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REPRESENTATION THEORY OF SEMISIMPLE LIE ALGEBRAS

KONSTANTIN ARDAKOV

1. The universal enveloping algebra of a Lie algebra

1.1. Lie algebras. Let k be a field.

Definition 1.1. A Lie algebra g over k is a k-vector space with a bilinear operation [ , ] : g× g→ g (called
the Lie bracket) that satisfies the following identities:

(1) (alternating) [x, x] = 0 for all x ∈ g. (When char k 6= 2, this is equivalent with “skew-symmetry”:
[x, y] = −[y, x], x, y ∈ g.)

(2) (Jacobi identity): for all x, y, z ∈ g,

[x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0.

A Lie algebra is a non-associative algebra, and the Jacobi identity replaces the associativity condition.
There are a few basic examples to keep in mind.

Example 1.2.

(1) Let A be an associative algebra. Then we may define a Lie algebra structure on g = A by setting the
bracket to equaled the commutator in A; [x, y] = xy − yx. One verifies immediately that the Jacobi
identity is satisfied because of the associativity of the multiplication in A.
(a) Let V be a k-vector space and A = Endk(V ). Applying the construction above to this setting,

we obtain the Lie algebra gl(V ) whose elements are the endomorphisms of V and the bracket is
the commutator.

(b) If V is finite dimensional and we fix a basis of V , we may identify V ∼= kn and Endk(V ) with
n × n matrices with coefficients in k. Then the Lie algebra is gl(n, k), the general linear Lie
algebra of n× n matrices with the Lie bracket given by the commutator.

(2) Let V be a k-vector space, and consider sl(V ) = {x : V → V | tr(x) = 0} with the Lie bracket given
by the commutator in gl(V ) 1. If V is finite dimensional and we fix a basis as before, we obtain the
special linear Lie algebra sl(n, k) of n × n matrices of trace 0. Notice that this algebra is not an
example of (1): in order to define the bracket in sl(V ), we invoke the commutator in a larger algebra,
gl(V ). In fact, one may prove that in general there is no associative algebra A such that sl(2) is
isomorphic with the Lie algebra obtained from A via the construction in (1).

(3) (Classical Lie algebras) Let V be a finite dimensional vector space over k and B : V × V → k be a
bilinear form. Define

Der(B) = {x ∈ gl(V ) | B(xu, v) +B(u, xv) = 0, for all u, v ∈ V }. (1.1.1)

Thi is a Lie subalgebra of gl(V ), consisting of the linear maps that preserve B. Suppose that B is
nondegenerate.
(a) If B is symmetric, we obtain the orthogonal Lie algebra with respect to B, denoted by so(V,B).

When k = C, all nondegenerate symmetric bilinear forms are equivalent, hence there is only
one (up to isomorphism) orthogonal Lie algebra over C. On the other hand, if k = R, then
the nondegenerate symmetric bilinear forms are classified by their signatures, and so are the
orthogonal Lie algebras over R.

(b) If B is skew-symmetric, we obtain the symplectic Lie algebra with respect to B, denoted by
sp(V,B). Since B is nondegenerate, dimV must be even. Recall that, unlike the case of sym-
metric bilinear forms, the classification of skew-symmetric bilinear forms is independent of the
field. In particular, there exists only one (up to equivalence) nondegenerate skew-symmetric
bilinear form and thus, only one symplectic Lie algebra (up to isomorphism).

1These notes are based on an earlier version of this course by Dan Ciubotaru.
1recall that the commutator of any two linear maps has trace 0
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(4) Let g = gl(n, k) be the general linear Lie algebra. We denote by n+, h, n− the Lie subalgebras of
strictly upper triangular matrices, diagonal matrices, and strictly lower triangular matrices, respec-
tively. The vector space decomposition g = n+ ⊕ h ⊕ n− will play an important role in the theory.
We emphasize that this is not a Lie algebra decomposition.

1.2. Lie algebra representations.

Definition 1.3. A representation of the Lie algebra g over k is a k-vector space V together with a linear
map ρ : g→ Endk(V ) (the action) such that

ρ([x, y]) = ρ(x)ρ(y)− ρ(y)ρ(x), for all x, y ∈ g. (1.2.1)

An equivalent way is to say that the map ρ : g→ gl(V ) is a homomorphism of Lie algebras. We also say that
V is a g-module.

If (ρ, V ) is a representation of g, we will often write x · v in place of ρ(x)(v) for the action, x ∈ g, v ∈ V .

Example 1.4.

(1) Let g = gl(V ) act on V in the usual way, i.e., the map ρ is the identity. In terms of matrices, if
g = gl(n, k) and V = kn, then the action is just matrix multiplication: an n × n matrix times a
column vector.

(2) If g is any Lie algebra, the adjoint representation is ad : g→ gl(g), ad(x)(y) = [x, y], for all x, y ∈ g.
The fact that this is a representation is equivalent with the Jacobi identity.

(3) If g is any Lie algebra, the trivial representation is the one dimensional representation ρ0 : g→ gl(k),
given by ρ0(x) = 0 for all x ∈ g. More generally, if (ρ, V ) is any g-representation, we write

V g = {v ∈ V | ρ(x)v = 0, for all x ∈ g}. (1.2.2)

This the sum of all trivial subrepresentations of V .
(4) If V,W are g-modules, then so is Homk(V,W ), via the rule

(x · f)(v) = xf(v)− f(xv) for all f ∈ Homk(V,W ), x ∈ g, v ∈ V.

Later in the course we will specialize to certain types of representations.

1.3. Tensor products. Recall that the tensor product of two k-vector spaces U, V is a k-vector space U⊗V .
A typical element in U ⊗ V is

∑n
i=1 ui⊗ vi, where ui ∈ U and vi ∈ V . This satisfies the following properties:

(1) (u1 + u2)⊗ v = u1 ⊗ v + u2 ⊗ v, u1, u2 ∈ U , v ∈ V ;
(2) u⊗ (v1 + v2) = u⊗ v1 + u⊗ v2, u ∈ U , v1, v2 ∈ V ;
(3) (λu)⊗ v = u⊗ (λv) = λ(u⊗ v), λ ∈ k, u ∈ U , v ∈ V .

If {ei | i ∈ I} is a basis of U and {fj | j ∈ J} is a basis of V , then {ei⊗ fj | i ∈ I, j ∈ J} is a basis of U ⊗V .
In particular, dim(U ⊗ V ) = dimU · dimV.

More generally, if V1, . . . , Vn are k-vector spaces, we may define recursively the tensor product V1 ⊗ V2 ⊗
· · ·⊗Vk. This tensor product of vector spaces is associative, so we can ignore the order in which we construct
this tensor product, e.g., (V1 ⊗ V2)⊗ V3

∼= V1 ⊗ (V2 ⊗ V3).
In particular, we can speak about the n-fold tensor product of a vector space V :

Tn(V ) = V ⊗ V ⊗ · · · ⊗ V︸ ︷︷ ︸
n times

.

If U and V are g-representations, then we define an action of g on U ⊗ V by:

x · (u⊗ v) = (x · u)⊗ v + u⊗ (x · v), x ∈ g, u, v ∈ V. (1.3.1)

One verifies easily that this is indeed a Lie algebra action:

x · (y · (u⊗ v)) = x · ((y · u)⊗ v + u⊗ (y · v))

= (x · (y · u))⊗ v + (y · u)⊗ (x · v) + (x · u)⊗ (y · v) + u⊗ (x · (y · v)).

Writing the similar equation for y · (x · (u⊗ v)) and subtracting, we see that the middle terms cancel, so:

[x, y] · (u⊗ v) = [x, y] · u⊗ v + u⊗ [x, y] · v.
We can extend this definition to an action on tensor products V1⊗ V2⊗ · · · ⊗ Vn, as the sum of actions on

one component at a time.
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Definition 1.5. V be a k-vector space.

(1) Define T 0(V ) = k, and set

T (V ) =
⊕
n≥0

Tn(V ). (1.3.2)

Endow T (V ) with the multiplication given by the tensor product:

T i(V )× T j(V )→ T i+j(V ), (x, y) 7→ x⊗ y.
This makes T (V ) into an associative k-algebra with unity 2, called the tensor algebra of V .

(2) The symmetric algebra S(V ) of V is defined as the quotient of T (V ) by the two-sided ideal generated
by {x⊗ y − y ⊗ x, x, y ∈ V }.

(3) The exterior algebra
∧
V of V is defined as the quotient of T (V ) by the two-sided ideal generated by

{x⊗ x, x ∈ V }.
The image of x1 ⊗ x2 ⊗ · · · ⊗ xn ∈ Tn(V ) in Sn(V ) is denoted x1x2 · · ·xn; its image in

∧n
(V ) is denoted

x1 ∧ x2 ∧ · · · ∧ xn.

Remark 1.6. Let {xi | i ∈ I} be a basis of V where (I,≤) is an ordered set.

(1) A basis of Sn(V ) is given by {xi1xi2 . . . xin | i1 ≤ i2 ≤ · · · ≤ in, ij ∈ I}.
(2) A basis of

∧n
V is given by {xi1 ∧ xi2 ∧ · · · ∧ xin | i1 < i2 < · · · < in, ij ∈ I}.

In particular, if n > dimV , then
∧n

V = 0.

Lemma 1.7. Let V be a g-module; then T (V ), S(V ) and
∧
V are graded algebras, and each inherits a

g-action from V .

Example 1.8. Suppose the characteristic of the field k is not 2. We can decompose V ⊗ V as a direct sum:

V ⊗ V = S2(V )⊕
∧2

V,

where we embed S2(V ) into V ⊗ V via:

xy 7→ 1

2
(x⊗ y + y ⊗ x),

and we embed
∧2

V into V ⊗ V via:

x ∧ y 7→ 1

2
(x⊗ y − y ⊗ x).

If V is a g-representation, then this decomposition of g-invariant, in other words, it is a decomposition as
g-representations.

1.4. The universal enveloping algebra: definition. Let g be a Lie algebra. The goal is to assign to g
an associative k-algebra with 1 such that the representation theory of g is equivalent with the representation
theory of this associative algebra.

Definition 1.9. Let T (g) be the tensor algebra of g. Let J be the two-sided ideal of T (g) generated by all the
elements x⊗ y − y ⊗ x− [x, y], with x, y ∈ g. The universal enveloping algebra of g is the associative unital
k-algebra:

U(g) := T (g)/J. (1.4.1)

There is a canonical linear map ι : g → U(g) obtained by composing the identity map g → T 1(g) with the
quotient map T (g)→ U(g).

For example, If g is a commutative Lie algebra (so the bracket is identically zero), then U(g) = S(g), the
symmetric algebra generated by (the vector space) g.

The adjective “universal” is motivated by the following universal property whose proof is straightforward.

Lemma 1.10. Let A be an associative unital algebra together with a linear map τ : g→ A such that

τ(x)τ(y)− τ(y)τ(x) = τ([x, y]) for all x, y ∈ g.

There exists a unique unital algebra homomorphism τ ′ : U(g)→ A such that

τ ′ ◦ ι = τ.

2The element 1 comes from k = T 0(V )



4 KONSTANTIN ARDAKOV

In particular, notice that the lemma says that every Lie algebra representation of g can be lifted to a
representation of the associative algebra U(g). Indeed, if we have ρ : g→ gl(V ) a Lie algebra representation,
take A = Endk(V ) and τ = ρ and the claim follows from the universal property. Conversely, given any
representation of U(g), we obtain a Lie algebra representation of g by composing with the canonical map ι.
Therefore, Lie algebra representations of g are the same thing as representations of U(g).

1.5. Filtration by degree and the associated graded algebra. We assume from now on that k has
characteristic 0 and that g is a finite dimensional Lie algebra over k.

The tensor algebra T (g) has a natural filtration by degree via the subspaces

Tn(g) :=

n⊕
i=0

T i(g) ⊂ T (g).

Let Un(g) denote the image of Tn(g) in U(g). Then {Un(g)} is a filtration by subspaces of U(g):

U0(g) ⊂ U1(g) ⊂ · · · ⊂ Un(g) ⊂ · · · , U(g) =
⋃
n≥0

Un(g). (1.5.1)

Definition 1.11. The associated graded algebra grU(g) is defined as follows. As a vector space, it equals

grU(g) = gr0 U(g)⊕ gr1 U(g)⊕ gr2 U(g)⊕ . . .
where grn U(g) := Un(g)/Un−1(g) for each n ≥ 0 and U−1(g) := {0}.
The multiplication in U(g) defines bilinear maps

grn U(g)× grm U(g)→ grn+m U(g)

and then, by bi-additive extension, a multiplication on grU(g).
This makes grU(g) into an associative unital graded algebra.

Fix an ordered basis {xi} of g. Denote the image of this basis in U(g) by {yi}. For every finite sequence
I = (i1, . . . , im) of indices, let yI = yi1yi2 . . . yim ∈ U(g).

Lemma 1.12.

(a) The vector space Um(g) is generated by yI for all increasing sequences I of length at most m.
(b) The algebra grU(g) is commutative.

Proof. (a) The claim is clear without the adjective “increasing”. It follows by induction on m that indeed
we may take only increasing sequences.

(b) From part (a), we see that grU(g) is generated as a graded k-algebra by grU1(g). But if X = x+U0(g)
and Y = y + U0(g) are two elements in grU1(g) with x, y ∈ g then

XY − Y X = xy − yx+ U1(g) = [x, y] + U1(g) = 0

because [x, y] ∈ g maps to U1(g) in U(g). �

We wish to show that the canonical map ι : g→ U(g) is injective and to understand the structure of the
commutative algebra grU(g). The main technical result that we need is next.

