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Random DNNs hidden layer outputs

Norm of hidden layer outputs

The DNN with weight matrices W) and bias vectors b(©) with
Gaussian entries A(0,02) and N(0,02)

RO — WO 0 4 pO) 2D = ¢ (p9), (=0,...,L—1,

has computable map R(p) of how the correlation between two
inputs evolve through the layers. The stability of a point and its
perturbatlon is determlned by
= %5 1 = ol | Delo/ (V2]
» x < 1: locally stable and points which are sufficiently
correlated all converge, with depth, to the same point.

> x > 1: small perturbations are unstable with nearby points
become uncorrelated with depth.

https://arxiv.org/pdf/1606.05340.pdf

Oxford Random matrix theory perspectives on DNN initialization
Mathematics


https://arxiv.org/pdf/1606.05340.pdf

Stability of pre-activation lengths (Pennington et al. 18")
The “Edge of Chaos Curve” for ¢(-) = tanh(-).
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Figure 1: Order-chaos tramnsition when @é(h) =
tanh(/A). The critical line x = 1 determines the bound-
ary between the two phases. In the chaotic regime

x > 1 and gradients explode while in the ordered
regime x < 1 and we expect gradients to vanish. The
value of g* along this line is shown as a heatmap.

https://arxiv.org/pdf/1802.09979.pdf
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DNN Jacobian

Input-Output map: behaviour of small perturbations

The Jacobian of the feed forward net is given by

9z(b)

92 _ nL-1p@p®
= o = N DWW

where DU) is diagonal with entries Di(ig) = gb’(h,(e)).
Moreover, for the sum of squares loss, the gradient is computed as

5o =D'WNTs,1  and 6, = DWBgrad,u L.
which gives the formula for computing the §; for each layer as

52 = (MZE0W(WO)T) DOgrado .

and the resulting gradient grad,L with entries as

oL . oL
W = (5g+1 . h[ and W = (Sg+]_
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Average singular value
Correlation stability and exploding / vanishing gradient

Insti

In the infinite width limit, the average trace of (DW)T(DW) is the
average of the singular values

x = N2 (Tr((DW) Tow) )

The growth of a perturbation is given by the expected mean
singular value of JT J from one layer to the next which is given by

2
X =02 /(2%)1/2q§' <\/q(*)z> e 7124z

Consider the spectrum of JTJ more fully, in particular how it varies
around its expected value.
https://arxiv.org/pdf/1606.05340. pdf
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Spectrum of the Jacobian pt. 1(Pennington et al. 18")

How to compute the product of DO W)

Computing the spectrum of products of matrices, e.g. for

J =920 = N IDOWO where DY) = ¢/ (hY).

For z € C/R the Stieltjes Transform, G,(z), of a probability distribution
and its inverse are given by

Gy(2) :/]R r(t) dt and p(\)=—7""1 lim Imag(G,(\ + ie)).

z—t e—04

The Stieltjes Transform and moment generating function are related by

M,(z) = zG,(z) — 1 = Y_;2; T, and the S Transform is defined as
S,(z) = N}ff( 7 The S Transform has the property that if p; and p; are
Z P z

freely independent then S,,,, = S,, S, .

https://arxiv.org/pdf/1802.09979.pdf
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Spectrum of the Jacobian pt. 2(Pennington et al. 18")

Moment generating functions

Hz(L)
ox(0)

The S Transform of JJT with J = =Ny DOW® is then
given by

_ gL <L
Sy =858k

This can be computed through the moments M;r(z) = > 72, 7k,
Mp2(z) = 3232 Bk, where

pg = [(2m) "2/ (\/WZ) W e2l2gy,

In particular: m; = (02 1)t and

my = (0g,u1)* L(py g + L1 =1 = s1).

Importantly, o2 1 = X is the growth factor we observed with the
edge of chaos, requiring x = 1 to avoid rapid convergence of
correlations to fixed points.
https://arxiv.org/pdf/1802.09979.pdf
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Nonlinear activation stability (Pennington et al. 18’)

Examples of moment generating functions

Mathematical
Institute

Table 1: Properties of Nonlinearities

| o(h) | Mp=(2) | | o2 | 02,
Linear h 1 1 1 L(—s1)
ReLu [R]4 1 2 L(1—sy)

ar e AT 1 1 1 _ — s
Hard Tanh | [h+ 1]y —[h — 1]y — 1 erf(325) | mre = | (a7 = 1—s1)
Erf erf (Y= h) T | VIR | LA —1—s1)

Where Mp2(z) = Y52 L with e = [(2m)7/2¢/ (\/qT ) e /2dz.
Recall that m; = ! is the expected value of the spectrum of JJT;
while the variance of the spectrum of JJT is given by

UiJT =my — m% = L(Mg/,Ll_2 —1—s1), where

for W Gaussian s1=-—1 and for W orthogonal s; = 0.

