
Optimization algorithms
for training DNNs: Adap-
tive stepsize, momentum,
weight decay, and more

Theories of Deep Learning: C6.5,
Lecture / Video 8
Prof. Jared Tanner
Mathematical Institute
University of Oxford

Stochastic gradient descent (SGD)
Scalability and induced stochasticity

Given a loss function L(θ;X ,Y), gradient descent is given by

θ(k+1) = θ(k) − η · gradθL(θ,X ,Y)

with η is referred to as the stepsize, or in DL the “learning rate.”
In DL L(θ;X ,Y) is the sum of m individual loss functions for m
data point: L(θ;X ,Y) = m−1

∑m
µ=1 l(θ; xµ, yµ)

For m� 1 gradient descent is computationally too costly and
instead one can break appart the m loss functions into
“mini-batches” and repeatedly solve

θ(k+1) = θ(k) − η|Sk |−1gradθ
∑
µ∈Sk

l(θ; xµ, yµ).

This is referred to as stochastic gradient descent as typically Sk is
chosen in some randomized method, usually as a partition of [m]
and a sequence of Sk which cover [m] is referred to as an “epoch.”

Advanced optimization algorithms for training DNNs 2

Momentum and adaptive diagonal scaling

Advanced optimization algorithms for training DNNs 3

SGD improvement: momentum
Improved convergence rate: minimizing over larger subspaces

There are many improvements of SGD typically used in practise for
deep learning; particularly popular is Polyak momentum:

θ(k+1) = θ(k) + β(θ(k) − θ(k−1))− α · gradθL
(
θ(k)

)
or Nesterov’s accelerated gradient:

θ̂k = θ(k) + β(θ(k) − θ(k−1))

θ(k+1) = θ̂(k) − α · gradθL
(
θ̂(k)

)
These acceleration methods give substantial improvements in the
linear convergence rate for convex problems; linear convergence

rates are: Normal GD κ−1
κ+1 , Polyak

√
κ−1√
κ+1

and NAG
√√

κ−1√
κ

.

Advanced optimization algorithms for training DNNs 4

SGD improvement : Adaptive sub-gradients (Duchi et al. 11’)
Preconditioning via past gradient information (AdaGrad)

Preconditioning improves convergence rate of line-search methods
is preconditioning. Let g (k)(θ(k)) =: gradθL(θ(k)) be the gradient
of the training loss function at iteration k and

Bk(i , i) =

 k∑
j=1

(
g (j)(θ(j))(i)

)2

1/2

,

the diagonal of the square-root of the sum of prior gradient
outer-products. Adaptive sub-gradients (AdaGrad) is
preconditioned GD via the diagonal matrix B

θ(k+1) = θ(k) − η|Sk |−1(B(k) + εI)−1gradθ
∑
µ∈Sk

l(θ; xµ, yµ).

εI > 0 added to avoid poor scaling of small values of B(k)(i , i).
http://jmlr.org/papers/volume12/duchi11a/duchi11a.pdf

Advanced optimization algorithms for training DNNs 5

http://jmlr.org/papers/volume12/duchi11a/duchi11a.pdf

AdaGrad improvements: RMSProp and AdaDelta
Alternative gradient weighting and step-sizes

AdaGrad preconditions with the inverse of

Bk(i , i) =
(∑k

j=1

(
g (j)(θ(j))(i)

)2
)1/2

.

RMSProp (Hinton) gives more weight to the current gradient

BRMS
k (i , i) = γBRMS

k−1 (i , i) + (1− γ)
(
g (k)(θ(k))(i)

)2

for some γ ∈ [0, 1] and updates as

θ(k+1) = θ(k) − η|Sk |−1(B(k) + εI)−1/2gradθ
∑
µ∈Sk

l(θ; xµ, yµ).

AdaDelta (Zeiler 12’) extends AdaGrad using a similar
preconditioned as BRMS

k , but also estimates the stepsize using an
average difference in θ(k) − θ(k−1).
https://arxiv.org/abs/1212.5701

