

Topology of the loss landscape: global and local structures

Theories of Deep Learning: C6.5, Lecture / Video 9 Prof. Jared Tanner Mathematical Institute University of Oxford

Least squares loss and linearized network

With the data $\{(x_{\mu},y_{\mu})\}_{\mu=1}^{m}$ where $y_{\mu} \in \mathbb{R}$, and network $H(x;\theta_{0})$ with $H(x_{\mu};\theta_{0})=\hat{y}_{\mu}$; if we linearize the network $H(x;\theta)$ in θ about the current θ_{0} and

$$\mathcal{L}(\theta) = (2m)^{-1} \sum_{\mu=1}^{m} \|H(x_{\mu}; \theta) - y_{\mu})\|_{2}^{2},$$

we can exactly express the solution as that of a linear system. Let $x = (x_1 \cdots x_m)^T$, and treating everything in vector notation, the linear approximation of the network is

 $H(x;\theta) = H(x;\theta_0) + \nabla_{\theta}H(x;\theta)|_{\theta_0}(\theta - \theta_0) + \mathcal{O}(\|\theta - \theta_0\|^2)$. The linearization matrix J_0 can then be written as

 $J_0 = \nabla_{\theta} H(x; \theta)|_{\theta_0} \in \mathbb{R}^{m \times p}$ where its i^{th} row $\nabla_{\theta} H(x; \theta)|_{\theta_0}$ has entries $(\nabla_{\theta_1} H(x^{(i)}; \theta) \cdots \nabla_{\theta_p} H(x^{(i)}; \theta))$.

The loss function for the linearized approximation to the network $H(x; \theta)$ about θ_0 is then given by

$$\tilde{\mathcal{L}}(\theta) = \|\hat{y} - y + J_0(\theta - \theta_0)\|_2^2.$$

Once the number of network parameters p exceeds the amount of data pairs m, the loss $\tilde{\mathcal{L}}(\theta)$ can be exactly set to zero, provided J_0 is full rank. In the p>m regime there are many solutions to this underdetermined system. A natural solution is the Moore-Penrose pseudo-inverse where we start with $y-\hat{y}=J_0(\theta-\theta_0)$, multiply from the left by J_0^T and use the pseudo-inverse of the matrix $J_0^TJ_0\in\mathbb{R}^{p\times p}$ which is not full rank as p>m; we denote this $\theta_1=\theta_0+J_0^+(y-\hat{y})$. In optimization this is called the Gauss-Newton method.

Properties of the linearized solution, implicit regularization

If J_0 is full rank and p > m, there is a θ with $y - \hat{y} = J_0(\theta - \theta_0)$, but there are many such θ as J_0 has a null-space (kernel) of dimension p-m and anything in this null-space can be added to θ without modifying the solution. This indicates that the linearized loss is "flat" in p-m dimensions and as p grows the optimization landscape appears to be increasingly flat. Selecting the pseudo-inverse solution $\theta = \theta_0 + J_0^+(y - \hat{y})$ has the benefit that it minimizes $\|\theta - \theta_0\|_2$ amongst all solutions; this is a form of implicit regularization where in effect we have added a penalty on $\|\theta - \theta_0\|_2$ to the loss function, though it isn't added explicitly, rather it appears through the choice of θ amongst its many solutions.

Large width limit and "lack of training"

Let J_0 be full rank and $\sigma_{min}(J_0J_0^T)$, smallest nonzero singular value of J_0 , be independent of m and p (true for most $\phi(\cdot)$ but not proven here), then using the bound

$$\|\theta - \theta_0\|_2 = \|J_0^+(y - \hat{y})\|_2 \le \sigma_{min}^{-1/2}(J_0J_0^T)\|y - \hat{y}\|_2$$

we can start to make some observations of the role of the

dimensions. Let us consider the entries in y and \hat{y} to be independent of the dimensions, then $\|y-\hat{y}\|_2 = \mathcal{O}(m^{1/2})$ due to $y, \hat{y} \in \mathbb{R}^m$ and $\|\theta-\theta_0\|_2 \leq \mathcal{O}(m^{1/2}\sigma_{min}^{-1/2}(J_0J_0^T))$ Note that the right hand side of the above bound is independent of p, while $\theta-\theta_0 \in \mathbb{R}^p$ so it must be that if their entries are of similar magnitude then $(\theta-\theta_0)(i) = \mathcal{O}(p^{-1/2})$ which tells us that in some sense for large p there is a lack of training.

