed by the Sun.

The first measurement was carried out in 1919 by two expeditions lead by Arthur Ed-

dington and Frank Watson Dyson (we will see Eddington’s name again shortly).?” Since then

2"This result was considered spectacular news and made the front page of most major newspapers.
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our evidence of the bending of light is more impressive. Clusters of galaxies have been seen
to distort the light from a background source often revealing a distinct ring-like pattern of

multiple copies of the light source. See figure 18.

QUASAR

ND GALAXY

FO“EGRO?QU;«SAR |MAGES

WITH FOU

Figure 18: A diagram of light lensing picked up by the Hubble telescope. Notice that there
are four copies of the distant quasar in the picture obtained by Hubble. Image credited to
NASA, ESA and STScl.

6.2.3 Gravitational red shift

We have seen two tests of general relativity, next we will now look at time dilation due to
strong gravitational fields.

Let us consider an observer with four velocity U* who is stationary in Schwarzschild
coordinates, i.e. U’ = 0.?8 The four-velocity is normalised so that U, U* = 1, which for our

stationary observer in a Schwarzschild background implies

2G M\ /2
Ul = <1 bl > : (6.77)
T
Such an observer measures the frequency of a photon following a null geodesic x#()\) to be
dz”
- _ (Dl
w 9 U o (6.78)

We have

T d\

—1/2
:<1 - 2GNM> 5

r

( ZGNM> 12 4
w = 1 —_ —_—
(6.79)

28We could allow for the observer to be moving, however the difference is just to superimpose the usual
Doppler shift on top of the gravitational effect and therefore we consider the simpler example.
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where F was defined to be the conserved quantity associated to time translations when we
worked out the geodesics. Since E is conserved it follows that w will have different values
when measured at different radial distances. For a photon emitted at r; and an observer at

r9, the observed frequencies will be related by

w9 o 1—2GNM/T’1
wi \[1=2GyM/ry (6.80)

This is the exact result for the frequency shift, in the limit r > 2Gxy M we have

ﬂ —1— GNM + GNM
w1 1 T2 (6.81)

=1+ <I>(7“1) — <I>(T‘2) ,

with & = —GnM/r the Newtonian potential.

We see that the frequency goes down as ® increases which happens as we climb out of
a gravitational field, leading to a red-shift. On the other hand photons which fall towards
the gravitating body are blue shifted. Gravitational red-shift was first detected in 1960 by
Pound and Rebka using gamma rays travelling a distance of 72-feet (about 22m) which was
the height of the physics building at Harvard. Increasingly precise tests have found excellent
agreement with GR. There is a cosmological counterpart to this, where light is red-shifted in

an expanding universe.

Time delay Since the temporal component of the metric is
goo(w) = 1+ 20(x) (6.52)

we see that there is a connection between time and gravity. Let us once again use the
Schwarzschild solution. An observer sitting at a fixed distance r from the origin will measure

a time interval

2G N M
dr? = —ggodt? = (1 - Gf)dt?. (6.83)

For an asymptotic observer at r — oo who measures a time ¢, an observer at r will measure

the time T’
2G N M
T(r) =ty/1 - =22 (6.84)
T

It follows that time goes slower in the presence of a massive gravitating object. Notice that

at r = rg that time seems to stop for the observer at rg. We will come back to this later.
We can make this more quantitive by considering two observers: Alice and Bob. Bob

has gone up in a hot air balloon while Alice is on the surface of the earth at r4. Bob is at a
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distance rg = r4 + Ar. The time measured by Bob is

TB_t\/l_(2GNM) Nt\/l_QGNM+2GNMAr

ra+ Ar T4 ri

~ty[1— 2GNM<1+GNA24AT> :TA<1+GN]\24AT).
TA TA TA

A double expansion has been utilised where we assume Ar < r4 and 2(%M < 1. If the hot
air balloon flies a distance Ar = 1000m above Alice then taking the radius of the Earth to

(6.85)

be 74 ~ 6000km the difference in times is about 10~'? and therefore over the whole day Bob
ages by an extra 107!® seconds or so. Clearly this is a small amount, in the vicinity of a black
hole this can be more pronounced. Recall that the smallest stable orbit was at » = 3Gy M
and such a person experiences time at a rate of T = 371/2¢ ~ 0.6t compared to an asymptotic
observer at r — co. For more dramatic results one would need to fly closer to the horizon
and then return to asymptotic infinity.

This also gives a different perspective on the gravitational redshift. Bob doesn’t like
Alice and wants to ruin her day so he hovers above Alice and chucks peanuts at her. He
throws peanuts at time intervals ATp. Alice, wise to Bob’s antics, opens up an umbrella.

The peanuts hit the umbrella at time intervals AT4 where as above

1+ 2(1)(T‘A)

ALa = AT5\ [ 155 ()

~ (1 +B(ry) — @(TB))ATB. (6.86)

We have that 74 < rp and therefore ®(ry) < ®(rp) < 0 and hence ATy < ATp. Alice
receives the peanuts at a higher frequency than Bob threw them.

Having seen the peanuts hitting the umbrella Bob decides to instead shine a light down
at Alice with a frequency wp ~ ATy 1 Alice will then receive the light at a frequency wa
where

o (1 FD(rg) — @(rB))_le : (6.87)

This is a higher frequency wa > wp and therefore a shorter wave-length. The light is therefore
blue-shifted. In contrast if Alice retaliates and shines a light up to Bob then the frequency
decreases and the light is redshifted.

6.3 Schwarzschild solution as a black hole

We have now studied some geodesics for the Schwarzschild solution and some phenomena.
Each time we have carefully avoided the Schwarzschild radius rg = 2G y M and also r = 0. At

both of these points something funky happens with the metric, at least one of the components
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of the metric diverges or vanishes. The interpretation of the singularities is different for the
two cases. The divergence at r = 0 is a genuine singularity. General relativity breaks down
here and we need a theory of quantum gravity. GR predicts its own death! In contrast the
divergence at r = 2Gny M is a result of our choice of coordinates. This surface is referred to as
the event horizon or simply the horizon of the black hole. Many of the surprising properties
of a black hole happen here.

There is a simple way to check whether a divergence is due to a singularity or a poor choice
of coordinates. We can build scalar quantities, these are then independent of coordinates,
if they diverge in one coordinate system they diverge in all and the spacetime is sick at
this point. One the other hand if it does not diverge we cannot say much, one would have to
consider all possible scalar quantities to concretely say it is just a coordinate singularity. Since
the Einstein equations in a vacuum set I, = 0 it follows that the simplest scalar quantities
one can construct R and R, R both vanish. The next simplest is the Kretschmann scalar
RMPI R, p0. For the Schwarzschild metric we find
48G3, M?

uvpo _
R Rypg = —1

(6.88)

There is no pathology at r = 2Gy M while there is at r = 0 where it diverges.

One way to understand the geometry of spacetime is to explore its causal structure as
defined by light cones. We therefore consider radial null curves, i.e. those with constant 6, ¢
and ds? = 0, such that they satisfy

-1
dsQ—O——<1—2G]:M)dt2+<1—2G]:M) dr? (6.89)

which gives

dt ( QGNM> 1_ (6.90)
This measures the slope of the light cones on a spacetime diagram of the t-r plane. For
large r the slope is 1 as it would be for flat spacetime. On the other hand as we approach
r =2GNM we get % — 400 and the light cones close up, see figure 19. Thus a light ray
which approaches r = 2G yM never seems to get there, at least in this coordinate system.
This apparent inability to get to r = 2Gny M is actually an illusion and an artefact of a bad
choice of coordinates. An in-falling light ray or massive particle has no trouble reaching this
radius. On the other hand an observer far away would never be able to tell. If we all hovered
outside a black hole and one of your class mates jumped in the black hole sending back signals

the whole way down we would simply see the signals reach us less frequently, see figure 20.
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AA A 4

2G M

Figure 19: In Schwarzschild coordinates the light cones appear to close up as we approach
the horizon. We will see that this is not quite correct.

t
Z S Aty > Ar,

.-

2G M

Figure 20: A beacon freely falling into a black hole emits signals at intervals of proper time
A7y. An observer at fixed r receives these signals at a successively longer time intervals A7y.

