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Autoencoder (AE) lllustration

Restricting the number of data parameters
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Reconstructed

Input « Ideally they are identical. input

x ~ x’

Bottleneck!
Encoder Decoder ,
x
9o feo =

An compressed low dimensional
representation of the input.

The parameters, (0, ¢), of the autoencoder are then learned:

L(O.¢) =m0, folgs(xu)))
pn=1
https://lilianweng.github.io/1il-1log/2018/08/12/

from-autoencoder-to-beta-vae.html
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Principal component analysis (PCA) as an AE

Learning with one layer hard thresholding

The parameters, (6, ¢), of the autoencoder are then learned:

n
£(0.0) ="y 10 folgo(x.)))
pn=1
Consider a simple model where the encoder and decoder are linear,
that is g4(x) = ®x where ® € R™P with r < p, and the linear
decoder fy(z) = ©z with © € RP*",

Moreover, consider an entrywise 3 error for I(x,, fa(gs(x.))), then

L(0,¢) = n || X — ©0X||7
where ©9® is a learned rank r matrix, whose optimal solution is the
projector of X to its leading r singular space.
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Autoencoder extend PCA

OXFORD
More complex maps to low parameter space Mathematical

Institute

R tructed
Input < - Ideally they are identical. -~~~ - e""i'r‘;:‘: =

x ~ x’

Bottleneck!
Encoder Decoder ,
9¢ fo ==

An compressed low dimensional
representation of the input.

The autoencoder framework allows g,(-) and f3(-) to be more
general than linear, and in particular to benefit from the
expressively of depth and introduce variation.
https://lilianweng.github.io/1il-1o0g/2018/08/12/
from-autoencoder-to-beta-vae.html
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PCA vs 3 layer Autoencoder: MNIST (Hinton et al. 06")

Improved separation of data classes Mathematical
Institute
Fig. 3. (A) The two- A " .
dimensional codes for 500 y
digits of each class produced

by taking the first two prin-
cipal components of all
60,000 training images.
(B) The two-dimensional
codes found by a 784-
1000-500-250-2 autoen~
coder. For an alternative
visualization, see (8).

http://science.sciencemag.org/content/313/5786/504
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k-sparse autoencoders (Makhzani et al. 13")

Low dimensionality through sparsity

Mathematical
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k-Sparse Autoencoders:
Training:

1) Perform the feedforward phase and compute
=z =WTax + b

2) Find the k£ largest activations of = and set
the rest to zero.

Z(ry- =0 where I =supp,.(=)
3) Compute the output and the error using the
sparsified =.

@ W= + b
7 = ||l — @3
3) Backpropagate the error through the A& largest

activations defined by I’ and iterate.
Sparse Encoding:

Compute the features 2 = W T + b. Find its ok
largest activations and set the rest to zero.

Focrye = O

where

I = supp,,(#)
This framework includes nonlinearity and can be rigorously analysed

using techniques from sparse approximation, but it lacks depth.
https://arxiv.org/pdf/1312.5663.pdf
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k-sparse autoencoders (Makhzani et al. 13") F

Learned elements: MNIST OXFORD
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(a) k=70

(b) k =40

(d) k=10

Fiure 1. Filters of the k-sparse autoencoder for different spassity levels k lensnt. from MNIST with 1000 hidden wnita,
Elements learned depend on number of components, sparsity,
allowed; k small are class elements, k large are basis elements.
https://arxiv.org/pdf/1312.5663.pdf
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k-sparse autoencoders (Makhzani et al. 13")

Performance vs other autoencoders

OXFORD

Mathematical
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Error Rate
Raw Pixels 7.20%
RBM 1.81%
Dropout Autoencoder (50% hidden) 1.80%
Denoising Autoencoder 1.95%
(20% input dropout)
Dropout + Denoising Autoencoder 1.60%
(20% input and 50% hidden)
k-Sparse Autoencoder, k = 40 1.54%
k-Sparse Autoencoder, k = 25 1.35%
k-Sparse Autoencoder, k = 10 2.10%

Error
Without Pre-Training 1.60%
RBM + F.T. 1.24%
Shallow Dropout AE + F.T. 1.05%
(%50 hidden)
Denoising AE + F.T. 1.20%
(%20 input dropout)
Deep Dropout AE + F.T. 0.85%
(Layer-wise pre-training, %50 hidden)
k-Sparse AE + F.T. 1.08%
(k=25)
Deep k-Sparse AE + F.T. 0.97%

(Layer-wise pre-training)