Difference of network and linear approximation

Consider the difference between the network $H(x; \theta)$ and its linear approximation $\hat{y} + J_0(\theta - \theta_0)$ in terms of the Lipshitz constant of the gradient of $H(x; \theta)$,

$$\|\nabla_{\theta} H(x;\theta)_{\theta_1} - \nabla_{\theta} H(x;\theta)_{\theta_2}\|_2 \leq L_{\nabla_{\theta} H} \|\theta_1 - \theta_2\|_2.$$

The difference from linear is given by

$$|H(x;\theta) - (\hat{y} + J_0(\theta - \theta_0))| \le \mathcal{O}(L_{\nabla_\theta H}) \|\theta - \theta_0\|_2^2$$

which from the prior slide is of order $\mathcal{O}(L_{\nabla_{\theta}H} \cdot m\sigma_{min}^{-1}(J_0J_0^T))$. It then remains to understand how $L_{\nabla_{\theta}H}$ depends on the dimensions.

Network approaches linear in large width limit

Consider a two layer network where the first layer maps $x \in \mathbb{R}^d$ to \mathbb{R}^p and the second layer maps $x \in \mathbb{R}^p$ to a scalar;

$$H(x;\theta) = p^{-1/2} \sum_{i=1}^{p} w_i^{(2)} \phi((w_i^{(1)})^T x)$$

where $w_i^{(1)} \in \mathbb{R}^d$ with entries drawn $\mathcal{N}(0, \sigma_w^2/d)$ and $w_i^{(2)}$ are drawn i.i.d. from ± 1 , then the $p^{-1/2}$ scaling is needed so that $|H(x\theta)|$ is independent of p as p grows. The Lipshitz constant for the gradient of this network follows from the entries of the gradient being $\nabla_\theta H(x;\theta)_{ij} = p^{-1/2}\phi'((w_i^{(1)})^Tx)x_j$ for $i \in [p]$ and $j \in [d]$. (Note we are neglecting the gradient with respect to $w_i^{(2)}$.)

Network approaches linear in large width limit (continued)

With $\nabla_{\theta} H(x; \theta)_{ii} = p^{-1/2} \phi'((w_i^{(1)})^T x) x_i$; then if $\phi'(z)$ has Lipshitz constant L_{ϕ} , and letting wj_i^1 denote the i^{th} entry of the weight matrix for θ_i at layer 1

$$\begin{split} \|\nabla_{\theta}H(x;\theta)_{\theta_{1}} - \nabla_{\theta}H(x;\theta)_{\theta_{2}}\|_{2}^{2} &= p^{-1}\sum_{i=1}^{p}\sum_{j=1}^{d}x_{j}^{2}(\phi'((w1_{i}^{(1)})^{T}x) - \phi'((w2_{i}^{(1)})^{T}x))^{2} \\ &\leq p^{-1}\|x\|_{2}^{2}\sum_{i=1}^{p}L_{\phi}\|w1_{i}^{(1)} - w2_{i}^{(1)}\|_{2}^{2} \\ &= p^{-1}L_{\phi}\|x\|_{2}^{2}\|\theta_{1} - \theta_{2}\|_{2}^{2} \end{split}$$

This tell us that $L_{\nabla_{\rho}H} = \mathcal{O}(p^{-1/2})$ and consequently

$$|H(x;\theta) - (\hat{y} + J_0(\theta - \theta_0))| \le \mathcal{O}(p^{-1/2}m\sigma_{\min}^{-1}(J_0J_0^T)L_{\phi})$$

which goes to zero with width, say if $p = m^2 \log(m)$.