Let P = k[zi] be the algebra of polynomials in the indeterminates zi. Let Pm denote the subspace of
polynomials of total degree less than or equal to m. If I = (i1, . . . , im) is a sequence of integers, denote zI as
before. It will be convenient to use the notation i ≤ I to mean i ≤ ik for all k = 1, . . . ,m.

Lemma 1.13 (Dixmier). For every m ≥ 0, there exists a unique linear map fm : g⊗ Pm → P such that:

(Am) fm(xi ⊗ zI) = zizI for i ≤ I, zI ∈ Pm;
(Bm) fm(xi ⊗ zI)− zizI ∈ Pk for zI ∈ Pk, k ≤ m;
(Cm) fm(xi ⊗ fm(xj ⊗ zJ)) = fm(xj ⊗ fm(xi ⊗ zJ)) + fm([xi, xj ]⊗ zJ), for zJ ∈ Pm−1.

Moreover, the restriction of fm to g⊗ Pm−1 is fm−1.

(Dixmier, page 68). 3 To simplify notation, we will write

xz := fm(x⊗ z) for x ∈ g, z ∈ Pm
when these have been defined; in this notation, the three conditions we need to establish become

3This proof is non-examinable.
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(Am) xizI = zizI whenever i ≤ I and |I| ≤ m,
(Bm) xizI − zizI ∈ P|I| for any i and any I such that |I| ≤ m,
(Cm) xi(xjzJ) = xj(xizJ) + [xi, xj ]zJ , for any i, j and any J such that |J | ≤ m− 1.

In effect, the proof first constructs an action of the tensor algebra T (g) on P , and then verifies that this
action descends to an action of U(g) on P by verifying condition (Cm).
Step 1. The proof is by induction on m. For m = 0, we define for any index i,

xi1 := zi

then (A0), (B0) and (C0) are all satisfied.
Step 2. Assume from now on that m ≥ 1. Fix the index i and let I be an increasing sequence of indices
with |I| = m; we will define xizI . Write I = (j, J) with j ≤ J and |J | = m− 1.
(a) If i ≤ j, then we define

xizI := zizI . (1.5.2)

(b) If i > j then xizJ − zizJ ∈ Pm−1 by (Bm−1) and we define inductively

xizI := zizI + xj(xizJ − zizJ) + [xi, xj ]zJ . (1.5.3)

Step 3. With these definitions, we see that (Am) is satisfied, and it follows from (1.5.2) that (Bm) is satisfied
if i ≤ I. Suppose that I = (j, J) where j ≤ J but i > j. Now (Bm−1) implies that gPm−1 ⊆ Pm. Since
xizJ − zizJ ∈ P|J| = Pm−1 by (Bm−1), it follows that xj(xizJ − zizJ) ∈ Pm. Similarly, because zJ ∈ Pm−1

as |J | = m− 1, we have [xi, xj ]zJ ∈ Pm. Applying (1.5.3) we see that in this case,

xizI − zizI = xj(xizJ − zizJ) + [xi, xj ]zJ ∈ Pm.
as required for (Bm).
Step 4. It remains to check that (Cm) is also satisfied. So, let the indices i, j be given and let J be an
increasing sequence of indices with |J | = m− 1. We split the problem into 4 cases.
(a). Suppose that j ≤ J and i > j. Then by (1.5.2), xjzJ = zjzJ = zI where I := (j, J). Then by (1.5.3),

xi(xjzJ) = xizI = zizI + xj(xizJ − zizJ) + [xi, xj ]zJ .

But xj(zizJ) = zjzizJ by (1.5.2) because we’re assuming j < i and j ≤ J , and this equals zizjzJ = zizI
because P is commutative. So the first term cancels with the third term and we obtain (Cm), namely

xi(xjzJ) = xj(xizJ) + [xi, xj ]zJ . (1.5.4)

(b). Suppose now that i ≤ J and j > i; then by swapping i and j in (1.5.4) we obtain

xj(xizJ) = xi(xjzJ) + [xj , xi]zJ .

Rearranging this equation and using [xj , xi] = −[xi, xj ] shows that (Cm) is also satisfied in this case.
(c). Because (Cm) is trivially satisfied when i = j, it follows from (a, b) that (Cm) holds if i ≤ J or j ≤ J.
(d). Suppose finally that J = (k,K) with k ≤ K and k < i and k < j. Then |K| = m− 2 so by (Cm−1),

xjzJ = xj(xkzK) = xk(xjzK) + [xj , xk]zK . (1.5.5)

Now by (Bm−1), xjzK = zjzK + w for some w ∈ Pm−2. Note that by cases (a,b) above, we can apply (Cm)
to xi(xk(zjzK)) because k ≤ K and k < j; we can also apply (Cm−1) to xi(xkw). Therefore (Cm) applies to
xi(xk(xjzK)) and gives

xi(xk(xjzK)) = xk(xi(xjzK)) + [xi, xk](xjzK). (1.5.6)

On the other hand, it follows from (Cm−1) that

xi([xj , xk]zK) = [xj , xk](xizK) + [xi, [xj , xk]]zK . (1.5.7)

Applying xi to equation (1.5.5) and using (1.5.6) and (1.5.7), we obtain

xi(xjzJ) = xk(xi(xjzK)) + [xi, xk](xjzK) + [xj , xk](xizK) + [xi, [xj , xk]]zK .

Swap i and j in this equation and subtract: the two middle terms cancel and we obtain

xi(xjzJ)− xj(xizJ) = xk(xi(xjzK)− xj(xizK)) + ([xi, [xj , xk]]− [xj , [xi, xk]]) zK .

Apply (Cm−1) to the first term and the Jacobi identity to the second term to obtain

xi(xjzJ)− xj(xizJ) = xk([xi, xj ]zK) + [[xi, xj ], xk]zK .
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Applying (Cm−1) again finally shows that the right hand side equals [xi, xj ](xkzK); since k ≤ K this equals
[xi, xj ](zkzK) = [xi, xj ]zJ by (1.5.2). This establishes (Cm) in the final case, and completes the proof. �

Proposition 1.14. The set {yI | I increasing sequence} is a basis of U(g).

Proof. By Lemma 1.13, there is a representation ρ : g → End(P ) such that ρ(xi)zI = zizI for all i ≤ I. By
Lemma 1.10, this extends to a unique algebra homomorphism φ : U(g)→ End(P ) such that

φ(yi)zI = zizI , for all i ≤ I.

From this, we deduce recursively that, if I is an increasing sequence, then φ(yI)1 = zI . Since {zI} are linearly
independent in P , it follows that {yI} is a linearly independent set in U(g). But we already know that it is
also a generating set, hence a basis. �

Corollary 1.15. The canonical map ι : g→ U(g) is injective.

Proof. Clear from Proposition 1.14. �

In light of this result, from now on identify g with its image in U(g) and drop ι (and the y’s) from notation.

Corollary 1.16. Let (x1, . . . , xn) be an ordered basis of g. Then {xk11 x
k2
2 · · ·xknn : ki ∈ N} is a basis of U(g).

Proof. This is just a rephrasing of Proposition 1.14 in the case when dim g <∞. �

Since ι : g → grU(g) is an injection, we can uniquely extend it to a canonical homomorphism ι : S(g) →
grU(g). (Both algebras are commutative!) Clearly, ι maps Sm(g) to grm U(g) for each m ≥ 0.

Theorem 1.17 (Poincaré-Birkhoff-Witt Theorem). The canonical homomorphism ι : S(g) → grU(g) is an
isomorphism of graded algebras.

Proof. It follows from Proposition 1.14 that {yI : I is increasing and |I| = m} maps to a basis of grm U(g) =
Um(g)/Um−1(g). Now if I = (i1, i2, . . . , im) then

ι(yI + Um−1(g)) =

m∏
j=1

ι(yij + U0(g)) =

m∏
j=1

zij = zI

so ι maps this basis of grm U(g) to the basis {zI : |I| = m} of Sm(g). Hence ι is an isomorphism. �

The PBW theorem allows us to identify canonically grU(g) with S(g).

Definition 1.18. Suppose that k has characteristic zero. Let φ̃ : S(g)→ T (g) be the symmetrizing map:

x1x2 . . . xm 7→
1

m!

∑
σ∈Sm

xσ(1) ⊗ · · · ⊗ xσ(m). (1.5.8)

Denote φ : S(g)→ U(g) the composition of the map φ̃ with the projection onto U(g).

Notice that xσ(1) · · ·xσ(m) ≡ x1 · · ·xm mod Um−1(g) for any σ ∈ Sm, whence

φ(x1 · · ·xm) ≡ x1 · · ·xm mod Um−1(g)

for any x1, . . . , xm ∈ g. This means that φ preserves the filtrations on S(g) and U(g) and induces the identity
map on the associated graded vector spaces. Therefore φ is an isomorphism of linear spaces. We emphasize
that it is not an isomorphism of algebras! This is obvious, since S(g) is commutative, but U(g) is not.

Remark 1.19. One can show that φ is in fact an isomorphism of g-modules (exercise). By taking the g-
invariants (the copies of the trivial representation), we obtain a linear isomorphism φ : S(g)g → Z(g), where
Z(g) = U(g)g is the centre of U(g). But again, φ is just an isomorphism of linear spaces and not of algebras
in general, even though now both algebras are commutative.
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1.6. The principal anti-automorphism of U(g). Consider the opposite ring U(g)op which is U(g) as a
k-vector space, with multiplication a · b := ba. Consider the linear map T : g→ U(g)op which sends x ∈ g to
−x ∈ U(g)op. We observe that for any x, y ∈ g we have

xT · yT − yT · xT = (−y)(−x)− (−x)(−y) = yx− xy = [y, x] = −[x, y] = [x, y]T .

Therefore by Lemma 1.10, T extends to a k-algebra homomorphism T : U(g)→ U(g)op satisfying

(x1x2 · · ·xn)T = (−1)nxnxn−1 · · ·x1 for all x1, . . . , xn ∈ g.

We can also view T as an anti-automorphism, by which mean a k-linear map τ : U(g)→ U(g) such that

τ(xy) = τ(y)τ(x) for all x, y ∈ U(g).

Definition 1.20. T : U(g)→ U(g) is called the principal anti-automorphism of U(g).

If ρ : g → Endk V is a Lie algebra representation, we have the contragredient representation ρ∗ : g →
Endk(V ∗) corresponding to the dual g-module V ∗. Then by Lemma 1.10, ρ∗ extends uniquely to a k-algebra
homomorphism ρ∗ : U(g) → Endk(V ∗). We can understand this extension explicitly using the principal
anti-automorphism as follows:

ρ∗(u)(f)(v) = f(ρ(uT )(v)) for all u ∈ U(g), v ∈ V, f ∈ V ∗.

2. Representations of sl(2)

From now on, the ground field k is assumed to have characteristic zero. In this section, we study finite
dimensional representations of g = sl(2).

2.1. Weights and weight vectors. The Lie algebra sl(2) consists of matrices

(
a b
c d

)
such that a+ d = 0

(trace zero). The standard basis of sl(2) is

e =

(
0 1
0 0

)
, h =

(
1 0
0 −1

)
, f =

(
0 0
1 0

)
. (2.1.1)

The relations between the basis elements are

[h, e] = 2e, [h, f ] = −2f, [e, f ] = h.

Lemma 2.1. The following identities hold in U(sl(2)):

[h, ek] = 2kek, [h, fk] = −2kfk, [e, fk] = kfk−1(h− (k − 1)),

for all integers k ≥ 1.

Proof. By induction on k, using the identity [a, bc] = [a, b]c+ b[a, c] valid in any associative ring. �

An important role in the representation theory of sl(2) is played by the Casimir element.

Definition 2.2. The Casimir element of U(sl(2)) is C := h2 + 2h+ 4fe ∈ U(sl(2)).

Note that C it is unique only up to a scalar multiple, as we will see when we discuss the general theory
for a semisimple Lie algebra.

Lemma 2.3. The Casimir element C belongs to the centre of U(sl(2)).

Proof. It follows from Definition 1.9 that U(sl(2)) is generated by e, h, f . So it is sufficient to check that C
commutes with e and f , because then it also commutes with h = ef − fe. This is a direct calculation:

[C, e] = [h2, e] + 2[h, e] + 4[fe, e],

and [h2, e] = h[h, e] + [h, e[h = h(2e) + (2e)h = 4he − 4e. Moreover, [h, e] = 2e and [fe, e] = [f, e]e = −he.
This shows that the sum above is zero indeed, and [C, f ] = 0 is similar. �

Definition 2.4. Let V be an sl(2)-module.

(1) A vector v ∈ V is called a weight vector if it is an eigenvector for the action of h:

h · v = λv for some λ ∈ k.
(2) If v 6= 0 is a weight vector, we call the corresponding eigenvalue λ a weight.
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(3) For each λ ∈ k, define

V ss
λ = {v ∈ V | (h− λ)v = 0} ⊆ Vλ = {v ∈ V | ∃N > 0 such that (h− λ)Nv = 0},

and call them the λ-weight space and the generalized λ-weight space, respectively.
(4) If V ss

λ = Vλ for all λ, we say that h acts semisimply on V .

Lemma 2.5. Let V be an sl(2)-module. Then:

(1) e · Vλ ⊆ Vλ+2 and e · V ss
λ ⊆ V ss

λ+2,
(2) f · Vλ ⊆ Vλ−2 and f · V ss

λ ⊆ V ss
λ+2.

Proof. Suppose v ∈ Vλ is given. Then there exists N > 0 such that (h− λ)Nv = 0. Notice that in U(sl(2)),
(h − 2)e = eh which means that (h − 2)je = ehj for all j. Then (h − λ − 2)Ne · v = [(h − 2) − λ]Ne · v =
e(h− λ)Nv = 0, which means that e · v ∈ Vλ+2.

