

Optimization algorithms for training DNNs: Adaptive stepsize, momentum, weight decay, and more

Theories of Deep Learning: C6.5, Lecture / Video 8 Prof. Jared Tanner Mathematical Institute University of Oxford

Given a loss function $\mathcal{L}(\theta; X, Y)$, gradient descent is given by

$$\theta^{(k+1)} = \theta^{(k)} - \eta \cdot \mathsf{grad}_{\theta} \mathcal{L}(\theta, X, Y)$$

with η is referred to as the stepsize, or in DL the "learning rate." In DL $\mathcal{L}(\theta; X, Y)$ is the sum of m individual loss functions for m data point: $\mathcal{L}(\theta; X, Y) = m^{-1} \sum_{\mu=1}^{m} I(\theta; x_{\mu}, y_{\mu})$ For $m \gg 1$ gradient descent is computationally too costly and

instead one can break appart the m loss functions into "mini-batches" and repeatedly solve

$$heta^{(k+1)} = heta^{(k)} - \eta |S_k|^{-1} \mathrm{grad}_{\theta} \sum_{\mu \in S_k} I(\theta; x_{\mu}, y_{\mu}).$$

This is referred to as stochastic gradient descent as typically S_k is chosen in some randomized method, usually as a partition of [m] and a sequence of S_k which cover [m] is referred to as an "epoch."

Momentum and adaptive diagonal scaling

4□ > 4□ > 4 = > 4 = > = 990

Improved convergence rate: minimizing over larger subspaces

There are many improvements of SGD typically used in practise for deep learning; particularly popular is Polyak momentum:

$$\theta^{(k+1)} = \theta^{(k)} + \beta(\theta^{(k)} - \theta^{(k-1)}) - \alpha \cdot \mathrm{grad}_{\theta} \mathcal{L}\left(\theta^{(k)}\right)$$

or Nesterov's accelerated gradient:

$$\hat{\theta}^{k} = \theta^{(k)} + \beta(\theta^{(k)} - \theta^{(k-1)})
\theta^{(k+1)} = \hat{\theta}^{(k)} - \alpha \cdot \operatorname{grad}_{\theta} \mathcal{L}\left(\hat{\theta}^{(k)}\right)$$

These acceleration methods give substantial improvements in the linear convergence rate for convex problems; linear convergence rates are: Normal GD $\frac{\kappa-1}{\kappa+1}$, Polyak $\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}$ and NAG $\sqrt{\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}}}$.

SGD improvement : Adaptive sub-gradients (Duchi et al. 11')

OXFORD Mathematica Institute

Preconditioning via past gradient information (AdaGrad)

Preconditioning improves convergence rate of line-search methods is preconditioning. Let $g^{(k)}(\theta^{(k)}) =: \operatorname{grad}_{\theta} \mathcal{L}(\theta^{(k)})$ be the gradient of the training loss function at iteration k and

$$B_k(i,i) = \left(\sum_{j=1}^k \left(g^{(j)}(\theta^{(j)})(i)\right)^2\right)^{1/2},$$

the diagonal of the square-root of the sum of prior gradient outer-products. Adaptive sub-gradients (AdaGrad) is preconditioned GD via the diagonal matrix \boldsymbol{B}

$$\theta^{(k+1)} = \theta^{(k)} - \eta |S_k|^{-1} (B^{(k)} + \epsilon I)^{-1} \operatorname{grad}_{\theta} \sum_{\mu \in S_k} I(\theta; x_{\mu}, y_{\mu}).$$

 $\epsilon I > 0$ added to avoid poor scaling of small values of $B^{(k)}(i,i)$. http://jmlr.org/papers/volume12/duchi11a/duchi11a.pdf

AdaGrad improvements: RMSProp and AdaDelta

Alternative gradient weighting and step-sizes

AdaGrad preconditions with the inverse of

$$B_k(i,i) = \left(\sum_{j=1}^k \left(g^{(j)}(\theta^{(j)})(i)\right)^2\right)^{1/2}.$$

RMSProp (Hinton) gives more weight to the current gradient

$$B_k^{RMS}(i,i) = \gamma B_{k-1}^{RMS}(i,i) + (1-\gamma) \left(g^{(k)}(\theta^{(k)})(i) \right)^2$$

for some $\gamma \in [0,1]$ and updates as

$$\theta^{(k+1)} = \theta^{(k)} - \eta |S_k|^{-1} (B^{(k)} + \epsilon I)^{-1/2} \operatorname{grad}_{\theta} \sum_{\mu \in S_k} I(\theta; x_{\mu}, y_{\mu}).$$

