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DNN Loss function and trainable parameters

High dimensional loss function

Consider a fully connected L layer deep net given by
hO — w0 4 pO 2D = (p"), (=0,...,L—1

for £ =1,..., L with nonlinear activation ¢(-) and W) € Rxne,
The trainable parameters for the DNN, 6 := {W() b()}L_ are
learned by minimizing a high dimensional, || ~ n?L, loss function
such as

L(0;X,Y)=(2m) IZZ (xu(1); 0) y,-,u)z.

p=1i=1

The shape of £(6) and our knowledge about a good initial

minimizer 6(®) strongly influence our ability to learn the parameters
0 for the DNN.
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Landscape loss function: VGG9 (Li et al. 18')

One dimensional views of a loss landscape
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DNN loss £(f) between two minimizers, #5(1 — a) + a6’ trained
W|th smaII and large batches horizontal axis « in (a) and (d)
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VGGY is a CNN (Simonyan et al. 15')
https://arxiv.org/pdf/1409.1556.pdf

http://papers.nips.cc/paper/7875-visualizing-the-loss-landscape-of-neural-nets.pdf
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Landscape loss function: VGG9 (Li et al. 18")

One and two dimensional landscape near SGD minima Mathematical
Institute

Impact of training rate weight decay and batch size on level curves
of L(0* + ad + Bn). Larger batch size narrows the loss function.
Weight decay broadens the loss function.
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Figure 3: The 1D and 2D visualization of solutions obtained using SGD with different weight decay
and batch size. The title of each subfigure contains the weight decay, batch size, and test error.

http://papers.nips.cc/paper/7875-visualizing-the-loss-landscape-of-neural-nets.pdf
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Residual networks; skip connections
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Residual Networks (He 15")

The skip connection building block

| weight layer

F(x) lrelu
| weight layer |

x
identity

F(x) +x
Figure 2. Residual learning: a building block.

If the block is attempting to learn a map #(x) the ResNet instead
attempts to learn F(x) := H(x) — x which is the residual. One
can speculate this is easier to learn if H(x) is approximately an
identity map.

https://arxiv.org/pdf/1512.03385.pdf
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Residual Networks (He 15')
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Impact on training loss function vs without skip connections Mathematical
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Figure 4. Training on ImageNet. Thin curves denote training error, and bold curves denote validation error of the center crops. Left: plain

networks of 18 and 34 layers. Right: ResNets of 18 and 34 layers. In this plot, the residual networks have no extra parameter compared to
their plain counterparts.

https://arxiv.org/pdf/1512.03385. pdf
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Residual Networks (He 15') 5
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Examples of ResNet architectures in more detail Mathematical
Institute

https://arxiv.org/pdf/1512.03385. pdf
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Loss landscape example: ResNet skip (Li et al. 18")

Architecture influences landscape: depth and skip connections
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No-short is a standard fully connected DNN, ResNet (He et al.
15') has additional connections between every second layer.

(2) ResNet20,737%  (b) ResN

(d) ResNet-20-NS, §.18% (¢) ResNet-S6-NS, 13.31% (1) ResNet-1 10NS, 1644%

Fie . Resdal laming o bldig ok,

Figure 5: 2D visualization of the loss surface of ResNet and ResNet-noshort with different depth.

https://arxiv.org/pdf/1512.03385.pdf

http://papers.nips.cc/paper/7875-visualizing-the-loss-landscape-of-neural-nets.pdf
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Loss landscape example: ResNet-56 (Li et al. 18")
Loss landscapes are generally highly non-convex
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(a) without skip connections

(b) with skip connections
Figure 1: The loss surfaces of ResNet-56 with/without skip connections. The proposed filter

Oxford

normalization scheme is used to enable comparisons of sharpness/flatness between the two figures.
Mathematics
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Loss landscape example: ResNet skip (Li et al. 18")

Architecture influences landscape: width
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Figure 6: Wide-ResNet-56 on CIFAR-10 both with shortcut connections (top) and without (bottom).
The label £ = 2 means twice as many filters per layer. Test error is reported below each figure.

http://papers.nips.cc/paper/7875-visualizing-the-loss-landscape-of-neural-nets.pdf
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Batch normalization: bulk adjusting entries
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Batch normalization (loffe et al. 15")

Bulk normalization hyperparameters
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Alternatively, bulk weight and bias normalizations, 7, and 3, can

be learned as part of the net parameters 6.

