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LeNET-5, an early Image processing DNN:

OXFORD

Network architectures often include fully connected and convolutional layers I
lathematical
Institute
©1: feat C3:f. maps 16@10x10
: feature maps S4: f. maps 16@5x5
INPUT
32x32 6@28x28 2: f. maps

s: aj
6@14x14

Convoluti c i Full connection

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units
whose weights are constrained to be identical.

C1: conv. layer with 6 feature maps, 5 by 5 support, stride 1.

S2 (and S4): non-overlapping 2 by 2 blocks which equally sum
values, mult by weight and add bias.

C3: conv. layer with 16 features, 5 by 5 support, partial connected.
C5: 120 features, 5 by 5 support, no stride; i.e. fully connected.
F6: fully connected, W € R84x120,
http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf
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A simple two layer CNN (Papyan et al. 16")

Convolutional structure are the form of multi-resolution analysis

OXFORD

Mathematical
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Consider a deep conv. net composed of two convolutional layers:

Z, eRV™2 b, e RVM2 W] € RVm2xNm

nymy

my

= ReLU

op

my

-

b1 € ]Rle wil‘ € ]RlexN

1 -

$3 ReLU < qn

\

o

\
X € RV

&

=0 <b(2) +(WT, (b<1> + (W(l))Tx))

https://arxiv.org/pdf/1607.08194.pdf
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Convolutional Deep Belief Networks (H. Lee et al. 11')

a
Localized Fourier, Wavelet, structure learned

OXFORD

Mathematical
Institute

We omit the details of this somewhat different architecture, which
is stylistically similar to a deep CNN.

Figure 3. The first layer bases (top) and the layer b
(bottom) learned from natur: ach Layer bas
(fitter) was vi a as a

laver bases.

n of the first

http://www.cs.utoronto.ca/~rgrosse/cacm2011-cdbn.pdf
Display of the convolutional masks in layers 1 and 2, trained from
Kyoto natural image database.

http://eizaburo-doi.github.io/kyoto_natim/

Oxford
Mathematics
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Convolutional Deep Belief Networks (H. Lee et al. 11')

Learned / memorized complex structure from data classes Mathematical
Institute

OXFORD

Figure 4. Columns 1-4: the second layer bases (top) and the third layer bases (bottom) learned from specific object categories. Column 5: the
second layer bases (top) and the third layer bases (bottom) learned from a mixture of four object categories (faces, cars, airplanes, motorbikes).

Elephants

http://eizaburo-doi.github.io/kyoto_natim/

The third and fourth layers develop bases which represent features
or objects, trained on CalTech 101 dataset.
http://wuw.vision.caltech.edu/Image_Datasets/Caltech101/
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Deep CNN, AlexNet (Krizhevsky et al. 12') F

OXFORD
Learned / memorized complex structure from data classes Mathematical
Institute

Max
pooling

Max ]
/ pooling 409

Numerical Data-driven

of 4

Max
pooling

Conv 1: Edge+Blob Conv 3: Texture Conv 5: Object Parts

Fc8: Object Classes

Images are those that maximize specific activation responses.
Layer 1 are masks, subsequent layers are their linear combinations.
http:

//papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
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Deep CNN, VGG (Mahendran et al. 16") m

Learned / memorized complex structure from data classes

Mathematical

Institute

=

Figure 16: Activation maximization of the first filters of each convolutional layer in VGG-M.

Note, again we observe the same pattern, the initial filters are
similar to Gabor/Wavelet filters and later layers are image
components.

https://arxiv.org/abs/1512.02017
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Deep CNN (Zeiler et al. 13")

Learned / memorized complex structure from data classes

Institute

Layer 1 are masks, subsequent layers are their linear combinations.
https://arxiv.org/abs/1311.2901
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Deep CNN (Zeiler et al. 13')

Learned / memorized complex structure from data classes

“

Mathematical
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Layer 1 are masks, subsequent layers are their linear combinations.
https://arxiv.org/abs/1311.2901
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Deep CNN (Zeiler et al. 13')

Learned / memorized complex structure from data classes

Mathematical
Institute

Layer 1 are masks, subsequent layers are their linear combinations.
https://arxiv.org/abs/1311.2901

Oxford
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Summary: similarity and importance of initial layers

Importance of training initial layers to develop representation Mathematical
Institute

We observe the initial layer of CNNs to be similar to one another,
and to exhibit wavelet like representations. This is to be expected.