Linear ¢(-): ¢* = Uwq + ab, has fixed point (o, 05) = (1,0).
ReLU ¢(-): ¢* = 302,g* + 02, has fixed point (0w, op) = (V2,0).
Hard Tanh and Erf have curves as fixed points x(ow, 0p).
https://arxiv.org/pdf/1802.09979.pdf
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Distribution of activations ¢'(z) (Pennington et al. 18")

1/2 _ A OXFORD
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Figure 3: Distribution of ¢’(h) for different nonlinearities. The top row shows the nonlinearity, ¢(h), along with
the Gaussian distribution of pre-activations h for four different choices of the variance, ¢*. The bottom row gives
the induced distribution of ¢/(h). We see that for ReLU the d bution is independent of ¢*. This implies that
there is no stable limiting distribution for the spectrum of JJ By contrast for the other nonlinearities the
distribution is a relatively strong function of ¢*.

https://arxiv.org/pdf/1802.09979.pdf
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Controlling the variance of the Jacobian spectra (Murray et al. ]

Symmetric with prescribed linear region around the origin

Institute

Definition (scaled-bounded activations)
We refer to the set of activation functions ¢ : R — R which satisfy
the following properties as scaled-bounded activations.

1. Continuous.

2. Odd, meaning that ¢(z) = —¢(—2z) for all z € R.

3. Linear around the origin and bounded: in particular there
exists a, k € Rsq such that ¢(z) = kz for all z € [—a, a] and
¢(z) < ak for all z € R.

4. Twice differentiable at all points z € R\D, where D C R is a
finite set. Furthermore |¢'(z)| < k for all z € R\D.

https://arxiv.org/abs/2105.07741
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Correlation map and variance convergence (Murray et al. 21")

Increasing the linear region drives the Jacobian spectra to 1

Institute

Let ¢ be a scaled-bounded activation, af, > 0, xy1 =

02E[¢'(vVq*Z)?] = 1 where g* > 0 is a fixed point of V. Let
inputs x satisfy ||x||3 = g*.
Then as y := ag/a2 — 0, both

max,efo, 11| Ro.q- (0) = pl; [u2/1f = 1] = 0,

with rates available in Murray 21'.

Note that this is independent of details of ¢(-) outside its linear
region [—a, a]. Best performance is observed with a ~ 3, or
preferably a decreasing from about 5 to 2 during training.
https://arxiv.org/abs/2105.07741
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Training very DNNs with Shtanh (Murray et al. 21")

Improved accuracy with dynamic linearity decay

Mathematical
Institute

Test accuracy of a trained very deep feed forward net on CIFAR-10.
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https://arxiv

(b) Shtanh with orthogonal initialisation

.org/abs/2105.07741
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Distribution of Jacobian spectra (Pennington et al. 18")

Observed universality of spectra based on ¢(+)
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Figure 4: Two limiting universality classes of Jacobian spectra. Hard Tanh and Shifted ReLU fall into one class,
characterized by Bernoulli-distributed ¢’ (h)?, while Erf and Smoothed ReLU fall into a second class, characterized
by a smooth distribution for ¢(h)?. The black curves are theoretical predictions for the limiting distributions
with variance o = 1/4. The colored lines are emprical spectra of finite-depth width-1000 orthogonal neural
networks. The empirical spectra converge to the limiting distributions in all cases. The rate of convergence is
similar for Hard-Tanh and Shifted ReLU, whereas it is significantly different for Erf and Smoothed Relu, which
converge to the same limiting distribution along distinct trajectories. In all cases, the solid colored lines go from
shallow L = 2 networks (red) to deep networks (purple). In all cases but Erf the deepest networks have L = 128.
For Erf, the dashed lines show solutions to for very large depth up to L = 8192.

https://arxiv.org/pdf/1802.09979.pdf
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From fully connected to CNN EoC (Pennington et al. 18")

Hidden layer covariance matrix becomes block diagonal for overlapping filters

» In fully connected (MLP) networks the entries in a hidden
layer are mean zero and have a diagonal, due to row
independence in W, covariance matrix with diagonal entries
q®.

> In a CNN the hidden layers are again mean zero and have
variance q(¥). The covariance matrix is zero when considering
different filters which are drawn randomly. Moreover, when a
filter acts on disjoint locations the randomness from the prior
layer induces a zero covariance. However, for output
corresponding to a filter overlapping spatially the limit is g*p*
where p* = R(p*) from the correlation map. The covariance
matrix is then typically block diagonal with nonzero entries
converging to g* in depth.

https://arxiv.org/pdf/1806.05393
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Summary of random DNN initialisation

Dependence between oy, op, ¢()

>

Poole et al. 16" showed pre-activation output is well modelled
as Gaussian with variance g* determined by o, op, &().
Moreover, the correlation between two inputs follows a similar
map with correlations converging to a fixed point, with the
behaviour determined in part by x where y = 1 avoids
correlation to the same point, or nearby points diverging.
https://arxiv.org/pdf/1606.05340.pdf

