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Curse of dimensionality (Yarotsky 16’)
Exponential in d/m growth in number of weights.

Yarotsky 16’ results show exponential approximation in depth, but
the overall number of weights is O(ε−d/m). Recall

‖f ‖W ∞
m

([0, 1]d ) = max|s|≤messsuppx∈[0,1]d |Ds f (x)|.

Theorem (Yarotsky 16’)

For any d ,m and ε ∈ (0, 1), there is a ReLU network with depth
at most c(1 + ln(1/ε)) and at most cε−d/m(1 + log(1/ε)) weights
(width O(ε−d/m)), for c a function of d ,m, that can approximate
any function from Fd ,m within absolute error ε.

https://arxiv.org/pdf/1610.01145.pdf

To avoid curse of dimensionality need m ∼ d or more structure in
the function F to be approximated; e.g. compositional structure.
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Compositional structured functions (Poggio et al. 17’)
Extending the compositional nature of Yarotsky dimensionally

Consider functions with a binary tree hierarchical structure:

where x ∈ R8 and
f (x) = h3(h21(h11(x1, x2), h12(x3, x4)), h22(h13(x5, x6), h14(x7, x8)))
Let W n,2

m be the class of all compositional functions f (·) of n
variables with binary tree structure and constituent functions h(·)
of 2 variables with m bounded derivatives.
https://arxiv.org/pdf/1611.00740.pdf
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Compositional structured functions (Poggio et al. 17’)
Each constituent function is a map from R2 → R

The set W n,2
m of of all compositional functions f (·) of n variables

with binary tree structure and constituent functions h(·) of 2
variables with m bounded derivatives can be effectively
approximated using a DNN with a rate dictated by the ability to
approximate functions R2 → R; e.g. effectively locally d = 2.

Theorem (Poggio 17’)

Let f (·) ∈ W n,2
m and consider a DNN with the same binary com-

positional tree structure and an activation σ(·) which is infinitely
differentiable, and not a polynomial. The function f (·), can be ap-
proximated by ε with a number of weights that is O

(
(n − 1)ε−2/m

)
.

https://arxiv.org/pdf/1611.00740.pdf
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Compositional structured functions (Poggio et al. 17’)
Compositional functions W n,2

m compared to shallow NNs and Yarotsky(16’)

The set W n,2
m of of all compositional functions f (·) of n variables

with binary tree structure are effectively d = 2 in the DNN
approximation requirements, but are much richer than d = 2.

Functions can be approximated within ε with a DNN from
O(ln(1/ε)) layers with a number of weights:

I O(ε−d/m) for general locally smooth functions (Yarotsky 16’),

I O
(
(n − 1)ε−2/m

)
for f (·) ∈W n,2

m , binary tree structure and
constituent functions in Cm[0, 1]2.

I O(ε−d/m) for shallow NNs is best possible for f (·) ∈W n
m

which have non-binary hierarchical tree structures.

https://arxiv.org/pdf/1611.00740.pdf
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Definition of local effective dimensionality (Poggio et al. 17’)
Local dimensionality determined by approximation rate ε−d .

Definition (Poggio 17’)

The effective dimensionality of a function class W is said to be d if
for every ε > 0, any function within W can be approximated within
an accuracy ε by a DNN at rate ε−d .

In the prior slide we had examples of complex compositional
functions with effective dimensionality 2. These could be extended
naturally to local effective dimensionality deff and local smoothness
meff for rate ε−deff /meff .

Restriction to a data class decreases deff and localisation can
increase the smoothness meff substantially.
https://arxiv.org/pdf/1611.00740.pdf
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Intrinsic dimensionality of sub-manifolds (Hein et al. 05’)
MNIST exemplar dataset classes are approximately under 15 dimensional

Estimates of dimensionality within MNIST digit classes using three
approaches: the reference below, and two others building on local
linear embedding.

https://icml.cc/Conferences/2005/proceedings/papers/037_

Intrinsic_HeinAudibert.pdf
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The hidden manifold model (Goldt et al. 19’)
An alternative manifold model: one layer GAN

A manifold model can explicitly represent the data through:

X = f (CF/
√
d) ∈ Rp,n

where:

I F ∈ Rd ,n are the d features used to represent the data

I C ∈ Rp,d combines the d < n < p features

I f (·) is an entrywise locally smooth nonlinear function.