The fact that we never see them reach r = 2GnyM is a meaningful statement but the

fact that their trajectory in the ¢-r plane never reaches there is not: it is highly dependent

on our coordinate system. We want to change coordinates to some that are better behaved
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at r = rg. Note that we can solve (6.90) by introducing the tortoise coordinate

7’—2GNM
=71+ 2GyMlog (L= 2ENTE ) 91
ry =17+ 2GN og( SGNM ) (6.91)
then
t = £r, + constant , (6.92)

and we see that this is well adapted to null radial geodesics. The plus sign corresponds to
out-going geodesics and the negative to in-going geodesics??. Next we introduce a pair of null

coordinates further adapted to the null geodesics:
v=1+7,, Uu=1t—r1r,. (6.93)

In these coordinates the null radial geodesics are simply v = const or v = const. We can
write the metric in these new coordinates. First consider the metric in (v, ) coordinates and

then we will study (u,r) coordinates before biting the bullet and using (v,u) coordinates.

Ingoing Eddington—Finkelstein coordinates Eliminating ¢ via t = v — r.(r) we find

2GNM
ds? = — (1 - 2N )dv2 + 2dvdr + r2ds?(S?) . (6.94)
r

This is the Schwarzschild solution in ingoing Eddington—Finkelstein coordinates. Even though
the metric coefficient g, vanishes at r = 2G5 M there is no real degeneracy. The determinant

of the metric is

{1-%) 10 0

det g = det 1 00 0 = —rtsin? 6. (6.95)
0 0 r? 0
0 0 0 r2sin%0

The cross terms stops the metric from being degenerate at the horizon. The metric is still
degenerate at r = 0 and § = 0, 7 however the latter are just the usual pole problems of the
52 and nothing to worry about. This is the benefit of the Eddington-Finkelstein coordinates,
the radial coordinate can be extended beyond the horizon.

To build further intuition we can look at the behaviour of light rays. We saw that the

null radial geodesics were given by (6.92). The outgoing geodesics are

u=1t—r, = const. (6.96)

2°The quick way to see this is to note that as » — oo we have 7. — oo and therefore we need the plus sign
for out-going geodesics so that the radial direction increases with time.
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Eliminating ¢ in favour of v we have that the outgoing geodesics satisfy v = 27, + const. The
solutions of this equation have a different behaviour depending on whether they are inside
the horizon or outside. For r > 2G M we can use the original definition of r, in (6.91) to

get
r— QGNM

2GNM

The Log term goes bad when r < 2G M, however we can simply modify the coordinate to

v =2r+4GNM log ( > + const . (6.97)

take the norm of the argument of the log, so that

r— ZGNM

re =1+ 2GNyM log 5G oM
N

(6.98)

This means that r, is multi-valued. Outside the horizon it takes values r, € (—o0, 00) while
inside the horizon it takes values r. € (—00,0). The singularity sits at r, = 0. Outgoing
geodesics inside the horizon obey

QGNM -Tr

v:2r+4GNM10g< Y
N

> + const . (6.99)

Finally note that r = 2Gny M is itself a null geodesic. This information can be captured in
a Finkelstein diagram. It is designed so that ingoing null rays travel at 45°. This is simple
to do if we label the coordinates of the diagram by t and r,, however since 7, is not single

valued we use r instead. We define a new temporal coordinate ¢, by the requirement
v=t+r, =t,+r. (6.100)

Thus ingoing null rays travel at 45° in the (¢, r)-plane. See figure 21

The outgoing null geodesics that sit outside the horizon tend to infinity, whereas those
inside the horizon don’t actually go out, but rather go towards the singularity at » = 0. Each
hits the singularity at some finite t,. We can draw lightcones on the Finekstein diagram.
These are regions which are bounded by the in-going and out-going future pointing null
geodesics. Any massive particle must follow a timelike path and this must then sit within
these lightcones. We see that the lights cones get tipped as we get closer to the horizon,
and then once inside the horizon there is no way of getting back out. The causal structure
of spacetime prevents this. The term black hole really refers to this area inside the horizon
r < 2G M, any observer outside the horizon can never known what is happening inside the
black hole.

We can also see what happens if we watch someone fall into a black hole. The person

falls through the horizon without realising anything is wrong. However as they fall the light
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th=Vv—r

Figure 21: The Finkelstein diagram in in-going coordinates. The ingoing null geodesics are
in red while the outgoing are in blue. Inside the horizon the outgoing geodesics never go past
the horizon.

signals that come back to us take longer and longer to reach us. The actions of the in-falling
person become increasingly slowed as they approach the horizon. In this way we continue to
see the person forever, but we know nothing about their fate past the horizon. Since the light
returns to us from a deeper and deeper gravitational well it appears increasingly red-shifted

to us.

Out-going Eddington—Finkelstein coordinates We can also extend the exterior of the

Schwarzschild black hole by replacing the time coordinate with the null coordinate
U=1t—"7Tx. (6.101)

Surfaces of constant u correspond to outgoing radial null geodesics. After the change of

coordinates we have

2GNM
ds’=—(1- G du? — 2dudr + r2ds?(S?). 6.102
r
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This is the Schwarzschild solution in out-going Eddington—Finkelstein coordinates. The only
difference is in the sign of the cross term. This seemingly trivial modification changes the
interpretation drastically.

As before the metric is smooth at the horizon and we can continue the metric down to
the singularity at » = 0. However the region r < 2GnyM now describes a different part of
spacetime from the analogous region in ingoing Eddington—Finkelstein coordinates.

We again look at the ingoing and outgoing null radial geodesics. This time we pick
coordinates so that the outgoing geodesics travel at 45°. This means that we take r and

t« = u + 7 to be the axes.

r =2GyM

Figure 22: The Finkelstein diagram in out-going coordinates. The ingoing null geodesics
are in red while the outgoing are in blue. Inside the horizon the ingoing geodesics never go
past the horizon.

This time the ingoing null geodesics have the interesting property. Those which start
outside are unable to reach the singularity, instead they pile up at the horizon. Those that
start behind the horizon move towards the horizon, once again piling up there. What hap-

pens to massive particles that sit inside the horizon? Their trajectories must lie inside the
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future pointing light-cones. They cannot stay inside the horizon and the causal structure of
spacetime requires them to be ejected outside of the horizon. This is a white hole, an object
which expels matter. This is the time reversal of a black hole, indeed the difference is purely
a minus sign. Moreover if we flip white-hole upside down we get the black hole.

White holes are perfectly acceptable solutions of general relativity. Indeed they are
implied by the time reversal invariance of Einstein’s equations. However white holes are not
physically relevant since in contrast to a black hole they cannot be formed by collapsing

matter.

6.3.1 Kruskal spacetime

We have seen that we can extend the r € (2GNyM, o) coordinate in two ways so that we
gain the region r € (0,2G y M] which corresponds to two different parts of spacetime. We can

write the Schwarzschild metric using both null (u,v)-coordinates, the metric is

2GNM
ds? = — <1 _ 2w >dudv + r2ds?(S?), (6.103)
T

where r is a function of u—v. In these coordinates the metric is again degenerate at r = 2G xy M
so we need to perform another change of coordinates. We can introduce the Kruskal-Szekeres

coordinates,

U:—exp<—4GZM>, V =exp (4G;M)’ (6.104)

which are both null coordinates. The Schwarzschild black hole in Schwarzschild coordinates
(that is the region outside the horizon of the black hole) are covered by U < 0 and V' > 0.

Outside the horizon these new coordinates satisfy

Ty 2GNM —r r
- _ = 1
UV = —exp (QGNM) Gy M P (ZGNM) : (6.105)
and similarly
U t
V= _exp<_ 2GNM>' (6.106)
The metric is then
32(GNM)3
ds? = _(;V)e 2GNM QUAV + r2ds?(S?), (6.107)

with r(U, V') defined by inverting (6.105). The original Schwarzschild metric covers just U < 0
and V > 0 however there is no obstruction to extending U,V € R. Nothing bad happens at
r = 2G y M, the metric is smooth and non-degenerate. The Kruskal spacetime is the maximal

extension of the Schwarzschild solution.
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The Kruskal Diagram To find the location of the horizon in the new coordinates we can

use equation (6.105). We see that this is at
r=2GyM = U=0orV=0. (6.108)

The horizon is not just one null surface but 2 which intersect at U = V = 0. On the other
hand the singularity is at
r=0 = UV=1. (6.109)

This hyperbola has two disconnected, one with U,V > 0 and the other with U,V < 0. The
former corresponds to the singularity of the black hole and the latter the singularity of the
white hole, see figure 23 We can define 7 = (U + V) and X = 3(V — U) as the vertical and

U %4

t = const

2M

Figure 23: The Kruskal diagram. The U and V axes have been rotated 45°. They are the
locations of the horizons at r = 2G M and the red lines are the singularities at » = 0. Lines
of constant r are in green and lines of constant ¢ are in blue.

horizontal lines respectively. Lines of constant r are given by UV =constant while lines of
constant t are U/V =constant.