Pennington et al 18" showed more generally how to compute
the moments for the Jacobian spectra, where xy = 1 is needed
to avoid exponential growth or shrinkage with depth of
gradients.

https://arxiv.org/pdf/1802.09979.pdf
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Further associated reading 1 of 2

Related results Mathematical
matic

» Identifying natural depth scales of information propagation
https://arxiv.org/pdf/1611.01232.pdf

» Further details on the role of activation functions
https://arxiv.org/pdf/1902.06853.pdf

» Principles for selecting activation functions
https://arxiv.org/pdf/2105.07741.pdf
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Further associated reading 2 of 2

Convergence of representations at each layer of a neural network to a Gaussian Process & wider reading

Mathematical

Early results on correlation of inputs (Chapter 2 in particular)
https://www.cs.toronto.edu/~radford/ftp/thesis.pdf

Rigorous treatment of Gaussian Process perspective, infinite
width https://arxiv.org/pdf/1711.00165.pdf

Rigorous treatment of Gaussian Process perspective, finite
width https://arxiv.org/pdf/1804.11271.pdf

Higher order terms and width proportional to depth scaling
https://arxiv.org/pdf/2106.10165.pdf

Specifics for random RelLU nets

https://arxiv.org/pdf/1801.03744.pdf
https://arxiv.org/pdf/1803.01719.pdf
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Attention mechanisms:
Rank-collapse and alternative nonlinear activations
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Attention mechanism (Vaswani 17’), equations
Key and Query quadratic form to highlight relations

Input is a matrix X € R"<7 where n is the "context length” and d is the
"embedding dimension”. They queries, keys, and values are then
computed with matrix-products Q7 = WoXT, KT = WxXT, and
VT = Wy XT then the attention layer is

XWoWIXT
st (ST
nl/2

where the softmax acts row-wise to give non-negative entries that sum to
one.

softmax(x); = exp(x;)/ Z exp(x¢)
¢
Generally @ and K have layer-norm applied to enforce fixed mean and
variance. Intuitively the softmax helps highlight the rows in X that
deserve " attention.”
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Weight initialization and layer-norm
Key and Query vs Value weights

» The query and key matrices, @ = WX " and
KT = WKXT, are used to measure alignment between the
input X in their embedding space determined by W¢q and
Wy . To measure angles one always layer-norm so that each
row of @ and K have £? length of 1. Their initialization
largely ignored for this reason.

» The value matrix is very similar to fully connected networks,
but note there isn't a nonlinear activation here.

» What is the impact of the softmax activation?

XWoW,I XT
softmax <Q1K> XW,
nl/2
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Spectrum of the attention matrix (Nait Saada 24")

The spectral gap of random Markov matrices

Random matrices with a non-zero mean have an associated

_

(e) RelLU attention

(f) Sigmoid attention

Mathematical

outlying eigenvalue. For Markov / softmax there is one eigenvalue

at 1 and the remainder uniform in a disc with radius ~ n

This causes rank-collapse with outputs increasingly

one-dimensional.
https://arxiv.org/pdf/2410.07799
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Rank-collapse due to the spectral gap (Nait Saada 24')

Excessive over smoothing in width and depth

» The single eigenvalue outlier causes an L layer need attention
network to converge to a one dimensional output at the
exponential rate n=L/2.

» This is a form of excessive stability and slows initial training.
It is reflected in a form of vanishing gradients analogous to
x =1

» Similarly, (Dong et al. 23) showed rank-collapse through
depth with attention converging to the constant matrix
T11711 (https://arxiv.org/pdf/2103.03404)

The resolution of rank-collapse is an active area of research
https://arxiv.org/pdf/2410.07799
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Techniques to resolve rank-collapse

Reducing the impact of the spectral outlier

>

Centering (Ali et al. 23") subtracts the matrix of constant
values T71, ie. T_llrlT, corresponding to the eigenvalue
outlier https://arxiv.org/pdf/2306.01610

Differential transformers (Ye et al. 24') compute two
attention matrices with different key and query matrices and
then subtract them. This has the same effect as centering,
but doubles the number of parameters.
https://arxiv.org/pdf/2410.05258

Mind the gap (Nait Saada et al. 24’) project out the direction
1+ from the columns of the value matrix V, mathematically
equivalent to centering but more efficient.
https://arxiv.org/pdf/2410.07799
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Techniques to resolve rank-collapse

Alternative activations: primarily linear and ReLU

Rather than remove the rank-collapse effect the softmax
activation, Hron et al. 20, amongst others, instead consider not
using softmax. They showed superior training accuracy by instead
using linear attention where the softmax is omitted, referred to as
linear attention, or ReLU entrywise instead of the softmax.
https://arxiv.org/pdf/2006.10540

Similar linear attention is now widely discussed in the literature of
Vision Transformers, see for instance
https://arxiv.org/pdf/2309.08586 by Wortsman et al. 23".

Efficient training of LLMs is one of the dominant research
questions being actively studied.
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