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Adversarial misclassification for deep nets (Goodfellow et al. 15’

Imperceptible perturbation changes classification
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Figure 1: A demonstration of fast adversarial example generation applied to GoogLeNet (Szegedy
et al., 2014a) on ImageNet. By adding an imperceptibly small vector whose elements are equal to
the sign of the elements of the gradient of the cost function with respect to the input, we can change
GooglLeNet’s classification of the image. Here our ¢ of .007 corresponds to the magnitude of the
smallest bit of an 8 bit image encoding after GoogLeNet’s conversion to real numbers.

https://arxiv.org/pdf/1412.6572.pdf
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DeepFool algorithm (Moosavi-Dezfooli et al. 15")

Many algorithms exist for computing adversarial examples
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Algorithm 2 DeepFool: multi-class case

1: imput: Image x., classifier f.
2: output: Perturbation 7.
3:
4: Inidalize x¢o <— @, 2 <— O.
5: while &£ (x;) = k(xo) do
&: for %k # k(axo) do
7: W), — VS ( @) — Sy ()
8: Sl < (@) — friao (@)
o: end for

7 s S
10: [ «— argming__z .. TJL?’W‘E

17

11: T < ”wl
12: X4 — d;; + T
13: z <— 7z + 1
14: end while
15: retarm 7 — > . 7;

Alternative to Goodfellow approach of

P(xu) = esign(grad, J(0; Xy, yu)-
https://arxiv.org/pdf/1511.04599.pdf
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DeepFool algorithm (Moosavi-Dezfooli et al. 15")

Many algorithms exist for computing adversarial examples

Mathematical
Institute

Classifier Test error | p,q, [DeepFool] | time Paav [4] time Pagv [18] time
LeNet (MNIST) 1% 2.0x 107 110ms | 1.0 20ms | 25x107! | >4s
FC500-150-10 (MNIST) 1.7% L1x 107! 50ms | 39%x1071 | 10ms | 1.2x 1071 | > 25
NIN (CIFAR-10) 11.5% 2.3 x 1072 1100ms | 1.2x 1071 | 180ms | 24 x 1072 | >50's
LeNet (CIFAR-10) 22.6% 3.0x 1072 20ms | 1.3x 107" | 50ms | 3.9x1072 | >7s
CaffeNet (ILSVRC2012) | 42.6% 2.7x1073 510 ms* | 3.5 % 1072 | 50 ms*

GoogLeNet (ILSVRC2012) | 31.3% 1.9x1073 800 ms* | 4.7 x 1072 | 80 ms*

Table 1: The adversarial robustness of different classifiers on different datasets. The time required to compute one sample
for each method is given in the time columns. The times are computed on a Mid-2015 MacBook Pro without CUDA support.
The asterisk marks determines the values computed using a GTX 750 Ti GPU.

Average relative error of adversarial example 7(x) such that

F(x) # Fx+ P(x)): Paay(F) = D71 X ep LN
https://arxiv.org/pdf/1511.04599.pdf
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Rotations and Translations for CNNs (Engstrom et al. 18")

Adversarial action in space of a known invariant
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Figure 1: Examples of adversarial transformations and their
predictions in the standard and "black canvas" setting.

https://arxiv.org/pdf/1712.02779.pdf
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Rotations and Translations for CNNs (Engstrom et al. 18’)

Loss landscape over known invariant Mathematical
Institute
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Xent Loss
Xent Loss
Xent Loss.

Figure 3: Loss landscape of a random example for each dataset when performing left-right translations and rotations.
Translations and rotations are restricted to 10% of the image pixels and 30 deg respectively. We observe that the landscape
is significantly non-concave, making rendering FO methods for adversarial example generation powerless. Additional
examples are visualized in Figureﬂof the Appendix.

https://arxiv.org/pdf/1712.02779.pdf
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Universal adversary (Moosavi-Dezfooli et al. 16")

A single perturbation for many classes
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Transferability between nets (Liu et al. 16")

Can transfer adversarial examples between nets

RMSD | ResNet-152 | ResNet-101 | ResNet-50 | VGG-16 | GoogLeNet
-ResNet-152 | 17.17 0% 0% 0% 0% 0%
-ResNet-101 | 17.25 0% 1% 0% 0% 0%
ResNet-50 | 17.25 0% 0% 2% 0% 0%
-VGG-16 | 17.80 0% 0% 0% 6% 0%
-GoogLeNet | 17.41 0% 0% 0% 0% 5%

Table 4: Accuracy of non-targeted adversarial images generated using the optimization-based ap-
proach. The first column indicates the average RMSD of the generated adversarial images. Cell
(i, 7) corresponds to the accuracy of the attack generated using four models except model 7 (row)
when evaluated over model j (column). In each row, the minus sign “—” indicates that the model
of the row is not used when generating the attacks. Results of top-5 accuracy can be found in the
appendix (Table|14).

