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Linearization of the neural network

Least squares loss and linearized network

Mathematical
Institute

With the data {(x,,é,y,l)}/'f:1 where y,, € R, and network H(x; 6p)
with H(x,; 0o) = y,; if we linearize the network H(x; ) in 6 about
the current 6y and

L£(0) = (2m)"t Y 1H(x.:8) = vi)lI3,
pn=1

we can exactly express the solution as that of a linear system. Let
x = (x1---xm)", and treating everything in vector notation, the
linear approximation of the network is

H(x;0) = H(x; o) + VgH(x; 6)|6,(8 — 60) + O(||6 — 6o]|?). The
linearization matrix Jy can then be written as

Jo = VgH(x;0)|g, € R™P where its ith row VyH(x;0)|s, has
entries (Vg, H(x();0) - Vg H(x(;0)).
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Linearization of the neural network

Underdetermined system once more parameters than data
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The loss function for the linearized approximation to the network
H(x; 0) about 6 is then given by

L) = |ly — y + Jo(6 — 60)3.

Once the number of network parameters p exceeds the amount of
data pairs m, the loss EN(G) can be exactly set to zero, provided Jy
is full rank. In the p > m regime there are many solutions to this
underdetermined system. A natural solution is the Moore-Penrose
pseudo-inverse where we start with y — y = Jo(6 — 6p), multiply
from the left by JOT and use the pseudo-inverse of the matrix

JJ Jo € RP*P which is not full rank as p > m; we denote this

01 =00+ Ji (v — §). In optimization this is called the
Gauss-Newton method.
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Linearization of the neural network

Properties of the linearized solution, implicit regularization

If Jo is full rank and p > m, there is a 6 with y — y = Jo(6 — 6p),
but there are many such 6 as Jy has a null-space (kernel) of
dimension p — m and anything in this null-space can be added to 6
without modifying the solution. This indicates that the linearized
loss is "flat” in p — m dimensions and as p grows the optimization
landscape appears to be increasingly flat. Selecting the
pseudo-inverse solution 6 = 6o + Jj (v — ) has the benefit that it
minimizes ||0 — 6p||> amongst all solutions; this is a form of implicit
regularization where in effect we have added a penalty on |6 — 6p]|2
to the loss function, though it isn't added explicitly, rather it
appears through the choice of 6§ amongst its many solutions.
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Linearization of the neural network

Large width limit and "lack of training”

Insti

Let Jy be full rank and am,-,,(JoJoT), smallest nonzero singular value
of Jp, be independent of m and p (true for most ¢(-) but not
proven here), then using the bound
+ ~ —1/2 T ~
10 = Ooll2 = 1dg (v = Dll2 < 0" (Jodo )y = 72
we can start to make some observations of the role of the

dimensions. Let us consider the entries in y and ¥ to be
independent of the dimensions, then ||y — §[2 = O(m*/?) due to

y,9 € R™ and || — fo|l2 < O(m20 2 JT))

Note that the right hand side of the above bound is independent of
p, while 8 — 6y € RP so it must be that if their entries are of
similar magnitude then (6 — 6)(i) = O(p~/2) which tells us that

in some sense for large p there is a lack of training.
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Linearization of the neural network

Difference of network and linear approximation

Consider the difference between the network H(x;6) and its linear
approximation y + Jo(6 — ) in terms of the Lipshitz constant of
the gradient of H(x;#),

IVoH(x: 0)o, — VoH(x; 0)g,ll2 < Ly, Hl|01 — 02])2.
The difference from linear is given by
[H(x;8) — (7 + Jo(0 — 60))| < O(Ly,m)[16 — boll3

which from the prior slide is of order O(Ly, 4 - mo i (JoJg ))-

min
It then remains to understand how Ly, depends on the
dimensions.

Oxford Topology of the loss landscape 6
Mathematics



Linearization of the neural network

Network approaches linear in large width limit

Consider a two layer network where the first layer maps x € R to
RP and the second layer maps x € RP to a scalar;

H(x;0)=p 1/2Zw (1) x)

where Wl-(l) € R? with entries drawn N(0,02,/d) and WI-(2) are
drawn i.i.d. from £1, then the p~1/2 scaling is needed so that
|H(x8)| is independent of p as p grows. The Lipshitz constant for
the gradient of this network follows from the entries of the gradient
being VoH(x; 0); = p~+/2¢/(w")Tx)x; for i € [p] and j € [d].
(Note we are neglecting the gradient with respect to W,-(Z).)
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Linearization of the neural network

Network approaches linear in large width limit (continued)

