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Backpropogation: weight initialisation (Glorot et al.’ 10)
Observed vanishing gradient

Xavier Glorot and Yoshua Bengio (2010) considered random initialized
networks and the associated variance of pre-activation values and the
gradients as they pass from layer to layer.

“Our objective here is to understand why standard gradient descent from

random initialization is doing so poorly with deep neural networks.... we

study how activations and gradients vary across layers and during

training, with the idea that training may be more difficult when the

singular values of the Jacobian associated with each layer are far from 1.”

http://proceedings.mlr.press/v9/glorot10a.html
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Xavier weight initialization (Glorot et al.’ 10)
Variance normalization; precursor to Pennington with σb = 0

Glorot and Bengio noted that (for symmetric φ(·) such as tanh(·)) the

hidden layer values hi+1 = φi
(
W (i)hi + b(i)

)
are approximately Gaussian

with a variance depending on the variance of the weight matrices W (i).

In particular, if σw is selected appropriately (σ2
w = 1/3n) then the

variance of hi is approximately constant through layers (see the ”bottom”

plot), and if σw is to small then the variance of hi converges towards zero

with depth (see the ”top” plot).

http://proceedings.mlr.press/v9/glorot10a.html

How to initialize a very deep feedforward network. 3

http://proceedings.mlr.press/v9/glorot10a.html


Xavier weight initialization (Glorot et al.’ 10)
Variance normalization; precursor to Pennington with σb = 0

Similarly, the gradient of a loss function used for training showed similar

Gaussian behaviour depending on σw .

The suggested ”Xavier” initialization σ2
w = 1/3n follows from balancing

the variance of hi and the gradient to be constant through depth.

http://proceedings.mlr.press/v9/glorot10a.html
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Xavier initialization (Glorot et al.’ 10)
Impact on training rate

Proper initialization is essential for training:

Five layer sigmoid fails to train while 4 layer sigmoid trains after

substantial stagnation. Tanh Normalized trains substantially faster than

Tanh without this initialization.

http://proceedings.mlr.press/v9/glorot10a.html
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Random DNNs hidden layer outputs
Norm of hidden layer outputs

Let fNN(x) denote a random Gaussian DNN

h(`) = W (`)z(`) + b(`), z(`+1) = φ(h`)), ` = 0, . . . , L− 1,

which takes as input the vector x , and is parameterised by random
weight matrices W (`) and bias vectors b(`) with entries sampled iid
from the Gaussian normal distributions N (0, σ2

w ) and N (0, σ2
b).

Define the `2 length of the pre-activation hidden layer h(`) ∈ Rn`

output as:

q` = n−1
`

∥∥∥h(`)
∥∥∥2

`2
:=

1

n`

n∑̀
i=1

(
h(`)(i)

)2
.

which is the sample mean of the random entries
(
h(`)(i)

)2
, each of

which are identically distributed
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Random DNN recursion map (Poole et al. 16’)
Norm of hidden layer output dependence on prior layer

The norm of the hidden layer output q` = n−1
`

∥∥h(`)
∥∥2

`2 has an expected

value over the random draws of W (`) and b(`) which satisfies

E(q`) = E
((

h(`)(i)
)2
)

which as h(`) = W (`)φ(h(`−1)) + b(`) is

E(q`) = E
((

W
(`)
i φ

(
h(`−1)

))2
)

+ E
((

b
(`)
i

)2
)

= σ2
wn
−1
`−1

n`−1∑
i=1

φ
(
h

(`−1)
i

)2
+ σ2

b

where W
(`)
i denotes the i th row of W (`).

https://arxiv.org/pdf/1606.05340.pdf

For a more rigorous proof see the solutions to Assignment Sheet 2.
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Random DNN recursion map (Poole et al. 16’)
Mean field recursion between layers

Approximating h
(`−1)
i as Gaussian with variance q(`−1):

n−1
`−1

n`−1∑
i=1

φ
(
h

(`−1)
i

)2

= E
(
φ
(
h(`−1)

)2
)

=
1√
2π

∫ ∞
−∞

φ
(√

q(`−1)z
)2

e−z
2/2dz

which gives a recursive map of q` = n−1
`

∥∥h(`)
∥∥2

`2 between layers

q(`) = σ2
b+σ2

w

1√
2π

∫ ∞
−∞

φ
(√

q(`−1)z
)2

e−z
2/2dz =: V(q(`−1)|σw , σb, φ(·)).

