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Stochastic gradient descent (SGD)
Scalability and induced stochasticity

Given a loss function L(θ;X ,Y ), gradient descent is given by

θ(k+1) = θ(k) − η · gradθL(θ,X ,Y )

with η is referred to as the stepsize, or in DL the “learning rate.”
In DL L(θ;X ,Y ) is the sum of m individual loss functions for m
data point: L(θ;X ,Y ) = m−1

∑m
µ=1 l(θ; xµ, yµ)

For m� 1 gradient descent is computationally too costly and
instead one can break appart the m loss functions into
“mini-batches” and repeatedly solve

θ(k+1) = θ(k) − η|Sk |−1gradθ
∑
µ∈Sk

l(θ; xµ, yµ).

This is referred to as stochastic gradient descent as typically Sk is
chosen in some randomized method, usually as a partition of [m]
and a sequence of Sk which cover [m] is referred to as an “epoch.”
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Momentum and adaptive diagonal scaling
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SGD improvement: momentum
Improved convergence rate: minimizing over larger subspaces

There are many improvements of SGD typically used in practise for
deep learning; particularly popular is Polyak momentum:

θ(k+1) = θ(k) + β(θ(k) − θ(k−1))− α · gradθL
(
θ(k)

)
or Nesterov’s accelerated gradient:

θ̂k = θ(k) + β(θ(k) − θ(k−1))

θ(k+1) = θ̂(k) − α · gradθL
(
θ̂(k)

)
These acceleration methods give substantial improvements in the
linear convergence rate for convex problems; linear convergence

rates are: Normal GD κ−1
κ+1 , Polyak

√
κ−1√
κ+1

and NAG
√√

κ−1√
κ

.
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SGD improvement : Adaptive sub-gradients (Duchi et al. 11’)
Preconditioning via past gradient information (AdaGrad)

Preconditioning improves convergence rate of line-search methods
is preconditioning. Let g (k)(θ(k)) =: gradθL(θ(k)) be the gradient
of the training loss function at iteration k and

Bk(i , i) =

 k∑
j=1

(
g (j)(θ(j))(i)

)2

1/2

,

the diagonal of the square-root of the sum of prior gradient
outer-products. Adaptive sub-gradients (AdaGrad) is
preconditioned GD via the diagonal matrix B

θ(k+1) = θ(k) − η|Sk |−1(B(k) + εI )−1gradθ
∑
µ∈Sk

l(θ; xµ, yµ).

εI > 0 added to avoid poor scaling of small values of B(k)(i , i).
http://jmlr.org/papers/volume12/duchi11a/duchi11a.pdf
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AdaGrad improvements: RMSProp and AdaDelta
Alternative gradient weighting and step-sizes

AdaGrad preconditions with the inverse of

Bk(i , i) =
(∑k

j=1

(
g (j)(θ(j))(i)

)2
)1/2

.

RMSProp (Hinton) gives more weight to the current gradient

BRMS
k (i , i) = γBRMS

k−1 (i , i) + (1− γ)
(
g (k)(θ(k))(i)

)2

for some γ ∈ [0, 1] and updates as

θ(k+1) = θ(k) − η|Sk |−1(B(k) + εI )−1/2gradθ
∑
µ∈Sk

l(θ; xµ, yµ).

AdaDelta (Zeiler 12’) extends AdaGrad using a similar
preconditioned as BRMS

k , but also estimates the stepsize using an
average difference in θ(k) − θ(k−1).
https://arxiv.org/abs/1212.5701
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Adaptive moment estimation (Adam) (Kingma et al. 15’)
SGD with adaptive momentum

https://arxiv.org/pdf/1412.6980.pdf

Advanced optimization algorithms for training DNNs 7

https://arxiv.org/pdf/1412.6980.pdf


Adaptive moment estimation (Adam) (Kingma et al. 15’)
Training on MNIST

https://arxiv.org/pdf/1412.6980.pdf
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Adaptive moment estimation (Adam) (Kingma et al. 15’)
Training on CNNs for CIFAR-10

https://arxiv.org/pdf/1412.6980.pdf
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Scalar adaptive gradient for robustness to initial
stepsize
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AdaGrad: as adaptive stepsize rule (Ward et al. 18’)
Scalar diagonal preconditioning

Let g (k)(θ(k)) =: gradθL(θ(k)) be the gradient of the training loss
function at iteration k , AdaGrad preconditions with

Bk(i , i) =

 k∑
j=1

(
g (j)(θ(j))(i)

)2

1/2

which is the diagonal of the square-root of the sum of prior
gradient outer-products. AdaGrad is the gradient descent method

θ(k+1) = θ(k) − η|Sk |−1(B(k) + εI )−1gradθ
∑
µ∈Sk

l(θ; xµ, yµ).

A simplified version, focusing on the per iteration (as opposed to
per index) update is to let Bk = bk I where b2

k+1 = b2
k + ‖g (k)‖2

2.
https://arxiv.org/pdf/1806.01811.pdf
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AdaGrad: scalar update in batch setting (Ward et al. 18’)
Iteration complexity

Scalar AdaGrad update algorithm: Initialize with θ(0) and b0 > 0

b2
k = b2

b−1 + ‖gradθL(θ(k))‖2
2

θ(k) = θ(k−1) − b−1
k gradθL(θ(k))

For L(θ) ∈ C 1
L , that is L minimal for which

‖gradθL(θ1)− gradθL(θ2)‖2 ≤ L‖θ1− θ2‖ for all θ1, θ2, then scalar
batch AdaGrad satisfies mink=1,...,T−1 ‖gradθL(θ(k))‖2