The case of V ss
λ is when N = 1. The statement about f is completely similar. �

Definition 2.6. A vector v 6= 0 in V is called a highest weight vector if v ∈ V ss
λ for some λ and e · v = 0.

If V is a finite dimensional sl(2)-module, then Lemma 2.5 implies that highest weight vectors do exist.

Lemma 2.7. Let V be an sl(2)-module which admits a highest weight vector v ∈ V of weight λ. Consider
the sequence of vectors v0 = v, vk = fk · v, for k ≥ 0. Then:

(a) h · vk = (λ− 2k)vk, e · v0 = 0, e · vk+1 = (k + 1)(λ− k)vk, f · vk = vk+1, for k ≥ 0.
(b) The subspace L ⊂ V spanned by the vectors {vk | k ≥ 0} is an sl(2)-submodule and all nonzero

vectors vk are linearly independent.
(c) Suppose that vk = 0 for some k. Then there exists ` ∈ Z≥0 such that λ = `, vk 6= 0 for 0 ≤ k ≤ `

and vk = 0 for all k > `.

Proof. (a) Use Lemma 2.1. (b) This follows from (a) because the eigenvectors vk have distinct eigenvalues.
(c) Let ` be the first index such that v`+1 = 0. Then 0 = e · v`+1 = (`+ 1)(λ− `)v`. Since our ground field k
has characteristic zero, `+ 1 6= 0 so (λ− `)v` = 0. Since v` 6= 0 we conclude that λ = `. �

2.2. Irreducible finite dimensional sl(2)-modules. For every ` ≥ 0, we construct an irreducible repre-
sentation V (`) of dimension `+ 1 generated by a highest weight vector of weight `.

Algebraic construction. The relations in Lemma 2.7 tell us how to define the module V (`). Let V (`) be
the span of {v0, v1, . . . , v`} and define the sl(2)-action by:

h · vk = (`− 2k)vk, e · v0 = 0, e · vk+1 = (k + 1)(`− k)vk, f · vk = vk+1, k ≥ 0. (2.2.1)

(By convention, v`+1 = 0 in the above equations.) We can compute directly that these formulas define an
action of sl(2).

Lemma 2.8. The module V (`) just defined is irreducible.

Proof. Suppose that M 6= 0 is a submodule of sl(2). Let 0 6=
∑`
i=0 aivi be a vector in M . Apply f to it:

f ·
∑`
i=0 aivi =

∑`
i=1 ai−1vi, which has to be an element of M too. Applying f repeatedly, we get that a0v`

belongs to M and so v` ∈M . Then also
∑`−1
i=0 aivi is in M and repeat the process to show that all vi are in

M . So M = V (`). �

Geometric construction.4 Consider the “natural” g = sl(2)-action on V (1). Fix a basis {x, y} for V (1)
with x as the highest weight vector and y = f · x. Now extend this action to the polynomial algebra
k[x, y] = S(V (1)); the definition of the g-action on S(V (1)) from Lemma 1.7 shows that this action is
by derivations. On the other hand, every derivation D of k[x, y] is determined by D(x) and D(y) since
D = D(x)∂x +D(y)∂y. Thus we see that the action can be written as follows:

e 7→ x∂y, h 7→ x∂x − y∂y, f 7→ y∂x. (2.2.2)

One may also verify directly that these assignments respect the sl(2) relations.

4The reason we refer to this construction as geometric is the following. Consider the group G = SL(2,C) of 2× 2 matrices

of determinant one acting via matrix multiplication on the space C2 = {(x, y)}. There is an induced action on polynomials in
x and y and the action of the Lie algebra g defined ad-hoc in this paragraph is in fact the differential (in the Lie groups sense)
of the natural action of G on polynomials.
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It is clear that these three operators preserve the total degree of any monomial. Therefore, the subspace
V (`) of homogeneous polynomials of degree ` is invariant under this action. Notice that V (`) is the span of
{x`, x`−1y, x`−2y2, . . . , y`}, so it is `+ 1 dimensional. We have

e · x` = 0, h · (x`−iyi) = (`− 2i)x`−iyi, f · (x`−iyi) = (`− i)x`−i−1yi+1,

so that the correspondence

x`−iyi ←→ (`− i)!vi
defines an isomorphism between this realization of the module of V (`) and the algebraic one defined before.

Theorem 2.9.
(1) Every sl(2)-module V with 0 < dimV <∞ contains a submodule isomorphic to one of the V (`)’s.
(2) The Casimir element C acts on V (`) by `(`+ 2).
(3) The modules V (`) are irreducible, distinct, and exhaust all (isomorphism classes of) finite dimensional

irreducible sl(2)-modules.

Proof. (1) Consider all eigenvalues of V with respect to the action of h. Since V is finite dimensional, there
exists an eigenvalue λ such that λ + 2 is not an eigenvalue. Let v0 6= 0 be an eigenvector for this λ. By
Lemma 2.7, λ = ` for some ` and L = V (`) ⊂ V .

(2) We compute directly that C ·v0 = `(`+2)v0. If v is some other vector in V (`), there exists x ∈ U(sl(2))
such that v = x · v0. Then C · v = Cx · v0 = xC · v0 = `(`+ 2)x · v0 = `(`+ 2)v.

(3) We know that V (`) is irreducible by Lemma 2.8. Since the scalar by which C acts on each V (`)
determines ` uniquely, it follows that these modules are non-isomorphic. And if V is an irreducible sl(2)-
module then V contains a copy of some V (`) by (1) and therefore must be equal to it by irreducibility. �

Remark 2.10. From the construction of the modules V (`), we see that on every V (`), the element h acts
semisimply and the weights are {`, `− 2, `− 4, . . . ,−`+ 2,−`} and each weight space is one dimensional.

2.3. Complete reducibility. In this subsection, we prove directly that every finite dimensional sl(2)-module
is completely reducible. This completes the classification of finite dimensional sl(2)-modules.

Proposition 2.11. Every finite dimensional sl(2)-module V is isomorphic to a direct sum of modules V (`),
` ≥ 0. In particular, V is completely reducible.

Proof. (Bernstein) We’ll use a general criterion whose proof is an exercise: if every module of length 2 is
completely reducible, then every module of finite length is completely reducible. This reduces the proof to
the case when V has length 2 with simple submodule S = V (`) and simple quotient Q = V/S ∼= V (k).

If k 6= `, then the Casimir element acts with different eigenvalues on S and Q. Therefore, V splits into a
direct sum of two generalized eigenspaces for C, one with eigenvalue `(` + 1) and the other with eigenvalue
k(k + 1). Since C is central in U(sl(2)), both of these eigenspaces are sl(2)-submodules and we are done.

Assume k = `. Decompose V into generalized h-eigenspaces V = ⊕Vi. By assumption, i ∈ {−`, ` +
2, . . . , ` − 2, `} and dimVi = 2. We claim that f ` : V` → V−` is a linear isomorphism. Let 0 6= v ∈ V` be
given. If v ∈ S, then v is a highest weight vector with weight ` and so f `v 6= 0. Otherwise, v + S 6= S in
Q = V/S, but v + S ∈ Q`, so f `(v + S) 6= S, implying that f `v /∈ S.

Now consider the identity from Lemma 2.1

ef `+1 − f `+1e = `f `(h− `)

acting on V`. Since the left hand side is 0, the right hand side must be 0 too. But f ` is invertible on V` as
we argued before, which means that h = ` · Id on V`. In other words, V` = V ss

` . But this gives two linearly
independent highest weight vectors with weight ` in V , and V decomposes as the sum of the sl(2)-submodules
that these two vectors generate. �

Corollary 2.12. Let V be a finite dimensional sl(2)-module.

(1) h acts semisimply on V with integer weights.
(2) For every weight i ≥ 0, f i : Vi → Vi and ei : V−i → Vi are linear isomorphisms.

Proof. Both claims follow from the complete reducibility of V and the corresponding statements (which we
know are true) for the modules V (`). �
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3. Some basic facts about semisimple Lie algebras

In this section, we recall a few basic definitions and results about the structure of semisimple Lie algebras.
These results will be used in the sequel. We do not give proofs of these facts, but many missing proofs can
be found in the lecture notes for C2.1 Lie Algebras, which are available here:

https://courses.maths.ox.ac.uk/node/view_material/42444

g will be a finite dimensional Lie algebra over an algebraically closed field k of characteristic zero.

3.1. Nilpotent and solvable Lie algebras. The lower central series of g is the decreasing chain of ideals
C0g ⊇ C1g ⊇ C2g ⊇ · · · ⊇ Cig ⊇ . . . defined inductively by C0g = g and Cig = [g, Ci−1g] for i ≥ 1. We say
that g is nilpotent if there exists N > 0 such that CNg = 0.

The derived series of g is the decreasing chain of ideals D0g ⊇ D1g ⊇ D2g ⊇ · · · ⊇ Dig ⊇ . . . defined
inductively by D0g = g and Dig = [Di−1g, Di−1g] for i ≥ 1. We say that g is solvable if there exists N > 0
such that DNg = 0. The ideal Dg := D1g = [g, g] is called the derived subalgebra of g.

Since for every i, Dig ⊆ Cig, it is clear that every nilpotent Lie algebra is solvable. The converse is false.

Definition 3.1. Let V be a finite dimensional vector space.

(1) A flag F in V is a collection of vector subspaces F = (V0 ⊂ V1 ⊂ · · · ⊂ Vm).
(2) F is a complete flag if dimVi = i for all i.
(3) The stabiliser of F is bF := {x ∈ gl(V ) | x(Vi) ⊂ Vi,∀i}.
(4) We also define nF := {x ∈ gl(V ) | x(Vi) ⊂ Vi−1,∀i ≥ 1}.

Suppose F is complete. If we choose a basis {e1, . . . , en} of V and set Vi = span{e1, . . . , ei}, then bF is
identified with the algebra of upper triangular matrices with respect to this basis, while nF is the algebra of
strictly upper triangular matrices.

Example 3.2. Suppose that F is a flag.

(1) nF ⊂ bF are Lie subalgebras of gl(V ).
(2) nF is a nilpotent Lie algebra.
(3) If F is a complete flag, then bF is a solvable Lie algebra (but not nilpotent unless dimV = 1).
(4) If F is a complete flag, then nF is the derived subalgebra of bF .

It is easy to see that if I and J are two solvable ideals of g, then I+J is also a solvable ideal. This implies
that there exists a unique maximal solvable ideal in g, called the radical of g, rad(g).

Definition 3.3.

(1) g is called semisimple if rad(g) = 0.
(2) g is called simple if g is non-abelian and g doesn’t have any proper ideals.

3.2. The Killing form.

Definition 3.4. The Killing form of g is the pairing

κ : g× g→ k, κ(x, y) = tr(ad(x) ◦ ad(y)), x, y ∈ g. (3.2.1)

It is a symmetric, bilinear form on g and it is g-invariant, meaning that

κ([x, y], z) + κ(y, [x, z]) = 0, x, y, z ∈ g. (3.2.2)

The following result is important:

Theorem 3.5 (Cartan’s criteria).

(1) g is semisimple if and only κ is nondegenerate.
(2) g is solvable if and only if κ|Dg×Dg = 0.

Proof. (1) This is Theorem 13.2.
(2) This is Theorem 11.3. �

Corollary 3.6. g is semisimple if and only if f it is a direct sum of simple ideals. The decomposition into a
sum of simple ideals is unique.

Proof. This is Proposition 14.3. �

https://courses.maths.ox.ac.uk/node/view_material/42444
https://courses.maths.ox.ac.uk/node/view_material/42444
https://courses.maths.ox.ac.uk/node/view_material/42444
https://courses.maths.ox.ac.uk/node/view_material/42444
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Example 3.7. The classical Lie algebras sl(V ), so(V ) (defined with respect to a nondegenerate symmetric
bilinear form), and sp(V ) (with respect to a nondegenerate skew-symmetric bilinear form) are all simple,
hence semisimple, Lie algebras.

3.3. Maximal toral subalgebras. Because we are working over a ground field k which we assume to be
algebraically closed, a linear endomorphism T : V → V of a finite dimensional k-vector space is semisimple
if and only if it is diagonalisable.

Definition 3.8. We say that a Lie subalgebra h of g is toral if ad(x) : g→ g is semisimple for all x ∈ h.

Lemma 3.9. Every toral Lie subalgebra h of g is abelian.

Proof. Suppose for a contradiction that h is not abelian. Then there exists y ∈ h such that the endomorphism
S := ad(y)|h : h→ h is non-zero. Choose a non-zero eigenvalue λ of S and a corresponding eigenvector x ∈ h

so that S(y) = [y, x] = λx, and consider T := ad(x)|h. Then T 2(y) = [x, [x, y]] = [x,−λx] = 0. But T is also
semisimple, and this forces T (y) = [y, x] = 0, a contradiction. �

Definition 3.10. Let h be a Lie subalgebra of g. We say that h is a Cartan subalgebra if

(1) h is nilpotent;
(2) h is self-normalizing, i.e., h = Ng(h) where Ng(h) = {x ∈ g | ad(x)(h) ⊂ h, for all x ∈ g}.

Definition 3.11. Let g be a Lie algebra and let x ∈ g be ad-nilpotent. The map

ead(x) : g→ g

is called an elementary automorphism of g.

Since ad(x) : g → g is nilpotent and we are working over a field k of characteristic zero, the exponential
series ead(x) makes sense. Since ad(x) is a derivation of the Lie algebra g, ead(x) is in fact a Lie algebra
automorphism of g.

Theorem 3.12. Let g be a semisimple Lie algebra.

(1) A subalgebra h of g is a maximal toral subalgebra if and only if it is a Cartan subalgebra.
(2) Cartan subalgebras exist.
(3) For any two Cartan subalgebras h1 and h2 of g, there exist elementary automorphisms θ1, · · · , θm of

g such that h2 = (θ1 ◦ θ2 ◦ · · · ◦ θm) (h1).