We see that the singularity is spacelike. Once you pass through the horizon the singularity
lies in your future. You cannot avoid the singularity once you cross the horizon. Similarly
the singularity of the white hole lies in the past, one could think of this as the singularity of
the Big Bang.
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We can understand three quadrants of the four. The right quadrant is the exterior of the
black hole, the top quadrant is the black hole interior and the bottom quadrant is the interior
of the white hole. The left hand quadrant is in fact another copy of the black hole exterior,
it is just covered by U > 0 and V < 0. To see this write

U:+eXp<—4GzM), V = —exp (4G;M). (6.110)

Undoing all the coordinate transformations we see that this is precisely the metric of the

Schwarzschild solution again.

Our spacetime contains two asymptotically flat regions joined by a black hole. Note that
it is not possible for an observer to cross from one to the other, nor to send a signal from one
region to the other. The causal structure of spacetime forbids this.

One could ask what the spatial geometry that connects the two regions is. Fix the t =0
slice of Kruskal spacetime (U = V = 0). In our original Schwarzschild solution the spatial

geometry is

2GN M\ !
ds? = (1 - =N ) dr? + r2ds*(S?), (6.111)
r
which is valid for r > 2Gxy M. There is another copy of this that describes the geometry of
the left-hand side and we can glue these two together at r = 2G M, giving a worm-hole
like geometry. This is known as the FEinstein—Rosen bridge. Before getting excited about
travelling through the black hole you cannot travel through the worm-hole as the paths are

space-like not time-like.
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7 Cosmology

We have only considered one solution of Einstein’s equations so far in these lectures, we will
consider another which describes the evolution of the universe. The basic idea behind this
model is that the universe is pretty much the same everywhere. Since we inhabit an orbit
close, in cosmological terms, to a star we do not see the similarity between our situation
and the desolate cold of deep space and this assumption may seem somewhat crazy. This
assumption is applied to the very largest scales, where local variations in density are averaged
over. There are a number of observations which support this assumption. The most clear way
of seeing this is by looking at the Cosmic Background Radiation (CMB), see figure 24. The
microwave background radiation is not perfectly smooth but the deviations from regularity
are of the order 1071% or less. The radiation is consistent with that of a blackbody spectrum
radiated in all directions. The spectrum has been redshifted due to the expansion of the

universe and today the average temperature is 2.725K.

Figure 24: The anisotropies of the CMB as observed by Planck. It is a snapshot of the
oldest light in the universe, coming from when the universe was just 380000 years old. It
shows tiny temperature fluctuations that correspond to regions of slightly different densities
and it is these regions which were the seeds for the stars and galaxies we see today. (Credit
ESA for the picture).

7.1 FRW metric

We want to formalise this notion of the same everywhere in a more mathematical way. A
manifold may have the properties of being isotropic and/or homogeneous: these are the

necessary mathematical concepts which formalise our “same in every direction” comment.
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Homogeneous A spacetime is spatially homogeneous if there exist a one-parameter family
of space-like hypersurfaces ¥; foliating spacetime, such that for each ¢ and for any points

P, q € X there exists an isometry of the spacetime metric g,,, which takes p into q.

Isotropic A spacetime is isotropic at the point p if, for each pair of unit tangent vectors
X,Y € T,(M) there is an isometry which maps X to Y.

A spacetime can be isotropic around a point without being homogeneous. Conversely a
spacetime can be homogenous without being isotropic (R x S? for example). If, however, a
spacetime is isotropic around every point then it is homogeneous. Likewise if it is isotropic
around any point, and homogeneous then it is isotropic everywhere.

Since there is ample observational data for isotropy (recall this is data about a point) and
we are not so self-centred to think we are the centre of the universe we should assume that it
is also homogeneous. The utility of these assumptions relies on the fact that a space which is
both isotropic and homogeneous is maximally symmetric. (Think of isotropy as generalised
rotations and homogeneity as generalised translations). This implies that the space has the
maximal number of Killing vectors. Now spacetime itself should not be maximally symmetric,
we want it to evolve, instead we want spatial slices to be maximally symmetric.

For a maximally symmetric space with metric g,,, the Riemann tensor takes the form

Rm/po = H(gppguo - g,uogup> > (7'1)

where k is a normalised measure of the Ricci scalar

R

=T

(7.2)

which must be constant. These spaces are classified and for us the difference will arise in the
sign of k, either positive, negative or 0. We will consider our spacetime to be of the form
R x ¥ with metric

ds? = —dt? + a?(t)ds* (%), (7.3)

with ¢ a time-like coordinate and a(t) a function known as the scale factor. The metric used
here which is free of cross terms with dt¢ is known as co-mowving coordinates. An observer who
stays at fixed coordinate in X is said to be a comoving observer. Only a comoving observer
sees the universe as isotropic. On Earth we are not quite comoving due to our motion around
the sun.

We want a maximally symmetric 3d space, we can write the metric in the form

dr?

2 _
ds™(%) = 1 — kr?

+ 7%(d6* + sin® 0d¢?) (7.4)
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with k = {~1,0,+1}.3° The case k = —1 gives a constant negative curvature metric and is
sometimes called open. The k = 0 case corresponds to no curvature on Y and is sometimes
called flat, while the case k = +1 corresponds to positive curvature and is sometimes called
closed. Note that the k = 1 case is the only one which is compact (unless one makes certain
identifications of the coordinates). We then have the metric

dr?

2 2, 2
ds® = —dt* + a“(t) T 72

+72(d6? + sin? 9d?)| (7.5)

This is the Friedmann—Robertson—Walker metric (FRW).
To understand why a(t) is called a scale factor consider the distance between two ob-

servers, one at r = 0 and another at r = rg. Then the spatial distance between them is

o o dr
oo = | Vdr = a(t) [ —Es = a0 o). (7.6)

We see that the distance depends on the scale factor. We can look at the relative speed at

which distance is changing with respect to time, we have

dovon(t) = a(t) f(ro) = gdpmp(t) = H(t)dprop(t), (7.7)

with .

HO =50, 9)
the Hubble parameter. The value of the Hubble parameter at present is the Hubble constant
Hy. Current measurements give Hy = 70 + 10 km/sec/Mpc. (Mpc is a megaparsec, ~
3.09 x 10%2m). Cosmology took off as a subject when the relative motions of the galaxies was
first measured. We cannot actually determine the relative velocities of the galaxies now, i.e.
at the same cosmological time, since we only have information about them at the time that
the light left them. We are therefore not deducing a(t) as it is now but rather as it was in

the past. By looking at galaxies further away we can deduce the past history of a(t).

7.1.1 Cosmological red-shift

Cosmological red-shift has a different origin to the gravitational red-shift we saw previously,
however we can work it out in a similar manner. Assume that the light reaching us is on
purely radial geodesics. Then we have

e, a®®
0= —dt? + < dr, (7.9)

30Different values can be reduced to one of these three cases by redefining the radial coordinate 7.
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and therefore

dt dr
a0 = —m, (7.10)

where we picked the — sign for the incoming radial geodesic (paths of decreasing r). The

emission time t; and reception time ¢y of the photon satisfy

to 0 r
/t a‘(ii) _ _/ 1‘;{#2 = f(ro). (7.11)

Suppose that the next wave crest is emitted at time ¢; + dt; and received at tg + dtg. Then
since ¢ is the proper time of stationary observers dt; = w; Land 6ty = wy 1 with w; the
frequency as measured by the stationary observer at the corresponding value of r. Since the

second photon leaves from ry and arrives at » = 0 it must also satisfy

to+dto
| =t (7.12)

1+t a’(t)

If 6t; are small then

to+dto dt to to+dto t1+6ty dt o dJ¢ Sto 5ty
t1+0t, a(t) t1 to t1 a(t) t1 a(t) a(tg) a(tl)

:f(T0)+ ot oty (7‘13)

a(to) a(t1)’

Therefore we have
(St() (5t1 a(tl)

~

=  wo "~ w1 .
a(to)  a(t1) a(to)
The change in frequency is directly given by the ratio of the scale factors from when the

(7.14)

light was emitted and when the light was received. The standard cosmologists definition of

red-shift is through
_w o _ alto)
wo a(ty)

Red shift is a direct measure of the change in separation of galaxies during the time the

~1. (7.15)

photon has taken to reach us. If a galaxy is at redshift 5 for example then it is 6 times further
away than when the photon was emitted. Red shift does not give any direct information
about the distance of the source, nor does it need to be faithful indicator of distance. Sources
at different distances can have the same or similar red-shifts. If there was a period of time
where the scale factor was essentially constant then any photons emitted during this period
would appear to have the same red-shift. Similarly if there was a period of the scale factor
decreasing then increasing again then sources at very different distances could give the same

red-shift factor.
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7.2 The Friedmann equations