AdaDelta (Zeiler 12') extends AdaGrad using a similar preconditioned as B_k^{RMS} , but also estimates the stepsize using an average difference in $\theta^{(k)} - \theta^{(k-1)}$.

https://arxiv.org/abs/1212.5701

Adaptive moment estimation (Adam) (Kingma et al. 15')

Algorithm 1: Adam, our proposed algorithm for stochastic optimization. See section 2 for details, and for a slightly more efficient (but less clear) order of computation. q_t^2 indicates the elementwise square $q_t \odot q_t$. Good default settings for the tested machine learning problems are $\alpha = 0.001$. $\beta_1 = 0.9$, $\beta_2 = 0.999$ and $\epsilon = 10^{-8}$. All operations on vectors are element-wise. With β_1^t and β_2^t we denote β_1 and β_2 to the power t.

```
Require: \alpha: Stepsize
Require: \beta_1, \beta_2 \in [0, 1): Exponential decay rates for the moment estimates
Require: f(\theta): Stochastic objective function with parameters \theta
Require: \theta_0: Initial parameter vector
   m_0 \leftarrow 0 (Initialize 1st moment vector)
   v_0 \leftarrow 0 (Initialize 2<sup>nd</sup> moment vector)
   t \leftarrow 0 (Initialize timestep)
   while \theta_t not converged do
      t \leftarrow t + 1
      q_t \leftarrow \nabla_{\theta} f_t(\theta_{t-1}) (Get gradients w.r.t. stochastic objective at timestep t)
      m_t \leftarrow \beta_1 \cdot m_{t-1} + (1 - \beta_1) \cdot g_t (Update biased first moment estimate) v_t \leftarrow \beta_2 \cdot v_{t-1} + (1 - \beta_2) \cdot g_t^2 (Update biased second raw moment estimate)
       \widehat{m}_t \leftarrow m_t/(1-\beta_1^t) (Compute bias-corrected first moment estimate)
       \hat{v}_t \leftarrow v_t/(1-\beta_2^t) (Compute bias-corrected second raw moment estimate)
       \theta_t \leftarrow \theta_{t-1} - \alpha \cdot \widehat{m}_t / (\sqrt{\widehat{v}_t} + \epsilon) (Update parameters)
   end while
   return \theta_t (Resulting parameters)
```

https://arxiv.org/pdf/1412.6980.pdf

Advanced optimization algorithms for training DNNs

Adaptive moment estimation (Adam) (Kingma et al. 15')

Training on MNIST

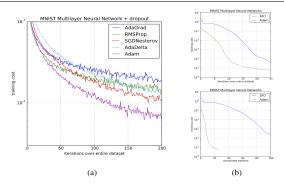


Figure 2: Training of multilayer neural networks on MNIST images. (a) Neural networks using dropout stochastic regularization. (b) Neural networks with deterministic cost function. We compare with the sum-of-functions (SFO) optimizer (Sohl-Dickstein et al., 2014)

https://arxiv.org/pdf/1412.6980.pdf

Adaptive moment estimation (Adam) (Kingma et al. 15')

Training on CNNs for CIFAR-10

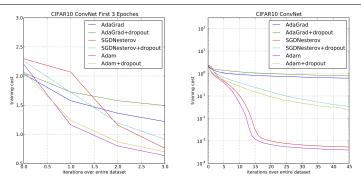


Figure 3: Convolutional neural networks training cost. (left) Training cost for the first three epochs. (right) Training cost over 45 epochs. CIFAR-10 with c64-c64-c128-1000 architecture.

https://arxiv.org/pdf/1412.6980.pdf

Advanced optimization algorithms for training DNNs

Scalar adaptive gradient for robustness to initial stepsize

Scalar diagonal preconditioning

Let $g^{(k)}(\theta^{(k)}) =: \operatorname{grad}_{\theta} \mathcal{L}(\theta^{(k)})$ be the gradient of the training loss function at iteration k, AdaGrad preconditions with

$$B_k(i,i) = \left(\sum_{j=1}^k \left(g^{(j)}(\theta^{(j)})(i)\right)^2\right)^{1/2}$$

which is the diagonal of the square-root of the sum of prior gradient outer-products. AdaGrad is the gradient descent method

$$\theta^{(k+1)} = \theta^{(k)} - \eta |S_k|^{-1} (B^{(k)} + \epsilon I)^{-1} \operatorname{grad}_{\theta} \sum_{\mu \in S_k} I(\theta; x_{\mu}, y_{\mu}).$$

