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Linearization of the neural network
Least squares loss and linearized network

With the data {(xµ, yµ)}mµ=1 where yµ ∈ R, and network H(x ; θ0)
with H(xµ; θ0) = ŷµ; if we linearize the network H(x ; θ) in θ about
the current θ0 and

L(θ) = (2m)−1
m∑
µ=1

‖H(xµ; θ)− yµ)‖2
2,

we can exactly express the solution as that of a linear system. Let
x = (x1 · · · xm)T , and treating everything in vector notation, the
linear approximation of the network is
H(x ; θ) = H(x ; θ0) +∇θH(x ; θ)|θ0(θ − θ0) +O(‖θ − θ0‖2). The
linearization matrix J0 can then be written as
J0 = ∇θH(x ; θ)|θ0 ∈ Rm×p where its i th row ∇θH(x ; θ)|θ0 has
entries

(
∇θ1H(x (i); θ) · · · ∇θpH(x (i); θ)

)
.
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Linearization of the neural network
Underdetermined system once more parameters than data

The loss function for the linearized approximation to the network
H(x ; θ) about θ0 is then given by

L̃(θ) = ‖ŷ − y + J0(θ − θ0)‖2
2.

Once the number of network parameters p exceeds the amount of
data pairs m, the loss L̃(θ) can be exactly set to zero, provided J0

is full rank. In the p > m regime there are many solutions to this
underdetermined system. A natural solution is the Moore-Penrose
pseudo-inverse where we start with y − ŷ = J0(θ − θ0), multiply
from the left by JT0 and use the pseudo-inverse of the matrix
JT0 J0 ∈ Rp×p which is not full rank as p > m; we denote this
θ1 = θ0 + J+

0 (y − ŷ). In optimization this is called the
Gauss-Newton method.

Topology of the loss landscape 3



Linearization of the neural network
Properties of the linearized solution, implicit regularization

If J0 is full rank and p > m, there is a θ with y − ŷ = J0(θ − θ0),
but there are many such θ as J0 has a null-space (kernel) of
dimension p −m and anything in this null-space can be added to θ
without modifying the solution. This indicates that the linearized
loss is ”flat” in p −m dimensions and as p grows the optimization
landscape appears to be increasingly flat. Selecting the
pseudo-inverse solution θ = θ0 + J+

0 (y − ŷ) has the benefit that it
minimizes ‖θ− θ0‖2 amongst all solutions; this is a form of implicit
regularization where in effect we have added a penalty on ‖θ− θ0‖2

to the loss function, though it isn’t added explicitly, rather it
appears through the choice of θ amongst its many solutions.
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Linearization of the neural network
Large width limit and ”lack of training”

Let J0 be full rank and σmin(J0J
T
0 ), smallest nonzero singular value

of J0, be independent of m and p (true for most φ(·) but not
proven here), then using the bound

‖θ − θ0‖2 = ‖J+
0 (y − ŷ)‖2 ≤ σ−1/2

min (J0J
T
0 )‖y − ŷ‖2

we can start to make some observations of the role of the
dimensions. Let us consider the entries in y and ŷ to be
independent of the dimensions, then ‖y − ŷ‖2 = O(m1/2) due to

y , ŷ ∈ Rm and ‖θ − θ0‖2 ≤ O(m1/2σ
−1/2
min (J0J

T
0 ))

Note that the right hand side of the above bound is independent of
p, while θ − θ0 ∈ Rp so it must be that if their entries are of
similar magnitude then (θ − θ0)(i) = O(p−1/2) which tells us that
in some sense for large p there is a lack of training.
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Linearization of the neural network
Difference of network and linear approximation

Consider the difference between the network H(x ; θ) and its linear
approximation ŷ + J0(θ − θ0) in terms of the Lipshitz constant of
the gradient of H(x ; θ),

‖∇θH(x ; θ)θ1 −∇θH(x ; θ)θ2‖2 ≤ L∇θH‖θ1 − θ2‖2.