Note that the integral is larger for φ(x) = |x | than ReLU, which
are larger than φ(x) = tanh(x), indicating smaller σw , σb needed
to ensure q(`) has a finite nonzero limit q∗.
https://arxiv.org/pdf/1606.05340.pdf
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Example of DNN recursion fixed points (Poole et al. 16’)
Dependence on σw , σb, φ(·) for φ(·) = tanh(·).

Note that the fixed points here are all stable.
https://arxiv.org/pdf/1606.05340.pdf
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DNN recursion fixed points (Murray et al. 21’)
Examples of different fixed points or divergence

ReLU q(l) is unbounded, ELU q(l) → 0, sigmoidal q(l) → q∗ > 0.
https://arxiv.org/abs/2105.07741

How to initialize a very deep feedforward network. 10

https://arxiv.org/abs/2105.07741


Random DNN correlations between inputs (Poole et al. 16’)
Map of angle between two inputs

A single input x has hidden pre-activation output converging to a
fixed expected length.
Consider the map governing the angle between the hidden layer
pre-activations of two distinct inputs x (0,a) and x (0,b):

q
(`)
ab = n−1

`

nl∑
i=1

h
(`)
i (x (0,a))h

(`)
i (x (0,b)).

Similar to the analysis before, use the relation
h(`) = W (`)φ(h(`−1)) + b(`) to show the relation between layers.
https://arxiv.org/pdf/1606.05340.pdf
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Random DNN correlations between inputs (Poole et al. 16’)
Expected angle between

Replacing the average in the sum with the expected value gives

q
(`)
ab = n−1

`

nl∑
i=1

h
(`)
i (x (0,a))h

(`)
i (x (0,b))

= σ2
b + σ2

wE
(
φ(h(`−1)(x (0,a)))φ(h(`−1)(x (0,b)))

)
where as before, h

(`−1)
i are well modelled as being Gaussian with

expected length q(`−1) which converge to fixed points q∗.
https://arxiv.org/pdf/1606.05340.pdf
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Random DNN correlations between inputs (Poole et al. 16’)
Recursion correlation map.

Defining the angle between the hidden layers as c(`) = q
(`)
12 /q

∗ and
writing the expectation as integrals we have

c(`) = C
(
c(`−1)|σw , σb, φ(·)

)
:= σ2

b + σ2
w

∫
Dz1Dz2φ(u1)φ(u2)

where the double integral is with respect to the measure
Dz = (2π)−1/2e−z

2/2dz where u1 =
√
q∗z1 and

u2 =
√
q∗[c(`−1)z1 +

√
1− (c(`−1))2z2] are a change of variables

for the integrals. Normalizing by q(∗) we have the correlation map

ρ(l+1) = c(l+1) := R(ρ(l);σw , σb, φ(·)).
By construction R(1) = 1 as c(l) → q∗ as the two inputs converge
to one another. https://arxiv.org/pdf/1606.05340.pdf

How to initialize a very deep feedforward network. 13

https://arxiv.org/pdf/1606.05340.pdf


DNN correlation fixed points (Murray et al. 21’)
Examples of correlation functions for different φ(·)

ReLU requires σb = 0, ELU and sigmoidal have σw selected so
that R ′(1) = 1. https://arxiv.org/abs/2105.07741
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Random DNN correlations between inputs (Poole et al. 16’)
Recursion correlation map fixed points

By definition R(1) = 1. For σ2
b > 0 the correlation map satisfies

R(0) > 0, orthogonal x (0,a) and x (0,b) become increasingly
correlated with depth.
Of particular note is the slope of R(·) at ρ = 1

χ :=
∂R(ρ)

∂ρ
|ρ=1 =

∂ρ(`)

∂ρ(`−1)
|ρ=1 = σ2

w

∫
Dz [φ′(

√
q∗z)2].

Stability of the fixed point at ρ = 1 is determined by χ:

I χ < 1: ρ = 1is locally stable and points which are sufficiently
correlated all converge, with depth, to the same point.

I χ > 1: ρ = 1 is unstable and nearby points become
uncorrelated with depth.

I Preferable to choose χ = 1 if possible for (σw , σb, φ(·)).

https://arxiv.org/pdf/1606.05340.pdf
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Example of DNN correlation fixed points (Poole et al. 16’)
Dependence on σw , σb, φ(·) for φ(·) = tanh(·).

Note three respective stable fixed points, determined in part by χ.
https://arxiv.org/pdf/1606.05340.pdf
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Potential instability of hidden layer variance (Price et al. 24’)
Not all activations allow χ = 1 and stable training.