Train Accuracy Against Epoch Test Accuracy Against Epoch

| s s

00 200 300 W00 5 00 200 300 w00 500
Epoch Number Epoch Number

Figure 6: Demonstration of expressive power of remaining depth on MNIST. Here we plot train and
test accuracy achieved by training exactly one layer of a fully connected neural net on MNIST. The
different lines are generated by varying the hidden layer chosen to train. All other layers are kept
frozen after random initialization.

Accuracy of a random network is improved most by training earlier
layers (Raghu 16).
https://arxiv.org/pdf/1611.08083.pdf
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Wavelet, curvelet, and contourlet: fixed representations ,
OXFORD

Mathematical

Known optimal representations for natural images
Institute

Applied and computational harmonic analysis community
developed representations with optimal approximation properties
for piecewise smooth functions.

Most notable are the Daubechies wavelets and
Curvelets/Contourlets pioneered by Candes and Donoho.

While optimal, in a certain sense, for a specific class of functions,
they can typically be improved upon for any particular data set.

Oxford A look inside what the net learns: from natural images to text
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Optimality of curvelets in 2D

Near optimality suggest a good initial CNN layer.

Mathematical

Institute

Let f be a two dimensional function that is piecewise C? with a bound-
ary that is also C2. Let fF, £/, and £,C be the best approximation of
f using n terms of the Fourier, Wavelet and Curvelet representation re-
spectively. Then their approximation error satisfy ||f — |2, = O(n=1/?),
|f — fY|2, = O(n~1), and ||f — £E% = O(n~2log>(n)); moreover, no
fixed representation can have a rate exceeding O(n~2).

v

http://www.curvelet.org/papers/CurveEdges.pdf
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Initial layers can start as representations for the data class

Transfer learning: training only the final classification layer

The first layer of a CNN can be initialized from a known representation

for the data class. One can perform classification based on two layer net:
layer 1: hy(x) = a(WMx + b)) where W) is a fixed transform of x to,

say, the wavelet domain and o(-) project to keep just the largest entries
with hard or soft thresholding;

X X>T X—T X>T
Ohard(X;T) =9 0 [x| <7, Oer(XT) = 0 x| <7
—X X< -7 —X+7 X< -7

layer2: h3 = o(W @ hy + b)) with W2 learned as the classifier based
on the sparse codes h,. However, h, does not build in invariance we

would desire in classification, such as dilation, rotation, translation, etc...

Depth remains important to generate these.

Oxford A look inside what the net learns: from natural images to text
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Individual neurons have associations with colour,
materials, components, etc...

Oxford A look inside what the net learns: from natural images to text
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Understanding individual units in a DNN (Bau et al. 20")

Single units which reliably detect object classes

OXFORD

Mathematical
Institute
2 VGe-16 architecture dissection of each ional layer () abject detection test: conv5_3 unit 150 activation on airplanes
input image
N —— non-airplane imagenet images, mean=0.
z —— imagenet sirpiane images, mean-g5.1
convolution £
pooling 2
®) unit 10 actvation ~
o)

convS_3 — - non-airplane airplane images

fully connected layers 16, c7, fc8

“conterence room* «— scene prediction
(d) convs_3 summary

| | =
R M i %
(© single unnsk—llesied on scenes

unit 150 “airplane” (object) unit 208 “person top” (part) unit 141 “fur” (material)

Fig. 1. The emergence of single-unit object detectors a VGG-16 scene classifier. (a) VGG-16 consists of 13 convolutional layers, conv1_1 through conv5_3, followed by
three fully connected layers, £c6,7,8. (b) The activation of a single filter on an input image can be visualized as the region where the filter activates beyond its top 1% quantile
level. (c) Single units are scored by matching high-activating regions against a set of human-interpretable visual concepts; each unit is labeled with its best-matching concept
and visualized with maximally-activating images. (d) Concepts that match units in the final convolutional layer are summarized, showing a broad diversity of detectors for
obijects, object parts, materials, and colors. Many concepts are associated with multiple u Comparing all the layers of the network reveals that most object detectors
emerge at the last convolutional layers. (f) Although the training set contains no object labels, unit 150 emerges as an ‘airplane’ object detector that activates much more
strongly on airplane objects than non-airplane objocts, a5 tested against a dataset of abeled object mages not proviously soen by the network. Tho jter plot shows peak

s for the unit on randomly sampled 1,000 airplane and 1,000 non-airplane Imagenet images, and the curves show the kernel density estimates of these activations.

https://arxiv.org/abs/2009.05041
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Attention Sinks: structure in the attention matrices

