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Foundations of (stochastic) gradient descent (SGD)

Convex for local behaviour and global from random initialization

This lecture states and proves key theorems about the convergence
properties of stochastic and regular gradient descent.

» Lemmas 1 and 2: overestimation property quantifying
decrease in loss for descent along the gradient direction.
» Theorem 3: SGD for fixed stepsize with convex loss function.

» Theorem 4: SGD for decreasing stepsize with convex loss
function and other variance reduction methods.

» Theorem 5: SGD for non-convex functions with and without
decreasing stepsize.
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DNN Loss function and trainable parameters

High dimensional loss function

Consider a fully connected L layer deep net given by
hO — w0 4 pO 2D = (p"), (=0,...,L—1

for £ =1,..., L with nonlinear activation ¢(-) and W) € Rxne,
The trainable parameters for the DNN, 6 := {W() b()}L_ are
learned by minimizing a high dimensional, || ~ n?L, loss function
such as

L(0;X,Y)=(2m) IZZ (xu(1); 0) y,-,u)z.

p=1i=1

The shape of £(6) and our knowledge about a good initial

minimizer 6(®) strongly influence our ability to learn the parameters
0 for the DNN.
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Gradient calculated through back-propagation

Gradients by passing the error backward through the net

L(6;X,Y) ZZ — Vi)

pn=1i=1

Letting &y := 8‘2(0 and as before D) the diagonal matrix with
DI.(I.E) = d)’(h,(-g)) we have
5 =D (WNTs, 1 and 6, = DBgrad, L.
which gives the formula for computing the §, for each layer as
5 = (I‘IijD(k)(W(k))T) DWgrad, L.

and the resulting gradient grad, L with entries as

Y ; Y
W = 5(4_]_ . hg and m = 5g+1
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Loss landscapes of DNNs are typically non-convex

Loss landscape example: 56 layers fully connected (Li et al. 18'm
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http://papers.nips.cc/paper/7875-visualizing-the-loss-landscape-of-neural-nets.pdf
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Stochastic gradient descent (SGD)

Scalability and induced stochasticity

Given a loss function £(6; X, Y), gradient descent is given by
00t = 0% — - grady L(6, X, Y),,,,,

with « is referred to as the stepsize, or in DL the “learning rate.”
In DL £(6; X, Y) is the sum of m individual loss functions for m
data point: £(6; X, Y) = m™ 3", 1(6; X, y,)

For m > 1 gradient descent is computationally too costly and
instead one can break appart the m loss functions into
“mini-batches” and repeatedly solve

0k+D) = 9 — || grady > 1(6; xu, ).

HE Sk
This is referred to as stochastic gradient descent as typically Sy is

chosen in some randomized method, usually as a partition of [m]
and a sequence of Sy which cover [m] is referred to as an “epoch.”
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Stochastic gradient descent: challenges and benefits

Learning rates, batch sizes, and induced noise
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SGD is preferable for large m as it reduces the per iteration
computational cost dependence on m to instead depend on
|Sk| which can be set by the user as opposed to m which is
given by the data set.

SGD, and gradient descent, require selection of a learning rate
(stepsize) which in deep learning is typically selected using
some costly trial and error heuristics.

The learning rate is typically chosen adaptively in a way that
satisfies Y ;o ax = 00 and > 7o ; a7 < oo; in particular as
oy ~ k™! to control variance of gradient estimates in SGD.
The optimal selection of learning weight, and selection of S,
depends on the unknown local Lipschitz constant

lgrad/(61; xu, ) — grad/(02; xu, yu)|| < Lyu|01 — 02]].
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Global convergence of gradient descent

Lemma 1 [An overestimation property] Let £(#) € C1(R") with
VL Lipshitz continuous with constant L. Then for any 6 and
deR"and o € R:

L0+ ad) < L) +aVL(B) d+ azéHduz.