The nonlinear activation ReLUτ = max(0, x − τ) for τ > 0 is
untrainable for χ = 1 and V ′(q∗) = χ and V ′′(q∗) > 0 causing
exponential divergence of q(`).
https://arxiv.org/abs/2402.16184

How to initialize a very deep feedforward network. 17

https://arxiv.org/abs/2402.16184


Activation shaping to recover stability (Price et al. 24’)
Understanding the shape of V (q) and R(ρ) allows activation shaping

The nonlinear activation CReLUτ = min(max(0, x − τ),m) acts
has an additional parameter m that ”clips” the magnitude of the
output and can be used to regain stable training with χ = 1.
https://arxiv.org/abs/2402.16184

How to initialize a very deep feedforward network. 18

https://arxiv.org/abs/2402.16184


DNN Jacobian
Input-Output map: behaviour of small perturbations

Consider a fully connected L layer deep net given by

h(`) = W (`)z(`) + b(`), z(`+1) = φ(h`)), ` = 0, . . . , L− 1,

for ` = 1, . . . , L with activation φ(·) and W (`) ∈ Rn`×n`−1 .

Its Jacobian is given by

J =
∂z(L)

∂x (0)
= ΠL−1

`=0D
(`)W (`)

where D(`) is diagonal with entries D
(`)
ii = φ′(h

(`)
i ).

Which, amongst other things, can bound the local stability of the
DNN: ‖H(x + ε; θ)− H(x ; θ)‖ = ‖Jε+O(‖ε‖2)‖ ≤ ‖ε‖max‖J‖.
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DNN Jacobian
Gradient back-propagation: role of DNN Jacobian

L(θ;X ,Y ) = (2m)−1
m∑
µ=1

nL∑
i=1

(H(xµ(i); θ)− yi ,µ)2

Letting δ` := ∂L
∂h(`) and as before D(`) the diagonal matrix with

D
(`)
ii = φ′(h

(`)
i ) we have

δ` = D`(W (`))T δ`+1 and δL = D(L)gradh(L)L.

which gives the formula for computing the δ` for each layer as

δ` =
(

ΠL−1
k=`D

(k)(W (k))T
)
D(L)gradh(L)L.

and the resulting gradient gradθL with entries as

∂L
∂W (`)

= δ`+1 · hT` and
∂L
∂b(`)

= δ`+1
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Stability of pre-activation lengths (Pennington et al. 18’)
The “Edge of Chaos Curve” for φ(·) = tanh(·).

https://arxiv.org/pdf/1802.09979.pdf
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Network variance control through depth
Edge of chaos curves for other nonlinear activations (Abrol 19’)

The pre-activation output of networks converge to a zero-mean
Gaussian distribution with variance, q∗, specified by the nonlinear
activation, weight and bias variance, (σw and σb) respective.
The distribution of the network input-output spectrum has a mean
at layer d given by χd . Level curves of χ = 1 overcome the
exponential dependence on depth and allow training.

Initialisation on this curve allows training very deep networks.
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DNN random initialisation summary, so far
Dependence on (σw , σb, φ(·)).

I The hidden layers converge to fixed expected length.

I All inputs converge to either one another or prescribed
correlation, independent of the class the data is in, typically
happening at a rate which is exponential with depth.

I The rate with which these phenomenon occur, and values
which they take, are determined by the choice of
(σw , σb, φ(·)).

I Very DNNs can be especially hard to train for activations with
unfavourable initialisations; e.g. ReLU with χ = 1 requires
(σw , σb) = (

√
2, 0).

I The gradient of the network also have exponential depth
dependence proportional to χL through the expected singular
value of the Jacobian, making χ = 1 essential for training.
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Further associated reading 1 of 2
Related results

I Identifying natural depth scales of information propagation
https://arxiv.org/pdf/1611.01232.pdf

I Further details on the role of activation functions
https://arxiv.org/pdf/1902.06853.pdf

I Principles for selecting activation functions
https://arxiv.org/pdf/2105.07741.pdf
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Further associated reading 2 of 2
Convergence of representations at each layer of a neural network to a Gaussian Process & wider reading

I Early results on correlation of inputs (Chapter 2 in particular)
https://www.cs.toronto.edu/~radford/ftp/thesis.pdf

I Rigorous treatment of Gaussian Process perspective, infinite
width https://arxiv.org/pdf/1711.00165.pdf

I Rigorous treatment of Gaussian Process perspective, finite
width https://arxiv.org/pdf/1804.11271.pdf

I Higher order terms and width proportional to depth scaling
https://arxiv.org/pdf/2106.10165.pdf

I Specifics for random ReLU nets
https://arxiv.org/pdf/1801.03744.pdf

https://arxiv.org/pdf/1803.01719.pdf
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