Oxford A look inside what the net learns: from natural images to text 17
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Attention mechanism (Vaswani 17’), equations
Key and Query quadratic form to highlight relations

Input is a matrix X € R"<7 where n is the "context length” and d is the
"embedding dimension”. They queries, keys, and values are then
computed with matrix-products Q7 = WoXT, KT = WxXT, and
VT = Wy XT then the attention layer is

XWoWIXT
st (ST
nl/2

where the softmax acts row-wise to give non-negative entries that sum to
one.

softmax(x); = exp(x;)/ Z exp(x¢)
¢
Generally @ and K have layer-norm applied to enforce fixed mean and
variance. Intuitively the softmax helps highlight the rows in X that
deserve " attention.”

Oxford A look inside what the net learns: from natural images to text 18
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Attention Sinks (Zhang et al '25)

Structure we observed in softmax attention layers: catch 1

Cinky | € | € | v | €1

Esink,

€141

€a |

er

(a) Catch: Each box corresponds to a different token at the input of the attention layer, whose activation is
denoted by e;, and the arrows represent attention interactions. The attention sinks ey, and e, catch the
attention of tokens ez, €3, ..., €1 and e¢+1, €442, ex, respectively. This causes vertical bands to emerge

in the attention weights A, as shown in Figurelhj

https://arxiv.org/abs/2502.00919
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Attention Sinks (Zhang et al '25)

Structure we observed in softmax attention layers: catch 2

Mathematical
Institute

sinky sink;
Esink, Zsink,
[ 21
€ z
Attention \
-1 sink, —_— u sinky
Esink, Zsink,
€41 241
€2 242
er 2

feature dimension feature dimension

(b) Tag: The left grid shows the attention value matrix V = [e1;...; er], where activation vectors e; are
stacked vertically. The right grid shows the output of the attention layer Z = [z, ; 225 ...; 27] = AV, with
output vectors z; also stacked vertically. The value vectors of the sinks, €1 and e, , are copied to all tokens
that attend to them, thereby tagging them. These tags cause the token representation to cluster based on the sink
they attended to, as revealed in the PCA plot in Figure[2c| The inputs to the attention layer, prior to the tagging,
show no such clustering, as shown in Figure 2b)

https://arxiv.org/abs/2502.00919
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Attention Sinks (Zhang et al '25)

Structure we observed in softmax attention layers: release

Gt t A | €1 A | €1 Ak | €1t Kl kT Ak €1t Ak G0 Ak | | 61T Al

(c) Release: Each box corresponds o aciffernt token at the output oftheattenion layer. The atention outpus
are added {0 the rescul tream as ; + 2, creating common diectons in represéntaton space, in the form of
thetags i, and i, Shared across multiple okens. These ags cause the foken representations fo custr n

deeper layers, s revealed in the PCA plot n Figure@

https://arxiv.org/abs/2502.00919
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Attention Sinks (Zhang et al '25)

Structure we observed in softmax attention layers: clustering

Mathematical
Institute

5 - D ) ) 0 D 0 ) G ) 0

L o8 (b) PCA on input to the attention layer. Tokens exhibit no clustering.
D m @I D@
; o4 (c) PCA on the output of the attention layer. Tokens cluster according
to their attended sink: those attending to the first sink are shaded red,
o while those attending to the second sink are shaded green.
sy friends] [ [o]iplecfawayftears]otsad]ness]
' i DEEs 8

laughed]with}
andlsaidnothing] sl
(a) Attention Weights. Two atten- 4) pCA on the residual stream in a deeper layer. Tagged tokens
tion sinks catch the attention of sub- 5654 0ate through the residual stream, clustering in a deeper layer based
sequent tokens in the sequence. on their previously attended sink. Tokens that attended to the first sink
are green, while those attending to the second sink are brown and yellow.

Atenton s

Figure 2: Qualitative analysis of the ‘catch, tag, release’ mechanism. The second and third subplots
use PCA-based coloring of embeddings, described in Section 2. Appendix [A]presents additional
measurements across a wide range of models, layers, attention heads, and prompts, including chain-
of-thought [Wei et al., 2022], and zero-shot chain-of-thought [Brown et al., 2020].

https://arxiv.org/abs/2502.00919
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Attention Sinks (Zhang et al '25)

Structure we observed in softmax attention layers: example Mathematical
Institute

Layer 2, Head 21

s[2ld s ne

(b) Input embedding visualization at layer 2.

el o BIREL [nalffsrce L

(c) Attention head output at layer 2, head 21.