In particular, if d = —VL(0) then
L
L(6 — aVL(0)) < L(O) — al|VLO)|? + §a2uw(e)\|§ and so

£(0 — aVL(0)) < L(6) — a <1 _ éoz) VL) (OPep).
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Global convergence and global rate for GD methods

Proof of Lemma 1. By Taylor's theorem in integral form we have

L0+ ad) = LO) + [[Z) VLEO + atd)T (ad) - dt
= L(0) +aVL(O)Td+a [, [vc(e + atd) — vc(e)] Td.dt

< [,(9)+aV[,(0)Td+ozf IVL(O 4+ atd) — VL(O) - ||d] dt
by Cauchy-Schwarz inequality

< 5(0)+aV£(0)Td+aL|]dHf HG—i—atd 0| dt
by Llpschltz continuity of the gradient

< L(0) + aVLO)Td + 2L||d|? [y tdt,

which gives the required overestimation inequality.[J
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Stochastic GD: Expected descent

Conditions used to derive convergence Mathematical
Institute

If |Sk| =1 (one data element), the expected gradient wrt data
point G := grad(, Zuesk 1(0; X1, yu):

Es, [GK] = Z E[GX|Sk =i]-P[Sk=1i] = ZV/ — = VL.

» Similarly for larger sets Si drawn uniformly from (|§Z\)
possible configurations; referred to as mini-batches.

» Above, we used E[G¥|Si = i] = V/;(6¥) (true due to iid
choice of Sk and G¥). More generally, we require an unbiased
estimator of the true gradient: Egs, [GX] = VL(6%).

» (A realization of) —G* may not be a descent direction:
VL(0¥)T(—G*¥) < 0 cannot be guaranteed, but is guaranteed
in expectation. Therefore, we analyse the expected descent of
the random iterates (6%).
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Global convergence of SGD - in expectation

Assumptions for our analysis (|Sk| = 1):

(1) for all i < m, VI is Lipschitz continuous, constant L
= VL Lipschitz continuous, L
(2) IM > 0st.
VAR(G*|Sk) := E[(G* — VL(6%))T(GK — VL(6%))|Sk] < M for all
k (bounded total variance can usually be guaranteed in a
neighbourhood of 6* but not globally for strongly convex £(-).)
Recall that G* conditioned on current batch is an unbiased
estimator of the true gradient; this is true here (and when
|Sk| > 1), but it would have to be assumed in a more general
stochastic framework. (A more thorough analysis would also
condition on 6*.)
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Global convergence of SGD - in expectation

Lemma 2 [An overestimation property - in expectation] Assume
Assumption (1) holds. When applying SGD to £(0) with |Sk| = 1,
we have

Es, [C(0%T1)] < £(6%) — aVL(0%)T Es, [GK] + L2 Es, [|IG¥]?] -

If Assumption (2) also holds, then
Es, [£(0FT1)] < £(6%) — ok (5" — 1) IVL(89))2 + MG,
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Global convergence of SGD - in expectation

Proof of Lemma 2. Apply Lemma 1 to £ with § = 6%, d = G¥ and
a = ok: using KT = gk 4+ ok Gk,
L(OKFY) < £(0K) — akvL(0%)T Gk + 5(ak)?| GH|2.
Applying expectation on both sides wrt Sy,
Es [L(0°T1] < L(6%) — a* VL") Es, [6¥] + 5(a*)? Es,[IG¥[1?].
where we used that £(0%) and VL(6%) do not depend on Sy.
With Egs, [G¥] = VL(6¥) and expanding assumption (2)
VAR(G¥|Sk) = Es, [IIGXI?] —2VL(0")T Es, [G¥] + I VL(O")II?
= Es, [IGKIP] = IV.L(69)I.

Thus Es, [[|G¥[2] < M+ [VL(6%)|]2. O
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Global convergence of SGD: the strongly convex case
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Let £ be (for now) strongly convex with parameter p > 0, namely
L(O+5s)>L(O)+sTVLO) + &s|? for all ,s.