Proof. (1) This is [Hu1, Corollary 15.3]; also see Lemma 17.2.
(2) This is Lemma 8.3(2).
(3) This is [Hu1, Corollary 16.4]. �

To construct a Cartan subalgebra, consider for each x ∈ g the generalized 0-eigenspace of ad(x)

g0,x = {y ∈ g | ad(x)Ny = 0, for some N > 0}.
One can show that g0,x is always a Lie subalgebra. An element x is called regular if dim g0,x is minimal among
all such subalgebras. One can show that every subalgebra g0,x, where x is regular, is a Cartan subalgebra —
see Lemma 8.3.

Example 3.13. If g = sl(n), then the usual choice of a maximal toral subalgebra is h consisting of diagonal,
trace 0, matrices.

3.4. Cartan decomposition. From now on, g is a semisimple Lie algebra and h is a fixed maximal toral
subalgebra. The main tool for the structure of g is the Cartan decomposition. Decompose g with respect to
the adjoint action of h. Since h is abelian and the restriction of the adjoint representation to h is semisimple,
basic linear algebra tells us that g decomposes into a direct sum of h-eigenspaces:

g =
⊕
χ∈h∗

gχ, gχ = {x ∈ g | [h, x] = χ(h)x, h ∈ h}.

Proposition 3.14. g0 = h.

Proof. See [Hu1, Proposition 8.2]. �

Definition 3.15.

https://courses.maths.ox.ac.uk/node/view_material/42444
https://courses.maths.ox.ac.uk/node/view_material/42444
https://courses.maths.ox.ac.uk/node/view_material/42444
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(1) Φ = {α ∈ h∗ \ {0} | gα 6= {0}} is the set of roots of g (with respect to h).
(2) The Cartan decomposition or root space decomposition of g is

g = h⊕
⊕
α∈Φ

gα. (3.4.1)

(3) The spaces gα are called root spaces and every nonzero vector in gα is called a root vector.

Example 3.16. Let g = sl(n) and h be the diagonal matrices of trace 0. In coordinates, we may think of h
as h = {(a1, . . . , an) ∈ kn |

∑
i ai = 0}. The dual space h∗ is naturally identified with

h∗ = k〈ε1, . . . , εn〉/〈ε1 + ε2 + · · ·+ εn〉,
where εi : h→ k is defined by εi(a1, a2, . . . , an) = ai. The roots are

Φ = {εi − εj | 1 ≤ i 6= j ≤ n} ⊂ h∗.

The Cartan decomposition is g = h⊕
⊕

i 6=j gεi−εj , with gεi−εj = k ·Eij , where Eij is the elementary matrix

that has 1 on the (i, j) position and 0 everywhere else.

Here is a list of the main facts about this decomposition. The main tool for proving the nontrivial
statements is the Cartan criterion for semisimplicity, Theorem 3.5(1).

Theorem 3.17.

(1) [gα, gβ ] ⊆ gα+β, α, β ∈ Φ ∪ {0}.
(2) κ(gα, gβ) = 0 unless β = −α.
(3) The restriction of κ to h× h is nondegenerate.
(4) The restriction of κ to gα × g−α is non-degenerate for all α ∈ Φ.
(5) Φ spans h∗.
(6) dim gα = 1 for all α ∈ Φ.
(7) The Killing form on h can be computed by the formula

κ(h, h′) =
∑
α∈Φ

α(h)α(h′), h, h′ ∈ h. (3.4.2)

(8) For every α ∈ Φ, there exist vectors eα ∈ gα, e−α ∈ gα, hα := [eα, e−α] ∈ h such that {eα, hα, e−α}
satisfy the sl(2)-relations. We have α(hα) = 2.

Proof. (1) If x ∈ gα and y ∈ gβ then [x, y] ∈ gα+β because

[h, [x, y]] = [[h, x], y] + [x, [h, y]] = α(h)[x, y] + β(h)[x, y] = (α+ β)(h)[x, y] for all h ∈ h.

(2,3) This is Proposition 17.1.
(4) From (2), gα is κ-orthogonal to all other gβ except possibly g−α. So if κ(x, g−α) = 0 for some x ∈ gα

then κ(x, g) = 0 which forces x = 0 because κ is non-degenerate by Theorem 3.5(1).
(5,6) See Proposition 17.5(2) and Lemma 17.7.
(7) The matrix of ad(h) ◦ ad(h′) is diagonal with entry α(h)α(h′) corresponding to any basis vector of gα.

But dim gα = 1 for all α ∈ Φ by (5). Now take the trace.
(8) See Proposition 17.5(4). �

Definition 3.18. We let slα denote the copy of sl(2) spanned by the sl(2)-triple {eα, hα, e−α}.

It follows from Theorem 3.17 that g is spanned by all of these copies of sl(2). In this way, we may regard
g as being “glued” out of finitely many copies of sl(2). This idea can be made more precise by considering
the Serre presentation of g — see [Hu1, Theorem 18.3].

By Theorem 3.17(3), the Killing form is nondegenerate on h. Let λ 7→ tλ be the isomorphism h∗
∼=−→ h

induced by it, so that κ(tλ, h) = λ(h) for all h ∈ h and λ ∈ h∗.

Lemma 3.19.

(1) For all α ∈ Φ, α(tα) 6= 0 and hα = 2
α(tα) tα.

(2) The coroots {hα : α ∈ Φ} span h.
(3) If α, β, α+ β ∈ Φ then [gα, gβ ] = gα+β.
(4) β − β(hα)α ∈ Φ for all α, β ∈ Φ.

https://courses.maths.ox.ac.uk/node/view_material/42444
https://courses.maths.ox.ac.uk/node/view_material/42444
https://courses.maths.ox.ac.uk/node/view_material/42444
https://courses.maths.ox.ac.uk/node/view_material/42444
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Proof. (1) Let x ∈ gα and y ∈ g−α and h ∈ h. Using the symmetry and g-invariance of κ, we have

κ([x, y], h) = κ(h, [x, y]) = κ([h, x], y) = κ(α(h)x, y) = α(h)κ(x, y) = κ(x, y)κ(tα, h).

Therefore [x, y]−κ(x, y)tα is orthogonal to h and is therefore 0 by Theorem 3.17(3): this shows that [gα, g−α] ⊆
ktα. On the other hand, this space is spanned by hα by Theorem 3.17(6,8) so we can write hα = cαtα for
some non-zero cα ∈ k. But then 2 = α(hα) = cαα(tα).

(2) We know that {tα : α ∈ Φ} spans h by Theorem 3.17(3,5). Now apply part (1).
(3) Regard g as an slα-module via the adjoint representation and consider V := U(slα) · eβ . Then V is a

cyclic finite dimensional U(slα)-module and therefore has a highest weight. Since V is finite dimensional, it
is isomorphic to a V (`) by Lemma 2.7, and now {eβ+mα : β+mα ∈ Φ} form a basis for V . So (2.2.1) implies
that eα · eβ 6= 0 if gα+β 6= {0}.

(4) See Proposition 17.8. �

3.5. Root lattices, weight lattices and weights.

Definition 3.20.

(1) The element hα ∈ h from Theorem 3.17(8) is called the coroot corresponding to α ∈ Φ.
(2) Q∨ := Z{hα : α ∈ Φ} is called the coroot lattice.
(3) Q := ZΦ :=

{∑
α∈Φ aαα | aα ∈ Z

}
⊂ h∗ is called the root lattice.

(4) P := {χ ∈ h∗ | χ(hα) ∈ Z for all α ∈ Φ} ⊂ h∗ is called the integral weight lattice.

Definition 3.21. Let V be an g-module and let λ ∈ h∗.

(1) The generalized λ-weight space of V is

Vλ = {v ∈ V : (h− λ(h))n · v = 0 for sufficiently large n ∈ N}.
(2) V ss

λ := {v ∈ V : h · v = λ(h)v for all h ∈ h} is the λ-weight space of V .
(3) We say that V is h-semisimple if Vλ = V ss

λ for all λ ∈ h∗ and V =
⊕

λ∈h∗ Vλ.

(4) The set of weights of V is by definition Ψ(V ) := {λ ∈ h∗ | Vλ 6= 0}.

Lemma 3.22. Let V be a finite dimensional g-module. Then every weight of V is integral: Φ(V ) ⊂ P .

Proof. Recall from Definition 3.18 that for every α ∈ Φ+, we have a copy of sl(2) in g called slα. Regard V
as a finite dimensional slα-module. Then if λ ∈ Ψ(V ), hα acts on Vλ by the scalar λ(hα). But this scalar
must be an integer by Corollary 2.12(1). Hence λ(hα) ∈ Z for all α ∈ Φ. �

Corollary 3.23. Q ⊆ P , that is: β(hα) ∈ Z for all α, β ∈ Φ.

Proof. Note that Φ ∪ {0} = Ψ(g) when g is viewed as a g-module via the adjoint representation. Therefore
Φ ⊆ Ψ(g) ⊂ P by Lemma 3.22. �

Example 3.24. Suppose that g = sl(n). The lattices appearing in Definition 3.20 are:

Q∨ =

{
(a1, . . . , an) ∈ Zn |

n∑
i=1

ai = 0

}
;

Q =

{
n∑
i=1

aiεi | ai ∈ Z,
n∑
i=1

ai = 0

}
/Z(ε1 + ε2 + · · ·+ εn);

P = (Zε1 ⊕ · · · ⊕ Zεn) /Z(ε1 + ε2 + · · ·+ εn).

(3.5.1)

In this case, Q ( P and, in fact P/Q ∼= Z/nZ — see Sheet 2 Question 3.

3.6. The Weyl group. We will now define a very important group that will play a large role in the repre-
sentation theory of g. First, define a nondegenerate bilinear form (−,−) on h∗ by “transport of structure”:

(λ, µ) := κ(tλ, tµ) = λ(tµ) = µ(tλ) for all λ, µ ∈ h∗. (3.6.1)

Lemma 3.25. κ is positive definite on Q∨ and (−,−) is positive definite on P .

Proof. Since κ(h, h) =
∑
α∈Φ α(h)2 and since Φ spans g∗ by Theorem 3.17(7,5), κ is positive definite on Q∨.

Therefore (−,−) is positive definite on P because (λ, λ) = κ(tλ, tλ) > 0 whenever λ 6= 0. �

Definition 3.26.

https://courses.maths.ox.ac.uk/node/view_material/42444
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(1) For every α ∈ Φ, the reflection in the hyperplane perpendicular to α is :

sα : h∗ → h∗, sα(χ) = χ− 2(χ, α)

(α, α)
α. (3.6.2)

(2) The Weyl group of g is the subgroup of GL(h∗) generated by {sα : α ∈ Φ}.

sα fixes the hyperplane α⊥ ⊂ h∗ and sends α to −α, so it really is the reflection in the hyperplane α⊥.

Lemma 3.27.

(1) For all χ ∈ h∗ and all α ∈ Φ, we have 2(χ,α)
(α,α) = χ(hα).

(2) W is a finite subgroup of the orthogonal group O(h∗, (−,−)).

Proof. (1) Using Lemma 3.19(1) together with (3.6.1), we calculate

2(χ, α)

(α, α)
=

2κ(tα, tα)

κ(tα, tα)
=

2χ(tα)

α(tα)
= χ

(
2tα
α(tα)

)
= χ(hα).

(2) Let α, β ∈ Φ. Then using part (1) together with Lemma 3.19(4), we have

sα(β) = β − β(hα)α ∈ Φ.

So, every sα preserves Φ ⊂ h∗, and thus we get a permutation action W → Sym(Φ). The kernel of this action
is trivial since Φ spans h∗ by Theorem 3.17(5). So W is isomorphic to a subgroup of the finite group Sym(Φ)
and is hence finite. In an inner product space of dimension n, each reflection in a hyperplane has matrix
diag(−1, 1, · · · , 1) with respect to an appropriate basis, and is hence orthogonal. So W ⊂ O(h∗, (−,−)). �

If α, β ∈ Φ, then 2(α,β)
(α,α) = β(hα) := 〈α, β〉 is an integer by Corollary 3.23, called a Cartan integer.

3.7. Positive roots.

Definition 3.28. We say that the subset Π ⊂ Φ is a base for Φ if

(1) Π is a basis for h∗,
(2) Φ ⊂ ZΠ.

Lemma 3.29. The root system Φ has at least one base Π.

Proof. Work with the real vector space a∗ := R ⊗Z Q. Then using Lemma 3.25, (−,−) extends to an inner
product on a∗, and we can consider for every non-zero v ∈ a∗ the half-space {w ∈ a∗ : (v, w) > 0}. Then
Φ = Φ+(v) ∪ Φ−(v) where Φ+(v) = {α ∈ Φ : (v, α) > 0} and Φ−(v) := {α ∈ Φ : (v, α) < 0}. Then it is
shown in Proposition 19.9 that the set Π(v) ⊂ Φ+(v) consisting of indecomposable roots in Φ+(v) is a base
for Φ, and in fact, every base for Φ arises in this way. �

Definition 3.30. Let Π ⊂ Φ be a base.

(1) Elements of Π are called simple roots.
(2) Φ+ := NΠ ∩ Φ is the set of positive roots.
(3) Φ− := (−N)Π ∩ Φ is the set of negative roots.

Thus, every choice of base Π for Φ induces a decomposition Φ = Φ+ ∪ Φ−.

Definition 3.31. Fix a choice of base Π ⊂ Φ.

(1) Let Q+ := NΠ ⊂ Q.
(2) Define a partial order ≤ on h∗ by α ≤ β ⇔ β − α ∈ Q+.

