
What are we learning: vi-
sualising the filters and re-
sponse, memory, wavelets,
and attention sinks

Theories of Deep Learning: C6.5,
Lecture / Video 11
Prof. Jared Tanner
Mathematical Institute
University of Oxford



LeNET-5, an early Image processing DNN:
Network architectures often include fully connected and convolutional layers

C1: conv. layer with 6 feature maps, 5 by 5 support, stride 1.
S2 (and S4): non-overlapping 2 by 2 blocks which equally sum
values, mult by weight and add bias.
C3: conv. layer with 16 features, 5 by 5 support, partial connected.
C5: 120 features, 5 by 5 support, no stride; i.e. fully connected.
F6: fully connected, W ∈ R84×120.
http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf
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A simple two layer CNN (Papyan et al. 16’)
Convolutional structure are the form of multi-resolution analysis

Consider a deep conv. net composed of two convolutional layers:

Z2 = σ
(
b(2) + (W (2))Tσ

(
b(1) + (W (1))T x

))
https://arxiv.org/pdf/1607.08194.pdf
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Convolutional Deep Belief Networks (H. Lee et al. 11’)
Localized Fourier, Wavelet, structure learned

We omit the details of this somewhat different architecture, which
is stylistically similar to a deep CNN.

http://www.cs.utoronto.ca/~rgrosse/cacm2011-cdbn.pdf

Display of the convolutional masks in layers 1 and 2, trained from
Kyoto natural image database.
http://eizaburo-doi.github.io/kyoto_natim/
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Convolutional Deep Belief Networks (H. Lee et al. 11’)
Learned / memorized complex structure from data classes

http://eizaburo-doi.github.io/kyoto_natim/

The third and fourth layers develop bases which represent features
or objects, trained on CalTech 101 dataset.
http://www.vision.caltech.edu/Image_Datasets/Caltech101/
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Deep CNN, AlexNet (Krizhevsky et al. 12’)
Learned / memorized complex structure from data classes

Images are those that maximize specific activation responses.
Layer 1 are masks, subsequent layers are their linear combinations.
http:

//papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
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Deep CNN, VGG (Mahendran et al. 16’)
Learned / memorized complex structure from data classes

Note, again we observe the same pattern, the initial filters are
similar to Gabor/Wavelet filters and later layers are image
components.
https://arxiv.org/abs/1512.02017
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Deep CNN (Zeiler et al. 13’)
Learned / memorized complex structure from data classes

Layer 1 are masks, subsequent layers are their linear combinations.
https://arxiv.org/abs/1311.2901
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Summary: similarity and importance of initial layers
Importance of training initial layers to develop representation

We observe the initial layer of CNNs to be similar to one another,
and to exhibit wavelet like representations. This is to be expected.

Accuracy of a random network is improved most by training earlier
layers (Raghu 16’).
https://arxiv.org/pdf/1611.08083.pdf
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Wavelet, curvelet, and contourlet: fixed representations
Known optimal representations for natural images

Applied and computational harmonic analysis community
developed representations with optimal approximation properties
for piecewise smooth functions.

Most notable are the Daubechies wavelets and
Curvelets/Contourlets pioneered by Candes and Donoho.
While optimal, in a certain sense, for a specific class of functions,
they can typically be improved upon for any particular data set.
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Optimality of curvelets in 2D
Near optimality suggest a good initial CNN layer.

Theorem (Candes and Donoho 02’)

Let f be a two dimensional function that is piecewise C 2 with a bound-
ary that is also C 2. Let f Fn , f Wn , and f Cn be the best approximation of
f using n terms of the Fourier, Wavelet and Curvelet representation re-
spectively. Then their approximation error satisfy ‖f − f Fn ‖2

L2 = O(n−1/2),

‖f − f Wn ‖2
L2 = O(n−1), and ‖f − f Cn ‖2

L2 = O(n−2 log3(n)); moreover, no
fixed representation can have a rate exceeding O(n−2).

http://www.curvelet.org/papers/CurveEdges.pdf
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Initial layers can start as representations for the data class
Transfer learning: training only the final classification layer

The first layer of a CNN can be initialized from a known representation
for the data class. One can perform classification based on two layer net:
layer 1: h2(x) = σ(W (1)x + b(1)) where W (1) is a fixed transform of x to,
say, the wavelet domain and σ(·) project to keep just the largest entries
with hard or soft thresholding;

σhard(x ; τ) =

 x x > τ
0 |x | ≤ τ
−x x < −τ

, σsoft(x ; τ) =

 x − τ x > τ
0 |x | ≤ τ

−x + τ x < −τ

layer2: h3 = σ(W (2)h2 + b(2)) with W (2) learned as the classifier based

on the sparse codes h2. However, h2 does not build in invariance we

would desire in classification, such as dilation, rotation, translation, etc...