Advanced optimization algorithms for training DNNs 6

https://arxiv.org/abs/1212.5701

Adaptive moment estimation (Adam) (Kingma et al. 15’)
SGD with adaptive momentum

https://arxiv.org/pdf/1412.6980.pdf

Advanced optimization algorithms for training DNNs 7

https://arxiv.org/pdf/1412.6980.pdf

Adaptive moment estimation (Adam) (Kingma et al. 15’)
Training on MNIST

https://arxiv.org/pdf/1412.6980.pdf

Advanced optimization algorithms for training DNNs 8

https://arxiv.org/pdf/1412.6980.pdf

Adaptive moment estimation (Adam) (Kingma et al. 15’)
Training on CNNs for CIFAR-10

https://arxiv.org/pdf/1412.6980.pdf

Advanced optimization algorithms for training DNNs 9

https://arxiv.org/pdf/1412.6980.pdf

Scalar adaptive gradient for robustness to initial
stepsize

Advanced optimization algorithms for training DNNs 10

AdaGrad: as adaptive stepsize rule (Ward et al. 18’)
Scalar diagonal preconditioning

Let g (k)(θ(k)) =: gradθL(θ(k)) be the gradient of the training loss
function at iteration k , AdaGrad preconditions with

Bk(i , i) =

 k∑
j=1

(
g (j)(θ(j))(i)

)2

1/2

which is the diagonal of the square-root of the sum of prior
gradient outer-products. AdaGrad is the gradient descent method

θ(k+1) = θ(k) − η|Sk |−1(B(k) + εI)−1gradθ
∑
µ∈Sk

l(θ; xµ, yµ).

A simplified version, focusing on the per iteration (as opposed to
per index) update is to let Bk = bk I where b2

k+1 = b2
k + ‖g (k)‖2

2.
https://arxiv.org/pdf/1806.01811.pdf

Advanced optimization algorithms for training DNNs 11

https://arxiv.org/pdf/1806.01811.pdf

AdaGrad: scalar update in batch setting (Ward et al. 18’)
Iteration complexity

Scalar AdaGrad update algorithm: Initialize with θ(0) and b0 > 0

b2
k = b2

b−1 + ‖gradθL(θ(k))‖2
2

θ(k) = θ(k−1) − b−1
k gradθL(θ(k))

For L(θ) ∈ C 1
L , that is L minimal for which

‖gradθL(θ1)− gradθL(θ2)‖2 ≤ L‖θ1− θ2‖ for all θ1, θ2, then scalar
batch AdaGrad satisfies mink=1,...,T−1 ‖gradθL(θ(k))‖2

2 ≤ ε for
either

T = 1 +
⌈

2ε−1L(θ(0))(b0 + 2L(θ(0)))
⌉

if b0 ≥ L, or

= 1 +
⌈
ε−1

(
L2 − b2

0 + 4(L(θ(0)) + (3/4 + log (L/b0))L)2
)⌉

if b0 < L. In contrast, if bk is a fixed constant b, then if b < L/2
GD can diverge, while if b ≥ L then T = 2bε−1L(θ(0)).

Advanced optimization algorithms for training DNNs 12

Scalar AdaGrad: proof ingredients (Ward et al. 18’)
Iteration complexity

Iteration complexity for scalar batch AdaGrad following properties
for any non-negative values a1, . . . , aT with a1 > 0, (with ak
taking the place of ‖gradθL(θ(k))‖2

2)

T∑
`=1

a`∑`
i=1 ai

≤ log

(
T∑
i=1

ai

)
+1 and

T∑
`=1

a`√∑`
i=1 ai

≤ 2

√√√√ T∑
i=1

ai .

Also, for any fixed ε ∈ (0, 1] and L, b0 > 0, the iterates
b2
k+1 = b2

k + ak has the property that after

N = dε−1(L2 − b2
o)e+ 1 iterations either minN−1

k=0 ak ≤ ε or bN ≥ L.
Lastly, letting k0 be the first iterate such that bk0 ≥ L, then for all
k ≥ k0 bk ≤ bk0−1 + 2L(θ(k0−1)) (bounded above) and
L(θ(k0−1)) ≤ L

2 (1 + 2 log(bk0−1/b0)) (not diverged).

Advanced optimization algorithms for training DNNs 13

Scalar AdaGrad: stochastic (Ward et al. 18’)
Influence of mini-batch or other gradient approximation

Let g (k) be an unbiased estimator of the gradient gradθL(θ(k)) of
the training loss function at iteration k; that is
E(g (k)) = gradθL(θ(k)). Moveover, let there be a uniform bound
E(‖g (k)‖2

2) ≤ c2
g . Then consider the stochastic scalar AdaGrad

update as
b2
k = b2

b−1 + ‖g (k)‖2
2

θ(k) = θ(k−1) − b−1
k g (k).

Unlike in the batch version of AdaGrad where bk converges to a
fixed stepsize, stochastic AdaGrad converges roughly at the rate
bk ≈ cgk

1/2. Morevover Ward et al. showed that

min
`=0,...,N−1

(
E‖gradθL(θ(k))‖4/3

)3/2

≤ O
(
b0 + cg

N
+

cg
N1/2

)
log(Nc2

g/b
2
0).

