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Random DNNs hidden layer outputs
Norm of hidden layer outputs

The DNN with weight matrices W (`) and bias vectors b(`) with
Gaussian entries N (0, σ2

w ) and N (0, σ2
b)

h(`) = W (`)z(`) + b(`), z(`+1) = φ(h`)), ` = 0, . . . , L− 1,

has computable map R(ρ) of how the correlation between two
inputs evolve through the layers. The stability of a point and its
perturbation is determined by
χ := ∂R(ρ)

∂ρ |ρ=1 = σ2
w

∫
Dz [φ′(

√
q∗z)2].

I χ ≤ 1: locally stable and points which are sufficiently
correlated all converge, with depth, to the same point.

I χ > 1: small perturbations are unstable with nearby points
become uncorrelated with depth.

https://arxiv.org/pdf/1606.05340.pdf
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Stability of pre-activation lengths (Pennington et al. 18’)
The “Edge of Chaos Curve” for φ(·) = tanh(·).

https://arxiv.org/pdf/1802.09979.pdf
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DNN Jacobian
Input-Output map: behaviour of small perturbations

The Jacobian of the feed forward net is given by

J =
∂z(L)

∂x (0)
= ΠL−1

`=0D
(`)W (`)

where D(`) is diagonal with entries D
(`)
ii = φ′(h

(`)
i ).

Moreover, for the sum of squares loss, the gradient is computed as

δ` = D`(W (`))T δ`+1 and δL = D(L)gradh(L)L.

which gives the formula for computing the δ` for each layer as

δ` =
(

ΠL−1
k=`D

(k)(W (k))T
)
D(L)gradh(L)L.

and the resulting gradient gradθL with entries as

∂L
∂W (`)

= δ`+1 · hT` and
∂L
∂b(`)

= δ`+1
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Average singular value
Correlation stability and exploding / vanishing gradient

In the infinite width limit, the average trace of (DW )T (DW ) is the
average of the singular values

χ = N−1
〈

Tr((DW)>DW)
〉

The growth of a perturbation is given by the expected mean
singular value of JT J from one layer to the next which is given by

χ = σ2
w

∫
(2π)−1/2φ′

(√
q(?)z

)2

e−z
2/2dz .

Consider the spectrum of JT J more fully, in particular how it varies
around its expected value.
https://arxiv.org/pdf/1606.05340.pdf
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Spectrum of the Jacobian pt. 1(Pennington et al. 18’)
How to compute the product of D(`)W (`)

Computing the spectrum of products of matrices, e.g. for

J = ∂z(L)

∂x(0) = ΠL−1
`=0D

(`)W (`) where D
(`)
ii = φ′(h

(`)
i ).

Stieltjes and S Transforms

For z ∈ C/R the Stieltjes Transform, Gρ(z), of a probability distribution
and its inverse are given by

Gρ(z) =

∫
R

ρ(t)

z − t
dt and ρ(λ) = −π−1 lim

ε→0+

Imag(Gρ(λ+ iε)).

The Stieltjes Transform and moment generating function are related by

Mρ(z) := zGρ(z) − 1 =
∑∞

k=1
mk

zk
, and the S Transform is defined as

Sρ(z) = 1+z
zM−1

ρ (z)
. The S Transform has the property that if ρ1 and ρ2 are

freely independent then Sρ1ρ2 = Sρ1Sρ2 .

https://arxiv.org/pdf/1802.09979.pdf
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Spectrum of the Jacobian pt. 2(Pennington et al. 18’)
Moment generating functions

The S Transform of JJT with J = ∂z(L)

∂x(0) = ΠL−1
`=0D

(`)W (`) is then
given by

SJJT = SLD2SLWTW .

This can be computed through the moments MJJT (z) =
∑∞

k=1
mk

zk
,

MD2(z) =
∑∞

k=1
µk
zk

, where

µk =
∫

(2π)−1/2φ′
(√

q(?)z
)2k

e−z
2/2dz .

In particular: m1 = (σ2
wµ1)L and

m2 = (σ2
wµ1)2LL(µ−1

2 µ2
1 + L−1 − 1− s1).

Importantly, σ2
wµ1 = χ is the growth factor we observed with the

edge of chaos, requiring χ = 1 to avoid rapid convergence of
correlations to fixed points.
https://arxiv.org/pdf/1802.09979.pdf
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Nonlinear activation stability (Pennington et al. 18’)
Examples of moment generating functions

Where MD2 (z) =
∑∞

k=1
µk

zk
with µk =

∫
(2π)−1/2φ′

(√
q(?)z

)2k

e−z
2/2dz .