Table 1. Performance of unsupervised learning methods
(without fine-tuning) with 1000 hidden units on MNIST.

https://arxiv.org/pdf/1312.5663.pdf

Table 3. Performance of supervised learning methods on
MNIST. Pre-training was performed using the correspond-
ing unsupervised learning algorithm with 1000 hidden units,
and then the model was fine-tuned.
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Variational Autoencoders (VAE) (Kingma et al. 13")

Introduction of noise as a generative model

OXFORD
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Input «---------oooooe e Ideally they are identical. ~ ---------------------- > Recoi?‘str;“:ted

~ !/ pu
X~ X
— Probabilistic Encoder —
94(2}x)
Mean Sampled
[ latent vector
Probabilistic
X —_— ] Decoder xI
po(x|2)
Std. dev
_ An compressed low dimensional
z=pto0e representation of the input.
_— € ~N(0,1) L

https://lilianweng.github.io/1il-10g/2018/08/12/from-autoencoder-to-beta-vae.html

https://arxiv.org/pdf/1312.6114.pdf

Oxford Autoencoders, GANs, and Diffusion
Mathematics


https://lilianweng.github.io/lil-log/2018/08/12/from-autoencoder-to-beta-vae.html
https://arxiv.org/pdf/1312.6114.pdf

Variational Autoencoders (VAE) (Kingma et al. 13")

Gaussian MPL as encoder-decoder

Examples of encoder or decoder structure is a multivariate
Gaussian with a diagonal covariance structure; e.g. for the decoder:

h = tanh(W3z+b3)
with,u = Wih+ by
log(c?) = Wsh+ bs

log p(x|z) = log N(x; p1, o)

https://arxiv.org/pdf/1312.6114.pdf
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Variational Autoencoders (VAE) (Kingma et al. 13")

Distribution for generative model Mathematical

po (=) _2(Z|X)_~ po(z|x) _
Pro (=)

po(x|z) acts as the generators, analogous to the decoder fy(x|z),
and is called a probabilistic decoder

qs(z|x) acts as the encoder, analogous to gy(z|x), and is used to
approximate py(z|x).

The parameters ¢, 6 for a model are then learned so minimize a
distance, or divergence, between g4(z|x) and ps(z|x); Kingma
proposed minimising the Kullback-Leibler divergence.

https://lilianweng.github.io/1il-1log/2018/08/12/from-autoencoder-to-beta-vae.html
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Variational Autoencoders (VAE) (Kingma et al. 13")

Loss function for VAE

The formulae for Lggo(¢, 6; X), the evidence lower bound
(ELBO), follows from minimising a lower bound of

> =1 log po(x):

log pyg(x) =

https://arxiv.

oc ([ pax2imtz)ez )

og [ po(xlz) 25 (e
R e

Eq,(zIx) 108(Pa(x|2)) — D (q4(2]x)|po(z]x))
Lergo(¢,0; x)

org/pdf/1312.6114.pdf
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Variational Autoencoder: manifold (Kingma et al. 13") F
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Learned two dimensional space: faces and MNIST Mathematical

Institute
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(a) Learned Frey Face manifold (b) Learned MNIST manifold

Figure 4: Visualisations of learned data manifold for generative models with two-dimensional latent
space, learned with AEVB. Since the prior of the latent space is Gaussian, linearly spaced coor-
dinates on the unit square were transformed through the inverse CDF of the Gaussian to produce
values of the latent variables z. For each of these values z, we plotted the corresponding generative
peo (x|z) with the learned parameters 6.

https://arxiv.org/pdf/1312.6114.pdf
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(d) 20-D latent space

(c) 10-D latent space
Autoencoders, GANs, and Diffusion

(b) 5-D latent space

(a) 2-D latent space
Figure 5: Random samples from learned generative models of MNIST for different dimensionalities

of latent space.

https://arxiv.org/pdf/1312.6114.pdf
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Inference Variational Autoencoders (Zhao et al. 17")

po(x|z) acts as the generators, analogous to the decoder fy(x|z),
and is called a probabilistic decoder; g4(z|x) acts as the encoder,
analogous to gy(z|x), and is used to approximate py(z|x).