A simplified version, focusing on the per iteration (as opposed to per index) update is to let $B_k = b_k I$ where $b_{k+1}^2 = b_k^2 + \|g^{(k)}\|_2^2$. https://arxiv.org/pdf/1806.01811.pdf

Scalar AdaGrad update algorithm: Initialize with $heta^{(0)}$ and $heta_0>0$

$$\begin{array}{rcl} b_k^2 & = & b_{b-1}^2 + \|\mathrm{grad}_{\theta}\mathcal{L}(\theta^{(k)})\|_2^2 \\ \theta^{(k)} & = & \theta^{(k-1)} - b_k^{-1}\mathrm{grad}_{\theta}\mathcal{L}(\theta^{(k)}) \end{array}$$

For $\mathcal{L}(\theta) \in \mathcal{C}_L^1$, that is L minimal for which $\| \operatorname{grad}_{\theta} \mathcal{L}(\theta_1) - \operatorname{grad}_{\theta} \mathcal{L}(\theta_2) \|_2 \leq L \| \theta_1 - \theta_2 \|$ for all θ_1, θ_2 , then scalar batch AdaGrad satisfies $\min_{k=1,\ldots,T-1} \| \operatorname{grad}_{\theta} \mathcal{L}(\theta^{(k)}) \|_2^2 \leq \epsilon$ for either

$$T = 1 + \left\lceil 2\epsilon^{-1}\mathcal{L}(\theta^{(0)})(b_0 + 2\mathcal{L}(\theta^{(0)})) \right\rceil \quad \text{if} \quad b_0 \ge L, \quad \text{or}$$

$$= 1 + \left\lceil \epsilon^{-1} \left(L^2 - b_0^2 + 4(\mathcal{L}(\theta^{(0)}) + (3/4 + \log(L/b_0))L)^2 \right) \right\rceil$$
if $b_0 < L$. In contrast, if b_k is a fixed constant b , then if $b < L/2$
GD can diverge, while if $b \ge L$ then $T = 2b\epsilon^{-1}\mathcal{L}(\theta^{(0)})$.

Iteration complexity

Iteration complexity for scalar batch AdaGrad following properties for any non-negative values a_1,\ldots,a_T with $a_1>0$, (with a_k taking the place of $\|\mathrm{grad}_{\theta}\mathcal{L}(\theta^{(k)})\|_2^2$)

$$\sum_{\ell=1}^T \frac{a_\ell}{\sum_{i=1}^\ell a_i} \leq \log \left(\sum_{i=1}^T a_i\right) + 1 \quad \text{and} \quad \sum_{\ell=1}^T \frac{a_\ell}{\sqrt{\sum_{i=1}^\ell a_i}} \leq 2\sqrt{\sum_{i=1}^T a_i}.$$

Also, for any fixed $\epsilon \in (0,1]$ and $L,b_0>0$, the iterates $b_{k+1}^2=b_k^2+a_k$ has the property that after $N=\lceil \epsilon^{-1}(L^2-b_o^2)\rceil+1$ iterations either $\min_{k=0}^{N-1}a_k\leq \epsilon$ or $b_N\geq L$. Lastly, letting k_0 be the first iterate such that $b_{k_0}\geq L$, then for all $k\geq k_0$ $b_k\leq b_{k_0-1}+2\mathcal{L}(\theta^{(k_0-1)})$ (bounded above) and $\mathcal{L}(\theta^{(k_0-1)})\leq \frac{L}{2}\left(1+2\log(b_{k_0-1}/b_0)\right)$ (not diverged).

Scalar AdaGrad: stochastic (Ward et al. 18')

Influence of mini-batch or other gradient approximation

Let $g^{(k)}$ be an unbiased estimator of the gradient $\operatorname{grad}_{\theta} \mathcal{L}(\theta^{(k)})$ of the training loss function at iteration k; that is $\mathbb{E}(g^{(k)}) = \operatorname{grad}_{\theta} \mathcal{L}(\theta^{(k)})$. Moveover, let there be a uniform bound $\mathbb{E}(\|g^{(k)}\|_2^2) \leq c_g^2$. Then consider the stochastic scalar AdaGrad update as $b_k^2 = b_{b-1}^2 + \|g^{(k)}\|_2^2$

$$b_k^2 = b_{b-1}^2 + \|g^{(k)}\|_2^2$$

$$\theta^{(k)} = \theta^{(k-1)} - b_k^{-1} g^{(k)}.$$

Unlike in the batch version of AdaGrad where b_k converges to a fixed stepsize, stochastic AdaGrad converges roughly at the rate $b_k \approx c_g \, k^{1/2}$. Morevover Ward et al. showed that

$$\min_{\ell=0,\dots,N-1} \left(\mathbb{E} \| \mathsf{grad}_{\theta} \mathcal{L}(\theta^{(k)}) \|^{4/3} \right)^{3/2} \leq \mathcal{O} \left(\frac{b_0 + c_g}{N} + \frac{c_g}{N^{1/2}} \right) \log(N c_g^2/b_0^2).$$