4□ → 4問 → 4 目 → 4 目 → 9 Q P

OXFORD Mathematica

Solving the linear system with gradient descent; seeing the condition number

The loss function for the linearized approximation to the network $H(x; \theta)$ about θ_0 is then given by

$$\tilde{\mathcal{L}}(\theta) = \|\hat{y} - y + J_0(\theta - \theta_0)\|_2^2.$$

Rather than solving for the solution θ for which the linear approximation has $\tilde{\mathcal{L}}=0$, we could explore what occurs when updating θ through gradient descent. This approach gives us some insight into the nature of using gradient descent on the original loss function $\mathcal{L}(\theta)$ for the nonlinear $H(x,\theta)$. Letting $\Delta\theta^{(k)}=\theta^{(k)}-\theta_0$ be the k^{th} iteration of θ centred at θ_0 we have gradient descent for $\Delta\theta$ given by

$$\Delta \theta^{(k+1)} = \Delta \theta^{(k)} - \alpha \nabla_{\Delta \theta} \tilde{\mathcal{L}}(\Delta \theta)_{\Delta \theta^{(k)}}$$

Applying J_0 from the left to both sides of the gradient descent equation and letting $\tilde{y}^{(k)} = J\Delta\theta^{(k)}$ we have $\tilde{y}^{(k+1)} = \tilde{y}^{(k)} - \alpha J_0 J_0^T (\tilde{y}^{(k)} - (\hat{y} - y))$. Subtracting $(\hat{y} - y)$ from both sides and taking the norm we have

$$\tilde{\mathcal{L}}(\theta^{(k+1)}) = \|\hat{y} - y + J_0(\Delta \theta^{(k+1)})\|_2^2 = \|(I - \alpha J_0 J_0^T)(\hat{y} - y + J_0(\Delta \theta^{(k)})\|_2^2 \\
\leq \|I - \alpha J_0 J_0^T\|_2 \tilde{\mathcal{L}}(\theta^{(k)}).$$

Let the largest and smallest singular values of $J_0J_0^T$ be σ_{max} and σ_{min} respectively and $\kappa = \sigma_{max}/\sigma_{min}$, then, if the stepsize $\alpha < 2/(\sigma_{max} + \sigma_{min})$ we have $\tilde{\mathcal{L}}(\theta^{(k+1)}) \leq \frac{\kappa-1}{\kappa+1} \tilde{\mathcal{L}}(\theta^{(k)})$; so $\tilde{\mathcal{L}}(\theta^{(k)}) \leq \left(\frac{\kappa-1}{\kappa+1}\right)^k \tilde{\mathcal{L}}(\theta^{(0)})$. Limiting small stepsize this gives the same solution as Gauss-Newton which had solution with minimal

Topology of the loss landscape: few layers

Loss function for a simple fully connected two layer ${\sf NN}$

OXFORD Mathematica Institute

Sum of squares loss

Consider a data set $X \in \mathbb{R}^{n \times m}$ of m data entries in \mathbb{R}^n , associated target outputs (such as labels) $Y \in \mathbb{R}^{n_2 \times m}$ (for simplicity we let $n_2 = n$), and (very) simple two layer net:

$$h_1 = \phi(W^{(1)}x_0)$$
 note, no bias, and $\phi(\cdot) = \max(0, \cdot)$

 $h_2 = W^{(2)}h_1$ note, no bias or nonlinear activation.

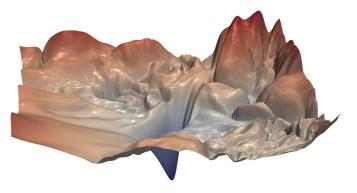
The output of the net is $H(x_{\mu}; \theta) = \hat{y}_{\mu}$ and we measure the value of the net through the average sum of squares:

$$\mathcal{L} = (2m)^{-1} \sum_{\mu=1}^{m} \sum_{i=1}^{n} (\hat{y}_{i,\mu} - y_{i,\mu})^2$$

and define a weighted loss accuracy as $\epsilon = n^{-1}\mathcal{L}$.