With VoH(x;6); = p—l/z(z)’((wi(l))Tx))g; then if ¢/(z) has
Lipshitz constant Ly, and letting Wj,-1 denote the it" entry of the
weight matrix for 6; at layer 1

P d
IVoH(x; 0)e, — VoH(x; 0)e, 3 = p—lzz (¢ (w1M)Tx) — ¢/ (w2") T x))?

i=1

IA

—1 2 1 1)2
p \|x|\ZZL¢||w1§  — w23
i=1

= p Lo|Ix|31162 — 0213
This tell us that Ly, 4 = O(p~'/?) and consequently

|H(X' 0) - (}7 + JO(Q - 90)‘ < O(p71 mm(JOJO )L¢)

which goes to zero with width, say if p = m?log(m).
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Linearization of the neural network

Solving the linear system with gradient descent; seeing the condition number

Insti

The loss function for the linearized approximation to the network
H(x; ) about 6 is then given by

L©O) =119 =y + Jo(6 — 60) 3.
Rather than solving for the solution 8 for which the linear
approximation has £ = 0, we could explore what occurs when
updating 6 through gradient descent. This approach gives us some
insight into the nature of using gradient descent on the original
loss function £(6) for the nonlinear H(x, 6). Letting
AOK) = 9(k) _ g, be the kM iteration of 6 centred at 6y we have
gradient descent for A8 given by

AQk+D)  — Ag(k)—aVAeﬁ(Ae)Ae(k)
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Linearization of the neural network

Convergence of gradient descent

Applying Jp from the left to both sides of the gradient descent equation
and letting 709 = JAOK) we have jlk+1) = gtk — o Jo S (75 — (§ — y).
Subtracting (§ — y) from both sides and taking the norm we have

LOWDY = ||y —y + Jo(A0 D)3 = ||(1 — adodg )(§ — y + Jo(20W)|3
< [ = adodg |2L(0%).

Let the largest and smallest singular values of JOJ(;’— be omax and

O min respectively and K = 0 max/Tmin, then, if the stepsize

o < 2/(Tmax + Tmin) we have £(+1)) < Z—HEN(G(")); so

L£(%) < (Zf})k/ﬁ(ﬁ(o)). Limiting small stepsize this gives the
same solution as Gauss-Newton which had solution with minimal
|0]|2. Note that the above also works if we update the loss at each
iteration and use Ji where the gradient is evaluated at the 6(k).
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Topology of the loss landscape: few layers
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Sum of squares loss

Loss function for a simple fully connected two layer NN
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Consider a data set X € R"™™ of m data entries in R", associated
target outputs (such as labels) Y € R™*™ (for simplicity we let
n, = n), and (very) simple two layer net:
h s(WMxp)
hy W@ py

note, no bias, and ¢(-) = max(0, -)
note, no bias or nonlinear activation.

The output of the net is H(x,; #) = ¥, and we measure the value
of the net through the average sum of squares:

m n
L=0m) Y S (i yin)
p=1i=1
and define a weighted loss accuracy as e = n~1L
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Loss landscapes of DNNs are typically non-convex

Loss landscape example: 56 layers fully connected (Li et al 18'm
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http://papers.nips.cc/paper/7875-visualizing-the-loss-landscape-of-neural-nets.
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Topology of loss landscape (Freeman et al. 16')

Number of connected components

Consider our loss function: £(6; X, Y) = n"*32"_, 1(6; xu, y,)
and its associated level set

QN ={0: L(6;:X,Y) <)}

Of particular interest are the number of connected components, say
Ny, in Qz(A). If Ny =1 for all X then £(6; X, Y) has no isolated
local minima and any descent method can obtain a global minima.

If Ny > 1 there may be “spurious valleys” in which the minima in
the connected component does not achieve the global minima.
https://arxiv.org/pdf/1611.01540.pdf
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Topology of loss landscape (Freeman et al. 16')

There are datasets for which ReLU has a complex landscape

Let H(x; 6) be an L layer net given by h() = WO p(=1) with W)
R™e*Me=1 " then if ng > min(ng, n.) for 0 < ¢ < L, the sum of squares
loss function has a single connected component

4

Let H(x;0) be an L layer net given by h(©) = ¢(WO A1) with
W ¢ Rrexme—1 and ¢(-) = max(0,-), then for any choice of ny
there is a distribution of data (X, Y) such that there are more than
one single connected component.
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Topology of loss landscape: (Venturi et al. 16")

Over parameterisation can generate a single connected component

Consider a 2 layer ReLu network H(x, ) = W@ p(WMx) with W) ¢
R™%" and W) € R™, then for any two parameters 6; and 6, with L(6;) <
A for i = 1,2, then there is a path (t) between 6; and 6, such that
;C(G,Y(t)) < max(\, m_l/”).