Note that the Christoffel symbol T',, = 0 and therefore the paths & =const are geodesics.
The role of a(t) is to change distances over time. There is a redundancy in the metric. If we
rescale the coordinates as a — Aa, r — X and k& — A2k we leave the metric invariant. Of
course now we are no longer fixed to take k € {—1,0,1}. The non-zero components of the

Ricci tensor are

Ry = -3 ;
a
ai + 2a% + 2k
Rrr = 1 7.9 >
1—kr
Ry = T2(ad +2a% + 2K),
Ryp = r?sin® 0(ai + 24> + 2k) . (7.16)

It follows that the Ricci scalar is then
R:a[d+ (a>2+ﬁ2]. (7.17)
a a a
The FRW metric is determined by the behaviour of a(t). We want to plug this into
Finstein’s equations to derive the so called Friedmann equations which relates the scale factor
to the energy-momentum of the universe. We choose to model the matter as a perfect fluid.
If a fluid is isotropic in one frame and leads to an isotropic metric then it must be that the

fluid is a rest in co-moving coordinates. The four-velocity is then

U* =(1,0,0,0), (7.18)
and the energy momentum tensor is
Ty = (p+p)UU, + 09 - (7.19)
With one index raised this becomes
T*, = diag(—p,p,p,p) , (7.20)
and the trace is
=T =-p+3p. (7.21)

Before plugging into Einstein’s equations it is useful to consider the conservation of the

energy momentum tensor, in particular for the first component. We have
0=V,T%

=—p- 3%(/} +p). (7.22)
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7.2.1 Equation of state

To make progress we choose an equation of state, that is a relationship between p and p. The

perfect fluids relevant to cosmology satisfy

p=wp, (7.23)
with w a constant independent of time. The conservation of energy becomes

p__ '
; 3(1+w)-. (7.24)

When w is constant this can be integrated to give
p o a 30Hw) (7.25)

For the vacuum to be stable3! we need to pick |w| < 1. The two most popular cosmological
fluids are known as matter and radiation.

Matter is any set of collision-less non-relativistic particles which have zero pressure py; =
0, i.e. w = 0. Examples include stars and galaxies for which the pressure is negligible. Matter
also goes by the name of dust and universe whose energy density is mostly due to matter are

known as matter-dominated universes. The energy density of matter falls off as
py o< a”?, (7.26)

which is just interpreted as the decrease in number density of particles as the universe expands.
For matter the energy density is dominated by the rest-energy which is proportional to the
number density.

Radiation may be used to describe actual electromagnetic radiation or massive particles
moving at relativistic velocities, close to the speed of light. The trace of the energy-momentum

tensor of the electromagnetic field vanishes and therefore this fixes

1 1
PR = 3PR - w=g3 (7.27)

In a radiation dominated universe the energy density falls off as
proxat. (7.28)

Thus the energy density of photons falls off slightly faster than that of matter. To understand

why observe that the number density of photons decreases in the same way as for the slow

31This is beyond the scope of the course but one can read about this in Carroll chapter 4.
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moving massive particles, but in addition they lose energy due to cosmological red-shift of
the previous section. When a is small radiation will dominate, while as a increases dust will
dominate.

Vacuum energy also takes the form of a perfect fluid, that is a cosmological constant. In

this case pp = —pa and the energy density is constant,
pa o< a’. (7.29)

Since the energy density of both matter and radiation decreases as the universe expands if
there is a non-zero vacuum energy it tends to dominate over the long term so long as the
universe does not start contracting. If the vacuum energy begins to dominate then we say
that the universe becomes vacuum-dominated. Examples of this are the maximal symmetric

spaces de Sitter and anti-de Sitter.

7.2.2 Deriving the Friedmann equations

We can now substitute this into the Einstein equations
1
R, — iRgW — Agu =87GNT ) . (7.30)

The prv = 00 components give

3a®> 3k
while the uv = ij components give
24

a2k
— (—) + 5 —A=—8Gnp. (7.32)

a

There is only one distinct condition from the spatial part because of our isotropic assumption.

From a linear combination of the two equations we find

a A 4nGyn
- = 3p). 7.33
=3 3 (p+ 3p) (7.33)

Note that the conservation of the energy momentum tensor,
) a
p+3_(p+p)=0, (7.34)

can be obtained from these two equations.
Equations (7.31) and (7.33) are known as the Friedmann equations and metrics of the
form (7.5) satisfying these equations are FRW universes. If we know the dependence of p on

a then the first can be solved.
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7.3 Cosmological solutions

Let us consider some solutions. Before trying to solve anything let us analyse the behaviour

of the function. With our equation of state the Friedmann equation becomes

Aa? 81G N
.9 2
= — —k+
a 3 3 Pa
Aa? C
3 k pres TR (7.35)

where C is a constant such that 87Gyp = Ca—30+w),
We now want to analyse the form of a(¢). Note that qualitatively there is very little
difference between dust and radiation, radiation is a little more dominant for small a but

otherwise the overall structure is the same.

e For small a 2 is dominated by the term Ca~3(1+®) and therefore |a| — oo as a — 0. This
is then a period of rapid expansion or contraction. We have

143w

0% ~a 0t o G 2VCa (7.36)
which can be solved to give
2
a(t) ~ constant|t|30+w) | (7.37)
In both cases a(t) will expand from zero to finite size, or collapse from finite size to 0 in
finite time.

e For large a the behaviour depends on the sign of A and if this vanishes then on k.

We can now consider in more detail various cases.

7.3.1 Solutions with £k =0

Let us set £k = 0. This is the most likely value for the current universe.
We can now distinguish the different behaviours depending on the sign of A, see figure

25.

A >0 For A > 0 a2 is never negative and therefore @ must always be positive or negative. For
a > 0 a starts off small with a rapid expansion which slows down to a minimum rate of

expansion and then the rate of expansion increases again. See figure 26a.

For a < 0 then the evolution is the opposite. a starts off large, collapsing quickly before
the rate of collapse slows to a minimum before speeding up once again until the universe

collapses again. See figure 26b.
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a A A>0

Figure 25: A plot of a? for k = 0. Note the unphysical region for A < 0.

A =0 As before a? is always positive so @ cannot change sign. For @ > 0 the universe starts off at
zero size expands rapidly before the rate of expansion decreases, tending to zero but never

reaching it. The opposite sign for a is the time reversal of this. See figure 26c¢.

A < 0 In this case there is a critical value a = a. wt which @ = 0. One can show that at this point
a4 < 0 and therefore if @ is initially increasing it slows until it reaches a. and then starts to
decrease. The universe begins expanding before reaching a critical size before contracting

again, all in finite time. See figure 26d.

We can in fact explicitly solve for a(t). For dust, w = 0 we find

1/3
(%) / sinh?/? <\/§’7At> A>0,
a(t) = (@)2/ 52/ A=0. (7.38)

1/3
( — —3/?) sin?/3 <v _23At> A<O.
For radiation, w = % we have

1/4
(29) M inn/2 (@t) A>0,
a(t) = < /2y Ctl/? A=0, (7.39)
1/4
( — %) sinl/2 (23At> A<O.
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(c) For A = 0 with an initial increasing (d) For A < 0, notice that the universe ends in a

scale factor. big crunch.

Figure 26: various plots of the scale factor for k = 0 and different choices of the cosmological
constant.

7.3.2 Solutions with A =0

We can now consider keeping k free, (well we can arrange for k € {—1,0, 1} without loss of
generality) and set the cosmological constant to vanish. We can again plot the qualitative

features of a(t).

e We have that for k = 1 there is a maximum value of a for which a? is positive or zero and
so we end up with an initial phase of expansion before reaching the critical value and then

a subsequent contraction.

e If Kk =0 or K = —1 then the universe continues to expand, but at different rates. For

a — oo we have that when k = —1 we have a2 — 1 while for k = 0 we have @ — 0.

We have plotted a2 in figure 27a while a is plotted in figure 27b.
One can again find full solutions to these equations however they are somewhat tedious

to work out and best expressed in terms as parametric functions, for this reason we omit this.
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(b) Plot of a as a function of ¢ for the various choices
(a) Plot of 4% as a function of a(t). of k.

7.3.3 The Big Bang

All of the solutions we have constructed have a region where a = 0. One can show that this
is a generic feature of the Friedmann equations. From (7.33) we see that if the matter obeys
the strong energy condition

p+3p>0, (7.40)

then there is a singularity at a finite time tpp where a(tgp) = 0. This follows since the
acceleration is necessarily negative. The universe is therefore decelerating, meaning it must
have been accelerating faster at some point. If @ = 0 then a(t) = Hyt + const.