Input: Values of & over a mini-batch: B = {@1. ., }:
Parameters to be learned: ~, 3
Output: {y; — BN, g(x;)}
1
B <— o 12:1 ax; // mini-batch mean
1o
2 2 PR -
<——E x; — // -batch variz
o5 e 2 (x; I3) mini-batch variance
T <— ﬂ // normalize
4 o’é -+ €
Y <— vyx; + 3 = BN, g(x;) // scale and shift

Algorithm 1: Batch Normalizing Transform, applied to

activation & over a mini-batch.

https://arxiv.org/pdf/1502.03167.pdf
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Batch normalization experiment (loffe et al. 15")

Improved initial convergence rates
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08
------------ -+
Model Steps to 72.2%  Max accuracy
Inception 31.0-10° 722%
: BN-Baseline 13.3-10° 72.7%
T poentn BN-x5 2.1-10 73.0%
L BN-x30 2.7-10° 74.8%
+ - BN-45-Sigmoid BN-x5-Sigmoid 69.8%
4 Steps to match Inception
M M 1M M M sM Figure 3: For Inception and the batch-normalized

variants, the number of training steps required to
Figure 2: Single crop validation accuracy of Inception  reach the maximum accuracy of Inception (72.2%),
and its batch-normalized variants, vs. the number of — and the maximum accuracy achieved by the net-
training steps. work.

https://arxiv.org/pdf/1502.03167.pdf
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Layer normalization: bulk scaling as a layer
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Pre-vs-post Layer normalization (Xiong et al. 20")

Bulk normalization hyperparameters Mathematical
Institute

Layer-norm acts as batch-norm, but as the input is a matrix
X € Rtxdems it can act on one input, but for each row in X. It
can be applied at X fully (pre-) or just before the attention a FFN

layer (post-) layer norm:

Xraa Xraa

Laver Norm

Sadition

A 7I
e x>z
(a) (b)

a) Post-LLN Transformer layer: (b) Pre-LLN Transformer

Figure 1. C
layer.

https://arxiv.org/pdf/2002.04745
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Pre-vs-post Layer normalization (Xiong et al. 20")
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The location of the layer-norm and gradient values Mathematical

Institute

The location of layer-norm has a substantial impact on the size of
gradients per layer. This can be further impacted in "warm-up”
training is done with stepsize initially starting small, then growing
linearly to a maximum value.
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Figure 3. The norm of gradients of 1. different layers in the 6-6 Transformer (a,b). 2. WL in different size of the Transformer (c,d).

https://arxiv.org/pdf/2002.04745
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Pre-vs-post Layer normalization (Xiong et al. 20")

The resulting impact on loss and accuracy M,,eam\
Institute

Pre-layer-normalization (acts on all of X) shows reduced loss and
superior accuracy for translation (BERT), paraphrasing (MRPC),
and if sentences are "entangled” (RTE).
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Figure 5. Performances of the models on unsupervised pre-training (BERT) and downstream tasks

https://arxiv.org/pdf/2002.04745

Oxford Improving the loss landscape for DNNs

Mathematics


https://arxiv.org/pdf/2002.04745

Dropout: smoothing the loss landscape
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Dropout (Srivastava et al. 14")

Setting hidden layer entries to zero at random Mathematical
Institute

Dropout 1s a method by which, during training, the activations are set to
zero with some probability. Note, dropout is only used in the training

phase, not in testing.

(b) After applying dropout.

Z
)

(a) Standard Neural

Figure 1: Dropout Neural Net Model. Left: A standard neural net with 2 hidden layers. Right:
An example of a thinned net produced by applying dropout to the network on the left.
Crossed units have been dropped.

Dropout has a number of valuable consequences: reducing correlation in

training, inducing sparsity, avoiding overfitting, and can be used to

evaluate uncertainty in a deep net.

http://jmlr.org/papers/volumel5/srivastavalda/srivastavalda.pdf
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Dropout (Srivastava et al. 14")

Improved test error Mathematical
Institute

Without dropout |

AT ASAANLLL Gt
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Number of weight updates

Figure 4: Test error for different architectures
with and without dropout. The net-
works have 2 to 4 hidden layers each
with 1024 to 2048 units.

http://jmlr.org/papers/volume15/srivastaval4a/srivastavalda.pdf
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Dropout less effective for LLMs (Liu et al. 25")

Impact of drop-out is architecture dependent
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Figure 1: top: language modeling loss with dropout p = 0.0, p = 0.3, and early dropout for decoder LMs; middle:
mean BLiMP scores for these models; bottom: masked language modeling loss with dropout p = 0.0, p = 0.1,
SQuAD F1 (answerable) dev-set scores, and matched MNLI scores.

https://arxiv.org/pdf/2505.24788
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Convexification of the network
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Convexifying CNN parameters pt. 1 (Zhang et al. 16")

The CNN structure has further non-convexity

Consider a two layer convolutional neural network composed of one
convolutional layer followed by a fully connected layer.