Loss landscape example: 56 layers fully connected (Li et al. 18'

Loss landscapes of DNNs are typically non-convex



http://papers.nips.cc/paper/7875-visualizing-the-loss-landscape-of-neural-nets.pdf

Topology of loss landscape (Freeman et al. 16')

Number of connected components

Consider our loss function: $\mathcal{L}(\theta; X, Y) = n^{-1} \sum_{\mu=1}^{n} I(\theta; x_{\mu}, y_{\mu})$ and its associated level set

$$\Omega_{\mathcal{L}}(\lambda) = \{\theta : \mathcal{L}(\theta; X, Y) \leq \lambda\}$$

Of particular interest are the number of connected components, say N_{λ} , in $\Omega_{\mathcal{L}}(\lambda)$. If $N_{\lambda}=1$ for all λ then $\mathcal{L}(\theta;X,Y)$ has no isolated local minima and any descent method can obtain a global minima.

If $N_{\lambda} > 1$ there may be "spurious valleys" in which the minima in the connected component does not achieve the global minima. https://arxiv.org/pdf/1611.01540.pdf

Topology of loss landscape (Freeman et al. 16')

There are datasets for which ReLU has a complex landscape

Linear network: single component

Let $H(x; \theta)$ be an L layer net given by $h^{(\ell)} = W^{(\ell)} h^{(\ell-1)}$ with $W^{(\ell)} \in \mathbb{R}^{n_{\ell} \times n_{\ell-1}}$, then if $n_{\ell} > \min(n_0, n_L)$ for $0 < \ell < L$, the sum of squares loss function has a single connected component

ReLU network: multiple components

Let $H(x;\theta)$ be an L layer net given by $h^{(\ell)} = \phi(W^{(\ell)}h^{(\ell-1)})$ with $W^{(\ell)} \in \mathbb{R}^{n_\ell \times n_{\ell-1}}$ and $\phi(\cdot) = \max(0,\cdot)$, then for any choice of n_ℓ there is a distribution of data (X,Y) such that there are more than one single connected component.

Topology of loss landscape: (Venturi et al. 16')

Over parameterisation can generate a single connected component

ReLu activation network: nearly connected

Consider a 2 layer ReLu network $H(x,\theta)=W^{(2)}\phi(W^{(1)}x)$ with $W^{(1)}\in\mathbb{R}^{m\times n}$ and $W^{(2)}\in\mathbb{R}^m$, then for any two parameters θ_1 and θ_2 with $\mathcal{L}(\theta_i)\leq \lambda$ for i=1,2, then there is a path $\gamma(t)$ between θ_1 and θ_2 such that $\mathcal{L}(\theta_{\gamma(t)})\leq \max(\lambda,m^{-1/n})$.

quadratic activation network: single component

Let $H(x,\theta)$ be an L layer net given by $h^{(\ell)} = \phi(W^{(\ell)}h^{(\ell-1)})$ with $W^{(\ell)} \in \mathbb{R}^{n_\ell \times n_{\ell-1}}$ and quadratic activation $\phi(z) = z^2$, then once the number of parameters $n_\ell \geq 3N^{2^\ell}$ where N is the number of data entries, then the sum of squares loss function has a single connected component. For the two layer case with a single quadratic activation this simplifies to n > 2N.

https://arxiv.org/pdf/1802.06384.pdf

Topology of the loss landscape: random matrix theory

Hessian for two layer net (without activation)

Omitting diagonal nonlinear activation matrices.