Suppose that @ = 0, then a(t) = Hot + const. This is the dotted line shown in figure 28.
If this is the case then the Big bang occurs at tg —tpB = Ho_l. The strong energy condition
ensures that ¢ < 0 and so the dashed line provides an upper bound on the scale factor. In
such a universe the Big Bang must occur at tyg — tgB < Ho_l.

The Big Bang refers to the creation of the universe from a singular state, not an explosion
of matter into a pre-existing spacetime. One may wonder whether this singularity is an
artefact of our choice of initial assumptions however it has been shown (by Hawking in his
PhD thesis) that a singularity is a necessity even in the absence of such assumptions, given
the strong energy condition.

The strong energy condition is obeyed by all conventional matter, including dust and
radiation. However there are substances which violate it, leading to an accelerating universe.
The single component pieces above still have a big bang however the above argument cannot
rule out the possibility of more complicated solutions which avoid the Big Bang. In fact the
leading theory at the moment is that in the very first moments after the Big Bang there was
a period of exponential expansion.

All of the cosmological models we use predict a time in the past where the scale factor
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Figure 28: A plot of the scale factor showing the inevitability of the Big Bang.

vanishes. The Big bang is a point in time not in space, it happens everywhere in space. We
can get an estimate for the age of the universe by Taylor expanding a(t) and truncating to

linear order. Recall that we fixed a(tp) = 1 then
a(t) ~ 1+ Ho(t —to) . (7.41)
This gives the estimate
to—tpB = Hy ' ~ 4.4 x10'7s ~ 1.4 x 10'? years. (7.42)

This is close to the 13.8 billion years which is widely accepted to be the age of the universe.
Strictly speaking we should not trust the solution at a(tpp) = 0 since the metric is singular
there. Any matter in the universe will be squeezed into an infinite density object. In such
a regime our classical equations are no longer any good and we need a quantum theory of
gravity. Despite much effort such a theory of quantum gravity is lacking and so we are
unable to answer many questions. Did time begin at tgp? Was there a previous phase of a

contracting universe and we are another bounce?

7.3.4 Cosmological horizon

The existence of a special time tgp means that there is a limit as to how far back we can

look into the past. Let us set tpp = 0 in the following.
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The speed of light sets an upper bound on the local propagation velocity of any signal so
at a given time t an observer at » = 0 can receive signals emitted at time ¢; only from radial
coordinates r < r; where 7] is the radial coordinate from which light signals emitted at time

t1 would just reach r = 0 at time t. We can determine r; as

m dr dt’
If the ¢’ integral diverges as t; — 0 then it is in principle possible to receive signals emitted
at sufficiently early times from any comoving particle in the universe. On the other hand if
the t-integral converges at t; — 0 then our vision is limited by a so-called particle horizon:
it is possible to receive signals from a comoving particles that lie within the radial coordinate

1 (t) defined by

71 (t) r dt’
/ _dr / L (7.44)
0 \% 1- ]W"Z t1 a(t/)

The proper distance is

T (t) /
() = a(t) /0 m /t dt (7.45)

~27¢ as a — 0 then there will be a particle horizon.

From (7.31) if p grows faster than a

We can play a similar game and ask if there are regions we will never see even if we wait
long enough. If the ¢’ integral diverges as t — oo then in principle it is possible to receive
signals from any event in the universe if we wait long enough. On the other hand if this is

finite then it is only possible to receive signals for which

T1 tmax dt/
| s /t | (746)

Here tyax can either be oo or the value of the next contraction to a(tmax) = 0. This is known
as an event horizon. It behaves in a similar way to falling inside the event horizon of a black
hole, we will never be able to communicate with someone beyond the even-horizon.

This leads to some problems. We have assumed an isotropic universe, this is despite
widely separated points being completely outside the event horizon of other points. Distinct
patches of the CMB sky were causally disconnected. How then did they know ahead of time
to coordinate their evolution (so that the CMB background looks isotropic) in the right way
even though they were never in causal contact? One way of fixing this is by considering a
period of inflation: an era of acceleration @ > 0 in the very early universe, which is driven by

some component other than matter or radiation.
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A Some worked examples on Special Relativity

We have now completed our review of special relativity and Newtonian gravity. We present

some worked examples on special relativity below.

A.1 Proper time along an accelerated worldline

We treat the planets as being at rest relative to each other in this question.
Leia begins at rest on the planet Polis Massa and sets off in a spaceship to visit a distant
planet called Alderaan. Alderaan is at rest relative to Polis Massa and is a proper distance

D away. Leia’s spaceship accelerates during the journey at a constant rate «,
nuwara’ = o, (A.1)

where a* is the four-acceleration of Leia. We want to answer two questions: 1) what path
does Leia take in terms of coordinates centred on Polis Massa? 2) How much time passes,
from Leia’s point of view until she reaches Alderaan?

We can choose coordinates (t, x, y, z) where the worldline of Polis Massa is simply (¢, 0,0, 0)
and the worldline of Alderaan is (¢, D,0,0) (recall that the two planets are at rest relative to

each other). Leia’s world line is then of the form
(t(r), 2(r),0,0). (A.2)

where 7 is the proper time along Leia’s worldline. Since we have parametrised Leia’s worldline

by the proper time we have

i)+ a(r)i=-1  e= de (A.3)

Leia’s acceleration is therefore,

(7)i(T)

a = (i(r),i(r),0,0) = < o i.(T)Q,i}(T), 0, 0> : (A.4)

where for the second equality we have used (A.3) to eliminate £(7). Since Leia’s acceleration

is constant, (A.1), we have
2 &(r)?
=— . A.
“ 14 ()2 (4.5)

We have that @(7) > 0 and therefore the solution for &(7) is

z(7r) = sinh(at + f), (A.6)
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with (8 a constant of integration. Since Leia began at rest on Polis Massa, we take 8 = 0.

Integrating again and using that Leia begins at Polis Massa at 7 = 0, i.e. 2(0) = 0, we have

2(r) = L (cosh(ar) —1). (A7)

Q

Inserting this into (A.3), solving for ¢(7) and imposing ¢(0) = 0 we find

1
t(r) = o sinh(ar) . (A.8)
Leia reaches Alderaan when
T = arccosh(1 + aD), (A.9)

If D is large then 7 ~ 1 log(aD) and therefore no matter how large D is, for a sufficiently

large acceleration Leia can reach Alderaan in a ”reasonable” proper time. On the other hand,

tzﬂDM—%, (A.10)

and therefore no matter how large « is it always takes at least a time of D (recall ¢ = 1) to

when Leia reaches Alderaan

reach Alderaan as viewed from Polis Massa.

A.2 Null curves in Minkowski space

By now we have all seen that a straight line is a null curve in Minkowski space but are there
more? Note that we are not asking about geodesics. Consider the curve, given in inertial

coordinates, by

ot = (A,;sin A, cos A, 0) . (A.11)
The tangent to the vector is
daz?
o= = (1,cos A\, —sin A, 0), (A.12)
dA
and has norm
VH0¥ = —1 + cos® A +sin? A = 0. (A.13)

This is a null curve that is not straight, it is not a geodesic however.

A.3 Ladders and barns

Barry and Paul Chuckle have been employed by Albert E. to put a ladder in a barn, a simple
feat you would imagine but these are the Chuckle brothers and nothing is simple with them.

Albert E. stands outside the barn, and tells Barry and Paul to run very quickly at a constant
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speed in a straight line through the barn carrying the ladder. The barn has doors at the front
and back, and two apprentices (Jimmy and Brian) stand at either door ready to close or open
them. Initially the front door is open and the back door is closed. The proper length of the
ladder is [, while the proper length of the barn is b with b < [.

Albert E. claims that if Barry and Paul run fast enough, and that there is no slacking,
then both doors of the barn can be temporarily closed with both Barry, Paul and the ladder
inside the barn. One of the apprentices can then open the back door again so that Barry,
Paul and the ladder can pass through the barn safely. The brothers are stumped, “oh dear,
oh dear” says Barry, “the ladder is bigger than the barn, it will never work”. To put their
minds at rest show that the ladder will fit in a chosen reference frame.

Let us work in inertial coordinates where the barn is at rest, which corresponds to Albert
E.’s point of view. In these coordinates the front of the barn is at z# = (X,0,0,0) while the
back of the barn is at z* = (A, b,0,0).

The worldline of the front of the ladder in this reference frame is x* = (A, v}, 0,0), where
v is the velocity of the ladder. We have chosen coordinates so that the front of the ladder
enters the barn at A = 0. The back of the ladder follows the worldline z# = (A, Av — L, 0,0)
for some L which is not [!