Advanced optimization algorithms for training DNNs 14

Scalar AdaGrad examples (Ward et al. 18’)
MNIST with batch gradients

https://arxiv.org/pdf/1806.01811.pdf

Advanced optimization algorithms for training DNNs 15

https://arxiv.org/pdf/1806.01811.pdf

Scalar AdaGrad examples (Ward et al. 18’)
MNIST with mini-batch gradients

https://arxiv.org/pdf/1806.01811.pdf

Advanced optimization algorithms for training DNNs 16

https://arxiv.org/pdf/1806.01811.pdf

Scalar AdaGrad examples (Ward et al. 18’)
CIFAR-10 with mini-batch gradients

https://arxiv.org/pdf/1806.01811.pdf

Advanced optimization algorithms for training DNNs 17

https://arxiv.org/pdf/1806.01811.pdf

Weight decay, SGD, Adam, and AdamW

Advanced optimization algorithms for training DNNs 18

Weight decay balances layers
Weight decay is especially important for ReLU

I Deep networks benefit from each layer having a similar
magnitude of action, this can be seen in part through the
conditioning of the loss by layer.

I ReLU allows different constant scaling factors to be moved
between layers, e.g. c−1W2ReLU(cW1x) is independent of c
and has effective c−1W2 and cW1 weights.

I To overcome this scaling imbalance we typically augment the
data fidelity loss m−1

∑m
k=1 ‖H(xk ; θ)− yk‖2

2 by adding
weight decay λ‖θ‖2

2 for some suitably chosen λ.

I The `2 norm weight decay encourages weight parameters to
generally be of a similar size; note different from `1 which
induces sparsity and `∞ which encourages equal values such
as for quantization.

Advanced optimization algorithms for training DNNs 19

SGD and Adam differ in weight decay (Loshchilov et al. 19’)
Weight decay equivalence for SGD only

SGD minimizing a loss L̃(θ) = L(θ) + λ
′

2 ‖θ‖
2
2 with fixed stepsize α

is equivalent to `2 regularization where the prior weight parameters
are dampened by (1− λ),

θ(k+1) = (1− λ)θ(k) − α∇L(θ)|θ(k)
,

for λ = αλ′, see assignment 3.
For this reason the gradient of ‖θ‖2

2 isn’t typically computed,
rather the `2 regularization is used. However, this equivalence isn’t
true for Adam type methods. This motivates AdamW which
implements weight decay correctly for Adam.
https://arxiv.org/pdf/1711.05101

Advanced optimization algorithms for training DNNs 20

https://arxiv.org/pdf/1711.05101

AdamW algorithm (Loshchilov et al. 19’)
Subtle changes hae substantial impact; used for ChatGPT

https://arxiv.org/pdf/1711.05101

Advanced optimization algorithms for training DNNs 21

https://arxiv.org/pdf/1711.05101

AdamW loss function (Loshchilov et al. 19’)
Reduced loss function and larger region

https://arxiv.org/pdf/1711.05101

Advanced optimization algorithms for training DNNs 22

https://arxiv.org/pdf/1711.05101

AdamW Test error (Loshchilov et al. 19’)
Superior test error by epoch and decay rate

https://arxiv.org/pdf/1711.05101

Advanced optimization algorithms for training DNNs 23

https://arxiv.org/pdf/1711.05101

A few other optimization algorithms

Advanced optimization algorithms for training DNNs 24

Optimizaton algorithms for ML
A rich research topic with numerous directions

I K-FAC (Martens et al. 15’) incorporates second order curvature
information and an information theory perspective with Fisher
information. https://arxiv.org/pdf/1503.05671

I Adafactor (Shazeer et al. 18’) reduce the number of gradient
step-sizes used in the diagonal scaling to average over rows and/or
columns of weight matrices which reduces the memory needed
https://arxiv.org/pdf/1804.04235

I LARS (You et al. 17’) uses different learning rates per layer rather
than per entry. https://arxiv.org/pdf/1708.03888

I LAMB (You et al. 19’) adapts LARS from focus on CNNs to LLMs,
BERT in particular. This uses large batch sizes to reduce gradient
variance. https://arxiv.org/pdf/1904.00962

Advanced optimization algorithms for training DNNs 25

https://arxiv.org/pdf/1503.05671
https://arxiv.org/pdf/1804.04235
https://arxiv.org/pdf/1708.03888
https://arxiv.org/pdf/1904.00962