Attention Score

The
derivative
of

X

2

is

2

X

What

is
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derivative
of

X

3

?

X0 X Ew X o

Py 04800 R R D40

(d) PCA on residual stream at layer 38.

(a) Attention probabilities at layer 2,
head 21.

Figure 9: Visualization of the ‘catch, tag, release’ mechanism on a sample one-shot learning prompt
on the QWEN 2.5-32B-INSTRUCT model.

https://arxiv.org/abs/2502.00919
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The Scattering Transform: a deep transform
framework with learning only in the last layer
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Scattering Transform (Mallat 12")

OXFORD
Repeated application of deterministic transforms Mathematical

Institute

The Scattering Transform repeatedly applied a deterministic
wavelet transform followed by o(x) = |x| as nonlinear activation

[SsD01F = Usfal » ¢ |

Ul A2]f,

@)

Ss[A1, A2l f

U[A1s A2y A
Figure 1: A scattering propagator U,; applied to f computes each U[\{]f =
| f >, | and outputs S;[0] f = f*pes. Applying U, to each U[A]f computes

all U[A1, A2]f and outputs S;[A\1] = U[A1] * ¢os. Applying iteratively U; to
each U|[p]f outputs S;[p]f = U[p]f *~ ¢2s and computes the next path layer.

Depth allows the transform to become increasingly invariant to
translation and small diffeomorphisms.
https://arxiv.org/pdf/1101.2286.pdf
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Classification as learning invariance (Mallat '13)

Projecting out invariants not needed for classification

OXFORD
Mathematical
Institute
Tnmvariance to tramslations = () — x=(& — <)
Ve & B

5 P (x) — P(x)
= N N\ N
oo NN N

z(w)| : Fourier Modulus

P(x.) = |Ze(w)]

)
(0) w
Lipschitz stable to deformations x,(t) = x(t — 7(t))
small deformations of x ——

small modifications of ®(x)
YT

>

[®(@zr) — @I = & sup V7@ |zl .

deformation size

http://lcsl.mit.edu/ldr-workshop/Home.html
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Linearising deformations (Mallat '13)

Projecting out invariants not needed for classification
Institute

OXFORD

Mathematical

e Specific deformation invariance must be learned.

Supervised learning:

Translation orbits
¢ (two-dimensional)
d

4 4’F\N\/\
Invariant to translations

”Linearizes” deformations

K
¥
Ty

Deformation orbits
(high dimensional)

http://lcsl.mit.edu/ldr-workshop/Home.html
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Linearising deformations (Mallat '13)

Projecting out invariants not needed for classification

Mathematical
Institute

e Specific deformation invariance must be learned.

Supervised learning:

Translation orbits
¢ (two-dimensional)

< 4/-\—’\_(\/\ ®

3 Invariant to translations Py,
”Linearizes” deformations "¢ mvariant

‘{ R "( to deformations
4

Deformation orbits

(high dimensional)

http://lcsl.mit.edu/ldr-workshop/Home.html
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Linearising deformations (Mallat '13)

Projecting out invariants not needed for classification

Mathematical
Institute

e Specific deformation invariance must be learned.

Supervised learning:

g Translation orbits
e (two-dimensional)

()

Invariant to translations Py,
»Linearizes” deformations "¢y mvariant
Discriminant

to deformations

http://lcsl.mit.edu/ldr-workshop/Home.html
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Wavelet Transform as frequency tiling (Mallat '13)

Wavelets decompose function into local frequency information

Mathematical
Institute

e Complex wavelet: (t) = @ (t) + i P (t)
e Dilated: i (t) = 277 ¢ (277t) with A =277 .

e Wavelet transform: x x5 (t) = / x(u) Yt — uw) du
@ * ¢(t)
Wax =
( X * P (t) £A
Unitary: ||I/VI/C||2 = ||CU||2 .
http://lcsl.mit.edu/ldr-workshop/Home.html
Oxford A look inside what the net learns: from natural images to text
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Modulus and averaging in wavelet domain (Mallat '13)

Smoothing to identify discontinuities and have energy decay

Mathematical
Institute

|z * x| * @(t)

e The modulus |z x ¥y, | is a regular envelop

e The average |x x ¥z, | x ¢(t) is invariant to small translations

relatively to the support of ¢.

e Full translation invariance at the limit:
lim [+, |+ 0(6) = [ o, (o) du = i

http://lcsl.mit.edu/ldr-workshop/Home.html
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Second layer of the scattering transform (Mallat '13)