Let $e_{i,\mu} = \hat{y}_{i,\mu} - y_{i,\mu}$ be the error in the i^{th} entry of the output for data entry indexed by μ , and $\theta = \{W^{(1)}, W^{(2)}\} \in \mathbb{R}^{2n^2}$ be the net parameters, then the hessian of the loss function has entries

$$H_{\alpha,\beta} = \frac{\partial^2 \mathcal{L}}{\partial \theta_{\alpha} \partial \theta_{\beta}} =: H_0 + H_1$$

with positive semi-definite and error dependent components:

$$[H_0]_{\alpha,\beta} := m^{-1} \sum_{\mu=1}^m \sum_{i=1}^n \frac{\partial \hat{y}_{i,\mu}}{\partial \theta_{\alpha}} \frac{\partial \hat{y}_{i,\mu}}{\partial \theta_{\beta}} = m^{-1} [JJ^T]_{\alpha,\beta}$$
$$[H_1]_{\alpha,\beta} := m^{-1} \sum_{\mu=1}^m \sum_{i=1}^n e_{i,\mu} \frac{\partial^2 \hat{y}_{i,\mu}}{\partial \theta_{\alpha} \partial \theta_{\beta}}.$$

There are mn data entries and $2n^2$ NN parameters, with $\tau=2n/m$ the relative over $(\tau>1)$ or under $(\tau<1)$ parameterisation.

Loss function landscape through Hessian eigenvalues

Functions, say \mathcal{L} , which have hessians that are:

- positive definite (all positive eigenvalues) are convex and have a single global minima and unique minimiser,
- positive semi-definite have single global minima but non-unique minimiser due to the null-space
- indefinite (positive and negative eigenvalues) are non-convex and may be a complicated landscape with multiple local minimisers.

For the simple two layer network we considered the network has Hessian $H=H_0+H_1$ with H_0 positive semidefinite and of size independent of the error, while H_1 is indefinite with magnitude depending on the size of $e_{i,\mu}=\hat{y}_{i,\mu}-y_{i,\mu}$.

Landscape via random matrix theory (Pennington et al. 17')

Modelling assumptions for tractable analysis

One can interpret properties of the landscape through the Hessian by considering simplified models:

- ► The weights are i.i.d. random normal variable,
- ► The data are i.i.d. random variables,
- ► The residuals $e_{i,\mu} = \hat{y}_{i,\mu} y_{i,\mu}$ are normal random variables, say $\mathcal{N}(0, 2\epsilon)$ with $\epsilon = n^{-1}\mathcal{L}$ (which also allows the gradient to vanish as $m, n \to \infty$ while m/n remains fixed; the focus is on fixed points where the gradient is zero),
- ▶ The matrices H_0 and H_1 are freely independent which allows us to compute the spectra of $H_0 + H_1$ from their individual spectra.

Wigner and Wishart distributions

OXFORD Mathematica

Deterministic eigenvalue distributions of random matrices: the large n, p limit.

Wigner matrices, entries drawn $\mathcal{N}(0, \sigma^2)$, have eigenvalues drawn from the semi-circle law:

$$\rho_{sc}(\lambda) = \begin{cases} \frac{1}{2\pi\sigma^2} \sqrt{4\sigma^2 - \lambda^2} & \text{if } |\lambda| \le 2\sigma \\ 0 & \text{otherwise} \end{cases}$$

Wishart matrices, $X = JJ^T$ product of $J \in \mathbb{R}^{n \times p}$ drawn $\mathcal{N}(0, \sigma^2/p)$ have eigenvalues drawn from the Marchenko-Pastur distribution:

$$ho_{MP}(\lambda) = \left\{ egin{array}{ll}
ho(\lambda) & ext{if } au = n/p < 1 \ (1 - au^{-1})\delta(\lambda) +
ho(\lambda) & ext{otherwise} \end{array}
ight.$$

where $\rho(\lambda) := (2\pi\lambda\sigma\tau)^{-1}\sqrt{(\lambda-\lambda_-)(\lambda_+-\lambda)}$ for $\lambda \in [\lambda_-,\lambda_+]$ and $\lambda_{\pm} := \sigma(1\pm\sqrt{\tau})^2$.

Stieltjes and ${\mathcal R}$ Transforms of probability distributions Method to compute the spectrum under addition.

