vvvvvvvvvvvv

OXFORD

Opt'mlzatlon algonthms Mathematical

Institute

for training DNNs: Adap-
tive stepsize, momentum,
weight decay, and more

THEORIES OF DEEP LEARNING: C6.5,
LECTURE / VIDEO 8

Prof. Jared Tanner

Mathematical Institute

University of Oxford

Oxford
Mathematics N DN

}\S
\

Stochastic gradient descent (SGD)

Scalability and induced stochasticity

Given a loss function £(6; X, Y), gradient descent is given by
o0+ — (k) _ . grad, £(6, X, Y)

with 7 is referred to as the stepsize, or in DL the “learning rate.”
In DL £(6; X, Y) is the sum of m individual loss functions for m
data point: £(6; X, Y) = m™ 3", 1(6; X, y,)

For m > 1 gradient descent is computationally too costly and
instead one can break appart the m loss functions into
“mini-batches” and repeatedly solve

o0+ = (k) _ | S| ~Lgrad, Z 1(0; X, yyu)-
HE Sk
This is referred to as stochastic gradient descent as typically Sy is

chosen in some randomized method, usually as a partition of [m]
and a sequence of Sy which cover [m] is referred to as an “epoch.”

Oxford Advanced optimization algorithms for training DNNs
Mathematics

Momentum and adaptive diagonal scaling

Oxford Advanced optimization algorithms for training DNNs 3
Mathematics

SGD improvement: momentum

Improved convergence rate: minimizing over larger subspaces

Mathematical
Institute

There are many improvements of SGD typically used in practise for
deep learning; particularly popular is Polyak momentum:

glt1) — gk) 4 g(etk) — gk=1)) _ . grad, L (9(‘0)

or Nesterov's accelerated gradient:

ok = 9t 1 g(etk) — glk-1))
gltl) = G _ o . grad,L (é(k)>

These acceleration methods give substantial improvements in the
linear convergence rate for convex problems; linear convergence

rates are: Normal GD % Polyak ﬁ;} and NAG \/\E/g :

Oxford Advanced optimization algorithms for training DNNs
Mathematics

SGD improvement : Adaptive sub-gradients (Duchi et al. 11')

Preconditioning via past gradient information (AdaGrad)

Preconditioning improves convergence rate of line-search methods
is preconditioning. Let g(K)(9(k)) =: grad,£(#(¥)) be the gradient
of the training loss function at iteration k and
k
Belini) = | - (8(69)(1)
j=1

the diagonal of the square-root of the sum of prior gradient
outer-products. Adaptive sub-gradients (AdaGrad) is
preconditioned GD via the diagonal matrix B

glk+1) — p(k) _ 77|5k]—1(8(") + el)"tgrad, Z 1(0; Xy, Ypu)-
HE Sk

1/2
2

el > 0 added to avoid poor scaling of small values of B()(, /).
http://jmlr.org/papers/volumel2/duchilla/duchilla.pdf

Oxford Advanced optimization algorithms for training DNNs 5

Mathematics

http://jmlr.org/papers/volume12/duchi11a/duchi11a.pdf

AdaGrad improvements: RMSProp and AdaDelta

Alternative gradient weighting and step-sizes

AdaGrad preconditions with the inverse of

Bi(i,1) = (Sia (8900 (0)7) "

RMSProp (Hinton) gives more weight to the current gradient
2
BEMS (i, 1) = vBRYE (i, 1) + (1 -) (8X(6W)(1))
for some v € [0, 1] and updates as

0T = 9 — |5 |TH(BX) + el) M 2grady > 1(6; xu, y)-
HESK
AdaDelta (Zeiler 12') extends AdaGrad using a similar
preconditioned as B;SMS, but also estimates the stepsize using an
average difference in (k) — g(k=1),
https://arxiv.org/abs/1212.5701

Oxford Advanced optimization algorithms for training DNNs 6
Mathematics

https://arxiv.org/abs/1212.5701

Adaptive moment estimation (Adam) (Kingma et al. 15')