Theorem 3 Let £ be smooth, strongly convex and satisfying
Assumption (1), (2). Let SGD with fixed stepsize be applied to
minimize £, where X = a = 7 where € (0,1]. Then SGD
converges linearly to a residual error in the following sense: for all

>
K=o M

E[£(69)] — £(07) — ’;’\: < (1 — %)k . [5(90) L) -,

> Thus limg_o (E[L(69)] — £(6*)) < "‘—ML = ZM Convergence is
obtained, in expectation, up to the Ieve "M (noise level 1), which
can be decreased in various ways.

> The ratio ﬁ is a condition number of £ (connect to second
derivatives).

Oxford Optimization algorithms for training DNNs 14
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Global convergence of SGD: the strongly convex case

Lia

Proof of Theorem 3. Lemma 3 and £2 —1 =1 -1 < —1 give
Es, [C(0%T1)] < £(6%) - a\|v.c(9k)||2 Mot

Taking expectation E with respect to the past, namely

So,...,Sk_1 on both sides of the above, we note that we have a

memoryless property so current iterate only depends on previous
sample size (E = E4 := E(-|So,...,Sk) = Es,):
« MLao?
Bi [L(0")] —£(07) < Biea [£(0%)] —£(67) = 5 Bia [IVLE9)] + =

Strong convexity property implies, global minimizer 6* is unique
and L£(6%) — £(6*) > %HVE(H’()HZ; thus can bound

Eio1(LU0F] = £(6%)) = 5 Ekaa(IVLE9)I?).
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Global convergence of SGD: the strongly convex case

Proof of Theorem 3. (continued) Inserting the bound of
—5 Ek1(IVLEO)?) < —ap B (L[(0F] — £(67)) gives

MLa?
Ex [£(04)]-£(0%) < (1= pa) (Bia [£009)] - £067)+ 75,

or equivalently,

B [£(6"H)] *ﬁ(e*)f%'\:'f < (1- pa)) (Ek_l [£(0%)] — £(6%) — 0‘2"/’;) .
Note that o = /L < 1/L < 1/u. Replacing « gives
Ex ['6(9”1)]—13(9*)—’\2/’—;7 <(1-2) (Ek_1 [£(6%)] - £(6%) — /\2/75) |

The claim now follows by induction.[]
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Decreasing the SGD “noise floor”: technique 1

Though not always desirable (due to the needs for small
‘generalization error’), the SGD “floor” (noise level) of % can be

removed so that limy ;o E[L(0%)] = L£(6%).

Dynamic stepsize reduction. Technique 1: Dynamically reduce

ok =& Note that 74 — 0 makes the residual "k — 0 but it

also means that ( L) — 1, so the price is that we lose linear
convergencel!

Theorem 4. [Dynamic stepsize stochastic gradient descent

(DS-SGD)] Let ok 2L+k“ for all k > 0. Then SGD satisfies
14
*)

0 < E[L(6%)] — £(67

< E[L(6%)] — £(67) < 2L 1k
for all k >0, where v :=2£ x max{F,E(GO) - c(e*)}. Thus
limy—o0 E[L(0%)] = L£(6*). But rate is O (+) - sublinear !

Optimization algorithms for training DNNs 17
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Decreasing the SGD “floor”: technique 1

Dynamic stepsize reduction (continued)
Proof of Theorem 4. (similar to proof of Theorem 3) Note that

ok <1/L <1/u and all arguments continue to hold in the proof
of Th 3 until and including, and so for all kK > 0,

akML
2

Ex [C(0F)]—L(07)—

akML>

< (1 - pa¥)) (Ekl [£(6)] = £(67) = =5,

We are now going to prove the desired conclusion (*) by
induction. Clearly at kK = 0, (*) holds. Assume (*) holds at k > 0,
and substitute (*) into the above displayed equation. We obtain

kML v akML
Ex [£(0)] — £(6") — 27 < (1— pa¥)) [ —2— — 275 )
e ] = 20 = S < 0 nat) (51 -
Using the expression of o in the above and simplifying the
expressions provides (*) with k replaced by (k +1).00

Optimization algorithms for training DNNs 18
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Decreasing the SGD “noise floor”: technique 2

Increase mini-batch sizes from |Sx| =1 to |Sk| =p > 1. Use
Gk =23 s, VIi(0%), where j € Sk iid. ~U({L,...,m}), pulling
VL(0¥) into the sum, and expanding assumption (2) gives

1

VAR(G¥[Sk) = Y = Es, [[IV(6%) — VL(6Y)|?]
JESK
+2 ; % Es, [V1(0%) — VL(0X)] Es, [V(0%) — VL(0Y)]
= LS VAR(TA(E4) +0 < %,

JESK

where we have used |Sk| = p, the independence of i and j indices in Sk
for the two sums in assumption (2), as well as Es, [V/;(6%)] = VL(6%)
and Es, [GK] = VL(6).