This data model is the same as a generative adversarial network
(GAN) and is similar to dictionary learning and subspace clustering
models where C is typically sparse.
https://hal-cea.archives-ouvertes.fr/cea-02529246/document
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Additional approximation theory resources
Review articles and courses elsewhere

Further references for the approximation theory perspective of deep
learning include:

I Telgarsky’s “Deep Learning Theory” course, lectures 1-11:
http://mjt.cs.illinois.edu/courses/dlt-f20/

I Matthew Hirn’s “Mathematics of Deep Learning” course:
lectures 20-24.
https:

//matthewhirn.com/teaching/spring-2020-cmse-890-002/

I DNN Approximation Theory by Elbrachter et al. (19’)
https:

//www.mins.ee.ethz.ch/pubs/files/deep-it-2019.pdf
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Transformers and Attention, the building blocks of natural
language generative models.
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Natural Language Processing
Tokenization and word embeddings

Natural language processing (NLP) involves decomposing text into
a finite set of tokens.
”Tokens can be thought of as pieces of words. Before the API
processes the request, the input is broken down into tokens. These
tokens are not cut up exactly where the words start or end - tokens
can include trailing spaces and even sub-words. Here are some
helpful rules of thumb for understanding tokens in terms of
lengths:”
1 token = 4 chars in English
1 token = 3/4 words
100 tokens = 75 words”
https://help.openai.com/en/articles/

4936856-what-are-tokens-and-how-to-count-them
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GPT3 architecture (Brown 20’)
GPT: Generative Pre-Trained Transformers, dimensions

Each token is then embedded in a word embedding dimension and
sequentially each token in the context window is embedded as rows
in a matrix X ∈ Rdctx×demb .
NLP networks can have tasks such as ”next token prediction”
where text is grown, or ”translation” from one language or
sentiment to another, or combined in multi-modal systems with
other networks (e.g. vision) for such tasks as automatic caption
generation.
By far the dominant method for NPL are attention / transformer
modules.
https://arxiv.org/abs/2005.14165
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Attention mechanism (Vaswani 17’), equations
Key and Query quadratic form to highlight relations

The input matrix X is then mapped to a query, key, and value matrices:
Q = XWQ , K = XWK , and V = XWV . Layer-norm is applied to the key
and query matrices where each row of Q and K are normalized to have
unit `2 length. These normalized query and key matrices are then
compared, further normalized by scalar d−α and typically a softmax
applied row-wise

A = softmax
(
QKTd−α

)
so that each row of A has non-negative entries that sum to 1. This
”self”-attention matrix is then applied to the value matrix, e.g. AV . The
scaling α is typically 1/2, but also sometimes 1.
https://arxiv.org/abs/1706.03762

https://arxiv.org/abs/1607.06450
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Attention mechanism (Vaswani 17’), diagram
Key and Query quadratic form to highlight relations

Typically the attention mechanism applied on the left is computed
within the same layer for multiple values of WQ , WK , and WV with
each output called a ”head” and these ”heads” then concatonated.
https://arxiv.org/abs/1706.03762
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Transformer mechanism (Vaswani 17’), diagram
Encoder-decoder structure using attention

The concatonated heads are then acted on by a fully connected
layer WO applied. Additional fully connected layers with ReLU are
often included, as are skip connections.
https://arxiv.org/abs/1706.03762

The role of dimensionality and intro to Attention modules. 15

https://arxiv.org/abs/1706.03762


Multihead attention structure
Each layer of a multi-head attention

Omitting the notation to denote a layer:
Input X ∈ Rdctx×demb

Qi = LN(XWQi
), Ki = LN(XWKi

), and Vi = XWVi

for i = 1, . . . , nh where LN(Z ) normalizes each row of the matrix

Z to unit `2 length. Form hi = softmax(QiK
T
i /d

1/2
emb)Vi for

i = 1, . . . , nh and concatonate on to p of one another
H = [h1 h2 . . . hnh

] and form WOH then output

X + ReLU(W1ReLU(W2H))

which is then the input for the next layer.
https://arxiv.org/abs/1706.03762
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GPT3 architecture (Brown 20’), diagram
GPT: Generative Pre-Trained Transformers

Each layer of GPT3 (and earlier variants) is a transformer block.
Energy usage to train and apply such large models is very costly.
https://arxiv.org/abs/2005.14165
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Vision Transformer - ViT (Dosovitskiy 21’), diagram
Patches of images embedded and acting as token; with position embedding

https://arxiv.org/pdf/2010.11929
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Vision Transformer - ViT (Dosovitskiy 21’), formulae
Positional embedding included

https://arxiv.org/pdf/2010.11929
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Expressivity of deep nets prior to 2016, for reference.
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Two geometric notions of exponential expressivity
Partitions of the domain and path length

Prior to the approximation rate results from Telgarsky 15’ and
Yarotsky 16’, there were qualitative geometric results showing
showing potential for exponential expressivity:

I On the number of response regions of deep feedforward
networks with piecewise linear activations (Pascanu et al. 14’)
https://arxiv.org/pdf/1312.6098.pdf

I On the expressive power of deep neural networks (Raghu et al.
16’)
https://arxiv.org/abs/1606.05336

I Trajectory growth lower bounds for random sparse deep ReLU
networks (Price et al. 19’)
https://arxiv.org/abs/1911.10651
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ReLU hyperplane arrangement
Partition of the input domain Rn0 : one layer

The action of ReLU to an affine transform is a linearly increasing
function orthogonal to hyperplanes; let W ∈ Rn1×n0 then:

Hi := {x ∈ Rn0 : Wix + bi = 0} ∀i ∈ [n1]

where Wi is the i th row of W .
The normals to these hyperplanes partition the input dimension n0,
and if W is in general position (all subsets of rows are maximal
rank), then the number of partitions is:

n0∑
j=0

(
n1

j

)
https://arxiv.org/pdf/1312.6098.pdf
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ReLU hyperplane arrangement
Partition of the input domain Rn0 : with depth

The number of partitions in one layer is lower bounded by

n0∑
j=0

(
n1

j

)
≥ n

min{n0,n1/2}
1

and each hidden layers can further subdivide these regions:

Theorem (Pascanu et al. 14’)

An L layer DNN with ReLU activation, input Rn0 , and hidden layers
of width n1, n2, . . . , nL partitions the input space into at least

ΠL
`=0n

min{n0,n`/2}
`

This shows an exponential dependence on depth L.
https://arxiv.org/pdf/1312.6098.pdf
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ReLU hyperplane arrangement
Partition of the input domain Rn0 : plot Pascanu et al. 14’

https://arxiv.org/pdf/1312.6098.pdf
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ReLU hyperplane arrangement
Partition of the input domain Rn0 : plot Raghu et al. 16’

https://arxiv.org/abs/1606.05336

This “activation region” perspective is a useful intuition for ReLU,
but lacks the quantitative convergence rates we observed in more
recent approximation theory results of Yarotsky 16’.
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Random initialisations and DNNs
DNNs are typically first trained from random values

A random network fNN(x ;P,Q) denotes a deep neural network:

h(d) = W (d)z(d) +b(d), z(d+1) = φ(hd)), d = 0, . . . , L−1,

which takes as input the vector x , and is parameterised by random
weight matrices W (d) with entries sampled iid from the distribution
P, and bias vectors b(d) with entries drawn iid from distribution Q.

While our goal is always to train a network, DNNs typically start as
random networks which influence their ability to be trained.

Popular choices are Gaussian, P = N (0, σ2
w ), or uniform,

P = U(−Cw ,Cw ) initialisations.
(*Note, for random networks we use φ(·) as the nonlinear activation and

σ to denote variance.)
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Trajectory length of random DNNs
A geometric notion of expressivity

Raghu et al. 16’ introduced the notion of trajectory length

l(x(t)) =

∫
t

∣∣∣∣∣∣∣∣dx(t)

dt

∣∣∣∣∣∣∣∣dt.
as a measure of expressivity of a DNN. In particular, they
considered passing a simple geometric object x(t), such as a line
x(t) = tx0 + (1− t)x1 for x0, x1 ∈ Rk and measure the expected
length of the output of the random DNN at layer d :

E
[
`(z(d))

]
`(x(t))

https://arxiv.org/abs/1606.05336
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Example of circle passed through a random DNN
Complexity of output increasing with depth

A circle passed through a random DNN and the pre-activation
output h(d) at layers d = 6 and 12.

DNNs can be used to generative data, GANs, and there one might
consider the complexity of the manifold the GAN can generate as a
measure of expressivity.
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Random DNN: expected path length lower bound
Path length bound dependence on σw .

Consider random DNNs of width n and depth L with weights and
bias are drawn i.i.d. W (`)(i , j) ∼ N (0, σ2

w/n), b(`)(j) ∼ N (0, σ2
b)

Theorem (Raghu et al. 16’)

Consider as input a one dimensional trajectory x(t) with arc-length

`(x(t)) =
∫

t

∥∥∥dx(t)
dt

∥∥∥ dt and let z(L)(t) be the output of the Gaussian

random feedforward network with ReLu activations, then

E
[
`(z(L))

]
`(x(t))

≥ O

( σw

(σ2
w + σ2

b)1/4
· n1/2

(n + (σ2
w + σ2

b)1/2)1/2

)L
 .

https://arxiv.org/abs/1606.05336
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Exponential growth of path length with depth.
Empirical experiments for htanh activation

https://arxiv.org/pdf/1611.08083.pdf
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Random DNN: expected path length lower bound
Generalised and simplified lower bound

Theorem (Price et al. 19’)

Let fNN(x ;α,P,Q) be a random sparse net with layers of width n.
Then, if E[|uTwi |] ≥ M‖u‖, where wi is the i th row of W ∈ P, and
u and M are constants, then

E[l(z(L)(t))] ≥
(
M

2

)L

· l(x(t))

for x(t) a 1-dimensional trajectory in input space.

Exponential growth with depth for random initialisations such as
Gaussian, uniform, and discrete; e.g. for Gaussian M = σw

√
2/π.

https://arxiv.org/abs/1911.10651
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Observed growth rate (solid) and bounds (dashed)
Empirical experiments showing dependence on σw and sparsity α

Price et al. 19’ also extended the results to have all but α fraction
of the entries in W equal to 0.

Unless σw or α small enough at initialisation the pre-activiation
output is exponentially complex.
https://arxiv.org/abs/1911.10651
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