SGD with adaptive momentum

Mathematical
Institute

Algorithm 1: Adam, our proposed algorithm for stochastic optimization. See section 2 for details,
and for a slightly more efficient (but less clear) order of computation. g7 indicates the elementwise
square g; © g¢. Good default settings for the tested machine learning problems are o = 0.001,
B1 = 0.9, B> = 0.999 and ¢ = 10~%. All operations on vectors are element-wise. With 3} and B4
we denote 3, and 3 to the power ¢.
Require: «: Stepsize
Require: 31,32 € [0, 1): Exponential decay rates for the moment estimates
Require: f(#): Stochastic objective function with parameters 6
Require: 6y: Initial parameter vector
mg < 0 (Initialize 1% moment vector)
vo < 0 (Initialize 2™ moment vector)
t <— 0 (Initialize timestep)
while 6, not converged do
t<«t+1
gt < Vo fi(6,—1) (Get gradients w.r.t. stochastic objective at timestep t)
my < PB1-mu—1 + (1 — B1) - g (Update biased first moment estimate)
Vg 4 P v + (1 — Ba) - g'f (Update biased second raw moment estimate)
iy < my/(1 — B1) (Compute bias-corrected first moment estimate)
vy «— v /(1 — 4) (Compute bias-corrected second raw moment estimate)
0, < 0,1 — o -y /(\/0; + €) (Update parameters)
end while
return 6, (Resulting parameters)

https://arxiv.org/pdf/1412.6980.pdf

Oxford Advanced optimization algorithms for training DNNs
Mathematics

https://arxiv.org/pdf/1412.6980.pdf

Adaptive moment estimation (Adam) (Kingma et al. 15')
Training on MNIST Mathematical

Institute

N MNIST Multilayer Neural Network + dropout

— AdaGrad
RMSProp

— SGDNesterov.
AdaDelta

— Adam

10

(b
MMy
VA ”w‘l‘“/““"'(‘ U

training cost

50 100 T
iterations over entire dataset

(@) ()
Figure 2: Training of multilayer neural networks on MNIST images. (a) Neural networks using

dropout stochastic regularization. (b) Neural networks with deterministic cost function. We compare
with the sum-of-functions (SFO) optimizer (Sohl-Dickstein et al., 2014)

https://arxiv.org/pdf/1412.6980.pdf

Oxford Advanced optimization algorithms for training DNNs

Mathematics

https://arxiv.org/pdf/1412.6980.pdf

Adaptive moment estimation (Adam) (Kingma et al. 15')
Training on CNNs for CIFAR-10

Mathematical
Institute

3 CIFAR10 ConvNet First 3 Epoches CIFAR10 ConvNet
— AdaGrad 107 — AdaGrad
AdaGrad-+dropout — AdaGrad-+dropout
SGDNesterov — SGDNesterov
2.5 SGDNesterov-+dropout 10t SGDNesterov-+dropout
Adam — Adam
Adam+dropout Adam-+dropout
520 . -
g g
2 2
E £
g g
RS £
1.0
e S S S
e ———
05 ; ; 104 ; i
.0 05 1.0 15 2.0 25 3.0 5 10 15 20 25 30 35 40 45
iterations over entire dataset iterations over entire dataset

Figure 3: Convolutional neural networks training cost. (left) Training cost for the first three epochs.
(right) Training cost over 45 epochs. CIFAR-10 with c64-c64-c128-1000 architecture.

https://arxiv.org/pdf/1412.6980.pdf

Oxford Advanced optimization algorithms for training DNNs
Mathematics

https://arxiv.org/pdf/1412.6980.pdf

Scalar adaptive gradient for robustness to initial
stepsize

Oxford Advanced optimization algorithms for training DNNs
Mathematics

10

AdaGrad: as adaptive stepsize rule (Ward et al. 18')

Scalar diagonal preconditioning

Let g (0(K)) =: grady£(¥)) be the gradient of the training loss

function at iteration k, AdaGrad preconditions with
k N 2 i
Be(iri) = [3 (e9(09)(h)
j=1
which is the diagonal of the square-root of the sum of prior
gradient outer-products. AdaGrad is the gradient descent method

U1 = 0 — 1S, | TH(BY) 4 el)"Tgrady > 1(6; Xy, i)-
HE Sk
A simplified version, focusing on the per iteration (as opposed to
per index) update is to let By = by/ where b7, = b + ||g ())3.
https://arxiv.org/pdf/1806.01811.pdf