Scalar AdaGrad examples (Ward et al. 18')

MNIST with batch gradients

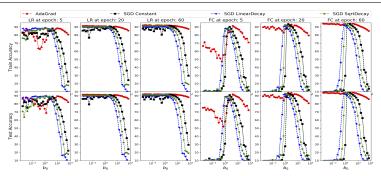


Figure 1: Batch setting on MNIST. Top (bottom) row are plots of train (test) accuracy with respect to the initialization b_0 . The left 6 figures are for logistic regression (LR) with snapshots at epoch 5, 20 and 60 in the 1st, 2nd and 3rd column respectively. The right 6 figures are for two fully connected layers (FC) with snapshots at epoch 5, 20 and 60 in the 4th, 5th and 6th column.

https://arxiv.org/pdf/1806.01811.pdf

Scalar AdaGrad examples (Ward et al. 18')

MNIST with mini-batch gradients

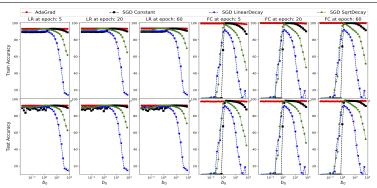


Figure 2: Stochastic setting on MNIST. Left 6 figures by logistic regression and right 6 figures by two fully connected layer. Note that the scale of v-axis change. See Figure 1 for reading instruction.

https://arxiv.org/pdf/1806.01811.pdf

Advanced optimization algorithms for training DNNs

Scalar AdaGrad examples (Ward et al. 18')

CIFAR-10 with mini-batch gradients

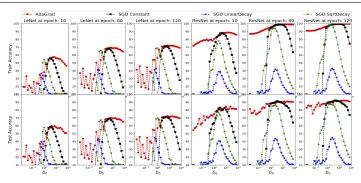


Figure 3: Stochastic setting on CIFAR10. Left 6 figures by LeNet and right 6 figures by ResNet. Note that the epoch (see title) is different from previous figures and no momentum is used. See Figure 1 for reading instruction.

https://arxiv.org/pdf/1806.01811.pdf

Weight decay, SGD, Adam, and AdamW

Advanced optimization algorithms for training DNNs

Weight decay balances layers

Weight decay is especially important for ReLU

- Deep networks benefit from each layer having a similar magnitude of action, this can be seen in part through the conditioning of the loss by layer.
- ▶ ReLU allows different constant scaling factors to be moved between layers, e.g. $c^{-1}W_2ReLU(cW_1x)$ is independent of c and has effective $c^{-1}W_2$ and cW_1 weights.
- ▶ To overcome this scaling imbalance we typically augment the data fidelity loss $m_{-1} \sum_{k=1}^{m} \|H(x_k; \theta) y_k\|_2^2$ by adding weight decay $\lambda \|\theta\|_2^2$ for some suitably chosen λ .
- ▶ The ℓ^2 norm weight decay encourages weight parameters to generally be of a similar size; note different from ℓ^1 which induces sparsity and ℓ^∞ which encourages equal values such as for quantization.

Weight decay equivalence for SGD only

SGD minimizing a loss $\tilde{\mathcal{L}}(\theta) = \mathcal{L}(\theta) + \frac{\lambda'}{2} \|\theta\|_2^2$ with fixed stepsize α is equivalent to ℓ^2 regularization where the prior weight parameters are dampened by $(1-\lambda)$,

$$\theta^{(k+1)} = (1 - \lambda)\theta^{(k)} - \alpha \nabla \mathcal{L}(\theta)_{|_{\theta(k)}},$$

for $\lambda = \alpha \lambda'$, see assignment 3.

For this reason the gradient of $\|\theta\|_2^2$ isn't typically computed, rather the ℓ^2 regularization is used. However, this equivalence isn't true for Adam type methods. This motivates AdamW which implements weight decay correctly for Adam.