We always have Π ⊂ Φ+ ⊂ Q+.

https://courses.maths.ox.ac.uk/node/view_material/42444
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4. The category O

4.1. Definitions. Let g be a semisimple Lie algebra over k, an algebraically closed field of characteristic
zero. Fix a maximal toral subalgebra h and let Φ be the roots of h in g and g = h⊕

⊕
α∈Φ gα be the Cartan

decomposition. Fix a choice of base Π ⊂ Φ and let Φ+ be the corresponding positive roots. We retain all the
other notation from the previous section. Denote

n+ =
∑
α∈Φ+

gα, n− =
∑
α∈Φ+

g−α, b = h⊕ n+. (4.1.1)

It is easy to prove the following lemma by using the commutation relations between h, eα, α ∈ Φ+.

Lemma 4.1.

(1) The subalgebras n+ and n− are nilpotent.
(2) The Borel subalgebra b is solvable and its derived subalgebra is n+.

As a consequence of the PBW Theorem 1.17, we have the following triangular decomposition of U(g):

U(g) ∼= U(n−)⊗ U(h)⊗ U(n+). (4.1.2)

We will use this decomposition repeatedly in this section.

Lemma 4.2. Let λ ∈ h∗ and let α ∈ Φ. Then

(1) eα · Vλ ⊆ Vλ+α, and
(2) eα · V ss

λ ⊆ V ss
λ+α.

Definition 4.3. The category O of g is the full subcategory of (left) U(g)-modules whose objects M satisfy
the following conditions:

(O1) M is a finitely generated U(g)-module;
(O2) M is h-semisimple;
(O3) M is locally n+-finite, i.e., for every v ∈M , the subspace U(n+) · v is finite dimensional.

Example 4.4. Recall the modules V (`) constructed for sl(2) with basis {v0, v1, . . . , v`}. Given the explicit
construction, we can see immediately that these modules are in the category O.

Lemma 4.5. Every finite dimensional g-module is in O.

Proof. If V is finite dimensional, then (O1) and (O3) are automatic. For (O2), regard V as a finite dimensional
slα-module; V is hα-semisimple by Corollary 2.12. But now a standard linear algebra fact implies that the
action the span of the hα’s is semisimple, because the hα’s commute. Therefore all of h acts semisimply on
V because it is spanned by the coroots {hα | α ∈ Φ} by Lemma 3.19(2). �

We record some of the immediate properties of O in the next proposition.

Proposition 4.6.

(1) O is a Noetherian category, i.e., every M ∈ O is a Noetherian U(g)-module.
(2) O is closed under taking submodules, quotients, and finite direct sums. Hence O is an abelian category.
(3) If M ∈ O and L is finite dimensional, then L⊗M ∈ O.
(4) If M ∈ O, then M is finitely generated as a U(n−)-module.

Proof. (1) U(g) is Noetherian5 and M is a finitely generated U(g)-module. Therefore M is Noetherian.
(2) The only statement that needs explanation is the fact that (O1) holds for submodules. But this is

precisely because of the Noetherian property from (1): every submodule of a finitely generated module is
finitely generated.

(3) The tensor product L ⊗M satisfies (O2) and (O3). To prove finite generation, let {v1, . . . , vn} be a
basis of L and let m1, . . . ,mk generate M . Then {vi ⊗ mj} generates L ⊗M . To see this, let N be the
submodule this set generates. Since every v ∈ L can be written as v =

∑
aivi with ai ∈ k, we see that all

simple tensors of the form v ⊗mj , v ∈ L, are also in N . If x ∈ g, we calculate

x · (v ⊗mj) = x · v ⊗mj + v ⊗ x ·mj ∈ N.

5This is proved in the “Noncommutative rings” lectures — see Corollary 1.28(a) — so we won’t repeat the proof here.

https://courses.maths.ox.ac.uk/node/view_material/42482
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The first term is in N , so v ⊗ x ·mj ∈ N . Repeating this, we see that v ⊗ u ·mj ∈ N for all u ∈ U(g). But
then L⊗M ⊂ N , which concludes the proof.

(4) Because of the axioms, we see that M is generated as a U(g)-module by a finite dimensional U(b)-
module V . By the PBW Theorem 1.17, we have U(g) = U(n−)U(b+). So, a basis of V generates M as a
U(n−)-module. �

4.2. Highest weight modules.

Definition 4.7. Let M be a U(g)-module. A nonzero vector v ∈ M is called a highest weight vector (of
weight λ) if v ∈ Mλ for some λ ∈ Ψ(M) and n+ · v = 0. The last condition is equivalent with eα · v = 0 for
all α ∈ Φ+.

Definition 4.8. A U(g)-module M is called a highest weight module of weight λ if there exists v ∈ Mλ

such that n+ · v = 0 and M = U(g) · v. The last condition is equivalent with M = U(n−) · v by the triangular
decomposition.

We list several immediate properties of highest weight modules.

Lemma 4.9. Let M be a highest weight module with highest weight λ.

(a) Each nonzero quotient of M is also a highest weight module of weight λ.
(b) M is h-semisimple.
(c) Ψ(M) ⊂ λ−Q+.
(d) dimMµ <∞ for all µ ∈ Ψ(M) and dimMλ = 1.
(e) M ∈ O.

Proof. (a) This is clear.

(b) Choose an ordering of the positive roots: α1, α2, . . . , αm. ThenM is spanned by the vectors ei1−α1
· · · eim−αm ·

v. Each such vector has weight λ−
∑m
j=1 ijαj . Hence M is h-semisimple.

(c) Note that ei1−α1
. . . eim−αm · v ∈Mλ−

∑m
j=1 ijαj

.

(d) β ∈ Q+ has only finitely many ways of expressing it as an N-linear combination of elements of Φ+.
(e) Axiom (O3) follows from Lemma 4.2: every α ∈ Φ+ maps Mµ to Mµ+α. �

As a consequence, we can see that the highest weight modules are the building blocks of category O:

Proposition 4.10. Let M 6= 0 be a module in O. There exists a finite filtration

0 ⊂M1 ⊂M2 ⊂ · · · ⊂Mn = M

of modules in O such that Mi/Mi+1 is a highest weight module.

Proof. M is generated by finitely many weight vectors vλ1
, . . . , vλ` . Set V = U(n+) · 〈vλ1

, . . . , vλ`〉. Because
of (O3), V is finite dimensional and, of course, M = U(g) · V = U(n−) · V . Go by induction on dimV .

Take v ∈ V a weight vector for a maximal weight (among the weights that occur in V ). Then v must be
a highest weight vector in M . Set M1 = U(g) · v which is a submodule of M and a highest weight module.
Next M = M/M1 is generated by V = V/V ∩M1. Then dimV < dimV because 0 6= v ∈ V ∩M1 and we are
done by induction. �

Corollary 4.11. Let M be a module in O.

(1) For every λ ∈ Ψ(M), the weight space Mλ is finite dimensional.

(2) There exist λ1, . . . , λm ∈ Ψ(M) such that Ψ(M) ⊂
m⋃
i=1

(λi −Q+).

(3) M is Z(g)-finite, i.e., for every v ∈M , Z(g) · v is finite dimensional.

Proof. (1,2) Note that if 0→ N →M →M/N → 0 is an exact sequence in O then Ψ(M) = Ψ(N)∪Ψ(M/N).
Now apply Proposition 4.10 and Lemma 4.9(c,d).

(3) If v ∈M we may write v as a sum of weight vectors. It is sufficient to prove the claim when v ∈Mλ.
Since z ∈ Z(g) commutes with h, we see that z · v ∈ Mλ as well. But Mλ is finite dimensional by (1), so
Z(g) · v is finite dimensional. �

Example 4.12. We can verify that when g = sl(2), the tensor product M(λ)⊗M(µ) is not in O.

Proposition 4.13. Let M ∈ O be a highest weight module.
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(1) M has a unique maximal submodule and hence a unique simple quotient. In particular, M is inde-
composable.

(2) Let λ ∈ h∗ be given. All simple highest weight modules of weight λ are isomorphic. If M is a simple
highest weight module of weight λ, then dim EndU(g)(M) = 1.

Proof. (1) If N is a proper submodule of M then N ∈ O (as M ∈ O), hence N is h-semisimple. Write
N =

⊕
µ∈Ψ(N)⊂Ψ(M)Nν . Since Mλ is one-dimensional and every vector in Mλ generated M , it follows that

λ /∈ Ψ(N). This implies that the sum of all proper submodules of M is still proper (λ is not a weight for any
of them), and therefore there is a unique maximal submodule.

(2) Suppose M1 and M2 are two simple highest weight modules of the same weight λ. Let v1, v2 be
highest weight vectors for M1 and M2, respectively. Then v = v1 + v2 is also a highest weight vector in
M = M1 ⊕M2. Denote N = U(g) · v ⊂ M . Then N is a highest weight module of weight λ. The two
canonical projections give projections N →M1 and N →M2. Hence M1 and M2 are both simple quotients
of N . By (1), M1

∼= M2.
For the second part, let M be a simple highest weight module of weight λ and let φ : M → M be a

nonzero g-homomorphism. Since M is simple, φ must be an isomorphism. Then it maps Mλ to Mλ. Fix a
highest weight vector v ∈Mλ. Since Mλ is one-dimensional, φ(v) = cv for some constant c ∈ k. But since v
generates M , it follows that φ = c · Id. �

4.3. Verma modules. Recall the Borel subalgebra b = h ⊕ n+. Since n+ is an ideal in b, we have the
natural projection b → b/n+ ∼= h, which is a Lie algebra homomorphism. For every λ ∈ h∗, denote by kλ
the one-dimensional b-representation pulled back via this projection. Then n+ acts by 0 on kλ. We can also
regard kλ as a U(b)-module.

Definition 4.14. Let λ ∈ h∗ be given. Define the Verma module of highest weight λ to be

M(λ) = U(g) ⊗
U(b)

kλ.

This is a left U(g)-module under the natural action (left multiplication) of U(g).

Define the vector v = 1⊗1 ∈M(λ). This is a highest weight vector of weight λ and M(λ) = U(g) · v. This
means that M(λ) is indeed a highest weight module of weight λ. An alternative definition goes as follows.
Let I(λ) := U(g)n+ +

∑
h∈h

U(g)(h− λ(h)). Then

M(λ) ∼= U(g)/I(λ).

Lemma 4.15 (Universal property). Suppose M is a highest weight module of weight λ. Then there exists a
surjective g-linear map p : M(λ) �M .

Proof. Let v′ ∈ M be a highest weight vector. The assignment v 7→ v′ extends to a U(g)-homomorphism
M(λ)→M which is surjective since v′ generates M . Alternatively, start with the projection p̃ : U(g)→M ,
1 7→ v. Since the left ideal I(λ) kills M , p̃ factors through U(g)/I(λ)→M. �

In other words, M(λ) is the universal highest weight module with highest weight λ. We can also apply
Proposition 4.13 to M(λ).

Definition 4.16. Let λ ∈ h∗.

(1) Let N(λ) denote the unique maximal submodule of M(λ).
(2) Let L(λ) := M(λ)/N(λ) denote the unique simple quotient module of M(λ).

Theorem 4.17.

(1) Every simple module in O is isomorphic to a module L(λ) for some λ ∈ h∗.
(2) L(λ) ∼= L(µ) if and only if λ = µ.

Proof. (1) Let M be a simple module in O. It follows from Proposition 4.10 that M is a highest weight
module of weight λ, where λ is a maximal weight in Ψ(L). By Lemma 4.15, L is a quotient of the Verma
module of M(λ), hence L ∼= L(λ).

(2) Suppose that L(λ) ∼= L(µ). Then λ ∈ Ψ(L(µ)) ⊆ µ−Q+ by Lemma 4.9(c). Similarly, µ ∈ λ−Q+, so
λ− µ ∈ Q+ ∩ −Q+ = {0}. So, λ = µ. �

So, Theorem 4.17 and Proposition 4.13(2) imply that dim HomU(g)(L(λ), L(µ)) = Πλµ for any λ, µ ∈ h∗.
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4.4. Finite dimensional modules. We have now established a one-to-one correspondence

h∗ −→ {simple modules in O}, λ 7→ L(λ).

We would like to determine which modules L(λ) are finite dimensional.

Definition 4.18.

(1) The weight λ ∈ h∗ is said to be integral dominant if λ(hα) ∈ N for all α ∈ Φ+.
(2) P+ will denote the set of integral dominant weights.

We will frequently drop the adjective “integral” in this definition.

Theorem 4.19. Let λ ∈ h∗. Then the simple module L(λ) ∈ O is finite dimensional if and only if λ ∈ P+.

For the proof, we need to analyze first the structure of M(λ). First, we prove the following basic

Lemma 4.20. Let λ ∈ h∗. Then

(1) M(λ) is a free U(n−)-module of rank 1, generated by any highest weight vector.
(2) Ψ(M(λ)) = λ−Q+.

Proof. (1) Let Φ+ = {α1, . . . , αm} and let fi := e−αi so that {f1, . . . , fm} is a basis for n−. The PBW
Theorem 1.17 tells us that the monomials {fn : n ∈ Nm} form a free basis for U(g) as a right U(b)-module.
Now applying −⊗U(b) kλ shows that the monomials {fn ⊗ 1 : n ∈ Nm} form a basis for M(λ) as a k-vector

space. In other words, M(λ) is a free U(n−)-module of rank 1.
(2) We know that Ψ(M(λ)) ⊆ λ −Q+ by Lemma 4.9(c). Since fn ⊗ 1 6= 0 for each n ∈ Nm, we see that

M(λ)λ−β 6= 0 for any β ∈ NΦ+ = Q+. So, λ−Q+ ⊆ Ψ(M(λ)). �

Next, we look for highest weight vectors in M(λ) with weight µ < λ: we have seen this idea already in
the case of sl(2). The key calculation is in the following proposition.