Let H(x,0) be an L layer net given by h(9) = ¢(WOh(E=1)) with WO ¢
R"*n—1 and quadratic activation ¢(z) = z2, then once the number of
parameters ny > 3N2Z where N is the number of data entries, then the
sum of squares loss function has a single connected component. For the
two layer case with a single quadratic activation this simplifies to n > 2.

https://arxiv.org/pdf/1802.06384.pdf
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Topology of the loss landscape:
random matrix theory
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Hessian for two layer net (without activation)

Omitting diagonal nonlinear activation matrices.
Inst

" entry of the output for

Let e, = i, — yiu be the error in the /*
data entry indexed by s, and 6 = {W® W@} € R2" be the net
parameters, then the hessian of the loss function has entries

0*L
H = — = H H
8 = Bg.00, oM
with positive semi-definite and error dependent components:

_ 9Yi . 0%, _
(ol = >3 D0, 00y~ e

p=1i=1
2~
8 I7l”’

[Fhlas := m 122 90,005

p=1i=1

There are mn data entries and 2n?> NN parameters, with 7 = 2n/m
the relative over (7 > 1) or under (7 < 1) parameterisation.

Topology of the loss landscape
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Loss function landscape through Hessian eigenvalues

Local shape of loss landscape

Institute

Functions, say £, which have hessians that are:

» positive definite (all positive eigenvalues) are convex and have
a single global minima and unique minimiser,

> positive semi-definite have single global minima but
non-unique minimiser due to the null-space

» indefinite (positive and negative eigenvalues) are non-convex
and may be a complicated landscape with multiple local
minimisers.

For the simple two layer network we considered the network has
Hessian H = Hy + H; with Hy positive semidefinite and of size
independent of the error, while Hy is indefinite with magnitude
depending on the size of e, = Vi, — Vi u-

Oxford Topology of the loss landscape 19

Mathematics



Landscape via random matrix theory (Pennington et al. 17")

Modelling assumptions for tractable analysis
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One

can interpret properties of the landscape through the Hessian

by considering simplified models:

>

>

>

The weights are i.i.d. random normal variable,
The data are i.i.d. random variables,

The residuals e; , = i , — ¥i,, are normal random variables,
say N(0,2¢) with € = n=1L (which also allows the gradient to
vanish as m, n — oo while m/n remains fixed; the focus is on
fixed points where the gradient is zero),

The matrices Hy and H; are freely independent which allows
us to compute the spectra of Hyp + H; from their individual
spectra.

http://proceedings.mlr.press/v70/penningtoni7a.html
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Wigner and Wishart distributions

Deterministic eigenvalue distributions of random matrices: the large n, p limit.

Wigner matrices, entries drawn A(0,52), have eigenvalues drawn
from the semi-circle law:

L Vag2 — X2 if |\ <2¢
psc()‘):{ A =

2102
0 otherwise
Wishart matrices, X = JJT product of J € R"*P drawn

N(0,52/p) have eigenvalues drawn from the Marchenko-Pastur
distribution:

B \) ifr=n/p<1
pmp(A) = { 'E)l _ 7_1)5()\) + p(N\) otherwisep

where p(A) := (27Ao7) /(A = A_)(A4 — A) for A € [A_, A\4]
and Ay = o (1 £ /7).
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Stieltjes and R Transforms of probability distributions

Method to compute the spectrum under addition.

Institute

The probability distribution of the sum of two (freely independent)
random matrix distributions can be calculated using the transforms:

For z € C/R the Stieltjes Transform, G,(z), of a probability distri-
bution and its inverse are given by

t
Gp(z) = /R zp(—)tdt and  p(\)=—71! eir& Imag(G,(X + ie)).
The Stieltjes and R Transform of p are related by the solutions of
R,(Gy(2)) +1/Gy(z) = z and has the property that if p; and p»
are freely independent then R, 1 ,, = Ry, + R,,.

https://terrytao.wordpress.com/tag/stieltjes-transform-method/
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Recall the Hessian for two layer net (without activation)

Stieltjes and R Transform for joint spectra
Inst

Let e, = Vi, — yiu be the error in the it" entry of the output for

data entry indexed by u, and 6 = {W(l), W(2)} € R2™ be the net

parameters, then the hessian of the loss function has entries
Hos— 25 o4 H
B 90,00, T

with positive semi-definite and error dependent components:

_ 0 1 0y _
1 i OYiw 17 4T
[HO]aﬁ =m ZZ 8004 89 =m [JJ ]0575
p=1i=1
m n
0?9
R —1 . I
[Hilag :=m ) Z e”“iaaaaeﬁ'
p=1i=1
Where we assumed that Hy and H; can be modelled as being
drawn from Wishart and Wigner distributions respectively.
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Landscape via random matrix theory (Pennington et al. 17")