The difference from linear is given by

|H(x ; θ)− (ŷ + J0(θ − θ0))| ≤ O(L∇θH)‖θ − θ0‖2
2

which from the prior slide is of order O(L∇θH ·mσ
−1
min(J0J

T
0 )).

It then remains to understand how L∇θH depends on the
dimensions.
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Linearization of the neural network
Network approaches linear in large width limit

Consider a two layer network where the first layer maps x ∈ Rd to
Rp and the second layer maps x ∈ Rp to a scalar;

H(x ; θ) = p−1/2
p∑

i=1

w
(2)
i φ((w

(1)
i )T x)

where w
(1)
i ∈ Rd with entries drawn N (0, σ2

w/d) and w
(2)
i are

drawn i.i.d. from ±1, then the p−1/2 scaling is needed so that
|H(xθ)| is independent of p as p grows. The Lipshitz constant for
the gradient of this network follows from the entries of the gradient

being ∇θH(x ; θ)ij = p−1/2φ′((w
(1)
i )T x)xj for i ∈ [p] and j ∈ [d ].

(Note we are neglecting the gradient with respect to w
(2)
i .)
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Linearization of the neural network
Network approaches linear in large width limit (continued)

With ∇θH(x ; θ)ij = p−1/2φ′((w
(1)
i )T x)xj ; then if φ′(z) has

Lipshitz constant Lφ, and letting wj1
i denote the i th entry of the

weight matrix for θj at layer 1

‖∇θH(x ; θ)θ1 −∇θH(x ; θ)θ2‖
2
2 = p−1

p∑
i=1

d∑
j=1

x2
j (φ
′((w1

(1)
i )T x)− φ′((w2

(1)
i )T x))2

≤ p−1‖x‖2
2

p∑
i=1

Lφ‖w1
(1)
i − w2

(1)
i ‖

2
2

= p−1Lφ‖x‖2
2‖θ1 − θ2‖2

2

This tell us that L∇θH = O(p−1/2) and consequently

|H(x ; θ)− (ŷ + J0(θ − θ0)| ≤ O(p−1/2mσ−1
min(J0J

T
0 )Lφ)

which goes to zero with width, say if p = m2 log(m).
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Linearization of the neural network
Solving the linear system with gradient descent; seeing the condition number

The loss function for the linearized approximation to the network
H(x ; θ) about θ0 is then given by

L̃(θ) = ‖ŷ − y + J0(θ − θ0)‖2
2.

Rather than solving for the solution θ for which the linear
approximation has L̃ = 0, we could explore what occurs when
updating θ through gradient descent. This approach gives us some
insight into the nature of using gradient descent on the original
loss function L(θ) for the nonlinear H(x , θ). Letting
∆θ(k) = θ(k) − θ0 be the kth iteration of θ centred at θ0 we have
gradient descent for ∆θ given by

∆θ(k+1) = ∆θ(k) − α∇∆θL̃(∆θ)∆θ(k)
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Linearization of the neural network
Convergence of gradient descent

Applying J0 from the left to both sides of the gradient descent equation

and letting ỹ (k) = J∆θ(k) we have ỹ (k+1) = ỹ (k) − αJ0J
T
0 (ỹ (k) − (ŷ − y).

Subtracting (ŷ − y) from both sides and taking the norm we have

L̃(θ(k+1)) = ‖ŷ − y + J0(∆θ(k+1))‖2
2 = ‖(I − αJ0J

T
0 )(ŷ − y + J0(∆θ(k))‖2

2

≤ ‖I − αJ0J
T
0 ‖2L̃(θ(k)).