Proposition 4.21. Let M(λ) be a Verma module, λ ∈ h∗, and let v ∈ M(λ) be a highest weight vector of
weight λ. Let α ∈ Φ+ be a positive root. If n := λ(hα) ∈ N, then en+1

−α · v is a highest weight vector of weight
µ := λ− (n+ 1)α < λ.

Proof. Write f := e−α and v′ = fn+1 · v. Then v′ is a µ-weight vector by Lemma 4.2(2), and we need to
check that n+ · v′ = 0. Let β ∈ Φ+, and suppose first that β ∈ Π.

If β 6= α, then f = e−α and eβ commute, because β − α is not a root 6, so

eβ · v′ = eβ · fn+1 · v = fn+1eβ · v = 0.

If β = α, then using λ(hα) = n together with Lemma 2.1 we see that

eα · v′ = eαe
n+1
−α · v = [eα, e

n+1
−α ] · v + en+1

−α eα · v = (n+ 1)en−α(hα − n) · v + 0 = 0

Finally if β ∈ Φ+ is not necessarily simple, then it can be written as a sum of finitely many simple roots,
which means that eβ can be written as a repeated commutator of simple root vectors by Lemma 3.19(3).
Hence it also must kill v′. �

Corollary 4.22. Let α ∈ Φ+, suppose that n = λ(hα) ∈ N and let µ = λ − (n + 1)α. Then there exists an
injective homomorphism M(µ) ↪→M(λ), whose image lies in the unique maximal submodule N(λ) of M(λ).

Proof. If v′ is a highest weight vector of M(µ) of weight µ, then the homomorphism is defined by sending
v′ 7→ en+1

−α ·v, where v is a highest weight vector of weight λ in M(λ) and extending as a U(g)-homomorphism.
The fact that this is injective follows from the fact that the two Verma modules are free of rank one over
U(n−) by Lemma 4.20(1). Since the image of the homomorphism is a proper submodule of M(λ), it must lie
in the unique maximal submodule. �

To complete the proof of Theorem 4.19 we need the following technical

Lemma 4.23. Let {f1, . . . , fm} be a basis for n− and let n1, . . . , nm ∈ N be given. Let U := U(n−). Then
the left ideal I := Ufn1

1 + Ufn2
2 + · · ·+ Ufnmm has finite codimension in U .

6otherwise β would not be an indecomposable root
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Proof. Let W be the k-linear span of all monomials fα := fα1
1 · · · fαmm where α ∈ Nm satisfies 0 ≤ αi < ni

for all i. It is enough to show that I +W = U . Let {Un : n ≥ 0} be the PBW filtration on U ; we will show
by induction on n that Un ⊆ I + W for all n ≥ 0. The base case n = 0 is trivial since 1 ∈ W , so suppose
that n ≥ 1 and that Un−1 ⊆ I +W . Let α ∈ Nm be given with |α| := α1 + · · ·+ αm = n. If αi < ni for all
i = 1, . . . ,m, then fα ∈ W . Otherwise, if αi ≥ ni for some i, then using the fact that grU is commutative
— see Lemma 1.12(b) — we have

fα ≡ fα1
1 · · · f

αi−1

i−1 f
αi+1

i+1 · · · f
αm
m fαi−nii · fnii mod Un−1.

Hence fα ∈ I + Un−1 ⊆ I +W by induction. Thus we see that Un = k{fα : |α| = n}+ Un−1 ⊆ I +W . �

Proof of Theorem 4.19. Let L(λ) = U(g) · v for some highest weight vector v.
Suppose that L(λ) is finite dimensional. Then Ψ(L(λ)) ⊆ P by Lemma 3.22, so λ ∈ P . For any α ∈ Φ+,

since gα · v ⊆ n+ · vλ = 0, we see that v is a highest weight vector for slα. But then λ(hα) ∈ N by Lemma
2.7(c) and thus λ ∈ P+.

Conversely, suppose that λ(hα) ∈ N for all α ∈ Φ+. Then e
λ(hα)+1
−α · v = 0 by Corollary 4.22. Let

I := {u ∈ U(n−) : u · v = 0}; this is a left ideal of U(n−) which contains e
λ(hα)+1
−α for all α ∈ Φ+. Therefore

I has finite codimension in U(n−) by Lemma 4.23. But U(n−)/I is isomorphic to U(n−) · v = L(λ), so L(λ)
must be finite dimensional. �

We can now state the classification of irreducible finite dimensional g-modules.

Corollary 4.24 (Cartan-Weyl).

(1) Every irreducible finite dimensional g-module V is isomorphic to L(λ) for some λ ∈ P+.
(2) Every finite dimensional g-module is a direct sum of simple modules L(λ), λ ∈ P+.

Proof. (1) By Lemma 4.5, V lies in category O. Hence V ∼= L(λ) for some λ ∈ h∗ by Theorem 4.17. But
then λ must be integral dominant by Theorem 4.19.

(2) Apply (1) together with Weyl’s theorem on complete reducibility.7 �

We now have a classification via integral dominant highest weights of the simple finite dimensional g-
modules. Other typical information that one would still like to have in representation theory is:

• the dimension of L(λ),
• the formal character of L(λ),
• models (or explicit realizations) of L(λ).

We will obtain satisfactory answers for the first two topics, but the third topic, except for some particular
examples, is beyond the scope of this course.

5. The centre of U(g)

5.1. Central characters. Recall the notation Z(g) for the centre of U(g). We wish to understand the
structure of Z(g). We will first look at the action of Z(g) on modules in O, but we begin in greater generality.
If A is an associative k-algebra, every A-module M has an associated representation ρM : A → Endk(M),
given by ρ(a)(m) = a ·m. Moreover, if Z is the centre of A then ρM (Z) is contained in EndA(M).

Definition 5.1. The central character of M is the restriction of ρM to Z:

χM := ρM |Z : Z → EndA(M)

In this notation, the centre Z of A acts on M via the central character χM :

z ·m = χM (z)(m) for all z ∈ Z,m ∈M.

In situations of interest to us, our A-modules M have small A-linear endomorphism rings.

Lemma 5.2. Let λ ∈ h∗. Then every z ∈ Z(g) acts by a scalar χM(λ)(z) ∈ k on the Verma module M(λ).

Proof. Proposition 4.13(2) tells us that EndU(g)(M(λ)) = k. So,

χλ := χM(λ) : Z(g)→ EndU(g)(M(λ))

takes values in k, and z ·m = χλ(z)m for all z ∈ Z(g) and m ∈M(λ). �

7See Theorem 15.10 for a proof of Weyl’s complete reducibility theorem is using the action of the Casimir operator.
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Definition 5.3. Pick a basis {f1, . . . , fm} for n−, {h1, . . . , hr} for h and {e1, . . . , em} for n+. Then by the
PBW Theorem 1.17, the monomials {fahbec, a ∈ Nm, b ∈ Nr, c ∈ Nm} forms a basis for U(g).

(1) Define pr : U(g) → U(h) to be the unique k-linear map which sends all such monomials to zero,
unless a = c = 0 in which case pr sends the monomial hb to itself.

(2) The Harish Chandra homomorphism is the restriction ξ|Z(g) of pr to Z(g).

Note that pr does not depend on the choice of bases made: any choice of bases induces a decomposition

U(g) = n−U(g)⊕ U(h)⊕ U(g)n+

of vector spaces, and pr is simply the projection onto the middle factor along the other two summands.
Clearly pr is a linear surjective map.

Definition 5.4. Let V be a vector space. A polynomial function on V is an element of the symmetric algebra
S(V ∗). We will sometimes write

O(V ) := S(V ∗)

Example 5.5. Let {v1, v2} be a basis for V . Then every linear function of the form

λ1v1 + λ2v2 7→ λ1c1 + λ2c2

for some c1, c2 ∈ k is also a polynomial function on V : in fact this function is simply c1f1 + c2f2 where
{f1, . . . , f2} is the dual basis for V ∗. And then a general polynomial function on V has the form

λ1v1 + λ2v2 7→
N∑

i,j=0

cijλ
i
1λ
j
2

for some cij ∈ k; this is in fact precisely
∑N
i,j=0 cijf

i
1f
j
2 in S(V ∗).

The following fact holds because our ground field k is infinite.

Lemma 5.6. Suppose that f ∈ O(V ) is such that f(v) = 0 for all v ∈ V . Then f = 0.

We will identify U(h) = S(h) with O(h∗) = S(h∗∗). Let evλ : O(h∗) → k be the evaluation at λ
homomorphism: this is a very convenient geometric way of thinking about the unique extension of the linear
functional λ : h→ k to a k-algebra homomorphism evλ : S(h)→ k.

Proposition 5.7. We have χλ = evλ ◦ξ for all λ ∈ h∗.

Proof. Write Φ+ = {α1, . . . , αm} and choose 0 6= ei ∈ gαi for each i. Let v ∈ M(λ)λ be a highest weight
vector and let z ∈ Z(g). Consider a monomial m := fahbec appearing in z. If c 6= 0, then m · v = 0. If c = 0,
then m · v ∈M(λ)λ−

∑m
i=1 aiαi

. On the other hand,

z · v = χλ(z)v ∈M(λ)λ

forces m · v = 0 whenever c = 0 and a 6= 0. So, m · v = 0 unless a = c = 0, so that

z · v = pr(z) · v = pr(z)(λ)v = evλ(pr(z))v for all z ∈ Z(g). (5.1.1)

Thinking of S(h) as O(h∗), this shows that evλ ◦ξ = χλ. �

Corollary 5.8. The map ξ : Z(g)→ S(h) is an algebra homomorphism.

Proof. By Proposition 5.7, ξ(z)(λ) = χλ(z) for all λ ∈ h∗ and z ∈ Z(g). Given z, w ∈ Z(g) the element
ξ(zw)− ξ(z)ξ(w) of O(h∗) vanishes at all λ ∈ h∗ because χλ is an algebra homomorphism for all λ ∈ h∗. So
Lemma 5.6 implies that ξ(zw) = ξ(z)ξ(w). �

5.2. The Image of Harish-Chandra. To understand infinitesimal characters further, we need to know
when χλ = χµ for λ, µ ∈ h∗. Recall from Sheet 2 Question 2 that ρ := 1

2

∑
α∈Φ+

α ∈ P .

Definition 5.9. Define the dot-action of W on h∗ by

w • λ = w(λ+ ρ)− ρ, w ∈W,λ ∈ h∗. (5.2.1)

We say that λ and µ are linked if µ = w • λ for some w ∈W .



REPRESENTATIONS OF LIE ALGEBRAS 21

Notice that µ and λ are linked if and only if µ + ρ and λ + ρ are in the same W -orbit in h∗ under the
natural action of W . In particular, “linkage” is an equivalence relation on h∗.

Proposition 5.10. If λ, µ ∈ P are linked then χλ = χµ.

Proof. Suppose first that µ = sα • λ for some α ∈ Π. Then λ(hα) ∈ Z as λ ∈ P . Now ρ(hα) = 1 by Sheet 2
Question 2(b) because α ∈ Π is a simple root, so

µ = sα(λ+ ρ)− ρ = λ+ ρ− 2(λ+ ρ, α)

(α, α)
α− ρ = λ− (λ+ ρ)(hα)α = λ− (λ(hα) + 1)α

by Definition 3.26(1) and Lemma 3.27(1). So, if λ(hα) ≥ 0 then M(µ) ↪→M(λ) by Corollary 4.22. But then
Z(g) acts on M(µ) through the character χλ as well as χµ, so that χλ = χµ. If λ(hα) = −1 then µ = λ and
there is nothing to prove. If λ(hα) ≤ −2 then λ = sα • µ and µ(hα) = −λ(hα)− 2 ≥ 0 because α(hα) = 2 by
Theorem 3.17(8), so we are back in the first case with the roles of λ and µ reversed.

Finally, suppose that µ = w • λ for some w ∈ W . Since w is by Definition 3.26(2) a product of simple
reflections sα, we see that χµ = χλ in this case as well. �

Proposition 5.11. The image of the Harish-Chandra homomorphism ξ : Z(g)→ S(h) lies in the subalgebra
S(h)W• = O(h∗)W• of invariant polynomials for the shifted W -action.

Proof. The shifted W -action on O(h∗) is defined in the usual way by

(w • f)(λ) = f(w−1 • λ) for all w ∈W, f ∈ O(h∗), λ ∈ h∗.

Now, let z ∈ Z(g) and w ∈W . Then for any λ ∈ P we have

ξ(z)(λ) = χλ(z) = χw•λ(z) = ξ(z)(w • λ)

by Proposition 5.7 and Proposition 5.10, so w−1 •ξ(z)−ξ(z) vanishes on P for any w ∈W . Since P is Zariski
dense in h∗, ξ(z) ∈ O(h∗) is invariant for the shifted W -action for any z ∈ Z(g). �

Corollary 5.12. If λ, µ ∈ h∗ are linked, then χλ = χµ.

Proof. Say µ = w • λ. Let z ∈ Z(g); then w−1 • z = z by Proposition 5.11, so

χλ(z) = ξ(z)(λ) = (w−1 • ξ(z))(λ) = ξ(z)(µ) = χµ(z)

by Proposition 5.7. �

Example 5.13. Let g = sl(2) and consider its Casimir element C := h2 + 2h+ 4fe ∈ Z(g).

(1) Because fe ∈ n−U(g) we have pr(C) = h2 + 2h.
(2) Let h∗ ∈ h∗ be defined by h∗(h) = 1 and let Φ+ = {α}. Then since hα = h we have α(h) = α(hα) = 2.
(3) Thus α = 2h∗ and ρ = 1

2α = h∗.
(4) The Weyl group W = 〈s〉 where s = sα sends α to −α so that s is the negation map on h∗.
(5) The shifted W -action on S(h) = k[h] is given by

(s • h)(λ) = h(s • λ) = h(s(λ+ ρ)− ρ) = h(−λ− 2ρ) = −λ(h)− 2 = (−h− 2)(λ) for all λ ∈ h∗.