The probability distribution of the sum of two (freely independent) random matrix distributions can be calculated using the transforms:

Stieltjes and R Transforms

For $z \in \mathbb{C}/\mathbb{R}$ the Stieltjes Transform, $G_{\rho}(z)$, of a probability distribution and its inverse are given by

$$G_{
ho}(z) = \int_{\mathbb{R}} rac{
ho(t)}{z-t} dt \quad ext{ and } \quad
ho(\lambda) = -\pi^{-1} \lim_{\epsilon o 0_+} ext{Imag}(G_{
ho}(\lambda+i\epsilon)).$$

The Stieltjes and $\mathcal R$ Transform of ρ are related by the solutions of $\mathcal R_{\rho}(G_{\rho}(z))+1/G_{\rho}(z)=z$ and has the property that if ρ_1 and ρ_2 are freely independent then $\mathcal R_{\rho_1+\rho_2}=\mathcal R_{\rho_1}+\mathcal R_{\rho_2}$.

https://terrytao.wordpress.com/tag/stieltjes-transform-method/

Recall the Hessian for two layer net (without activation)

Stieltjes and ${\mathcal R}$ Transform for joint spectra

Let $e_{i,\mu} = \hat{y}_{i,\mu} - y_{i,\mu}$ be the error in the i^{th} entry of the output for data entry indexed by μ , and $\theta = \{W^{(1)}, W^{(2)}\} \in \mathbb{R}^{2n^2}$ be the net parameters, then the hessian of the loss function has entries

$$H_{\alpha,\beta} = \frac{\partial^2 \mathcal{L}}{\partial \theta_{\alpha} \partial \theta_{\beta}} =: H_0 + H_1$$

with positive semi-definite and error dependent components:

$$[H_0]_{\alpha,\beta} := m^{-1} \sum_{\mu=1}^m \sum_{i=1}^n \frac{\partial \hat{y}_{i,\mu}}{\partial \theta_{\alpha}} \frac{\partial \hat{y}_{i,\mu}}{\partial \theta_{\beta}} = m^{-1} [JJ^T]_{\alpha,\beta}$$
$$[H_1]_{\alpha,\beta} := m^{-1} \sum_{\mu=1}^m \sum_{i=1}^n e_{i,\mu} \frac{\partial^2 \hat{y}_{i,\mu}}{\partial \theta_{\alpha} \partial \theta_{\beta}}.$$

Where we assumed that H_0 and H_1 can be modelled as being drawn from Wishart and Wigner distributions respectively.

Landscape via random matrix theory (Pennington et al. 17')

Using the Pennington model $(\tau = \phi = 2n/m \text{ and } \epsilon = n^{-1}\mathcal{L})$ we have $\rho_{H_0}(\lambda) = \rho_{MP}(\lambda; 1, \tau)$ and $\rho_{H_1}(\lambda) = \rho_{SC}(\lambda; \sqrt{2\epsilon})$.

Their ${\mathcal R}$ transforms are respectively

$$\mathcal{R}_{\mathcal{H}_0} = rac{1}{1-z au} \quad ext{ and } \quad \mathcal{R}_{\mathcal{H}_1} = 2\epsilon z,$$

from which follows the probability distribution, $\rho_H(\lambda; \epsilon, \tau)$:

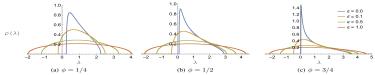


Figure 1. Spectral distributions of the Wishart + Wigner approximation of the Hessian for three different ratios of parameters to data points, ϕ . As the energy ϵ of the critical point increases, the spectrum becomes more semicircular and negative eigenvalues emerge.

Fraction of negative eigenvalues (Pennington et al. 17')

Breakpoint dependence on ϵ_{c} and oversampling τ

Consider the fraction of negative eigenvalues of $\rho_H(\lambda)$:

$$\alpha(\epsilon, \tau) := \int_{-\infty}^{0} \rho_{H}(\lambda; \epsilon, \tau) d\lambda.$$

Fraction of negative eigenvalues (without ReLU)

For $\rho_H(\lambda)$ modelling the Hessian of the two layer net, when α is small it is well approximated by

$$\alpha(\epsilon, \tau) \approx \alpha_0(\tau) \left| \frac{\epsilon - \epsilon_c}{\epsilon_c} \right|^{3/2}$$

where

$$\epsilon_c = \frac{1}{16}(1 - 20\tau - 8\tau^2 + (1 + 8\tau)^{3/2}).$$

The two layer ReLU net (Pennington et al. 17')

Now including a ReLU nonlinear activation

The introduction of the ReLU nonlinear activation changes the Hessian, roughly setting to zero half of the entries and generating a block off-diagonal structure in H_1 with $\mathcal{R}_{H1}(z) = \frac{\epsilon \tau z}{2 - \epsilon \tau^2 z^2}$.