Rather than working with x directly, form P vectors z,(x) for
p=1,..., P where z,(x) is the portion of x on patch p of the
convolutional layer. Then the k' component of H(x, ) is given by

H(X, (9)/( = Z Z akJ,p¢(V‘GTZP(X))'

j=1 p=1
Alternatively if we exclude the nonlinearity we can express this by:

ZZaka(bW zp ZZ
Jj=1p=1

where Z(x) has z,(x) as its p" row.
https://arxiv.org/pdf/1609.01000.pdf
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Convexifying CNN parameters pt. 2 (Zhang et al. 16")

Low-rank non-convexity of CNNs

Using the trace formula this can be further condensed to

Hix, 0 =tr | Z(x) [ D wiaf; | | = tr(Z(x)Ax)
j=1
R I I I E I B |

The network parameters are given by Ay nonlinearity is imposed by
the Ay having rank r, and we can express all of the parameters of
the matrix by A which is similarly rank r.
https://arxiv.org/pdf/1609.01000.pdf
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Convexifying CNN parameters pt. 3 (Zhang et al. 16")

Convex relaxations are commonly used regularisers
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One can impose the network structure through A, but remove the
non-convex rank constraint by replacing a convexification, that is
the sum of the singular values of A (Schatten-1, or nuclear, norm).

If the convolutional filters and fully connected rows are uniformly
bounded in ¢2 by By and By respectively, then one can replace
then the sum of the singular values of A are bounded by By B,ry/n
where n is the network output dimension, the network parameters
can be considered by varying the nuclear norm bound between 0
and BlBgr\/ﬁ.

The resulting learning programme is fully convex and can be
efficiently solved. The above can be extended to nonlinear
activations and multiple layers, learning one layer at a time.
https://arxiv.org/pdf/1609.01000.pdf
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Convexified CNN: MNIST (Zhang et al. 16") .

Improved accuracy for shallow nets Mathematical
Institute

basic | rand rot img imgt+rot
SVM, 45 [44] 3.03% | 14.58% | 11.11% | 22.61% | 55.18%
NN-1 [44] 4.69% | 20.04% | 18.11% | 27.41% | 62.16%
CNN-1 (ReLU) | 3.37% | 9.83% | 18.84% | 14.23% | 45.96%
CCNN-1 2.38% | 7.45% | 13.39% | 10.40% | 42.28%
TIRBM [33] 4.20% 35.50%

SDAE-3 [44] 2.84% | 10.30% | 9.53% | 16.68% | 43.76%
ScatNet-2 [8] 1.27% | 12.30% | 7.48% | 18.40% | 50.48%
PCANet-2 [9] | 1.06% | 6.19% | 7.37% | 10.95% | 35.48%
CNN-2 (ReLU) | 2.11% | 5.64% | 827% | 1017% | 32.43%
CNN-2 (Quad) | 1.75% | 5.30% | 883% | 11.60% | 36.90%
CCNN-2 1.38% | 4.32% | 6.98% | 7.46% | 30.23%

Table 1: Classification error on the basic MNIST and its four variations. The best performance
within each block is bolded. The tag “ReLU” and “Quad” means ReLU activation and quadratic
activation, respectively.

https://arxiv.org/pdf/1609.01000.pdf
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Convexified CNN: CIFAR10 (Zhang et al. 16")

Monotonically decreasing training objective
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Table 3: Classification error on the CIFAR-

10 dataset. The best performance within

Error rate

CNN-1 34.14%
CCNN-1 23.62%
CNN-2 24.98%
CCNN-2 20.52%

SVMFastfood [27]
PCANet-2 [9]
CKN [30]
CNN-3
CCNN-3

36.90%
22.86%
21.70%
21.48%
19.56%

each block is bolded.

classification error

0

2000 4000
time (sec)

CNN-1 CNN-2 CNN-3
Original 34.14% 24.98% 21.48%
Convexified | 23.62% | 21.88% | 18.18%

—--CNN-3
—CCNN-.

6000

3

8000

Figure 4: The convergence of CNN-3 and
CCNN-3 on the CIFAR-10 dataset.

Table 4: Comparing the original CNN and the one whose top convolution layer is convexified by

CCNN. The classification errors are reported on CIFAR-10.

https://arxiv.org/pdf/1609.01000.pdf
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Improving the loss landscape summary

Influence of network architecture and training choices

Institute

» Larger training batch size narrows the loss function while
weight decay (adding ||6|| to the loss, broadens the loss
function.

» Adding skip connections through residual networks can greatly
smooth the loss landscape.

» Batch normalization can help train parameters in bulk and in
so doing improve the training rate; though superfluous for
expressivity.

» CNNs can even be convexified which may limit overall

accuracy, but ensures ease of training regardless of
initialization.
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