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Backpropogation: weight initialisation (Glorot et al.” 10)

Observed vanishing gradient

Mathematical
Institute

Xavier Glorot and Yoshua Bengio (2010) considered random initialized
networks and the associated variance of pre-activation values and the
gradients as they pass from layer to layer.

“Our objective here is to understand why standard gradient descent from
random initialization is doing so poorly with deep neural networks.... we
study how activations and gradients vary across layers and during
training, with the idea that training may be more difficult when the
singular values of the Jacobian associated with each layer are far from 1.
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Xavier weight initialization (Glorot et al.” 10)

Variance normalization; precursor to Pennington with o), = 0 Mathematical
Institute

Glorot and Bengio noted that (for symmetric ¢(-) such as tanh(-)) the
hidden layer values hij 1 = ¢; (W(i)h; + b(i)) are approximately Gaussian
with a variance depending on the variance of the weight matrices W ().

In particular, if o, is selected appropriately (02 = 1/3n) then the
variance of h; is approximately constant through layers (see the "bottom”
plot), and if o, is to small then the variance of h; converges towards zero
with depth (see the "top” plot).
http://proceedings.mlr.press/v9/glorot10a.html
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Xavier weight initialization (Glorot et al.” 10)

Variance normalization; precursor to Pennington with o), = 0

Mathematical
Institute

Similarly, the gradient of a loss function used for training showed similar
Gaussian behaviour depending on o, .

100

8= —o.1s “o.1

T ! Sty I
R '&u#ﬂ,ng‘--t;chig‘y.‘,»

655 o
S S, -
Figure 7:

Back-propacated sradicents normalized his—
togorarms with hypoerbolic tangscent activation. with standard
(top)> vs normalized (bottorm) initialization. Top: O-pcecak
decreases for hisher Iaycers.

The suggested " Xavier” initialization o2, = 1/3n follows from balancing
the variance of h; and the gradient to be constant through depth.
http://proceedings.mlr.press/v9/glorot10a.html
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Xavier initialization (Glorot et al." 10)

.. OXFORD
Impact on training rate Mathematical
Institute

Proper initialization is essential for training:

Fizure 11: Test error darins  online trainins o che
Shapeset-3 >< 2 darascrt. fr various activaticon functicons and
initialimaticon schoecrmmces (ordearead o top> (o bottorrr i cdae—
creasins finnal crror>. IN after the activaticorn fiirncticon rrzarrie
indicates the usce of normalizod initiali=aticon.

Five layer sigmoid fails to train while 4 layer sigmoid trains after
substantial stagnation. Tanh Normalized trains substantially faster than
Tanh without this initialization.
http://proceedings.mlr.press/v9/glorot10a.html
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Random DNNs hidden layer outputs

Norm of hidden layer outputs

Let fyn(x) denote a random Gaussian DNN
O = w00 L p0) - ZEHF) — gy, r=0,...,L—1,
which takes as input the vector x, and is parameterised by random
weight matrices W() and bias vectors b(¥) with entries sampled iid
from the Gaussian normal distributions A(0,02) and AN(0,02).
Define the £2 length of the pre-activation hidden layer h(©) ¢ R™

output as: , L o ,
L= 2 (00)

which is the sample mean of the random entries (h(ﬁ)(i))z, each of
which are identically distributed

¢ = n;l Hh(e)

Oxford How to initialize a very deep feedforward network.
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Random DNN recursion map (Poole et al. 16")

Norm of hidden layer output dependence on prior layer

Mathematical
Institute

sz has an expected

value over the random draws of W and b(©) which satisfies

(e = ((w00)°)

The norm of the hidden layer output g° = n, ' ||h(*)

which as h(9) €)¢( )+ b0 is
S(qe) =£ ((W,.“)qs (h(f—n)) ) L <<blgf))2>

-0 n51z¢( )24-0%

where W,-(Z) denotes the it" row of W0,
https://arxiv.org/pdf/1606.05340.pdf
For a more rigorous proof see the solutions to Assignment Sheet 2.
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Random DNN recursion map (Poole et al. 16")

Mean field recursion between layers

(=1

Approximating h; as Gaussian with variance g(~1):

ne—1

i o (W) =8 (0 (W0)) = [ o (VAR e e

. . . _ 2
which gives a recursive map of ¢* = n, 1 Hh(Z)Hﬁ between layers

1 o0
V2T J 0o

Note that the integral is larger for ¢(x) = |x| than ReLU, which
are larger than ¢(x) = tanh(x), indicating smaller o, o) needed
to ensure g(©) has a finite nonzero limit g*.
https://arxiv.org/pdf/1606.05340.pdf

2
g = o2 +0? b ( q(ffl)z) e % 2dz = V(g Vo, 7, 6(-)).