So s • h = −h− 2.
(6) Therefore s • ξ(C) = s • (h(h+ 2)) = (−h− 2)(−h) = ξ(C) and ξ(C) ∈ S(h)W•.

Theorem 5.14 (Harish-Chandra). The algebra homomorphism ξ : Z(g)→ S(h)W• is an isomorphism.

Proof. We view Z(g) as the subspace of g-invariants for the adjoint representation of g in U(g): Z(g) = U(g)g.
Let ζ : S(g)→ S(h) be the unique k-algebra homomorphism which kills n−⊕n+ and which restricts to the

identity map on S(h) — this is a commutative analogue of the Harish-Chandra projection from Definition
5.3, pr : U(g)→ U(h). Note that pr respects filtrations on U(g) and U(h), and that the diagram

gr(U(g)g)
gr ξ //

∼=
��

gr(U(h)W•)

��
S(g)g

ζ|S(g)g

// S(h)W
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is commutative; here we identify grU(g) with S(g) using the isomorphism from Theorem 1.17. Recall the
symmetrisation map φ : S(g)→ U(g) from Definition 1.18. The arrow on the left is an isomorphism because
for every homogeneous u ∈ Sn(g)g, the symmetrised element φ(u) lies in U(g)g and satisfies φ(u) ≡ u
mod Fn−1U(g). The arrow on the right is an isomorphism because the shifted W -action on U(h) induces the
usual W -action on grU(h) ∼= S(h).

The Killing isomorphism κ : g
∼=−→ g∗ extends to a k-algebra isomorphism κ : S(g)

∼=−→ O(g). By Theorem

3.17(3), we also get a k-algebra isomorphism κ : S(h)
∼=−→ O(h). Let θ : O(g)→ O(h) be the restriction map

which sends a polynomial map on g to its restriction to h; then the diagram

S(g)
ζ //

κ

��

S(h)

κ

��
O(g)

θ
// O(h)

is commutative. To see this, note that the k-algebra homomorphisms θ ◦ κ and κ ◦ ζ both kill n+ ⊕ n−, and
restrict to κ : h→ h∗ on h ⊂ g. Now we can apply the Chevalley Restriction Theorem 5.15 below to deduce
that gr ξ is an isomorphism. Hence ξ is also an isomorphism. �

Theorem 5.15 (Chevalley). The restriction map θ : O(g)→ O(h), f 7→ f|h, induces an isomorphism

θ : O(g)g
∼=−→ O(h)W .

Proof. See [Be, Theorem 9.1] or [Hu1, §23.1]. �

Proposition 5.16. Let λ, µ ∈ h∗. Then χλ = χµ if and only if W • λ = W • µ.

Proof. In view of Corollary 5.12, we must show that if W • λ 6= W • µ, then χλ 6= χµ. Now W • λ and W • µ
are finite disjoint subsets of h∗, so by the Chinese Remainder Theorem we can find some f ∈ O(h∗) which is
1 on W • λ and 0 on W • µ. Now let g :=

∑
w∈W w • f : then g ∈ U(h)W• is still zero on W • µ and non-zero

on W • λ. Using Theorem 5.14, choose z ∈ Z(g) such that ξ(z) = g. Then we deduce from Proposition 5.7
that z ∈ kerχµ but z /∈ kerχλ, so χλ 6= χµ as claimed. �

Lemma 5.17. Let R be a commutative ring and let G be a finite group acting on R by automorphisms. Then
R is integral over the invariant ring RG.

Proof. Given r ∈ R, let f(t) :=
∏
g∈G(t− g · r). Then f(t) ∈ RG[t] is monic and f(r) = 0. �

Theorem 5.18. The Harish Chandra isomorphism induces a natural bijection

ξ∗ : h∗/W •
∼=−→ MaxSpec(Z(g)), W • λ 7→ kerχλ.

Proof. Corollary 5.12 tells us kerχλ only depends on W • λ, so ξ∗ is well-defined. Proposition 5.16 implies
that ξ∗ is injective. Now S(h) is integral over S(h)W• by Lemma 5.17. Using Theorem 5.14 together with
the Going Up Theorem — Theorem 7.8(a) — for every maximal ideal M of Z(g) we can find a maximal
ideal P of S(h) such that M = ξ−1(P ). Since k is algebraically closed, P = ker evλ for some λ ∈ h∗ by
the Nullstellensatz, see for example Theorem 4.3. Therefore M = ξ−1(ker evλ) = ker(evλ ◦ξ) = kerχλ by
Proposition 5.7, so ξ∗ is surjective. �

The following is known about the relation between S(h) and its invariant subring S(h)W .

Theorem 5.19 (Chevalley-Shephard-Todd).

(1) S(h)W is a polynomial algebra in dim h variables.
(2) S(h) is a finitely generated and free S(h)W -module.

https://courses.maths.ox.ac.uk/system/files/courses/41982/48005/Lectures%201-10.pdf
https://courses.maths.ox.ac.uk/system/files/courses/41982/48005/Lectures%201-10.pdf
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5.3. Composition series. Recall that we know that every M ∈ O is a Noetherian module.

Proposition 5.20. Each M ∈ O is Artinian.

Proof. By Proposition 4.10 we may assume that M = M(λ) is a Verma module. Suppose for a contradiction
that we have a strictly descending chain of U(g)-submodules M(λ) = N0 > N1 > N2 > · · · of M(λ). By
refining the chain, we may assume that each subquotient Si := N i/N i+1 is non-zero and cyclic as a U(g)-
module, i.e. it is a highest weight module. Let µi be the highest weight of Si. Then χµi = χλ, so µi ∈W • λ
by Proposition 5.16. The short exact sequence 0→ N i+1

µi → N i
µi → Siµi → 0 shows that N i+1

µi < N i
µi , so⊕

µ∈W•λ

N i
µ >

⊕
µ∈W•λ

N i+1
µ for all i ≥ 0.

Let V :=
∑
w∈W M(λ)w•λ; then V ∩N0 > V ∩N1 > · · · is a strictly descending chain of linear subspaces of

V . This is impossible because dimV <∞ by Lemma 4.9(d). �

Corollary 5.21. Let M ∈ O.

(1) M admits a finite composition series.
(2) The set of Jordan-Hölder factors of M is {L(λ1), . . . , L(λk)} for some λ1, . . . , λk ∈ h∗.

Proof. (1) M is Noetherian by Proposition 4.6(1) and Artinian by Proposition 5.20. Hence the Jordan-Hölder
Theorem applies and M has a finite composition series. (2) This follows from Theorem 4.17(1). �

Definition 5.22. For each µ ∈ h∗, let [M : L(µ)] denote the multiplicity with which L(µ) appears in a
composition series of M ∈ O. The numbers [M(λ) : L(µ)] are called the Kazhdan-Lusztig multiplicities.

By the Jordan-Hölder theorem, this does not depend on the choice of composition series of M .

6. Character formulas

The goal is to obtain the Weyl character formula and the dimension formula for the finite dimensional
simple modules L(λ), λ ∈ P+. We follow the expositions by Bernstein [Be] and Fulton-Harris [FH].

6.1. Formal characters. Recall from Corollary 4.11(1) that each weight space of every object of category
O is finite dimensional. Therefore the following definition makes sense.

Definition 6.1. The formal character of a module M ∈ O is the function

chM : h∗ → Z, chM (λ) = dimMλ <∞.

We have the following basic properties of formal characters.

Lemma 6.2. Let M ∈ O.

(1) chM is well-defined, i.e. chM (λ) ∈ N for all λ ∈ N.
(2) chM = 0 if and only if M = 0.
(3) If 0→M1 →M2 →M3 → 0 is an exact sequence in O, then chM2

= chM1
+ chM3

.

What does chV look like when V is a finite dimensional g-module?

Definition 6.3. Let a be an algebra. An a-module M is called a-finite if it is a sum of finite dimensional
a-modules.

We have already encountered this notion in axiom (O3) for category O. The idea behind a-finite module
is that we can extend to this setting the local properties of finite dimensional modules.

Lemma 6.4. Let α ∈ Π be given and suppose that M ∈ O is an slα-finite module. Then dimMµ =
dimMsα(µ) for every weight µ of M .

Proof. Decompose M =
⊕

k∈ZMk with respect to the action of hα. Here Mk is the k-eigenspace of hα. By

Corollary 2.12(2), we know that ekα induces a linear isomorphism between the k-eigenspace and the (−k)-
eigenspace of any finite dimensional slα-module. But then this can also be applied to our slα-finite module M .
Denote jk : Mk →M−k the resulting linear isomorphism induced by the action of ek−α. We can decompose

Mk =
⊕

µ∈h∗,µ(hα)=k

Mµ, M−k =
⊕

µ′∈h∗,µ′(hα)=−k

Mµ′ =
⊕

µ∈h∗,µ(hα)=k

Msα(µ).
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Now, if vµ ∈Mµ, we have hα · ek−α · vµ = [hα, e
k
−α] · vµ + ek−αhα · vµ = (µ− kα)(hα)ek−α · vµ = sα(µ)ek−α · vµ,

since k = µ(hα). This shows that jk maps Mµ to Msα(µ). But then it has to induce a linear isomorphism
between Mµ to Msα(µ). �

Theorem 6.5. Let λ ∈ P+. Then dimL(λ)µ = dimL(λ)wµ for all µ ∈ P and all w ∈W .

Proof. Suppose λ ∈ P+. Then L(λ) is finite dimensional by Theorem 4.19, so it is slα-finite for any α ∈ Π.
Then dimL(λ)µ = dimL(λ)sα(µ) for all µ ∈ Ψ(L(λ)). Since α was arbitrary and the sαs generate W , it
follows that dimL(λ)µ = dimL(λ)w(µ) for all µ ∈ Ψ(L(λ)). �

The Weyl group W acts on h∗ via the natural action w(χ), w ∈ W , χ ∈ h∗. This induces an action (the
left regular action) on functions in the standard way:

(wf)(χ) = f(w−1(χ)), w ∈W, f : h∗ → k.

Theorem 6.5 can be restated more succinctly as follows:

Corollary 6.6. The formal character of any finite dimensional g-module V is W -invariant:

w chV = chV for all w ∈W.

Proof. By Corollary 4.24 and Lemma 6.2(3), we may assume that V ∼= L(λ) for some λ ∈ P+. The result
follows from Theorem 6.5. �

6.2. Characters of M(λ) and L(λ). The formal character of Verma modules M(λ) is easily computable.

Definition 6.7.

(1) The Kostant partition function K : h∗ → Z is given by K(µ) = the number of ways in which µ can
be written as µ =

∑
α∈Φ+ nαα, with nα ∈ Z≥0.

(2) The negative Kostant partition function is p : h∗ → Z, p(µ) = K(−µ).

Lemma 6.8. For every λ ∈ h∗ we have dimM(λ)µ = K(λ−µ) for all µ ∈ h∗, and in particular, p = chM(0).

Proof. See Problem Sheet 3. �

Here is the first indication that formal characters are useful: L(λ) is very mysterious, but its formal
character is easily understood provided the Kazhdan-Lusztig multiplicities are known.

Proposition 6.9. Let λ ∈ h∗.

(1) We have chM(λ) =
∑

µ∈W•λ
[M(λ) : L(µ)]chL(µ).

(2) There exists a set of integers {bλ,µ : µ ∈W • λ} such that chL(λ) =
∑

µ∈W•λ
bλ,µchM(µ).

To prove this, we need the following Lemma.

Lemma 6.10. Suppose that M = M(λ) is a Verma module and let µ ∈ h∗.

(1) If [M(λ) : L(µ)] > 0 then µ ≤ λ and µ ∈W • λ.
(2) [M(λ) : L(λ)] = 1.

Proof. (1) If L(µ) appears as a subquotient of M(λ), then χµ = χλ, so µ ∈W • λ by Proposition 5.16. Also
1 = dimL(µ)µ ≤ dimM(λ)µ forces µ ∈ Ψ(M(λ)) = λ−Q+ by Lemma 4.20.

(2) Note that λ /∈ Ψ(N(λ)). Hence [N(λ) : L(λ)] = 0 and [M(λ) : L(λ)] = 1. �

Proof of Proposition 6.9. (1) Apply Lemma 6.2(3) to a composition series of M(λ).
(2) Write uµ = chM(µ) and vµ = chL(µ) for each µ ∈W • λ. Then by (1)

uµ =
∑

ν∈W•λ

aµ,νvν for all µ ∈W • λ

where aµ,ν = [M(µ) : L(ν)]. This number is zero unless ν ≤ µ, by Lemma 6.10(1). Using Lemma 6.10(2) we
see that the matrix (aµ,ν) is uni-lower-triangular with entries in Z. So its inverse (bµ,ν) exists and has the
same properties. Therefore

vµ =
∑

ν∈W•λ

bµ,νuν for all µ ∈W • λ

and the result follows by taking µ = λ. �
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6.3. Weyl character formula.

Definition 6.11.

(1) For every function f : h∗ → Z, define the support of f to be

suppf = {χ ∈ h∗ | f(χ) 6= 0}.
(2) Define E to be the set of functions f : h∗ → Z such that there exist λ1, . . . , λm ∈ h∗ such that

suppf ⊆
m⋃
i=1

λi −Q+.

(3) For every µ ∈ h∗, define the delta function at µ to be δµ ∈ E defined by δµ(χ) := δµ,χ.
(4) The set E can be endowed with the convolution product, for f, g ∈ E:

(f ? g)(µ) =
∑
χ∈h∗

f(χ)g(µ− χ) =
∑
χ∈h∗

f(µ− χ)g(χ). (6.3.1)

Example 6.12. supp chM(λ) = λ−Q+. In particular, p ∈ E and supp p = −Q+.