Continuing to model H_0 as Wishart (less clear an assumption):

Fraction of negative eigenvalues (with ReLU)

For $\rho_H(\lambda)$ modelling the Hessian of the two layer net, when α is small it is well approximated by

$$\alpha(\epsilon, \tau) \approx \tilde{\alpha}_0(\tau) \left| \frac{\epsilon - \epsilon_c}{\epsilon_c} \right|^{3/2}$$
 where

$$\epsilon_c = \frac{\phi^2 (27 - 18\xi - \xi^2 + 8\xi^{3/2})}{32\tau (1 - \tau)^3}, \quad \text{with} \quad \xi = 1 + 16\tau - 8\tau^2.$$

Empirical values of ϵ_c and α (Pennington et al. 17')

Match of empirical and analytical calculations

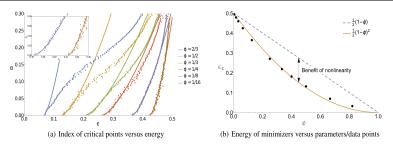


Figure 6. Empirical observations of the distribution of critical points in single-hidden-layer tanh networks with varying ratios of parameters to data points, ϕ . (a) Each point represents the mean energy of critical points with index α , averaged over \sim 200 training runs. Solid lines are best fit curves for small $\alpha \approx \alpha_0 |\epsilon - \epsilon_c|^{3/2}$. The good agreement (emphasized in the inset, which shows the behavior for small α) provides support for our theoretical prediction of the $^{3}/_{2}$ scaling. (b) The best fit value of ϵ_{c} from (a) versus ϕ . A surprisingly good fit is obtained with $\epsilon_c = \frac{1}{2}(1-\phi)^2$. Linear networks obey $\epsilon_c = \frac{1}{2}(1-\phi)$. The difference between the curves shows the benefit obtained from using a nonlinear activation function.

http://proceedings.mlr.press/v70/pennington17a.html

4 D > 4 P > 4 B > 4 B >

Manifold of global minimizers (Yaim Cooper 21')

Dimension of global minimizers in overparameterized setting

Dimension of global minimizer submanifold

Let $H(x;\theta)$ be a DNN from \mathbb{R}^n to \mathbb{R}^r with smooth nonlinear activation $\phi(\cdot)$, let the loss function over m distinct data elements be defined as

$$\mathcal{L} = (2m)^{-1} \sum_{\mu=1}^{m} \|H(x_{\mu}; \theta) - y_{\mu})\|_{2}^{2},$$

and let $\Omega^*_{\mathcal{L}}(0) = \{\theta: \mathcal{L}(\theta; X, Y) = 0\}$ be the set of weight and bias trainable parameters for which the DNN exactly fits the d data elements. Then, subject to possibly arbitrarily small perturbation, the set $\Omega^*_{\mathcal{L}}(0)$ is a smooth (m-rn)-dimensional submanifold (possibly empty) of \mathbb{R}^d .

https://epubs.siam.org/doi/pdf/10.1137/19M1308943

- Loss landscapes for DNNs can be non-convex and hence difficult to optimise.
- ► The number of components of a loss landscape level curve can be analysed, and in some settings has a single component greatly aiding its optimisation.
- ▶ Increasing width of a DNN can improve the loss landscape.
- The local shape of random nets can be analysed, showing that when near a minima the Hessian has only non-negative eigenvalues.
- ▶ When the amount of data exceeds the product of the input and output dimensions, DNNs with smooth non-linear activations which exactly fit the data, have smooth manifold of a known dimension.