Oxford Optimization algorithms for training DNNs
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Decreasing the SGD “noise floor”: technique 2

Increase mini-batch sizes from |Sx| =1 to |Sk| = p > 1.
(continued)
Then, as in Theorem 3, we deduce, under the same assumptions,
M np\ K 0 M
E[L(6%)] - £(6 ——g(l——) -[Le — (o) - 2=
(209] - £ - 5 F) e - o) - 3
Thus the noise level is decreased by batch size p, without

impacting the convergence factor.
(Compare and contrast Techniques 1 and 2.)
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Decreasing the SGD “noise floor": technique 3

Momentum for gradient variance reduction

Technique 3: use acceleration by momentum to reduce VAR(G*|S).
This yields E[£(6%)] — L£(0*) with linear convergence rate, with a much
smaller cost per iteration than mini-batching (see the ‘Katyusha' paper).
https://www. jmlr.org/papers/volumel8/16-410/16-410.pdf

Other techniques (earlier than Katyusha): variance reduction (SVRG),
SAG (Schmidt, Le Roux, Bach'15: restores linear rate for SGD), SAGA
(Defazio et al'14).

Conclusions: each of the three approaches for accelerating SGD have
merit and are often all used at once. In particular, once SGD appears to
stagnate one both reduces the stepsize and increases the batch-size;
though this is stopped once validation error begins to increase.

What about SGD performance when L is nonconvex (as in DNNs)?
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Global convergence of SGD: the nonconvex case

Theorem 5. [SGD with fixed stepsize] Let £ € C*(R") be bounded
below by Ljow, with VL Lipschitz continuous with Lipschitz
constant L (Assumption (1)). Let Assumption (2) hold (bounded
variance). Apply the SGD method with fixed stepsize & = /L and
|S|x = 1, where n € (0,1], to minimizing £. Then

. 0y _ 0y _
min E[IVL0)2] < atm+ 2 EE) = Liow) _ gy 2HE() = Liow)
0<i<k P kn

and so the SGD method takes at most k < M

iterations/evaluations to generate E[||VL(6%)||?] < e +nM.

> again, note the ‘noise floor’ that limits the accuracy that can
be obtained.
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Global convergence of SGD: the nonconvex case
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Proof of Theorem 5. The first part of Theorem 3 still applies, and
we still have the following expected decrease:

MLo?

Ex [L(0°TY)] < Ey [£(6%)] — % Ev s [IVL(0Y)[?] + =

2

We need to connect the per iteration decrease with the gradient.
We have for all k > 0:

Ev1 [£(6%)] — Ex [£L(65HY)] > % Ev 1 [IVL(6Y)]?] -
Summing up the above bound from i = 0 to k, we deduce

MLa?
>

L(6°) — Liow L(6%) — Ey [ﬁ(gkﬂ)]
§ Yo Eima [IVLO)I] - (k+1) 4",

2(k + 1) [ming<i<k E[[VL(6")|*] — MLa/]

AV AVARN VS

g
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Global convergence of SGD: the nonconvex case

To reduce the 'noise floor' use: decreasing stepsize, mini-batching.
(Acceleration/momentum difficult in the nonconvex case.)

Re decreasing stepsize, let a% = 1, /L where 1, € (0,1].
Similarly to the proof of Theorem 5, we obtain
Yo Bt [[VL(ON)] < 2(L£(6°) — Liow) + ML Y o(a).

And so to reduce the noise term, assume that > >, o' = oo and
00 ()2
2 izo(@)® < oo
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