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DNN Loss function and trainable parameters
High dimensional loss function

Consider a fully connected L layer deep net given by

h(`) = W (`)z(`) + b(`), z(`+1) = φ(h`)), ` = 0, . . . , L− 1,

for ` = 1, . . . , L with nonlinear activation φ(·) and W (`) ∈ Rn`×n` .
The trainable parameters for the DNN, θ := {W (`), b(`)}L`=1 are
learned by minimizing a high dimensional, |θ| ∼ n2L, loss function
such as

L(θ;X ,Y ) = (2m)−1
m∑
µ=1

nL∑
i=1

(H(xµ(i); θ)− yi ,µ)2.

The shape of L(θ) and our knowledge about a good initial
minimizer θ(0) strongly influence our ability to learn the parameters
θ for the DNN.
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Landscape loss function: VGG9 (Li et al. 18’)
One dimensional views of a loss landscape

DNN loss L(θ) between two minimizers, θs(1− α) + αθl trained
with small and large batches; horizontal axis α in (a) and (d).

VGG9 is a CNN (Simonyan et al. 15’)

https://arxiv.org/pdf/1409.1556.pdf

http://papers.nips.cc/paper/7875-visualizing-the-loss-landscape-of-neural-nets.pdf
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Landscape loss function: VGG9 (Li et al. 18’)
One and two dimensional landscape near SGD minima

Impact of training rate weight decay and batch size on level curves
of L(θ∗ + αδ + βη). Larger batch size narrows the loss function.
Weight decay broadens the loss function.

http://papers.nips.cc/paper/7875-visualizing-the-loss-landscape-of-neural-nets.pdf
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Residual networks; skip connections
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Residual Networks (He 15’)
The skip connection building block

If the block is attempting to learn a map H(x) the ResNet instead
attempts to learn F(x) := H(x)− x which is the residual. One
can speculate this is easier to learn if H(x) is approximately an
identity map.
https://arxiv.org/pdf/1512.03385.pdf
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Residual Networks (He 15’)
Impact on training loss function vs without skip connections

https://arxiv.org/pdf/1512.03385.pdf
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Residual Networks (He 15’)
Examples of ResNet architectures in more detail

https://arxiv.org/pdf/1512.03385.pdf

Improving the loss landscape for DNNs 8

https://arxiv.org/pdf/1512.03385.pdf


Loss landscape example: ResNet skip (Li et al. 18’)
Architecture influences landscape: depth and skip connections

No-short is a standard fully connected DNN, ResNet (He et al.
15’) has additional connections between every second layer.

https://arxiv.org/pdf/1512.03385.pdf

http://papers.nips.cc/paper/7875-visualizing-the-loss-landscape-of-neural-nets.pdf
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Loss landscape example: ResNet-56 (Li et al. 18’)
Loss landscapes are generally highly non-convex

http://papers.nips.cc/paper/7875-visualizing-the-loss-landscape-of-neural-nets.pdf
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Loss landscape example: ResNet skip (Li et al. 18’)
Architecture influences landscape: width

Increasing width over parameterises the net and broadens minima.

http://papers.nips.cc/paper/7875-visualizing-the-loss-landscape-of-neural-nets.pdf
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Batch normalization: bulk adjusting entries
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Batch normalization (Ioffe et al. 15’)
Bulk normalization hyperparameters

Alternatively, bulk weight and bias normalizations, γ, and β, can
be learned as part of the net parameters θ.

https://arxiv.org/pdf/1502.03167.pdf
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Batch normalization experiment (Ioffe et al. 15’)
Improved initial convergence rates

https://arxiv.org/pdf/1502.03167.pdf
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Layer normalization: bulk scaling as a layer
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Pre-vs-post Layer normalization (Xiong et al. 20’)
Bulk normalization hyperparameters

Layer-norm acts as batch-norm, but as the input is a matrix
X ∈ Rdctx×demb it can act on one input, but for each row in X . It
can be applied at X fully (pre-) or just before the attention a FFN
layer (post-) layer norm:

https://arxiv.org/pdf/2002.04745
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Pre-vs-post Layer normalization (Xiong et al. 20’)
The location of the layer-norm and gradient values