Oxford Advanced optimization algorithms for training DNNs 11
Mathematics

https://arxiv.org/pdf/1806.01811.pdf

AdaGrad: scalar update in batch setting (Ward et al. 18')

Iteration complexity

Institute

Scalar AdaGrad update algorithm: Initialize with 6(®) and by > 0

by = bi,1+||grad9£(0("))|]%
90 = k=1 _ p Lgrad,£(s)

For £() € C}, that is L minimal for which

llgradg L(61) — gradyL£(02)]|2 < L||#1 — 62| for all 81,62, then scalar
batch AdaGrad satisfies ming—; 71 ||grad,£(0(K))||3 < ¢ for
either

T = 1+{25%(9(0))(1)0+2£(9<°>))] if bo>L, or

= 1+ [(L2 = B+ 4(L(0) + (3/4 + log (L/bo))L)?) |
if bg < L. In contrast, if by is a fixed constant b, then if b < L/2
GD can diverge, while if b> L then T = 2be1£(8(9).

Oxford Advanced optimization algorithms for training DNNs

Mathematics

Scalar AdaGrad: proof ingredients (Ward et al. 18’)

Iteration complexity

Iteration complexity for scalar batch AdaGrad following properties
for any non-negative values aj,...,ar with a; > 0, (with ax
taking the place of ||grady£(6(%))|3)

-
Z <log (Z a,>+1 and Z
/=1 ZI 1 aj

Also, for any fixed € € (0,1] and L, by > 0, the iterates
bi+1 = bi + ak has the property that after

N = [eY(L% — b2)] + 1 iterations either min)'_3 ax < € or by > L.

Lastly, letting ko be the first iterate such that by, > L, then for all
k > ko by < by,—1 4+ 2£(0%0~1)) (bounded above) and
L£(0to=1)) < L (1 + 2log(bk,—1/b0)) (not diverged).

Oxford Advanced optimization algorithms for training DNNs
Mathematics

13

Scalar AdaGrad: stochastic (Ward et al. 18")

Influence of mini-batch or other gradient approximation

Let g(%) be an unbiased estimator of the gradient grad,£(8()) of
the training loss function at iteration k; that is

E(g(k)) = grad,£(6K)). Moveover, let there be a uniform bound
E(|lg®3) < cé%. Then consider the stochastic scalar AdaGrad

date as
P bi = by + g3
o) — glk=1) _ b;lg(k).
Unlike in the batch version of AdaGrad where by converges to a

fixed stepsize, stochastic AdaGrad converges roughly at the rate
by =~ Cgk1/2. Morevover Ward et al. showed that

N N1/2

3/2
i w3 <
(=00 N1 (Ellgrad, £(6®)*°) " < 0 (

b
v t% , % >|0g(/vc§/bg).

Oxford Advanced optimization algorithms for training DNNs 14

Mathematics

Scalar AdaGrad examples (Ward et al. 18')

MNIST with batch gradients

OXFORD

Mathematical
Institute

-+~ AdaGrad -=- SGD Constant -~ SGD LinearDecay -+ SGD SqrtDecay
LR at epoch: 5 LR at epoch: 20 LR at epoch: 60 FC at epoch: 5 FC at epoch: 20 FC at epoch: 60
ol
o w0 ERY 4 R

Train Accuracy

x

L o B |
Beo o e
g (il

£ s Wb | =
B o m

bo bo bo

Figure 1: Batch setting on MNIST. Top (bottom) row are plots of train (test) accuracy with respect
to the initialization bg. The left 6 figures are for logistic regr n (LR) with snapshots at epoch 5,
20 and 60 in the 1st, 2nd and 3rd column respectively. The right 6 figures are for two fully connected
layers (FC) with snapshots at epoch 5, 20 and 60 in the 4th, 5th and 6th column.

https://arxiv.org/pdf/1806.01811.pdf

Oxford Advanced optimization algorithms for training DNNs
Mathematics

https://arxiv.org/pdf/1806.01811.pdf

MNIST with mini-batch gradients

Scalar AdaGrad examples (Ward et al. 18')