Because of the support condition on the elements of E , there are only finitely many nonzero elements in
the sum, hence the convolution is well defined.

Lemma 6.13.

(1) (E ,+, ?) is an associative and commutative ring with identity δ0.
(2) δµ ? δλ = δµ+λ, for all µ, λ ∈ h∗.

Lemma 6.14. chM(λ) = p ? δλ ∈ E .

Proof. By Lemma 6.8, dimM(λ)µ = K(λ− µ) = p(µ− λ). Hence

(p ? δλ)(µ) =
∑
χ∈h∗

p(µ− χ)δλ(χ) = p(µ− λ) = dimM(λ)µ = chM(λ)(µ) for all µ ∈ h∗. �

Corollary 6.15. chM ∈ E for any M ∈ O.

Proof. If M is a submodule or a quotient module of a Verma module M(λ), then supp chM ⊆ supp chM(λ)

which has the right shape by Lemma 6.14. Now apply Proposition 4.10 together with Lemma 6.2(3). �

In the light of Lemma 6.14, it is desirable to find the inverse (if it exists) of p in E .

Definition 6.16 (Weyl denominator). Define ∆ :=
∏

α∈Φ+

(δα/2 − δ−α/2) ∈ E .

The reason for the name “denominator” comes from our next result, which informally states p =
δρ
∆ .

Lemma 6.17. We have p ?∆ ? δ−ρ = δ0, or equivalently p ?∆ = δρ.

Proof. Set aα = δ0 + δ−α + δ−2α + · · · + δ−nα + · · · ∈ E for every α ∈ Φ+. Then p =
∏

α∈Φ+

aα. Next notice

that aα ? (δ0 − δ−α) = aα − aα ? δ−α = δ0. But then, as δ−ρ =
∏

α∈Φ+

δ−α/2, we have

p ?∆ ? δ−ρ = p ?
∏
α∈Φ+

(δ0 − δ−α) =
∏
α∈Φ+

aα ? (δ0 − δ−α) = δ0. �

Let det(w) denote the determinant of w ∈W viewed as a linear transformation of h∗.

Lemma 6.18. The function ∆ is W -skew-invariant, i.e., w∆ = det(w) ·∆, for all w ∈W.

Proof. It is sufficient to check that for every simple root α, sα∆ = −∆. (Recall that det(sα) = −1.) We know
that sα permutes the roots Φ+ \ {α} and sα(α) = −α. Hence

sα∆ =
∏
β∈Φ+

sα(δβ/2 − δ−β/2) = (δ−α/2 − δα/2) ?
∏

β∈Φ+\{α}

(δβ/2 − δ−β/2) = −∆. �

Lemma 6.19. If λ ∈ P+ and w ∈W are such that w • λ = λ, then w = 1.
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Proof. Suppose 1 6= w ∈ W . Then by Sheet 4 Question 4, there exists α ∈ Φ+ such that wα ∈ Φ−. Write
α =

∑
β∈Π nββ with nβ ∈ N and not all nβ = 0. Then using Lemma 3.27(1) we have

(λ+ ρ, α) =
∑
β∈Π

nβ
(β, β)

2
(λ+ ρ)(hβ).

This expression is strictly positive because λ ∈ P+ implies λ(hβ) ≥ 0 for all β ∈ Π and because some nβ > 0.
If w • λ = λ, then also w−1(λ+ ρ) = λ+ ρ and hence, using Lemma 3.27(2),

(λ+ ρ, α) = (w−1(λ+ ρ), α) = (λ+ ρ, wα) < 0

by the previous equation applied to wα ∈ −Φ+. This contradiction shows that in fact w = 1. �

Theorem 6.20. Suppose that λ ∈ P+. Then ∆ ? chL(λ) =
∑
w∈W

det(w) δw(λ+ρ).

Proof. By Lemma 6.19, the stabiliser of λ in W under the shifted action is trivial. By Proposition 6.9(2)
together with Lemma 6.14 we have

chL(λ) =
∑
w∈W

bλ,w•λchM(w•λ) =
∑
w∈W

nw p ? δw•λ

for some integers nw := bλ,w•λ. Multiply both sides by ∆. Applying Lemma 6.17, we see that ∆ ? p ? δw•λ =
δρ ? δw•λ = δw(λ+ρ). Therefore

∆ ? chL(λ) =
∑
w∈W

nwδw(λ+ρ)

and it remains to show that nw = det(w) for each w ∈ W . We claim that the left hand side of the identity
is W -skew-invariant. Indeed, by Lemma 6.18 and Corollary 6.6,

w(∆ ? chL(λ)) = w∆ ? wchL(λ) = det(w)∆ ? wchL(λ) = det(w)∆ ? chL(λ).

But then
∑
w∈W nwδw(λ+ρ) is also W -skew-invariant, and since n1 = bλ,λ = 1, we get nw = det(w). �

Corollary 6.21 (Weyl’s denominator formula).
∏

α∈Φ+

(δα/2 − δ−α/2) = ∆ =
∑
w∈W

det(w) · δw(ρ).

Proof. This is the case λ = 0 in Theorem 6.20. �

Corollary 6.22. Let λ ∈ P+, and define Aλ :=
∑
w∈W

det(w) δw(λ+ρ).

(1) (Weyl Character Formula) We have Aρ ∗ chL(λ) = Aλ+ρ.
(2) (BGG formula) We have chL(λ) =

∑
w∈W

det(w) chM(w•λ).

(3) (Kostant’s multiplicity formula) chL(λ)(µ) =
∑
w∈W

det(w) K(w(λ+ ρ)− (µ+ ρ)).

Proof. (1) Apply Theorem 6.20 together with Corollary 6.21.
(2) Multiply the formula from Theorem 6.20 by p ? δ−ρ on the left. Then Lemma 6.17 tells us that

chL(λ) =
∑
w∈W

det(w) p ? δw•λ

since δw(λ+ρ)δ−ρ = δw•λ. Now use Lemma 6.14.
(3) is immediate from (2) together with Lemma 6.8. �

Example 6.23. Let us consider the case of g = sl(2). We identify, as we may, P+ with N and then α = 2ρ
is identified with 2 ∈ N. The Weyl group is {±1}. Let L(n), n ∈ Z≥0 be the simple module of dimension
n+ 1. The weights of L(n) are n, n− 2, n− 4, . . . ,−n. This means that in E , the character of L(n) equals

chL(n) = δn + δn−2 + · · ·+ δ−n+2 + δ−n.

On the other hand ∆ = δ1 − δ−1. Therefore, Corollary 6.22(1) becomes the easy identity

(δn + δn−2 + · · ·+ δ−n+2 + δ−n) ? (δ1 − δ−1) = δn+1 − δ−(n+1).

Corollary 6.22(2) in this case becomes chL(n) = chM(n) − chM(−n−2). Notice that w • n = −n − 2 when
w = −1 ∈W . This formula is a consequence of the short exact sequence

0 −→M(−n− 2) −→M(n) −→ L(n) −→ 0.
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6.4. Weyl’s dimension formula. We wish to use the formula in Theorem 6.20 to deduce the dimension
formula for the finite dimensional g-modules L(λ). For this, we will find a much smaller ring than E that
still allows an effective way of stating the character formula, namely the group ring of integral weights

Z[P ] =
⊕
λ∈P

Z[λ].

Here [λ] ∈ Z[P ] is a formal symbol for each λ ∈ P , and [λ] · [µ] = [λ+ µ].

Lemma 6.24. The subring of E generated by {δλ : λ ∈ P} is isomorphic to Z[P ].

Proof. The map δ : P → E× given by λ 7→ δλ is a group homomorphism by Lemma 6.13(1). Its image is
linearly independent. Hence the extended ring homomorphism δ : Z[P ]→ E is injective. �

Definition 6.25.

(1) The augmentation homomorphism ε : Z[P ]→ Z is defined by ε

( ∑
λ∈P

nλ[λ]

)
=
∑
λ∈P

nλ.

(2) For each λ ∈ P , define Fλ :=
∑
w∈W

det(w)[w(λ)] ∈ Z[P ].

In this language, the Weyl character formula says that chL(λ) = δ
(
Fλ+ρ
Fρ

)
.

Recall that because k is a field of characteristic zero, the formal exponential series eat :=
∞∑
n=0

antn

n! makes

sense in the ring of formal power series k[[t]], for any a ∈ k.

Proposition 6.26.

(1) For each µ ∈ P there is a ring homomorphism

Ψµ : Z[P ]→ k[[t]] defined by Ψµ([λ]) := e(µ,λ)t for all λ ∈ P.

(2) We have Ψµ(Fλ) = Ψλ(Fµ) for all λ, µ ∈ P .

(3) We have Ψλ(Fρ) =
∏

α∈Φ+

(e(α,λ) t2 − e−(α,λ) t2 ) for any λ ∈ P .

(4) Ψλ(Fρ) =

( ∏
α∈Φ+

(α, λ)

)
t|Φ

+| mod t|Φ
+|+1k[[t]] for any λ ∈ P .

(5) Ψλ(S)(0) = ε(S) for all S ∈ Z[P ].

Proof. (1) The map P → k[[t]]× given by λ 7→ e(µ,λ)t is a group homomorphism. Now apply the universal
property of the group ring Z[P ].

(2) Because the bilinear form (−,−) on h∗ is symmetric and W -invariant by Lemma 3.27(2), we have
(µ,wλ) = (λ,w−1µ). Since det(w) = det(w)−1 for any w ∈W , we have

Ψµ(Fλ) =
∑
w∈W

det(w)e(µ,wλ)t =
∑
w∈W

det(w−1)e(λ,w−1µ)t = Ψλ(Fµ).

(3) The maps Ψλ and δ extend to Z[ 1
2P ]: there is a commutative diagram of commutative rings

Z[P ]
Ψλ //

δ

�� ((

k[[t]]

E Z
[

1
2P
]
.

δ
oo

Ψλ

OO

Now δ(Fρ) = ∆ = δ

( ∏
α∈Φ+

[α2 ]− [−α2 ]

)
by Corollary 6.21 and Definition 6.16. Since δ is injective, we obtain

the formula Fρ =
∏

α∈Φ+

([α2 ]− [−α2 ]) valid in Z[ 1
2P ]. Now apply Ψ to this formula.

(4) For any a ∈ k, e
at
2 − e− at2 ≡ at mod t2k[[t]]. Now apply part (3).

(5) Evaluation at zero is a ring homomorphism k[[t]]→ k, so it’s enough to check the formula for S = [µ]
with µ ∈ P . But Ψλ([µ]) = e(µ,λ)t(0) = 1 = ε([µ]) for any µ ∈ P . �
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We can now deduce the dimension formula.

Theorem 6.27 (Weyl’s dimension formula). Let λ ∈ P+. Then dimL(λ) =
∏

α∈Φ+

(λ+ρ,α)
(ρ,α) .

Proof. Since L(λ) is finite dimensional by Theorem 4.19, its formal character already lies in Z[P ]: if

`(λ) :=
∑
µ∈P

dimL(λ)µ[µ] ∈ Z[P ]

then because δ : Z[P ]→ E is injective by Lemma 6.24, the Weyl Character Formula, Corollary 6.22(1) says

Fρ · `(λ) = Fλ+ρ.

Apply Ψρ from Proposition 6.26(1) to both sides of this formula and use Proposition 6.26(2) to obtain

Ψρ(Fρ)Ψρ(`(λ)) = Ψρ(Fλ+ρ) = Ψλ+ρ(Fρ).

Both sides are k[[t]]-multiples of t|Φ
+| by Proposition 6.26(4). Compare the leading coefficients of both power

series, i.e. divide both sides by t|Φ
+| and then evaluate the result at zero. Proposition 6.26(4,5) then gives( ∏
α∈Φ+

(α, λ)

)
· ε(`(λ)) =

( ∏
α∈Φ+

(α, λ+ ρ)

)
.

Finally ε(`(λ)) =
∑
µ∈P

dimL(λ)µ = dimL(λ) by Definition 6.25 and we’re done. �

6.5. The BGG resolution. Corollary 6.22(2) has a beautiful homological refinement. The first step is to
determine the maximal submodule N(λ) of M(λ) when λ ∈ P+.

Theorem 6.28. If λ ∈ P+, there exists an exact sequence⊕
α∈Π

M(sα • λ)→M(λ)→ L(λ)→ 0.

We will not give a proof of this Theorem; note that our proof of Theorem 4.19 shows that the sum of the
images of all the Verma modules M(sα•λ) where α ranges over all positive roots of g has finite codimension in
M(λ) and is therefore contained in the unique maximal submodule N(λ) of M(λ). Theorem 6.28 strengthens
this by showing that in fact N(λ) equals the sum of these modules where we only take the sum over all simple
roots α. The BGG resolution extends the sequence above to a resolution of L(λ).

Theorem 6.29 (BGG resolution). Suppose λ ∈ P+. Then there exists an exact sequence:

0→M(w0•λ)→
⊕

`(w)=|Φ+|−1

M(w•λ)→ · · · →
⊕

`(w)=k

M(w•λ)→ · · · →
⊕
α∈Π

M(sα•λ)→M(λ)→ L(λ)→ 0.

(6.5.1)

Proof. Here ` is the length function on W — see Sheet 4, Question 4 — and w0 is the longest element of W .
See [Hu2, Theorem 6.2] for the proof. �

As a consequence, the Euler-Poincaré principle implies that in K(O):

chL(λ) =

|Φ+|∑
k=0

(−1)k
∑

w∈W,`(w)=k

chM(w•λ) =
∑
w∈W

(−1)`(w)chM(w•λ), (6.5.2)

which is exactly the BGG formula, Corollary 6.22(2).
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