RMSD is the £ energy of the perturbation.
https://arxiv.org/pdf/1611.02770.pdf
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Transferability between nets (Liu et al. 16')

Can transfer adversarial examples between nets Mathematica
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Figure 3: Decision regions of different models. We pick the same two directions for all plots: one is
the gradient direction of VGG-16 (x-axis), and the other is a random orthogonal direction (y-axis).
Each point in the span plane shows the predicted label of the image generated by adding a noise to
the original image (e.g., the origin corresponds to the predicted label of the original image). The
units of both axises are 1 pixel values. All sub-figure plots the regions on the span plane using the
same color for the same label. The image is in Figure |2}

https://arxiv.org/pdf/1611.02770.pdf
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Adversarial physical object: Turtle (Athalye et al. 17")

Physical objects can be adversarial examples: 3D
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Figure 1. Randomly sampled poses of a 3D-printed turtle adver-
sarially perturbed to classify as a rifle at every viewpoint>. An

unperturbed model is classified correctly as a turtle nearly 100%
of the time.
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Adversarial graffiti (Eykholt et al. 17")

Physical objects can be adversarial examples: 2D
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Table 5: A camouflage art attack on GTSRB-CNN. See
example images in Table[I] The targeted-attack success rate

is 80% (true class label: Stop, target: Speed Limit 80).
Distance & Angle  Top Class (Confid.) Second Class (Confid.)
507 Speed Limit 80 (0.88)  Speed Limit 70 (0.07)
57 15° Speed Limit 80 (0.94)  Stop (0.03)
5730° Speed Limit 80 (0.86) ~ Keep Right (0.03)
5 45° Keep Right (0.82) Speed Limit 80 (0.12)
57 60° Speed Limit 80 (0.55)  Stop (0.31)
107 0° Speed Limit 80 (0.98)  Speed Limit 100 (0.006)
107 15° Stop (0.75) Speed Limit 80 (0.20)
10" 30° Speed Limit 80 (0.77) ~ Speed Limit 100 (0.11)
Figure 1: The left image shows real graffiti on a Stop sign, 157 0°  Specd Limit 80 (0.98)  Specd Limit 100 (0.01)
. L .. 157 15° Stop (0.90) Speed Limit 80 (0.06)
something that most humans would not think is suspicious. BT SpeedLmits0 @95 SpeedLimit 0 Q003)

The right image shows our a physical perturbation applied 2015

Speed Limit 80 (0.97)

Speed Limit 100 (0.01)

257 0°

to a Stop sign. We design our perturbations to mimic graffiti, 20 0°

and thus “hide in the human psyche.”

40" 0°

Speed Limit 80 (0.99)

(
(
Speed Limit 80 (0.99)
(
Speed Limit 80 (0.99)

Speed Limit 70 (0.0008)
Speed Limit 100 (0.002)
Speed Limit 100 (0.002)
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(Keen Security Lab 19)

Adversarial vulnerability in commercial systems
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Fig 35. In-car perspective when testing, the red circle marks, the interference markings are marked

with red circles

https://keenlab.tencent.com/en/whitepapers/Experimental_Security_Research_of_Tesla_Autopilot.pdf
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Some examples of defences
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Provable defense: convex polytope pt. 1 (Wong et al. 17)

Ensuring neighbourhood also classified correctly Mathematical

Institute

Possible output of net fy(-) from bounded perturbation is a
non-convex set, say Z¢(x) = {fy(x +0) : ||0]lcc < €}. A convex
outer-polytope of Z.(x), say Z"(x), can be computed by
replacing the input to each activation with a 2D convex set:

Input = and Final layer , and  Gonwex outer bound Bounded FelU set Convex reaxation
allowable perturbations  peep network  adversarial polytope

= = —| ). =2 | . ‘

Figure 2. lustration of the convex ReLU relaxation over the
Figure 1. Conceptual ion of the (non-c ) ial polytope, and an outer convex bound.  bounded set [f, 1

Requires knowledge of lower and upper bound for each input to a
nonlinear activation. Let ¢ = e/ — ey or ¢ = 2e; — 1|/555| and solve:

min c"2, and if nonnegative then robust to e perturbation.
2p€Ze(x)

https://arxiv.org/pdf/1711.00851.pdf
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Provable defense: convex polytope pt. 2 (Wong et al. 17)

Algorithm to determine range of pre-activation values
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Algorlthm 1 Computing Activation Bounds