OXFORD
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Using the Pennington model (7 = ¢ = 2n/m and € = n=1£) we

have pry(A) = pmp(A; 1,7) and pry (A) = psc(A; v2e).
Their R transforms are respectively

1

- 1—2z71

RHO and RHl = 2627

from which follows the probability distribution, py(A; €, 7):

1.0
1.0, 14

—e€=00
08 0.8 12 e=0.1
1.0 €=05
0.6
06! 0.8 —e=10
o () 04'|

0.4/

g 06
S, TS %
2 1 o 1 2 3 4 -2 -1 0o 1 2 3 a4 21 o 1 2 3 4 s
A A A
@ ¢ =1/4 ) ¢ =1/2 (©) ¢ =3/4

Figure 1. Spectral distributions of the Wishart + Wigner approximation of the Hessian for three different ratios of parameters to data
points, ¢. As the energy e of the critical point increases, the spectrum becomes more semicircular and negative eigenvalues emerge.

http://proceedings.mlr.press/v70/penningtoni7a.html
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Fraction of negative eigenvalues (Pennington et al. 17")

Breakpoint dependence on €. and oversampling T

Consider the fraction of negative eigenvalues of py(A):

0
ae,7) = / pH(A €, T)dA.

—00

For prn(A) modelling the Hessian of the two layer net, when « is
small it is well approximated by

€— ¢ 3/2
ale, 7) = ap(7) <
€c
where
1
ce= (1207 - 872 + (1 + 87)%?).

http://proceedings.mlr.press/v70/penningtoni7a.html
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The two layer ReLU net (Pennington et al. 17")

Now including a ReLU nonlinear activation

The introduction of the ReLU nonlinear activation changes the Hessian,
roughly setting to zero half of the entries and generating a block
off-diagonal structure in Hy with Ry1(z) = 5.

Continuing to model Hy as Wishart (less clear an assumption):

For py(A) modelling the Hessian of the two layer net, when « is

small it is well approximated by

3/2
€ — €c
where

a(e, T) = do(7)

€c

_ ¢?(27 — 186 — €2 +8¢3/2)
= 327(1—7)3 !

with & =1+ 167 — 872

http://proceedings.mlr.press/v70/penningtonl7a.html
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Empirical values of €. and « (Pennington

Match of empirical and analytical calculations

et al. 17")
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(a) Index of critical points versus energy (b) Energy of S Versus p s/data points

Figure 6. Empirical observations of the distribution of critical points in single-hidden-layer tanh networks with varying ratios of param-
eters to data points, ¢. (a) Each point represents the mean energy of critical points with index v, averaged over ~200 training runs. Solid
lines are best fit curves for small & & aple — e(‘\“/"’. The good agreement (emphasized in the inset, which shows the behavior for small
«) provides support for our theoretical prediction of the 3/2 scaling. (b) The best fit value of €. from (a) versus ¢. A surprisingly good fit

is obtained with ¢, = %(1 — ¢)°. Linear networks obey ¢, = %(1 — ¢). The difference between the curves shows the benefit obtained

from using a nonlinear activation function.

http://proceedings.mlr.press/v70/penningtonl7a.html
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Manifold of global minimizers (Yaim Cooper 21")

Dimension of global minimizers in overparameterized setting

Let H(x;0) be a DNN from R” to R" with smooth nonlinear activation
@(+), let the loss function over m distinct data elements be defined as

L= (2m)7 Y HCw:6) = y)l3,

and let Q5(0) = {6 : L£(6;X,Y) = 0} be the set of weight and bias
trainable parameters for which the DNN exactly fits the d data elements.
Then, subject to possibly arbitrarily small perturbation, the set Q7.(0) is a
smooth (m — rn)—dimensional submanifold (possibly empty) of R9.

https://epubs.siam.org/doi/pdf/10.1137/19M1308943
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DNN loss landscape summary

Structure of the loss landscape dimensionality dependence

Institute

» Loss landscapes for DNNs can be non-convex and hence
difficult to optimise.

» The number of components of a loss landscape level curve
can be analysed, and in some settings has a single component
greatly aiding its optimisation.

» Increasing width of a DNN can improve the loss landscape.

» The local shape of random nets can be analysed, showing that
when near a minima the Hessian has only non-negative
eigenvalues.

» When the amount of data exceeds the product of the input
and output dimensions, DNNs with smooth non-linear
activations which exactly fit the data, have smooth manifold
of a known dimension.
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