Recall that m1 = χL is the expected value of the spectrum of JJT ;
while the variance of the spectrum of JJT is given by
σ2
JJT

= m2 −m2
1 = L(µ2µ

−2
1 − 1− s1), where

for W Gaussian s1 = −1 and for W orthogonal s1 = 0.
Linear φ(·): q∗ = σ2

wq
∗ + σ2

b, has fixed point (σw , σb) = (1, 0).
ReLU φ(·): q∗ = 1

2σ
2
wq
∗ + σ2

b, has fixed point (σw , σb) = (
√

2, 0).
Hard Tanh and Erf have curves as fixed points χ(σw , σb).
https://arxiv.org/pdf/1802.09979.pdf
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Distribution of activations φ′(z) (Pennington et al. 18’)
µk =

∫
(2π)−1/2φ′

(√
q(?)z

)2k
e−z2/2dz.

https://arxiv.org/pdf/1802.09979.pdf

Random matrix theory perspectives on DNN initialization 9

https://arxiv.org/pdf/1802.09979.pdf


Controlling the variance of the Jacobian spectra (Murray et al. 21’)
Symmetric with prescribed linear region around the origin

Definition (scaled-bounded activations)

We refer to the set of activation functions φ : R→ R which satisfy
the following properties as scaled-bounded activations.

1. Continuous.

2. Odd, meaning that φ(z) = −φ(−z) for all z ∈ R.

3. Linear around the origin and bounded: in particular there
exists a, k ∈ R>0 such that φ(z) = kz for all z ∈ [−a, a] and
φ(z) ≤ ak for all z ∈ R.

4. Twice differentiable at all points z ∈ R\D, where D ⊂ R is a
finite set. Furthermore |φ′(z)| ≤ k for all z ∈ R\D.

https://arxiv.org/abs/2105.07741
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Correlation map and variance convergence (Murray et al. 21’)
Increasing the linear region drives the Jacobian spectra to 1

Theorem (Murray 21’)

Let φ be a scaled-bounded activation, σ2
b > 0, χ1 :=

σ2
wE[φ′(

√
q∗Z )2] = 1 where q∗ > 0 is a fixed point of Vφ. Let

inputs x satisfy ||x||22 = q∗.
Then as y := σ2

b/a
2 → 0, both

maxρ∈[0,1]|Rφ,q∗(ρ)− ρ|,
∣∣µ2/µ

2
1 − 1

∣∣→ 0,

with rates available in Murray 21’.

Note that this is independent of details of φ(·) outside its linear
region [−a, a]. Best performance is observed with a ∼ 3, or
preferably a decreasing from about 5 to 2 during training.
https://arxiv.org/abs/2105.07741
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Training very DNNs with Shtanh (Murray et al. 21’)
Improved accuracy with dynamic linearity decay

Test accuracy of a trained very deep feed forward net on CIFAR-10.

https://arxiv.org/abs/2105.07741
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Distribution of Jacobian spectra (Pennington et al. 18’)
Observed universality of spectra based on φ(·)

https://arxiv.org/pdf/1802.09979.pdf
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From fully connected to CNN EoC (Pennington et al. 18’)
Hidden layer covariance matrix becomes block diagonal for overlapping filters

I In fully connected (MLP) networks the entries in a hidden
layer are mean zero and have a diagonal, due to row
independence in W (`), covariance matrix with diagonal entries
q(`).

I In a CNN the hidden layers are again mean zero and have
variance q(`). The covariance matrix is zero when considering
different filters which are drawn randomly. Moreover, when a
filter acts on disjoint locations the randomness from the prior
layer induces a zero covariance. However, for output
corresponding to a filter overlapping spatially the limit is q∗ρ∗

where ρ∗ = R(ρ∗) from the correlation map. The covariance
matrix is then typically block diagonal with nonzero entries
converging to q∗ in depth.

https://arxiv.org/pdf/1806.05393
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Summary of random DNN initialisation
Dependence between σw , σb, φ(·)

I Poole et al. 16’ showed pre-activation output is well modelled
as Gaussian with variance q∗ determined by σw , σb, φ(·).
Moreover, the correlation between two inputs follows a similar
map with correlations converging to a fixed point, with the
behaviour determined in part by χ where χ = 1 avoids
correlation to the same point, or nearby points diverging.
https://arxiv.org/pdf/1606.05340.pdf

I Pennington et al 18’ showed more generally how to compute
the moments for the Jacobian spectra, where χ = 1 is needed
to avoid exponential growth or shrinkage with depth of
gradients.
https://arxiv.org/pdf/1802.09979.pdf

Random matrix theory perspectives on DNN initialization 15

https://arxiv.org/pdf/1606.05340.pdf
https://arxiv.org/pdf/1802.09979.pdf


Further associated reading 1 of 2
Related results

I Identifying natural depth scales of information propagation
https://arxiv.org/pdf/1611.01232.pdf