AdamW algorithm (Loshchilov et al. 19')

Subtle changes hae substantial impact; used for ChatGPT

Algorithm 2 Adam with L₂ regularization and Adam with decoupled weight decay (AdamW)

- 1: given $\alpha = 0.001, \beta_1 = 0.9, \beta_2 = 0.999, \epsilon = 10^{-8}, \lambda \in \mathbb{R}$
- 2: **initialize** time step $t \leftarrow 0$, parameter vector $\boldsymbol{\theta}_{t=0} \in \mathbb{R}^n$, first moment vector $\boldsymbol{m}_{t=0} \leftarrow \boldsymbol{\theta}$, second moment vector $\mathbf{v}_{t=0} \leftarrow \mathbf{0}$, schedule multiplier $\eta_{t=0} \in \mathbb{R}$
- 3: repeat
- 4: $t \leftarrow t + 1$
- 5: $\nabla f_t(\boldsymbol{\theta}_{t-1}) \leftarrow \text{SelectBatch}(\boldsymbol{\theta}_{t-1})$

> select batch and return the corresponding gradient

- 6: $\mathbf{g}_t \leftarrow \nabla f_t(\boldsymbol{\theta}_{t-1}) + \lambda \boldsymbol{\theta}_{t-1}$
- 7: $\mathbf{m}_t \leftarrow \beta_1 \mathbf{m}_{t-1} + \overline{(1-\beta_1)\mathbf{g}_t}$

▶ here and below all operations are element-wise

- 8: $\mathbf{v}_t \leftarrow \beta_2 \mathbf{v}_{t-1} + (1 \beta_2) \mathbf{g}_t^2$
- 9: $\hat{\boldsymbol{m}}_t \leftarrow \boldsymbol{m}_t / (1 \hat{\boldsymbol{\beta}}_1^t)$

 $\triangleright \beta_1$ is taken to the power of t $\triangleright \beta_2$ is taken to the power of t

10: $\hat{\mathbf{v}}_t \leftarrow \mathbf{v}_t/(1-\beta_2^t)$

▷ can be fixed, decay, or also be used for warm restarts

- 11: $\eta_t \leftarrow \text{SetScheduleMultiplier}(t)$
 - $oldsymbol{ heta}_t \leftarrow oldsymbol{ heta}_{t-1} \eta_t \left(lpha \hat{oldsymbol{m}}_t / (\sqrt{\hat{oldsymbol{v}}_t} + \epsilon) + \lambda oldsymbol{ heta}_{t-1}
 ight)$
- 13: until stopping criterion is met
- 14: **return** optimized parameters θ_t

AdamW loss function (Loshchilov et al. 19')

Reduced loss function and larger region

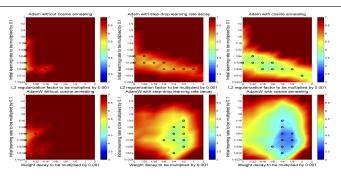


Figure 1: Adam performs better with decoupled weight decay (bottom row, AdamW) than with L_2 regularization (top row, Adam). We show the final test error of a 26 2x64d ResNet on CIFAR-10 after 100 epochs of training with fixed learning rate (left column), step-drop learning rate (with drops at epoch indexes 30, 60 and 80, middle column) and cosine annealing (right column). AdamW leads to a more separable hyperparameter search space, especially when a learning rate schedule, such as step-drop and cosine annealing is applied. Cosine annealing vields clearly superior results.

AdamW Test error (Loshchilov et al. 19')

Superior test error by epoch and decay rate

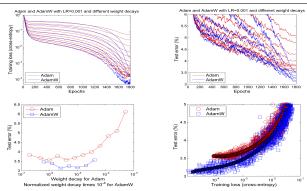


Figure 3: Learning curves (top row) and generalization results (bottom row) obtained by a 26 2x96d ResNet trained with Adam and AdamW on CIFAR-10. See text for details. SuppFigure 4 in the Appendix shows the same qualitative results for ImageNet32x32.

A few other optimization algorithms

Optimizaton algorithms for ML

A rich research topic with numerous directions

- K-FAC (Martens et al. 15') incorporates second order curvature information and an information theory perspective with Fisher information. https://arxiv.org/pdf/1503.05671
- Adafactor (Shazeer et al. 18') reduce the number of gradient step-sizes used in the diagonal scaling to average over rows and/or columns of weight matrices which reduces the memory needed https://arxiv.org/pdf/1804.04235
- ► LARS (You et al. 17') uses different learning rates per layer rather than per entry. https://arxiv.org/pdf/1708.03888
- ► LAMB (You et al. 19') adapts LARS from focus on CNNs to LLMs, BERT in particular. This uses large batch sizes to reduce gradient variance. https://arxiv.org/pdf/1904.00962