Increased smoothness with depth

Mathematical
Institute

|$*¢A1|

e The high frequencies of |z x 1y, | are in wavelet coefficients:

Wz x| = ( |z * P, | * & (2) >
A2

|2 % b, | % a, (1)

e Translation invariance by time averaging the amplitude:
v)\'l 7)\2 ) ‘ |"I‘.*/(/))\| | */l/})\z| *(/)(t)
http://lcsl.mit.edu/ldr-workshop/Home.html
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Scattering transform (Mallat '13)

Lipshitz continuous, inputs contract to one another

Mathematical
Institute

|z * x| * @

|Wa|

[z * x| * x| * &

|W3|

e Cascade of contractive operators
[Whlz — [Wila'|| < [z — 2’| with [[[Wk|z| = ||| .

http://lcsl.mit.edu/ldr-workshop/Home.html
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Scattering transform properties(Mallat '13)

Stability to deformormations

Mathematical
Institute

x *¢p (u)
o tfa, |+ (1)
Sx = [z *t x, | * x| * P(w)
[l %) x| * x| > xs| * Pp(u)
UL, A2,A3,. .0
Theorem: For appropriate wavelets, a scattering is

contractive ||Sxz — Syl < ||z — yl|
preserves norms ||Sz| = ||z||

stable to deformations x,(t) = x(t — 7(t))
ISz — Sz || < C sup [V7(D)] [l

= linear discriminative classification from ®x = Sx

http://lcsl.mit.edu/ldr-workshop/Home.html
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Scattering Transform: energy decay (Mallat 12')

The transform can be truncated stably

For suitably chosen wavelet transforms (see Theorem 2.6 in foot-
note) then for all f € [?(R9)

. m 2 _ n 2
lim [ UIATIF? = ;@m;HSJ[/\J]fH =0

where U[A|f = |f x| and Sy[A]f = ¢;j » U[A]f and [|S,[P]f| =
|f]|. Morevover, for all ¢ € R?

|1SJ[PJIf — Sy[PJ]LA|| =0

lim
J—oo

where L.f = f(x — c) is the translation operator.

https://arxiv.org/pdf/1101.2286.pdf
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Scattering Transform: energy decay (Mallat 13')

Energy decay on CalTech-101 thvaum\

Institute

TABLE 1
Percentage of Energy 3~ 5. [|S[p|||*/||=|” of
Scattering Coefficients on Frequency-Decreasing Paths
of Length m, Depending upon J

Jm=0 m=1 m=2 m=3 m=4] m<3|
1 95.1 4.86 - - - 99.96
2 87.56 11.97 0.35 - - 99.89
3 76.29 21.92 1.54 0.02 - 99.78
4 61.52 33.87 4.05 0.16 0 99.61
5 44.6 45.26 8.9 0.61 0.01 99.37
6 26.15 57.02 14.4 1.54 0.07 99.1
7 0 73.37 21.98 3.56 0.25 98.91

These average values are computed on the Caltech-101 database, with
zero mean and unit variance images.

https://www.di.ens.fr/data/publications/papers/
pami-final.pdf
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Scattering Transform: MNIST classification (Mallat 13")

O
Accuracy on MNIST based on training size Mathematical
Institute

TABLE 4
Percentage of Errors of MNIST Classifiers, Depending on the Training Size

Training T Wind. Four. | Scat. m=1 | Scat. m =2 | Conv.
size PCA SVM | PCA SVM | PCA SVM | PCA  SVM | Net.
300 145 154 | 735 74 5.7 8 4.7 5.6 7.18
1000 7.2 82 | 374 3.74 | 2.35 4 23 2.6 3.21
2000 5.8 6.5 | 299 29 1.7 2.6 1.3 1.8 2.53
5000 4.9 4 234 22 1.6 1.6 | 1.03 14 1.52
10000 455 311 | 224 165 | 1.5 123 | 0.88 1 0.85
20000 425 22 1192 115 | 14 096 | 0.79 0.58 | 0.76
40000 41 1.7 | 18 09 | 136 075 | 0.74 053 | 0.65
60000 4.3 14 |18 08 | 134 062 | 0.7 043 | 0.53

https://www.di.ens.fr/data/publications/papers/
pami-final.pdf
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Scattering Transform: MNIST digit 3 (Mallat 13") &
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Fig. 7. (a) Image X(u) of a digit ‘3. (b) Arays of windowed scattering coefficients S[p|X(u) of order m = 1, with u sampled at intervals of 2’ = §
pixels. (c) Windowed scattering coefficients S[p|X (u) of order m =2.
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