Oxford How to initialize a very deep feedforward network. 8
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Example of DNN recursion fixed points (Poole et al. 16")

Dependence on oy, , o, ¢(-) for ¢(-) = tanh(-).

Mathematical
Institute

A iteraF\\[/e 1\ength map B C length at fixed point D average iterations
V(¢ How,08) dynamics of ¢ q* (0w, o3) to convergence
~1 5 6
z < o 4
£ CRU
2 = KR 3
< B
5 25
2 K] 9
3 —
° 0 1 0
001 2 3 4 5 6 0 1 2 3 4
input length (¢'~1) iteration ({) ap ay
— Gy =13 ey =25 oy =40

Figure 1: Dynamics of the squared length ¢ for a sigmoidal network (¢(h) = tanh(h)) with 1000
hidden units. (A) The iterative length map in for 3 different o, at o, = 0.3. Theoretical
predictions (solid lines) match well with individual network simulations (dots). Stars reflect fixed
points ¢* of the map. (B) The iterative dynamics of the length map yields rapid convergence of ¢!
to its fixed point ¢* , independent of initial condition (lines=theory; dots=simulation). (C) ¢* as a
function of 7, and 3, (D) Number of iterations required to achieve < 1% fractional deviation off
the fixed point. The (a4, 0,) pairs in (A,B) are marked with color matched circles in (C,D).

Note that the fixed points here are all stable.
https://arxiv.org/pdf/1606.05340.pdf
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DNN recursion fixed points (Murray et al. 21")

Examples of different fixed points or divergence Mathematical
Institute

Variance functions of common activations

2.00

— Identity
1.75 —— RelU, o =0.1

Tanh, of = 0.1

1.50 =

—— ELU, 0% =
1.25

£ 1.00 ~
0.75 )
e table fixed point g*=0
0.50 /
0.25 /
y
0.00
o.00 025 0.50 0.¥5 1.00 1.25 1.50 1.75 2.00

q
ReLU ¢() is unbounded, ELU () — 0, sigmoidal g’ — ¢* > 0.
https://arxiv.org/abs/2105.07741
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Random DNN correlations between inputs (Poole et al. 16')

Map of angle between two inputs

A single input x has hidden pre-activation output converging to a
fixed expected length.

Consider the map governing the angle between the hidden layer
pre-activations of two distinct inputs x(%:2) and x(0:0):

qab*”elzh Z(X(Ob)

Similar to the analysis before, use the relation
A = WO (A1) + b() to show the relation between layers.
https://arxiv.org/pdf/1606.05340.pdf
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Random DNN correlations between inputs (Poole et al. 16')

Expected angle between

Replacing the average in the sum with the expected value gives
-1 0, (0, £)(,(0,b
qab =n, Zh( ?) h( )( ( ))

= o} + %€ (S(H DO (H D (M)

where as before, A are well modelled as being Gaussian with
expected length g 1) which converge to fixed points g*.
https://arxiv.org/pdf/1606.05340.pdf
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Random DNN correlations between inputs (Poole et al. 16')

Recursion correlation map.
Inst

Defining the angle between the hidden layers as c(8) = q12 /q and
writing the expectation as integrals we have

)= € (Do, 3p,9()) i= 0 + 0%, [ DzDzo(m)o(c)

where the double integral is with respect to the measure
Dz = (27r)*1/2e*22/2dz where u; = \/q%z; and
» = /@ [c Dz + /1 — (c(F=1))22] are a change of variables
for the integrals. Normalizing by g*) we have the correlation map
P = D = R(p(D; 0y, 0, (1)),
By construction R(1) =1 as c) — g* as the two inputs converge
to one another.  https://arxiv.org/pdf/1606.05340.pdf

Oxford How to initialize a very deep feedforward network.
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DNN correlation fixed points (Murray et al. 21")