Let the largest and smallest singular values of J0J
T
0 be σmax and

σmin respectively and κ = σmax/σmin, then, if the stepsize
α < 2/(σmax + σmin) we have L̃(θ(k+1)) ≤ κ−1

κ+1 L̃(θ(k)); so

L̃(θ(k)) ≤
(
κ−1
κ+1

)k
L̃(θ(0)). Limiting small stepsize this gives the

same solution as Gauss-Newton which had solution with minimal
‖θ‖2. Note that the above also works if we update the loss at each
iteration and use Jk where the gradient is evaluated at the θ(k).
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Topology of the loss landscape: few layers
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Loss function for a simple fully connected two layer NN
Sum of squares loss

Consider a data set X ∈ Rn×m of m data entries in Rn, associated
target outputs (such as labels) Y ∈ Rn2×m (for simplicity we let
n2 = n), and (very) simple two layer net:

h1 = φ(W (1)x0) note, no bias, and φ(·) = max(0, ·)
h2 = W (2)h1 note, no bias or nonlinear activation.

The output of the net is H(xµ; θ) = ŷµ and we measure the value
of the net through the average sum of squares:

L = (2m)−1
m∑
µ=1

n∑
i=1

(ŷi ,µ − yi ,µ)2

and define a weighted loss accuracy as ε = n−1L.
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Loss landscape example: 56 layers fully connected (Li et al. 18’)
Loss landscapes of DNNs are typically non-convex

http://papers.nips.cc/paper/7875-visualizing-the-loss-landscape-of-neural-nets.pdf
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Topology of loss landscape (Freeman et al. 16’)
Number of connected components

Consider our loss function: L(θ;X ,Y ) = n−1
∑n

µ=1 l(θ; xµ, yµ)
and its associated level set

ΩL(λ) = {θ : L(θ;X ,Y ) ≤ λ}

Of particular interest are the number of connected components, say
Nλ, in ΩL(λ). If Nλ = 1 for all λ then L(θ;X ,Y ) has no isolated
local minima and any descent method can obtain a global minima.

If Nλ > 1 there may be “spurious valleys” in which the minima in
the connected component does not achieve the global minima.
https://arxiv.org/pdf/1611.01540.pdf
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Topology of loss landscape (Freeman et al. 16’)
There are datasets for which ReLU has a complex landscape

Linear network: single component

Let H(x ; θ) be an L layer net given by h(`) = W (`)h(`−1) with W (`) ∈
Rn`×n`−1 , then if n` > min(n0, nL) for 0 < ` < L, the sum of squares
loss function has a single connected component

ReLU network: multiple components

Let H(x ; θ) be an L layer net given by h(`) = φ(W (`)h(`−1)) with
W (`) ∈ Rn`×n`−1 and φ(·) = max(0, ·), then for any choice of n`
there is a distribution of data (X ,Y ) such that there are more than
one single connected component.
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Topology of loss landscape: (Venturi et al. 16’)
Over parameterisation can generate a single connected component

ReLu activation network: nearly connected

Consider a 2 layer ReLu network H(x , θ) = W (2)φ(W (1)x) with W (1) ∈
Rm×n and W (2) ∈ Rm, then for any two parameters θ1 and θ2 with L(θi ) ≤
λ for i = 1, 2, then there is a path γ(t) between θ1 and θ2 such that

L(θγ(t)) ≤ max(λ,m−1/n).

quadratic activation network: single component

Let H(x , θ) be an L layer net given by h(`) = φ(W (`)h(`−1)) with W (`) ∈
Rn`×n`−1 and quadratic activation φ(z) = z2, then once the number of

parameters n` ≥ 3N2` where N is the number of data entries, then the

sum of squares loss function has a single connected component. For the

two layer case with a single quadratic activation this simplifies to n > 2N.

https://arxiv.org/pdf/1802.06384.pdf
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Topology of the loss landscape:
random matrix theory
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Hessian for two layer net (without activation)
Omitting diagonal nonlinear activation matrices.

Let ei ,µ = ŷi ,µ − yi ,µ be the error in the i th entry of the output for

data entry indexed by µ, and θ = {W (1),W (2)} ∈ R2n2
be the net

parameters, then the hessian of the loss function has entries

Hα,β =
∂2L

∂θα∂θβ
=: H0 + H1

with positive semi-definite and error dependent components:

[H0]α,β := m−1
m∑
µ=1

n∑
i=1

∂ŷi ,µ
∂θα

∂ŷi ,µ
∂θβ

= m−1[JJT ]α,β

[H1]α,β := m−1
m∑
µ=1

n∑
i=1

ei ,µ
∂2ŷi ,µ
∂θα∂θβ

.