2 ≤ ε for
either

T = 1 +
⌈

2ε−1L(θ(0))(b0 + 2L(θ(0)))
⌉

if b0 ≥ L, or

= 1 +
⌈
ε−1

(
L2 − b2

0 + 4(L(θ(0)) + (3/4 + log (L/b0))L)2
)⌉

if b0 < L. In contrast, if bk is a fixed constant b, then if b < L/2
GD can diverge, while if b ≥ L then T = 2bε−1L(θ(0)).
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Scalar AdaGrad: proof ingredients (Ward et al. 18’)
Iteration complexity

Iteration complexity for scalar batch AdaGrad following properties
for any non-negative values a1, . . . , aT with a1 > 0, (with ak
taking the place of ‖gradθL(θ(k))‖2

2)

T∑
`=1

a`∑`
i=1 ai

≤ log

(
T∑
i=1

ai

)
+1 and

T∑
`=1

a`√∑`
i=1 ai

≤ 2

√√√√ T∑
i=1

ai .

Also, for any fixed ε ∈ (0, 1] and L, b0 > 0, the iterates
b2
k+1 = b2

k + ak has the property that after

N = dε−1(L2 − b2
o)e+ 1 iterations either minN−1

k=0 ak ≤ ε or bN ≥ L.
Lastly, letting k0 be the first iterate such that bk0 ≥ L, then for all
k ≥ k0 bk ≤ bk0−1 + 2L(θ(k0−1)) (bounded above) and
L(θ(k0−1)) ≤ L

2 (1 + 2 log(bk0−1/b0)) (not diverged).
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Scalar AdaGrad: stochastic (Ward et al. 18’)
Influence of mini-batch or other gradient approximation

Let g (k) be an unbiased estimator of the gradient gradθL(θ(k)) of
the training loss function at iteration k; that is
E(g (k)) = gradθL(θ(k)). Moveover, let there be a uniform bound
E(‖g (k)‖2

2) ≤ c2
g . Then consider the stochastic scalar AdaGrad

update as
b2
k = b2

b−1 + ‖g (k)‖2
2

θ(k) = θ(k−1) − b−1
k g (k).

Unlike in the batch version of AdaGrad where bk converges to a
fixed stepsize, stochastic AdaGrad converges roughly at the rate
bk ≈ cgk

1/2. Morevover Ward et al. showed that

min
`=0,...,N−1

(
E‖gradθL(θ(k))‖4/3

)3/2

≤ O
(
b0 + cg

N
+

cg
N1/2

)
log(Nc2

g/b
2
0).
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Scalar AdaGrad examples (Ward et al. 18’)
MNIST with batch gradients

https://arxiv.org/pdf/1806.01811.pdf
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Scalar AdaGrad examples (Ward et al. 18’)
MNIST with mini-batch gradients

https://arxiv.org/pdf/1806.01811.pdf
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Scalar AdaGrad examples (Ward et al. 18’)
CIFAR-10 with mini-batch gradients

https://arxiv.org/pdf/1806.01811.pdf
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Weight decay, SGD, Adam, and AdamW
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Weight decay balances layers
Weight decay is especially important for ReLU

I Deep networks benefit from each layer having a similar
magnitude of action, this can be seen in part through the
conditioning of the loss by layer.

I ReLU allows different constant scaling factors to be moved
between layers, e.g. c−1W2ReLU(cW1x) is independent of c
and has effective c−1W2 and cW1 weights.

I To overcome this scaling imbalance we typically augment the
data fidelity loss m−1

∑m
k=1 ‖H(xk ; θ)− yk‖2

2 by adding
weight decay λ‖θ‖2

2 for some suitably chosen λ.

I The `2 norm weight decay encourages weight parameters to
generally be of a similar size; note different from `1 which
induces sparsity and `∞ which encourages equal values such
as for quantization.
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SGD and Adam differ in weight decay (Loshchilov et al. 19’)
Weight decay equivalence for SGD only

SGD minimizing a loss L̃(θ) = L(θ) + λ
′

2 ‖θ‖
2
2 with fixed stepsize α

is equivalent to `2 regularization where the prior weight parameters
are dampened by (1− λ),

θ(k+1) = (1− λ)θ(k) − α∇L(θ)|θ(k)
,

for λ = αλ′, see assignment 3.
For this reason the gradient of ‖θ‖2

2 isn’t typically computed,
rather the `2 regularization is used. However, this equivalence isn’t
true for Adam type methods. This motivates AdamW which
implements weight decay correctly for Adam.
https://arxiv.org/pdf/1711.05101
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AdamW algorithm (Loshchilov et al. 19’)
Subtle changes hae substantial impact; used for ChatGPT

https://arxiv.org/pdf/1711.05101
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AdamW loss function (Loshchilov et al. 19’)
Reduced loss function and larger region

https://arxiv.org/pdf/1711.05101
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AdamW Test error (Loshchilov et al. 19’)
Superior test error by epoch and decay rate

https://arxiv.org/pdf/1711.05101
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A few other optimization algorithms

Advanced optimization algorithms for training DNNs 24



Optimizaton algorithms for ML
A rich research topic with numerous directions

I K-FAC (Martens et al. 15’) incorporates second order curvature
information and an information theory perspective with Fisher
information. https://arxiv.org/pdf/1503.05671

I Adafactor (Shazeer et al. 18’) reduce the number of gradient
step-sizes used in the diagonal scaling to average over rows and/or
columns of weight matrices which reduces the memory needed
https://arxiv.org/pdf/1804.04235

I LARS (You et al. 17’) uses different learning rates per layer rather
than per entry. https://arxiv.org/pdf/1708.03888

I LAMB (You et al. 19’) adapts LARS from focus on CNNs to LLMs,
BERT in particular. This uses large batch sizes to reduce gradient
variance. https://arxiv.org/pdf/1904.00962
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