Examples of correlation functions for different ¢(-) Ma,,ema“(a\
Institute

Correlation functions of common activations

1.00
— Ildentity
o.75 RelU,. o =
Tanh, o = 0.1
0.50 o
——— ELU, oZ =0.1 g

0.25 =

i
P
o.00 }—— /
—o0.25
—0.50 "

—0.75

Rip)

—1.00
—1.00—0.75—0.50—0.25 0.00 0.25 0.50 0.75 1.00

RelLU requires op = 0, ELU and sigmoidal have o, selected so
that R'(1) = 1. https://arxiv.org/abs/2105.07741
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Random DNN correlations between inputs (Poole et al. 16')

Recursion correlation map fixed points

Mathematical
Institute

By definition R(1) = 1. For o3 > 0 the correlation map satisfies
R(0) > 0, orthogonal x(0:2) and x(%:0) become increasingly
correlated with depth.

Of particular note is the slope of R(:) at p =1
_ OR(p) op) 2 S A2
X = ap‘p_]':ap(lLl)|p_1:O-W/Dz[¢/( qz) ]

Stability of the fixed point at p = 1 is determined by y:

» y < 1: p = 1lis locally stable and points which are sufficiently
correlated all converge, with depth, to the same point.

» x > 1: p=1is unstable and nearby points become
uncorrelated with depth.

» Preferable to choose x = 1 if possible for (o, op, ¢(+)).
https://arxiv.org/pdf/1606.05340.pdf
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Example of DNN correlation fixed points (Poole et al. 16")

Dependence on oy, , o, ¢(-) for ¢(-) = tanh(-).

Mathematical
Institute

(C  correlation at fixed point D
" iterative correlation map dynamics of ¢ (0w, ) Xt
0 5 .

(<)
N

output co
g &
N
N
correlation (c!)
fi\ 5

0.0 0.5 10 0 5 10 15 20 25 30 0 1 2 3 4 0 12 3 1

input corr. (c'™!) iteration (1) o a
—y =13 —y =25 ey =40

Figure 2: Dynamics of correlations, ¢}y, in a sigmoidal network with ¢(h) = tanh(h). (A) The
C-map in (6) for the same o, and o, = 0.3 as in Fig. [TA. (B) The C-map dynamics, derived from
both theory, through @ (solid lines) and numerical simulations of (1) with N; = 1000 (dots) (C)
Fixed points ¢* of the C-map. (D) The slope of the C-map at 1, y1, partitions the space (black dotted
line at x; = 1) into chaotic (y; > 1, ¢* < 1) and ordered (y; < 1, ¢* = 1) regions.

Note three respective stable fixed points, determined in part by x.
https://arxiv.org/pdf/1606.05340.pdf
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Potential instability of hidden layer variance (Price et al. 24")

OXFORD

Not all activations allow x = 1 and stable training. Mathematical
Institute
=0 =025
30 / — 02=149,0} =018, <1
25 02=249,0=018, =1 /

01=349,08 =018, 1,51

Figure 2: Variance maps for ReLU; with (g, ;) on, and on either side of, the EoC, for different
values of 7. Here ¢* = 11s used to compute X1 geu, . The dashed line is the identity map.

The nonlinear activation ReLU; = max(0,x — 7) for 7 > 0 is
untrainable for x =1 and V’(g*) = x and V"(g*) > 0 causing
exponential divergence of g(®).
https://arxiv.org/abs/2402.16184
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Activation shaping to recover stability (Price et al. 24") -

Understanding the shape of V(q) and R(p) allows activation shaping Mothematia
Institute

0 05 10 15 20 25 30 35 40

1520 25 30 35 40

W 05 1o 15 20 25 30 35 40 00 05 10 15 20 25 30 35 40 00 05 10

Figure 11: Variance maps for CReLU, ,,, (61) with (o, 03) at the EoC, for different s and m. Again

=1L

The nonlinear activation CReLU; = min(max(0,x — 7), m) acts
has an additional parameter m that "clips” the magnitude of the
output and can be used to regain stable training with xy = 1.
https://arxiv.org/abs/2402.16184
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DNN Jacobian

Input-Output map: behaviour of small perturbations

Consider a fully connected L layer deep net given by
hO = wOO L pO  AFD) —gp)y r=0,... L1,

for £ =1,..., L with activation ¢(-) and W) g RAexne-1,

Its Jacobian is given by

oz(b)

_ al-1p@ (e
_m—nezoD()W()

where D() is diagonal with entries Di(ié) = gb’(h,(e)).
Which, amongst other things, can bound the local stability of the
DNN: [[H(x + €. 0) — H(x; 0)I| = [[Je + O([[e]|*)|] < [lellmax]|J]].