There are mn data entries and 2n2 NN parameters, with τ = 2n/m
the relative over (τ > 1) or under (τ < 1) parameterisation.
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Loss function landscape through Hessian eigenvalues
Local shape of loss landscape

Functions, say L, which have hessians that are:

I positive definite (all positive eigenvalues) are convex and have
a single global minima and unique minimiser,

I positive semi-definite have single global minima but
non-unique minimiser due to the null-space

I indefinite (positive and negative eigenvalues) are non-convex
and may be a complicated landscape with multiple local
minimisers.

For the simple two layer network we considered the network has
Hessian H = H0 + H1 with H0 positive semidefinite and of size
independent of the error, while H1 is indefinite with magnitude
depending on the size of ei ,µ = ŷi ,µ − yi ,µ.
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Landscape via random matrix theory (Pennington et al. 17’)
Modelling assumptions for tractable analysis

One can interpret properties of the landscape through the Hessian
by considering simplified models:

I The weights are i.i.d. random normal variable,

I The data are i.i.d. random variables,

I The residuals ei ,µ = ŷi ,µ − yi ,µ are normal random variables,
say N (0, 2ε) with ε = n−1L (which also allows the gradient to
vanish as m, n→∞ while m/n remains fixed; the focus is on
fixed points where the gradient is zero),

I The matrices H0 and H1 are freely independent which allows
us to compute the spectra of H0 + H1 from their individual
spectra.

http://proceedings.mlr.press/v70/pennington17a.html
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Wigner and Wishart distributions
Deterministic eigenvalue distributions of random matrices: the large n, p limit.

Wigner matrices, entries drawn N (0, σ2), have eigenvalues drawn
from the semi-circle law:

ρsc(λ) =

{
1

2πσ2

√
4σ2 − λ2 if |λ| ≤ 2σ

0 otherwise

Wishart matrices, X = JJT product of J ∈ Rn×p drawn
N (0, σ2/p) have eigenvalues drawn from the Marchenko-Pastur
distribution:

ρMP(λ) =

{
ρ(λ) if τ = n/p < 1
(1− τ−1)δ(λ) + ρ(λ) otherwise

where ρ(λ) := (2πλστ)−1
√

(λ− λ−)(λ+ − λ) for λ ∈ [λ−, λ+]
and λ± := σ(1±

√
τ)2.
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Stieltjes and R Transforms of probability distributions
Method to compute the spectrum under addition.

The probability distribution of the sum of two (freely independent)
random matrix distributions can be calculated using the transforms:

Stieltjes and R Transforms

For z ∈ C/R the Stieltjes Transform, Gρ(z), of a probability distri-
bution and its inverse are given by

Gρ(z) =

∫
R

ρ(t)

z − t
dt and ρ(λ) = −π−1 lim

ε→0+

Imag(Gρ(λ+ iε)).

The Stieltjes and R Transform of ρ are related by the solutions of
Rρ(Gρ(z)) + 1/Gρ(z) = z and has the property that if ρ1 and ρ2

are freely independent then Rρ1+ρ2 = Rρ1 +Rρ2 .

https://terrytao.wordpress.com/tag/stieltjes-transform-method/
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Recall the Hessian for two layer net (without activation)
Stieltjes and R Transform for joint spectra

Let ei ,µ = ŷi ,µ − yi ,µ be the error in the i th entry of the output for

data entry indexed by µ, and θ = {W (1),W (2)} ∈ R2n2
be the net

parameters, then the hessian of the loss function has entries

Hα,β =
∂2L

∂θα∂θβ
=: H0 + H1

with positive semi-definite and error dependent components:

[H0]α,β := m−1
m∑
µ=1

n∑
i=1

∂ŷi ,µ
∂θα

∂ŷi ,µ
∂θβ

= m−1[JJT ]α,β

[H1]α,β := m−1
m∑
µ=1

n∑
i=1

ei ,µ
∂2ŷi ,µ
∂θα∂θβ

.