First we must work out what L is in terms of [. We could of course perform a Lorentz
transformation to switch to the rest frame of the ladder, the proper length of the ladder is
then the coordinate length in this frame. We will use an alternative approach, staying in the
original coordinate frame. How can we measure a length? Well we can define it to be half the
proper time along the worldline at one end of the ladder between the emission and reception
of a light signal which bounces off the other end of the body. The worldlines of the points
making up the ladder are given by z# = (A, \v — 3,0,0) where 8 € [0, L] and their tangent
vectors are

% = (1,v,0,0). (A.14)
We now want to find a spacelike straight line orthogonal to this tangent vector. Such a
worldline is given by n* = (—’US\, -0, 0). This curve meets the front of the ladder at A=0
and the back of the ladder at A = L(1 —v?)~!. We want to calculate the proper length of

this curve with \ € [0, ﬁ] To do so we should parametrise the curve by the proper length.
2

The norm of the tangent of the above vector is 7,,7*(A\)n”(A\) = 1 — v, Then the proper

length is

s=AV1—102. (A.15)
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The ladder then has proper length
[ = s| L
5‘:1va2 vV1-— v2 .

The entire ladder can fit into the barn from Albert E.’s perspective if b > L and therefore

(A.16)

the Chuckle brothers must run at a speed of

62
vzl 5. (A.17)

Both doors of the barn can be closed if: the front of the ladder is still in the barn, b > vA
and the back of the ladder is in the barn Av — L > 0. Since t = X the ladder is in the barn for

V1 —0v?

v

<t< -, (A.18)

S| o

We see that Albert E. sees the ladder fully inside the barn with the doors closed.
Now consider what happens from the Chuckle brother’s perspective. We can do a Lorentz

transformation to coordinates in which they are at rest:

2y, 2") = (vt — yox,yx — yot,y, 2), v = \/11_702 . (A.19)
In the Chuckle brother’s coordinates the barn follows the worldline (A, —vA,0,0), while the
back of the barn follows the worldline (X, —vA + bv/1 — v2,0,0).
The front door can be closed when the front of the barn passes the back of the ladder, so
—vA < —[ and therefore the front door of the barn is closed for ¢’ > %
The back door must open when the front of the ladder is about to go through it. So it is closed
until bv/1 — v2 — vt = 0 and therefore the back door is closed for ' € [0, %] In summary we

have

{Front door closed (A.20)

l
v )
Back door closed 0<¢ < -2,

Since the ladder is longer than the barn [ > b and v > 1 it follows that there is no time for
which both doors are closed from the point of view of the Chuckle brothers. The entire ladder
never fits into the barn from their perspective. The two view-points are depicted in figure 29.

Having been convinced by your arguments the brothers were off with a “to me, to you”.3?

32ChuckleVision was a British children’s comedy tv show following the antics of the Chuckle brothers Barry
and Paul. Carrying a ladder was a common theme.
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Figure 29: The two different perspectives of the ladder and barn. On the left from the
perspective of Albert E., a stationary observer in the rest frame of the barn. On the right
from the perspective of the Chuckle brothers carrying the ladder.
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B Euler—Lagrange equations in field theory

General relativity is an example of a classical field theory. We want to understand how to
compute the equations of motion for such a field theory. Let us begin with the computation of

the equations of motion in classical mechanics before building up to the field theory version.

B.1 Classical mechanics and Euler—Lagrange

Consider a single particle in one dimension with coordinate ¢(¢). The equations of motion are
computed by using the principle of least action. We need to define a functional of an action

S
S = /dtL(q, q), (B.1)

and find the critical points of S. Here L(q,q) is known as the Lagrangian, and typically for

point-particle mechanics takes the form:
L = Kinetic Energy — Potential Energy . (B.2)

From your classical mechanics course you will have derived the Euler—Lagrange equations:

oL d (oL
= (== B.
dq dt <6q> ’ (B-3)

see below for a recap of its derivation.

Consider a trajectory between the points ¢; and g2 with ¢(t1) = ¢1 and ¢(t2) = ga2. Let
us deform the trajectory by
q(t) — q(t) + edq(t) , (B.4)

whilst keeping the end-points fixed, that is dq(t1) = dq(t2) = 0. We have introduced the
parameter € which we take to be small. Consider now the action for this shifted path:

to
S[q(t) + €dq(t)] = / L(q+ €dq, ¢+ e%éq)dt

t1

/: [L(q, q) + e{gséq + ?)s(iéq} + 0(62)}dt

s (8- (%) Yo ] s
(B.5)

Note that due to our boundary conditions the last term vanishes. The first order variation
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is then

6S = S(q+dq) — S(q)

to B6
(8 ) g
&, \Oq dt \ 9q

and the requirement that this be an extremum, 6S = 0 then implies

oL d /0L
e i [ B.
9 (64) v (B.7)

which is the Euler—Lagrange equation.

B.2 Classical field theory and Euler—Lagrange

Having reviewed the Euler—Lagrange equations for classical mechanics consider the field the-
ory version. We replace the single coordinate ¢(t) by a set of spacetime dependent fields
®i(x#), and take the action S to be a functional of these fields. The Lagrangian is expressed
in terms of a Lagrange density, £, which we take to be a function of the fields ®' and their
spacetime derivatives, 8M<I>i:

L= / dPrL(P",0,9"). (B.8)

In principle the fields could be tensorial but we will suppress these details here, as we will see
tensorial objects are necessary when considering the geodesics of GR. Similar to the classical

mechanics case reviewed above we consider a small variation of the fields:
D' — '+ e0d', 9,0 — 9,0 +€0,(09"), (B.9)

with € our small parameter once again. The boundary conditions are similar to before with

§®* vanishing on the boundary of spacetime. The the first order variation of the action is

oL . oL .
= 4 Y% : P’
58 e/d x[a@é + 8(auq>l)a“(5 )}

oL oL ) oL .
—e[d = O 5 | |00 120, | 550" ) .
f d‘”[a@ a“(@(@ﬂﬂ)”‘s e f dma“(éwau@)é )

Due to our boundary conditions the last term vanishes and for a stationary point, .5 = 0 we

(B.10)

obtain the Euler-Lagrange equations

oL oL
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Exercise B.1: Euler—Lagrange equation examples

e Compute the Euler-Lagrange equations for a scalar field with Lagrangian density:
r— —%nwamam —V(9). (B.12)
e Compute the Euler-Lagrange equations for electromagnetism with Lagrangian density:
L— —EFWF’“’ b AT (B.13)

with Fy,, = 0,4, — 0, A,.
Hint: You should vary with respect to A and not F
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C Solutions to exercises

In this appendix we provide solutions to the various exercises which are not covered in the

tutorial problems.

C.1 Solutions to chapter 2
C.1.1 Exercise 2.1

1. Under two successive boosts along the x direction we have

Aﬁnal — A]13005tA]13005t
cosh¢; —sinh¢y 00 cosh ¢o —sinh¢o 0 0
| —sinh¢; coshgr 00 —sinh ¢o coshgo 00
a 0 0 10| 0 0 10
0 0 01 0 0 01

cosh ¢ cosh o + sinh ¢ sinh oo — cosh ¢; sinh ¢o — sinh ¢1 cosh 2 0 0
— cosh ¢ sinh ¢o — sinh ¢1 cosh ¢a  cosh ¢ cosh ¢o + sinh ¢1 sinh o 0 0
0 0 10

0 0 01

cosh(¢1 + ¢2) —sinh(¢1 +¢2) 00
—sinh(¢1 4 ¢2) cosh(¢y +¢2) 00
0 0 10
0 0 01

cosh ¢ana1  — sinh ¢gpa 0 0
—sinh @gpa1  cosh @ 00
0 0 10

0 0 01

(C.1)

We see that we end up with another boost in the xz-direction and that the rapidity of

two successive boosts is additive: ¢gna = ¢1 + P2-

2. We have

igTRotation > (le)k Rotati k
el _ 14><4+ZT(T oalon)
k=2 (C.2)

= i M(TRotation)Qm +i i (_1)m02m+1

( Rotation>2m+1
(2m)! (2m + 1)! '
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0000
otation 0100 otation otation
(TR tat )Zk’ — O 0 1 O , (TR tat )2k+1 — TR tat (03)
0000
and therefore we have
0000

) o 2m OO mp2m+1
iQTRotatlon (—1)m9 0 ]. O 0 .mRotation (_1) 9
=1 A A T AN —
¢ it ) em) |oo1o| ™ 2 2m+1)!
m=2 m=0

0000

1 0 0 0
0 cosf sinf 0
0 —sinf cosf 0
0 O 0 1

where in the last step we use the series expansion of the trigonometric functions. A

similar computation gives the boost.