Oxford How to initialize a very deep feedforward network. 19
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DNN Jacobian

Gradient back-propagation: role of DNN Jacobian

L(6; X, Y) ZZ ~Yiu)
pn=1i=1
Letting &y := % and as before D) the diagonal matrix with
DI,(I,E) — ¢>’(h,(.£)) we have
5 =D (WNTs, 1 and 6, = DBgrad, L.
which gives the formula for computing the §, for each layer as
5 = (ni;;o(k)(w(k))T) DWgrad, L.

and the resulting gradient grad, L with entries as

Y ; Y
W = 5(4_]_ . hg and m = 5g+1

Oxford How to initialize a very deep feedforward network.
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Stability of pre-activation lengths (Pennington et al. 18")
The “Edge of Chaos Curve” for ¢(-) = tanh(-).

Mathematical
Institute
0.25 -
q
Ordered 1.5
0.20 xX(Fuw, o) < 1
Vanishing Gradients
1.0
0.15
& 0.5
o0.10
0.0
0.05 Chaotic
xX(Gw,on) = 1
Exploding Gradients
0.00
0.5 1.0 1.5 2.0 2.5 3.0
o5
Figure 1: Order-chaos tramnsition when @é(h) =
tanh(/A). The critical line x = 1 determines the bound-
ary between the two phases. In the chaotic regime

x > 1 and gradients explode while in the ordered
regime x < 1 and we expect gradients to vanish. The
value of g* along this line is shown as a heatmap.

https://arxiv.org/pdf/1802.09979.pdf

Oxford How to initialize a very deep feedforward network.
Mathematics

21


https://arxiv.org/pdf/1802.09979.pdf

Network variance control through depth

Edge of chaos curves for other nonlinear activations (Abrol 19")

Mathematical
Institute

The pre-activation output of networks converge to a zero-mean
Gaussian distribution with variance, g*, specified by the nonlinear
activation, weight and bias variance, (o, and o}) respective.

The distribution of the network input-output spectrum has a mean
at layer d given by 9. Level curves of Y = 1 overcome the
exponential dependence on depth and allow training.

qg* at critical line

Phase diagram

—— tanh

o5 10 1.5 20 25 3.0
2 2
oL )

Initialisation on this curve allows training very deep networks.
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DNN random initialisation summary, so far

Dependence on (o, op, ¢(+)).

>

>

The hidden layers converge to fixed expected length.

All inputs converge to either one another or prescribed
correlation, independent of the class the data is in, typically
happening at a rate which is exponential with depth.

The rate with which these phenomenon occur, and values
which they take, are determined by the choice of

(Ow, b, #(+)).

Very DNNs can be especially hard to train for activations with
unfavourable initialisations; e.g. ReLU with xy = 1 requires
(0w, o) = (v/2,0).

The gradient of the network also have exponential depth
dependence proportional to xt through the expected singular
value of the Jacobian, making x = 1 essential for training.

Oxford
Mathematics
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Further associated reading 1 of 2

Related results Mathematical
matic

» Identifying natural depth scales of information propagation
https://arxiv.org/pdf/1611.01232.pdf

» Further details on the role of activation functions
https://arxiv.org/pdf/1902.06853.pdf

» Principles for selecting activation functions
https://arxiv.org/pdf/2105.07741.pdf
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Further associated reading 2 of 2

Convergence of representations at each layer of a neural network to a Gaussian Process & wider reading

Mathematical

Early results on correlation of inputs (Chapter 2 in particular)
https://www.cs.toronto.edu/~radford/ftp/thesis.pdf

Rigorous treatment of Gaussian Process perspective, infinite
width https://arxiv.org/pdf/1711.00165.pdf

Rigorous treatment of Gaussian Process perspective, finite
width https://arxiv.org/pdf/1804.11271.pdf

Higher order terms and width proportional to depth scaling
https://arxiv.org/pdf/2106.10165.pdf

Specifics for random RelLU nets

https://arxiv.org/pdf/1801.03744.pdf
https://arxiv.org/pdf/1803.01719.pdf
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