The location of layer-norm has a substantial impact on the size of
gradients per layer. This can be further impacted in ”warm-up”
training is done with stepsize initially starting small, then growing
linearly to a maximum value.

https://arxiv.org/pdf/2002.04745
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Pre-vs-post Layer normalization (Xiong et al. 20’)
The resulting impact on loss and accuracy

Pre-layer-normalization (acts on all of X ) shows reduced loss and
superior accuracy for translation (BERT), paraphrasing (MRPC),
and if sentences are ”entangled” (RTE).

https://arxiv.org/pdf/2002.04745
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Dropout: smoothing the loss landscape
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Dropout (Srivastava et al. 14’)
Setting hidden layer entries to zero at random

Dropout is a method by which, during training, the activations are set to

zero with some probability. Note, dropout is only used in the training

phase, not in testing.

Dropout has a number of valuable consequences: reducing correlation in

training, inducing sparsity, avoiding overfitting, and can be used to

evaluate uncertainty in a deep net.

http://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf
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Dropout (Srivastava et al. 14’)
Improved test error

http://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf
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Dropout less effective for LLMs (Liu et al. 25’)
Impact of drop-out is architecture dependent

https://arxiv.org/pdf/2505.24788
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Convexification of the network
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Convexifying CNN parameters pt. 1 (Zhang et al. 16’)
The CNN structure has further non-convexity

Consider a two layer convolutional neural network composed of one
convolutional layer followed by a fully connected layer.
Rather than working with x directly, form P vectors zp(x) for
p = 1, . . . ,P where zp(x) is the portion of x on patch p of the
convolutional layer. Then the kth component of H(x , θ) is given by

H(x , θ)k =
r∑

j=1

p∑
p=1

αk,j ,pφ(wT
j zp(x)).

Alternatively if we exclude the nonlinearity we can express this by:
r∑

j=1

p∑
p=1

αk,j ,pφ(wT
j zp(x)) =

r∑
j=1

Z (x)wj

where Z (x) has zp(x) as its pth row.
https://arxiv.org/pdf/1609.01000.pdf
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Convexifying CNN parameters pt. 2 (Zhang et al. 16’)
Low-rank non-convexity of CNNs

Using the trace formula this can be further condensed to

H(x , θ)k = tr

Z (x)

 r∑
j=1

wjα
T
k,j

 = tr (Z (x)Ak)

The network parameters are given by Ak nonlinearity is imposed by
the Ak having rank r , and we can express all of the parameters of
the matrix by A which is similarly rank r .
https://arxiv.org/pdf/1609.01000.pdf

Improving the loss landscape for DNNs 25

https://arxiv.org/pdf/1609.01000.pdf


Convexifying CNN parameters pt. 3 (Zhang et al. 16’)
Convex relaxations are commonly used regularisers

One can impose the network structure through A, but remove the
non-convex rank constraint by replacing a convexification, that is
the sum of the singular values of A (Schatten-1, or nuclear, norm).

If the convolutional filters and fully connected rows are uniformly
bounded in `2 by B1 and B2 respectively, then one can replace
then the sum of the singular values of A are bounded by B1B2r

√
n

where n is the network output dimension, the network parameters
can be considered by varying the nuclear norm bound between 0
and B1B2r

√
n.

The resulting learning programme is fully convex and can be
efficiently solved. The above can be extended to nonlinear
activations and multiple layers, learning one layer at a time.
https://arxiv.org/pdf/1609.01000.pdf
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Convexified CNN: MNIST (Zhang et al. 16’)
Improved accuracy for shallow nets

https://arxiv.org/pdf/1609.01000.pdf
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Convexified CNN: CIFAR10 (Zhang et al. 16’)
Monotonically decreasing training objective

https://arxiv.org/pdf/1609.01000.pdf
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Improving the loss landscape summary
Influence of network architecture and training choices

I Larger training batch size narrows the loss function while
weight decay (adding ‖θ‖ to the loss, broadens the loss
function.

I Adding skip connections through residual networks can greatly
smooth the loss landscape.

I Batch normalization can help train parameters in bulk and in
so doing improve the training rate; though superfluous for
expressivity.

I CNNs can even be convexified which may limit overall
accuracy, but ensures ease of training regardless of
initialization.
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