Where we assumed that H0 and H1 can be modelled as being
drawn from Wishart and Wigner distributions respectively.
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Landscape via random matrix theory (Pennington et al. 17’)

Using the Pennington model (τ = φ = 2n/m and ε = n−1L) we
have ρH0(λ) = ρMP(λ; 1, τ) and ρH1(λ) = ρSC (λ;

√
2ε).

Their R transforms are respectively

RH0 =
1

1− zτ
and RH1 = 2εz ,

from which follows the probability distribution, ρH(λ; ε, τ):

http://proceedings.mlr.press/v70/pennington17a.html
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Fraction of negative eigenvalues (Pennington et al. 17’)
Breakpoint dependence on εc and oversampling τ

Consider the fraction of negative eigenvalues of ρH(λ):

α(ε, τ) :=

∫ 0

−∞
ρH(λ; ε, τ)dλ.

Fraction of negative eigenvalues (without ReLU)

For ρH(λ) modelling the Hessian of the two layer net, when α is
small it is well approximated by

α(ε, τ) ≈ α0(τ)

∣∣∣∣ε− εcεc

∣∣∣∣3/2

where

εc =
1

16
(1− 20τ − 8τ2 + (1 + 8τ)3/2).

http://proceedings.mlr.press/v70/pennington17a.html
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The two layer ReLU net (Pennington et al. 17’)
Now including a ReLU nonlinear activation

The introduction of the ReLU nonlinear activation changes the Hessian,
roughly setting to zero half of the entries and generating a block
off-diagonal structure in H1 with RH1(z) = ετz

2−ετ 2z2 .

Continuing to model H0 as Wishart (less clear an assumption):

Fraction of negative eigenvalues (with ReLU)

For ρH(λ) modelling the Hessian of the two layer net, when α is
small it is well approximated by

α(ε, τ) ≈ α̃0(τ)

∣∣∣∣ε− εcεc

∣∣∣∣3/2

where

εc =
φ2(27− 18ξ − ξ2 + 8ξ3/2)

32τ(1− τ)3
, with ξ = 1 + 16τ − 8τ2.

http://proceedings.mlr.press/v70/pennington17a.html
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Empirical values of εc and α (Pennington et al. 17’)
Match of empirical and analytical calculations

http://proceedings.mlr.press/v70/pennington17a.html
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Manifold of global minimizers (Yaim Cooper 21’)
Dimension of global minimizers in overparameterized setting

Dimension of global minimizer submanifold

Let H(x ; θ) be a DNN from Rn to Rr with smooth nonlinear activation
φ(·), let the loss function over m distinct data elements be defined as

L = (2m)−1
m∑
µ=1

‖H(xµ; θ)− yµ)‖2
2,

and let Ω∗L(0) = {θ : L(θ;X ,Y ) = 0} be the set of weight and bias
trainable parameters for which the DNN exactly fits the d data elements.

Then, subject to possibly arbitrarily small perturbation, the set Ω∗L(0) is a

smooth (m − rn)−dimensional submanifold (possibly empty) of Rd .

https://epubs.siam.org/doi/pdf/10.1137/19M1308943
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DNN loss landscape summary
Structure of the loss landscape dimensionality dependence

I Loss landscapes for DNNs can be non-convex and hence
difficult to optimise.

I The number of components of a loss landscape level curve
can be analysed, and in some settings has a single component
greatly aiding its optimisation.

I Increasing width of a DNN can improve the loss landscape.

I The local shape of random nets can be analysed, showing that
when near a minima the Hessian has only non-negative
eigenvalues.

I When the amount of data exceeds the product of the input
and output dimensions, DNNs with smooth non-linear
activations which exactly fit the data, have smooth manifold
of a known dimension.
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