. data point @,

Network parameters { W75, b, } %
ball size e
// lnlllclll”clll()n
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AN -l 1.: for a martrix here denores €4 norm of all colurmns
f()r/,—z,,,.,l.:—ldo

form Z; . I"‘ Z;; form 72,; as in (10)
7 lnlrlall7e rnnew rerrms
,,(D"')I’ w7

4T, = .7, D | % 2 — 1
Y5 : G2 W 7

oy 1= 1‘/1 D,-,W,,"'

A compure bounds

e 1= ax? oy > .Ii:l >

Ciqr 1= 2, — €|l + >_%

wiqr = s — e|lZa |1,

end for
output: bounds {€;, w; }

https://arxiv.org/pdf/1711.00851.pdf
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Provable defense: convex polytope pt. 3 (Wong et al. 17)

Improved robustness, but increased non-adversarial test error

Table 1. Error rates for various problems and attacks, and our robust bound for baseline and robust models.

PROBLEM RoBUST ¢  TESTERROR FGSMERROR PGDERROR ROBUST ERROR BOUND
MNIST X 0.1 1.07% 50.01% 81.68% 100%
MNIST Vo0l 1.80% 3.93% 411% 5.82%
FASHION-MNIST 0.1 9.36% 77.98% 81.85% 100%
FASHION-MNIST /0.1 21.73% 31.25% 31.63% 34.53%
HAR x 005 4.95% 60.57% 63.82% 81.56%
HAR Vo005 780% 21.49% 21.52% 21.90%
SVHN x 001 16.01% 62.21% §3.43% 100%
SVHN Vo000 2038% 33.28% 33.74% 40.67%

https://arxiv.org/pdf/1711.00851.pdf
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Robustness via sparsification (Gopalakrishnan et al. 18)

Removing small values improves Lipshitz constant
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attenuates the impact of the attack by K/.

s. This  Figure 2 Netvork sparsty defene: Inposing sprsty uithin the newrl ntwork
. where NV is the input \hul(‘nsmn attemates the worst-case growth of the attack as it flows up the network.

Theorem 2. Consider an o -constrained input perturbation eg = e, with ||e||, < e.
Suppose that we impose €1 constraints on the weights at each layer as follows:

llwijll; <~ Vi

Then the effect of the perturbation is lso-bounded at each layer:

lejlle <] 2)
=1

https://arxiv.org/abs/1810.10625
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Robustness via sparsification (Gopalakrishnan et al. 18)
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Figure 6: Fashion-MNIST: Binary classification accuracies as a function of e

https://arxiv.org/abs/1810.10625
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Jailbreaking LLMs
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Multi-modal adversarial attacks (Carlini et al. 23)
GPT models are "aligned” for "appropriate” responses
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https://arxiv.org/pdf/2306.15447
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Multi-modal adversarial attacks (Zou et al. 23)

Attacks against many LLMs with greater sophistication
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Figure 3: A plot of Attack Success Rates (ASRs) of our GCG prompts described in Section 3.2,
applied to open and proprietary on novel behaviors. Prompt only refers to querying the model
with no attempt to attack. “Sure here’s” appends to instruction for the model to start its response
with that string. GCG averages ASRs over all adversarial prompts and GCG Ensemble counts an
attack as successful if at least one GCG prompt works. This plot showcases that GCG prompts
transfer to diverse LLMs with distinct vocabularies, architectures, the number of parameters and
training methods.

https://arxiv.org/abs/2307.15043
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Multi-modal adversarial attacks (Zou et al. 23)

Commercial systems
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Figure 4: Screenshots of harmful content generation from the examples shown in Figure 1: Chat-
GPT (top left), Claude 2 (top right), Bard (bottom left), LLaMA-2 (bottom right). Complete
generations are shown in Appendix B.

https://arxiv.org/abs/2307.15043
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Detecting jailbreaking (Hu et al. 24)
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Figure 1: Overview of Gradient Cuff. (a) introduces an example of jailbreak prompts by presenting
a conversation between malicious actors and the Vicuna chatbot. (b) visualizes the refusal loss
landscape for malicious queries and benign queries by plotting the interpolation of two random
directions in the query embedding with coefficients «v and 3 following [15]. The refusal loss evaluates
the probability that the LLM would not directly reject the input query, and the loss value is computed
using Equation [3. See details of how to plot (b) in Appendix [A4] (c) shows the running flow
of Gradient Cuff (at top), practical computing examples for refusal loss (at bottom left), and the
distributional difference of the gradient norm of refusal loss on benign and malicious queries (bottom
right). (d) shows the performance of Gradient Cuff against 6 jailbreak attacks for Vicuna-7B-V1.5.
See Appendix |A.6|for full results.

https://arxiv.org/abs/2403.00867
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