OXFORD
Mathematical
Institute
-+~ AdaGrad -~ SGD Constant -—- SGD LinearDecay -+~ SGD SqrtDecay
LR at epoch: 5 LR at epoch: 20 LR at epoch: 60 FC at epoch: 5 FC at epoch: 20 FC at epoch: 60
100 100 100 100
5 : . Y :
z iR IR
g R I
3 e [\
g } ¥
< 1 \
s Pl b
§ 1 i
= i H
§ 1
» | {
« «
100 g
TR, P ;
Y.
w0 Y LR
g 1y e
5w ib i
g ¥ 1
£ ' \
% bl b
g ! :
& w \ |
4 1
* “ “«
TSIt o EE Ot o TSRt
bo bo bo

Figure 2: Stochastic setting on MNIST. Left 6 figures by logistic regression and right 6 figures by
two fully connected layer. Note that the scale of y-axis change. See Figure 1 for reading instruction.

https://arxiv.org/pdf/1806.01811.pdf

Oxford
Mathematics

Advanced optimization algorithms for training DNNs 16

https://arxiv.org/pdf/1806.01811.pdf

Scalar AdaGrad examples (Ward et al. 18') o

CIFAR-10 with mini-batch gradients Mathematical

Institute

-=- AdaGrad =~ SGD Constant -=- SGD LinearDecay -+~ SGD SartDecay
LeNet at epoch: 10 LeNet at epoch: 60 LeNet at epoch: 120 ResNet at epoch: 10 | ResNet at epoch: 60 esNet at epoch: 120
"
"
1]
80 -
zn L]
e .
3w
< 50
Ew
B
0
<
&

bo

Figure 3: Stochastic setting on CIFARI10. Left 6 figures by LeNet and right 6 figures by ResNet.
Note that the epoch (see title) is different from previous figures and no momentum is used. See
Figure 1 for reading instruction.

https://arxiv.org/pdf/1806.01811.pdf

Oxford Advanced optimization algorithms for training DNNs

Mathematics

17

https://arxiv.org/pdf/1806.01811.pdf

Weight decay, SGD, Adam, and AdamW

Oxford Advanced optimization algorithms for training DNNs
Mathematics

18

Weight decay balances layers

Weight decay is especially important for ReLU

> Deep networks benefit from each layer having a similar
magnitude of action, this can be seen in part through the
conditioning of the loss by layer.

> RelU allows different constant scaling factors to be moved
between layers, e.g. ¢~ WoReLU(cW;x) is independent of ¢
and has effective c™1 W, and cW; weights.

» To overcome this scaling imbalance we typically augment the
data fidelity loss m_1 >_j; [|H(xk; 0) — y«||3 by adding
weight decay \||@||3 for some suitably chosen A.

» The % norm weight decay encourages weight parameters to
generally be of a similar size; note different from ¢! which
induces sparsity and £°° which encourages equal values such
as for quantization.

Oxford Advanced optimization algorithms for training DNNs 19

Mathematics

SGD and Adam differ in weight decay (Loshchilov et al. 19")

Weight decay equivalence for SGD only

SGD minimizing a loss £(8) = £(6) + %||0||3 with fixed stepsize o
is equivalent to £2 regularization where the prior weight parameters
are dampened by (1 —),

plk+1) — (1—)\)Q(k) - av£(9)|6(k)’

for A = a), see assignment 3.

For this reason the gradient of [|0]|3 isn't typically computed,
rather the 2 regularization is used. However, this equivalence isn't
true for Adam type methods. This motivates AdamW which
implements weight decay correctly for Adam.
https://arxiv.org/pdf/1711.05101

Oxford Advanced optimization algorithms for training DNNs
Mathematics

20

https://arxiv.org/pdf/1711.05101

AdamW algorithm (Loshchilov et al. 19")

Subtle changes hae substantial impact; used for ChatGPT Mahemam

Institute

Algorithm 2 _ and Adam with decoupled weight decay (AdamW)

1: given o = 0.001, 81 = 0.9, B> = 0.999,¢ = 107%, A € R

2: initialize time step ¢ + 0, parameter vector 6;—¢ € R", first moment vector m—o < 0, second moment
vector v;—o < 0, schedule multiplier n;—o € R