I Further details on the role of activation functions
https://arxiv.org/pdf/1902.06853.pdf

I Principles for selecting activation functions
https://arxiv.org/pdf/2105.07741.pdf
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Further associated reading 2 of 2
Convergence of representations at each layer of a neural network to a Gaussian Process & wider reading

I Early results on correlation of inputs (Chapter 2 in particular)
https://www.cs.toronto.edu/~radford/ftp/thesis.pdf

I Rigorous treatment of Gaussian Process perspective, infinite
width https://arxiv.org/pdf/1711.00165.pdf

I Rigorous treatment of Gaussian Process perspective, finite
width https://arxiv.org/pdf/1804.11271.pdf

I Higher order terms and width proportional to depth scaling
https://arxiv.org/pdf/2106.10165.pdf

I Specifics for random ReLU nets
https://arxiv.org/pdf/1801.03744.pdf

https://arxiv.org/pdf/1803.01719.pdf
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Attention mechanisms:
Rank-collapse and alternative nonlinear activations
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Attention mechanism (Vaswani 17’), equations
Key and Query quadratic form to highlight relations

Input is a matrix X ∈ Rn×d where n is the ”context length” and d is the
”embedding dimension”. They queries, keys, and values are then
computed with matrix-products QT = WQX

T , KT = WKX
T , and

V T = WVX
T then the attention layer is

H = softmax

(
XWQW

T
K XT

n1/2

)
XWV

where the softmax acts row-wise to give non-negative entries that sum to
one.

softmax(x)i = exp(xi )/
∑
`

exp(x`)

Generally Q and K have layer-norm applied to enforce fixed mean and
variance. Intuitively the softmax helps highlight the rows in X that
deserve ”attention.”
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Weight initialization and layer-norm
Key and Query vs Value weights

I The query and key matrices, QT = WQX
T and

KT = WKX
T , are used to measure alignment between the

input X in their embedding space determined by WQ and
WK . To measure angles one always layer-norm so that each
row of Q and K have `2 length of 1. Their initialization
largely ignored for this reason.

I The value matrix is very similar to fully connected networks,
but note there isn’t a nonlinear activation here.

I What is the impact of the softmax activation?

softmax

(
XWQW

T
K XT

n1/2

)
XWv
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Spectrum of the attention matrix (Nait Saada 24’)
The spectral gap of random Markov matrices

Random matrices with a non-zero mean have an associated
outlying eigenvalue. For Markov / softmax there is one eigenvalue
at 1 and the remainder uniform in a disc with radius ∼ n−1/2.
This causes rank-collapse with outputs increasingly
one-dimensional.
https://arxiv.org/pdf/2410.07799
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Rank-collapse due to the spectral gap (Nait Saada 24’)
Excessive over smoothing in width and depth

I The single eigenvalue outlier causes an L layer need attention
network to converge to a one dimensional output at the
exponential rate n−L/2.

I This is a form of excessive stability and slows initial training.
It is reflected in a form of vanishing gradients analogous to
χ = 1

I Similarly, (Dong et al. 23) showed rank-collapse through
depth with attention converging to the constant matrix
T−11T1TT . (https://arxiv.org/pdf/2103.03404)

The resolution of rank-collapse is an active area of research
https://arxiv.org/pdf/2410.07799
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Techniques to resolve rank-collapse
Reducing the impact of the spectral outlier

I Centering (Ali et al. 23’) subtracts the matrix of constant
values T−1, i.e. T−11T1TT , corresponding to the eigenvalue
outlier https://arxiv.org/pdf/2306.01610

I Differential transformers (Ye et al. 24’) compute two
attention matrices with different key and query matrices and
then subtract them. This has the same effect as centering,
but doubles the number of parameters.
https://arxiv.org/pdf/2410.05258

I Mind the gap (Nait Saada et al. 24’) project out the direction
1T from the columns of the value matrix V , mathematically
equivalent to centering but more efficient.
https://arxiv.org/pdf/2410.07799
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Techniques to resolve rank-collapse
Alternative activations: primarily linear and ReLU

Rather than remove the rank-collapse effect the softmax
activation, Hron et al. 20’, amongst others, instead consider not
using softmax. They showed superior training accuracy by instead
using linear attention where the softmax is omitted, referred to as
linear attention, or ReLU entrywise instead of the softmax.
https://arxiv.org/pdf/2006.10540

Similar linear attention is now widely discussed in the literature of
Vision Transformers, see for instance
https://arxiv.org/pdf/2309.08586 by Wortsman et al. 23’.

Efficient training of LLMs is one of the dominant research
questions being actively studied.
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