Depth remains important to generate these.
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Individual neurons have associations with colour,
materials, components, etc...
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Understanding individual units in a DNN (Bau et al. 20’)
Single units which reliably detect object classes

https://arxiv.org/abs/2009.05041
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Attention Sinks: structure in the attention matrices
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Attention mechanism (Vaswani 17’), equations
Key and Query quadratic form to highlight relations

Input is a matrix X ∈ Rn×d where n is the ”context length” and d is the
”embedding dimension”. They queries, keys, and values are then
computed with matrix-products QT = WQX

T , KT = WKX
T , and

V T = WVX
T then the attention layer is

H = softmax

(
XWQW

T
K XT

n1/2

)
XWV

where the softmax acts row-wise to give non-negative entries that sum to
one.

softmax(x)i = exp(xi )/
∑
`

exp(x`)

Generally Q and K have layer-norm applied to enforce fixed mean and
variance. Intuitively the softmax helps highlight the rows in X that
deserve ”attention.”
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Attention Sinks (Zhang et al ’25)
Structure we observed in softmax attention layers: catch 1

https://arxiv.org/abs/2502.00919
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Attention Sinks (Zhang et al ’25)
Structure we observed in softmax attention layers: catch 2

https://arxiv.org/abs/2502.00919
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Attention Sinks (Zhang et al ’25)
Structure we observed in softmax attention layers: release

https://arxiv.org/abs/2502.00919
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Attention Sinks (Zhang et al ’25)
Structure we observed in softmax attention layers: clustering

https://arxiv.org/abs/2502.00919
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Attention Sinks (Zhang et al ’25)
Structure we observed in softmax attention layers: example

https://arxiv.org/abs/2502.00919
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The Scattering Transform: a deep transform
framework with learning only in the last layer
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Scattering Transform (Mallat 12’)
Repeated application of deterministic transforms

The Scattering Transform repeatedly applied a deterministic
wavelet transform followed by σ(x) = |x | as nonlinear activation

Depth allows the transform to become increasingly invariant to
translation and small diffeomorphisms.
https://arxiv.org/pdf/1101.2286.pdf
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Classification as learning invariance (Mallat ’13)
Projecting out invariants not needed for classification

http://lcsl.mit.edu/ldr-workshop/Home.html
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Linearising deformations (Mallat ’13)
Projecting out invariants not needed for classification

http://lcsl.mit.edu/ldr-workshop/Home.html
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Wavelet Transform as frequency tiling (Mallat ’13)
Wavelets decompose function into local frequency information

http://lcsl.mit.edu/ldr-workshop/Home.html
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Modulus and averaging in wavelet domain (Mallat ’13)
Smoothing to identify discontinuities and have energy decay

http://lcsl.mit.edu/ldr-workshop/Home.html
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Second layer of the scattering transform (Mallat ’13)
Increased smoothness with depth

http://lcsl.mit.edu/ldr-workshop/Home.html
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Scattering transform (Mallat ’13)
Lipshitz continuous, inputs contract to one another

http://lcsl.mit.edu/ldr-workshop/Home.html
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Scattering transform properties(Mallat ’13)
Stability to deformormations

http://lcsl.mit.edu/ldr-workshop/Home.html
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Scattering Transform: energy decay (Mallat 12’)
The transform can be truncated stably

Lemma

For suitably chosen wavelet transforms (see Theorem 2.6 in foot-
note) then for all f ∈ L2(Rd)

lim
m→∞

‖U[Λm
J ]f ‖2 = lim

m→∞

∞∑
n=m

‖SJ [Λn
J ]f ‖2 = 0

where U[λ]f = |f ? ψλ| and SJ [λ]f = φj ? U[λ]f and ‖SJ [PJ ]f ‖ =
‖f ‖. Morevover, for all c ∈ Rd

lim
J→∞

‖SJ [PJ ]f − SJ [PJ ]Lc f ‖ = 0

where Lc f = f (x − c) is the translation operator.

https://arxiv.org/pdf/1101.2286.pdf
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Scattering Transform: energy decay (Mallat 13’)
Energy decay on CalTech-101

https://www.di.ens.fr/data/publications/papers/

pami-final.pdf
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Scattering Transform: MNIST classification (Mallat 13’)
Accuracy on MNIST based on training size

https://www.di.ens.fr/data/publications/papers/

pami-final.pdf
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Scattering Transform: MNIST digit 3 (Mallat 13’)
Example of energy in a scattering transform

https://www.di.ens.fr/data/publications/papers/

pami-final.pdf
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