3. Now consider the commutator of the generator of a boost along the z-direction with the
generator of a boost along the y-direction. We have

Boost Boost] __ mBoostBoost Boost Boost
[T Beost piboost] — BoostBoost _ pBoostt

0i00 0010 0010 0i00
_|i000] [OO0OOf J0OOOOf [i000 (C.5)

0000 i000 i000 0000

0000 0000 0000 0000

— i Betation
4. Compute the commutator of the generators (2.10) for a boost along z and rotation in
the z-y-plane.
We have the result:
[TmBoost TRotation] _ _iTyBoost (C.6)

) xy

5. Compute the commutator of the generators ((2.10))of a boost along x and rotation in

the y-z-plane.

In this case we find that the commutator vanishes.
Let K; = T2 and L; = %eijﬂﬁomtion then we find that the commutators are:

(K, Kj] = —iegnly, [KG, Lj] =ieju Ky,  [Li, Lj] = iegpLy, . (C.7)
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C.1.2 Exercise 2.2

We have just computed the addition of the rapidity. The velocity, in terms of the rapidity is
(2.12)
v = % = tanh ¢. (C.8)

We saw that the rapidity was additive. We have that after two boosts with rapidity/velocity
(¢i/v;) we have
vs = tanh ¢3

= tanh(¢1 + ¢2) (C.9)
% e )
14 v

This uses well known trig identities.

C.1.3 Exercise 2.3

We want to take the proper time defined in (2.16)

A2 dz# dav
Ar = il W C.10
T //\1 7]# d)\ d)\ ( )

and show that under A — A(0) the proper time is left invariant.

A2 dzt dzv
AT :/ —Npy—— ——dA
" AN dA
A2(e2) dz# do dav dn dA
_ —N — = 177 C.11
\/77“ do dA do drdo (C.11)

A(o1)
[
- m e do do 7

and therefore it is reparametrisation invariant. Note that the square root is important. Any

other power would not be reparametrisation invariant!

C.1.4 Exercise 2.4

Show that it is always possible to find a parametrisation of a timelike curve so that it satisfies
(2.17), and moreover that it is unique up to constant shifts.
Let us take a time-like curve. It must therefore satisfy

dz#(A) dz¥ (N)

C.12
dA dA ( )

_f2 = Nuv
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We can make a change of reparametrisation which leads to

dazH* () dz¥ (A

=g, ) 4 )
dr A (C.13)

dz* do dz¥ do

= qe dX do dx
Bringing the factor of 3—3’\ to the other side we have

dr]? dz* da”
— 2 _ — [ —
f(x) [ dg] (T p (C.14)
We see that if we solve
dA
f(:ﬂ(/\(d)))fd =1, (C.15)
o

then we have the correct normalised curve.
This is just a first order ODE which has a unique solution given a boundary condition.
The boundary condition only fixes ¢ up to a constant which is the constant shift.
To see that o is just the proper time we need to substitute this into (2.16) and everything
falls into place.
C.1.5 Exercise 2.5
We take
A = mun” A, (C.16)
then
A#VATV — nupnyUApo-ATu
= 77up77pT (C.17)
= 5;
C.1.6 Exercise 2.6
e If V¥ transforms as a vector then
VIt = AF VY (C.18)
Transforming 7, V" we would have
(UWVV), = TIL,VV'”
= Nrsl AN VE
=N, N5 V7
= A,uT (UmVU)

We have used the result from exercise (2.5) in going to the third line.

(C.19)

e This works in the same way as the one above.
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C.1.7 Exercise 2.7
Integrating equation (2.56) over the volume in a sphere of radius r, centred about the center
of symmetry, and whose surface contains all of the mass one finds

/ d32V - F = 47G dBzp(r) = —4nGM , (C.20)
B3(r) B3(r)

where M is the total mass. The divergence theorem allows us to express the left-hand side
as a surface integral over the sphere of radius r giving

/dA’. F = —47GM . (C.21)

r

Due to the spherical symmety F' can only depend on r and point only in a radial direction.
This implies that the surface integral is simply

/dff- F = 4nr?|F|, (C.22)

r

where |F| is the magnitude of F'. Therefore if e, is a unit vector in the radial direction then
F=-—""e,, (C.23)
r

and depends only on M. We can now solve for ®, this is of course only defined up to a
constant and if we choose the constant so that ® vanishes at oo then we end up with the

simple expression
M
O(r) = ¢ . (C.24)

r

We learn that it does not matter how the mass is distributed in a spherically symmetric
configuration. It could be localised at the centre or in spherically symmetric shells. The

potential only depends on the total mass.

C.2 Solutions to chapter 3

C.2.1 Exercise 3.1
The discrete topology is the obtained by taking a collection of all subsets of the topological
space.

The usual topology is obtained by taking all open sets (a,b) and their unions. Imagine
we were to change the 3rd condition in the definition of a topological space to include an

infinite subcollection of I. Then we could take the subsets

Uy = (a,b+2). (C.25)
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Taking the infinite intersection we have
ne1(a, b+ 5) = (a,0]. (C.26)

This implies that {b} is in the topology and this holds for all b. Therefore the topology is

reduced to the discrete one.

C.2.2 Exercise 3.2

To show that the Tangent space at p is a vector space we need to show a number of properties.
It boils down to show that if X1, Xy € T,(M) and o € R then X; + aXy € T,(M). By
definition both X; are linear transformations on functions. We then need to show X; + Xy
satisfied the Leibniz property and is therefore a tangent vector too. For functions f,g we

have

(X1 +aXs)(fg) = X1(fg) + aXa(fg)
= fXi1(9) + 9Xa(f) + a(gX2(f) + fX2(9)) (C.27)
= f(X1+ aXa)(g) + 9(X1 + aXa)(f),

hence f(X1 + aX2)(g) € T(M)

C.2.3 Exercise 3.3

We want to show that the flow defines a commutative group. This turns out to be simple

since

ot(0s(r)) = op45(7)

= os1¢(T) (C.28)
= os(0t(z)),

and therefore it commutes. Note that we have used that R is commutative. Since it is

1-dimensional there are two options, R or S'.

C.2.4 Exercise 3.4

These are given in problem sheet 2.

C.2.5 Exercise 3.5

Let X,Y,Z € X(M) be vector fields. We have

LxLyZ =Lx([Y,Z]) = [X,[Y, Z]]. (C.29)
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The Lie bracket satisfies the Jacobi identity, which after some rearranging can be written in
the form
(X, [V, Z]] - [V, [X,Y]] = -[[X,Y], Z]. (C.30)

Using our expression above for the Lie derivative we have
EXﬁYZ - EYﬁXZ == ‘C[X7Y]Za (031)

as required.
C.2.6 Exercise 3.6

We want to show:

1. That the Lie derivative satisfies:
ﬁx(tl + tg) =Lxt1 + Lxtso, (0.32)

where t1 and t9 are tensor fields of the same type.

2. That
Lx(t1 Rty) = (L:th) Rtz +11 & (Extz) , (C.33)

with #; and t2 tensors of arbitrary type.

For the first by the way we constructed the Lie derivative for vector fields, one forms and
scalars this is obvious.

For the second we have to do a little work. We will show it in a single example, but it
will be obvious how it generalises. Take a vector field Y and one-form w and construct the
tensor product ¥ ® w. Then (Y ® w)|y, () is mapped onto a tensor at x by the action of
(0-¢)* ® (0¢)*. Therefore

[(0-)" @ (0)"](Y @ W)l (z) = [(0-6)+Y & (0) W] - (C.34)
We therefore have
L = lim = [[(0-02Y (00wl = (V @)l

= lim (020 @ (0w~} + {(7-0).Y Y} 9] (C.35)

=Y QRLxw+LxY Quw.