3: repeat

4 t+t+1

5: Vfi(Bi-1) + SelectBatch(8;—1) > select batch and return the corresponding gradient

6 g « Vii(6:i1) FAGEH

T my 4 Pimy_y + (1 - P1)g, > here and below all operations are element-wise

8 v Pavi—1+ (1 - Po)g}

9 iy +—my/(1 - BY) > S is taken to the power of ¢

10: b v /(1—p5) > B, is taken to the power of ¢

11: ¢ + SetScheduleMultiplier(t) > can be fixed, decay, or also be used for warm restarts

122 0y 01— (Ot';lt/(\/f’—t-F €) +A0;—1)
13: until stopping criterion is met
14: return optimized parameters 6;

https://arxiv.org/pdf/1711.05101

Oxford Advanced optimization algorithms for training DNNs

Mathematics

https://arxiv.org/pdf/1711.05101

AdamW loss function (Loshchilov et al. 19")

Reduced loss function and larger region

Mathematical

Institute

Figure 1:

Adam without cosine annealing

Weight decay to be multiplied by 0.001

Adam with cosine annealing

to be multiplied by 0.001
AdamW with cosine annealing

Weight decay to be multiplied by 0.001

Weight decay to be multiplied by 0.001

Adam performs better with decoupled weight decay (bottom row, AdamW) than with L>

regularization (top row, Adam). We show the final test error of a 26 2x64d ResNet on CIFAR-10
after 100 epochs of training with fixed learning rate (left column), step-drop learning rate (with drops
at epoch indexes 30, 60 and 80, middle column) and cosine annealing (right column). AdamW leads
to a more separable hyperparameter search space, especially when a learning rate schedule, such as
step-drop and cosine annealing is applied. Cosine annealing yields clearly superior results.

https://arxiv.org/pdf/1711.05101

Oxford
Mathematics

Advanced optimization algorithms for training DNNs

22

https://arxiv.org/pdf/1711.05101

AdamW Test error (Loshchilov et al. 19')

Superior test error by epoch and decay rate

OXFORD

Mathematical
Institute

Adam and AdamW with LR=0.001 and different weight decays
107y —_—

Training loss (cross-entropy)

Adam

65 — s
Adam
of| 7 Adamw O Adamw
_ss / ~
g 4 g
5
: t
7 45 @
& 4
4 . y
as “Eg 2
=il
35 0 0 o 3 T
fo 1o 1o 10 = A)
Weight decay for Adam 00 107 o
Normalized weight decay times 10 for AdamwW Training loss (cross-entropy)

Figure 3: Learning curves (top row) and generalization results (bottom row) obtained by a 26
2x96d ResNet trained with Adam and AdamW on CIFAR-10. See text for details. SuppFigure 4 in

the Appendix shows the same qualitative results for ImageNet32x32.

https://arxiv.org/pdf/1711.05101

Oxford
Mathematics

Advanced optimization algorithms for training DNNs

https://arxiv.org/pdf/1711.05101

Mathematical
Institute

A few other optimization algorithms

Oxford
Mathematics

Advanced optimization algorithms for training DNNs

24

Optim

izaton algorithms for ML

A rich research topic with numerous directions

K-FAC (Martens et al. 15') incorporates second order curvature
information and an information theory perspective with Fisher
information. https://arxiv.org/pdf/1503.05671

Adafactor (Shazeer et al. 18') reduce the number of gradient
step-sizes used in the diagonal scaling to average over rows and/or
columns of weight matrices which reduces the memory needed
https://arxiv.org/pdf/1804.04235

LARS (You et al. 17') uses different learning rates per layer rather
than per entry. https://arxiv.org/pdf/1708.03888

LAMB (You et al. 19") adapts LARS from focus on CNNs to LLMs,
BERT in particular. This uses large batch sizes to reduce gradient
variance. https://arxiv.org/pdf/1904.00962

Oxford
Mathematics

Advanced optimization algorithms for training DNNs

25

https://arxiv.org/pdf/1503.05671
https://arxiv.org/pdf/1804.04235
https://arxiv.org/pdf/1708.03888
https://arxiv.org/pdf/1904.00962