For other tensors the computation works similarly.
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C.2.7 Exercise 3.7
From the properties of the wedge product show that for & € Qj(M), n € Q) (M) and w €
Q(M) that
EAn=(=1)"nNE,
ENE=0 if ¢ odd, (C.36)
EAmMAw=EnnAw).
Recall that the action is given by:
(@A E) (Vs Visr) = q,lﬂ e; sign(0) (Voo Vi) (Vatast)s oo Vigasry) - (C37)
0ESgir

Then if we have two forms &, n of degree ¢, r respectively then

1 .
(Mn)(Vh---,qu):W > sign(@)e (Vo) - Vi) )1 Vit 1)s - Vir(geer))
U oES Ly
L (C.38)
= > sign(@)n(Vo(gan)s - Votgrn) ) Vot o Vo))
o O'ESq+r

We now want to move the indices on the V’s to be in the canonical order. Assume g > r,
the alternative is easily checked too. If we exchange an index we pick up a sign from the

permutation. We can flip the indices in 1 with the first r indices in the &. This will introduce

T signs.
r 1 :
EANVi, e, V) = (=1) P Y sign()n(Voqays o Vo)EWVatginys - Vatrra)s s Votra1)s =Vo(g))
UESq+7-
T rqg—r 1 3
:(_1) (_1) (@ )W Z Slgn(a)n(va(1)7-"7Vcr(r))€(vo'(r+1)7'”Va'(rJrq))

UESq.H«

(=)™ A (VA ey Vi)
(=1 (=17 A Vi, Vi)
(=)™ AV, e, Varr

(C.39)
where we used that (—1)~"("+1) =1,
This proves the first, the second follows simply from the first since
ENE  re2Z
ENE=(—1)"ENE= (1) ENE= C.40
(-1) (-1) Cene o (C.40)
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It then follows for odd dimensional form it vanishes.
The associativity property follows from the associativity of functions and some messing
with permutations. Let us use the shorthand [V] = (Vi, ..., Vj4,45) then

1 1

(AN Aw)[V] = S g+

Z sign(o)(f A n)(VU(l), . Va(q+r))w(va(q+r+l)7 . Va(q+r+s))

0ESqtrts
(C.41)
We now want to simplify the permutations. We can decompose the permutation group Sq4,+s
into residual classes of the subgroup Sy4, C Sg4r+s. These are permutations which act as the
identity on the final s indices. Let us all the set of these residual classes C and let R € C be
one of these residual classes. Each R € C is isomorphic to S¢4,. Let us pick one class R and
within the class a particular permutation or. Then each element ¢ € R can be decomposed
as 0 = op @ ™ where m € S;4,. We therefore have that the sum over S;, s may be written
as:
(EAmAWV] = = ——— 3 sign(on) [ S sign(m)(E A (Va(r)s s Votgin)
sta+)! 5 oER (C.42)
X W(Vop(gtr+1)s s Vor(grrts))

The terms in the brackets are all equal because they are permutations of 7 from a fixed
ordering given by or. Since each residual class R is isomorphic to Sy, there are (¢ + r)!
terms. Thus,

1 .
((§ A 77) A w)[V} = g Z 81gn(aR)(§ A n)(Vo'R(l)7 A VUR(q+r))w(VaR(q+r+1)7 A VJR(q+r+s))
" ReC

1 . .
- 116! Z sign(or) Z Slgn(T)f(VT(UR(l))’ " VT(UR(‘I)))
ar " ReC TESqtr

X N(Ve(or@r)s - Velor(arm)WVor(grri1) -+ Vor(gtres)
(C.43)
We need to use a similar trick to before. All permutations o € Sy4,4+s can be decomposed as
o = T oopg and since 7 acts on the last s indices as the identity we have o = op for these.
Thus we obtain:

(€A AW)V] = —

q'rls!

Z Sign(a)g(va(l)a ey Va(q))
0ESqtrts (C44)

X n(Va(qul)a SX) Va(q+r)))w(va(q+r+l)7 ey Va(q+r+s))
We can play the same game starting from (A (nAw))[V]. It is clear though that the difference
is that we decompose in terms of the residual class of S, C Sg4,+s instead and we end up

with the exact same result. We have therefore shown associativity.
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C.2.8 Exercise 3.8

Show that for £ € Qj(M), n € Q,(M) we have
d(EAn)=dEAn+ (—1)IE Adn. (C.45)

We can do this in coordinate free notation or using a coordinate basis, we choose the
latter since it is simpler though the former is equally doable.
Let

1 1
§= agm..--uqum A Adate, n= ﬁnm”%dx“l Ao AdatT (C.46)

then

d(EAN) = d(Euypig Mo Azt A dats Ada™ Ao Ada)
1 9

= e G )2 A dE A et Adat A A dat)
q'r!
1 0 , .
= W %gm,,_uq Moy ..o dz? Adakt Adate Ada” Ao Ada”T) (C.47)
1 a g 1% 1Z
+ (—1)qﬁfm...uq (Wnul__,,r)dﬁ“ A.dztt Adz® Ada"t AL AdatT)

=déAn+ (-1 Adn.

C.2.9 Exercise 3.9

i’ =0,
ix(wAn) =ixwAn+ (—=1)"wAixn, (C.48)
ixyw = X(iyw) - Y(ixw),
Lxixw=ixLxw.
1. For the first if we contract into a g-form w we have
3w = e _1 2)!X“1X“me pigvt g2 AT A A daa? (C.49)

Since the two X'’s are symmetric and the two indices of the p-form are antisymmetric

this vanishes.

2. In components we have:

i (WA D) (Vay e Varr) = (@ AN (Vi oo, Vo)

1 .
- W Z SlgH(U)w(Va(l), ceey Va(q))n(va(q+1)7 ceey Vo(q—i-r))
o O'ESq+T

(C.50)
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We now want to identify the ones with the Vi and the ones without.

. 1
vy (w A 77)(V2, ) ‘/21-1-7’) - W Z [QW(Vlvg(g), e Va(q))n<VU(q+1)7 sty Va(q—l—r))

U€5q+r—1
+ (—1)qu(Va.(2)7 ) Va(q+1))77(‘/17 Vo(q+2)7 Sx) Vo’(q+r)):|
= (ivw) A+ (=1)%w A (i) -

(C.51)
3. Using that on a form
Lxw= (ixd +dix)w, (C.52)
we have
Lxixw = (ixd + dix)ixw
= ix(dixw) (C.53)

=ixLxw

C.2.10 Exercise 3.10

Stoke’s theorem states that in 3d, given a vector field F and a smooth oriented surface in R3

with boundary 0% = B then

/E(vXﬁ).dzzf F.dr (C.54)

ox
We need to identify the vector field F' as a 1-form and the curl as a two form given by the

exterior derivative of F'. We have that
F-dl' = Fyda + Fydy + F.dz = F, (C.55)
similarly
dF = (0, Fy — 0yFy)dx Ady + (0, F; — 0, Fy)dy A dz + (0, F, — 0, F.)dz Ndx (C.56)

this is nothing other than
dF = (V x F)-dS, (C.57)

and therefore putting everything together we have the claimed result.
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C.3 Solutions to chapter 4
C.3.1 Exercise 4.1

We take the embedding of the sphere into R? given via equation (4.11). Plugging this

parametrisation into the metric on R?

ds? = da? + dy? + d2?, (C.58)
we find
ds*(S?) = [d(sin @ cos ¢))]* + [d(sin O sin ¢)]? + [d cos ]>
(C.59)
= df” + sin® fd¢” .
C.3.2 Exercise 4.2
1. Let us take the torsion tensor defined via (4.58). Then
— W(fVXY = YIfIX — fIX,Y] + Y[f]X)
=w(f(VxY - VyX - [X,Y])) (C.60)
= fw(VxY — VyX — [X,Y])
= fT(w; X,Y).

For f on the other arguments it follows identically to above on Y and trivially on w. We
also need to show that if we take sums of two then it all becomes linear as well.
T(w; X1+ X2,Y) = w(Vx,1x,Y — Vy (X1 + Xa) — [X1 + Xo,Y])
=w(Vx,Y +Vx,Y = VyX; — VyXs — [X1,Y] - [Xp,Y])
w(Vx,Y = VyX; — [X1,Y]) + w(Vx,Y — VyXs — [X2,Y])
T(w; X1,Y) + T(w; X3,Y),
(C.61)

with a similar result for other arguments. This shows that T is a multi-linear map in
all indices. Note that we have used the established results that w is a linear map, Vx a

linear map and properties of the connection to show this.

2. We now want to show that this is a tensor by checking that it transforms correctly in

coordinate components. In components we have that

T, =T?,, —T7 (C.62)
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we have already seen the transformation of the connection coefficients under a coordinate

transformation in (4.51),

e, = (A‘l)“HA"pATVF”M + (A‘l)“ﬁA"p(‘)‘,A“y (C.63)

We therefore have
Ty =17 =17,
-1 o T K —1 o K
= (A )pnA l/A ,u,r oT + (A )pnA VaUA 12
[T AT TS (A7), A7, 0,07, (.61

B 0z 0z  0yP
Oyl yrl O O

= (Ail)pnAauAT,u(PHTU - FHG'T)
-1 T AT K
(A7) AT AT T,

which is as claimed. We have used the coordinate expression for the A’s to simplify the
derivative term and then that the contraction of anti-symmetric indices with symmetric

indices vanishes.

C.3.3 Exercise 4.3

Covered in problem sheet 3.
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