The parameters ¢, 0 for a model are then learned to minimize a
distance, or divergence, between g, (z|x) and py(z|x); Kingma
proposed minimising the Kullback-Leibler divergence, giving the
evidence lower bound (ELBO)

Lego = Eq,,,, log(ps(x|2)) — BDk1(gs(x, 2)l|ps(x, 2))

VAEs originally use g = 1, with larger 5 > 1 called 5-VAEs.
Zhao et al. propose including a mutual information term to avoid
mode separation and collapse.
https://arxiv.org/pdf/1706.02262.pdf
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Inference Variational Autoencoders (Zhao et al. 17")
Impact of VAE objective (A = 3, in B—VAE

Mathematical
Institute
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Figure 1: Verification of Propositionwhere the dataset only contains two examples {—1,1}. Top: density of the dis-
tributions gy(z|z) when & = 1 (red) and © = —1 (green) compared with the true prior p(z) (purple). Bottom: The
“reconstruction” py(z|z) when z is sampled from g (2|z = 1) (green) and gy (z|z = —1) (red). Also plotted is py(z|)
when z is sampled from the true prior p(z) (purple). When the dataset consists of only two data points, ELBO (left) will
push the density in latent space Z away from 0, while InfoVAE (right) does not suffer from this problem.

https://arxiv.org/pdf/1706.02262.pdf
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Inference Variational Autoencoders (Zhao et al. 17")
Impact of VAE objective
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Figure S5: Samples generated by ELLBO vs. MMD InfoVAE
()\ = 1000) after training on SO0 samples (plotting mean of
o (x|=z)). Top: Samples generated by ELLBO. Even though
EIL_BO generates very sharp reconstruction for samples on
the training set, model samples p(=)po (- is very poor,
and differ significantly from the reconstruction samples.
indicating over-fitting. and mismatch between g, (=) and
»(=). Bottom: Samples generated by InfoVAE. The recon-
structed samples and model samples look similar in quality
and appearance., suggesting better generalization in the la-
tent space.

https://arxiv.org/pdf/1706.02262.pdf
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B-VAEs disentangling features pt. 1 (Higgins et al. 17")

i OXFORD
Explainable latent space Mathematical
Institute
A B-VAE
! nt by

1 3
sents a latent

-VAE (53 ach column repr
ordered accordin
the le ance (last
Row 1 (position) shows the mean ac

=t
vation (red represents high values) of
each latent z; as a function of all 32x32
locations averaged across objects, rota-
tions and scales. Row 2 and 3 show the
mean activation of each unit z; as a func-
tion of scale (respectively rotation), av-
eraged across rotations and positions (re-
spectively scales and positions). Square

s red, oval is green and heart is blue.
Rows 4-8 (second group) show recon-
structions resul om the traversal
~‘ of each latent z; over three ndard de

i3

singl latent mean traversal - mean latent response

* 3——0———3 ntin sk pstion

pos.¥
[ DC-IGN D InfoGAN
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pos.X  scale rotation rotation

ons around the unit Gau
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latent units fixed to the values obtained
by runn e from

2 the dataset. analysis for VAE
w3 1). C: Similar analysis for DC-
IGN, clamping a single latent each for
scale, s s, orientation and 5 for
= shape. S F: alysis for InfoGAN,
using 5 continuous latents regularized
using the mutual information cost, and
o 5 additional unconstrained noise latents

0.45 (not shown).

hing 9/10
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B-VAEs disentangling features pt. 2 (Higgins et al. 17")

Explainable latent space: chairs
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B-VAEs disentangling features pt. 3 (Higgins et al. 17")

Architectures for encoder-decoders

OXFORD

Mathematical
Institute

Dataset Optimiser Architecture
2D shapes Adagrad Input 4096 (flattened 64x64x1).
(VAE) le-2 Encoder FC 1200, 1200. ReLU activation.
Latents 10
Decoder FC 1200, 1200, 1200, 4096. Tanh activation. Bernoulli.
2D shapes rmsprop Input 64x64x1.
(DC-IGN) (as in Kulkarni et al., 2015) Encoder Conv 96x3x3, 48x3x3, 48x3x3 (padding 1).
ReLLU activation and Max pooling 2x2.
Latents 10
Decoder Unpooling, Conv 48x3x3, 96x3x3, 1x3x3.
ReLU activation, Sigmoid.
2D shapes Adam Generator FC 256, 256, Deconv 128x4x4, 64x4x4 (stride 2). Tanh.
(InfoGAN)  le-3 (gen) Discriminator ~ Conv and FC reverse of generator. Leaky ReLU activation.
2e-4 (dis) FC 1. Sigmoid activation.
Recognition Conv and FC shared with discriminator. FC 128, 5. Gaussian
Latents 10: 21,5 ~ Unif(—1,1), 1.5 ~ Unif(—1,1)
Chairs Adam Input 64x64x1.
(VAE) le-4 Encoder Conv 32x4x4 (stride 2), 32x4x4 (stride 2), 64x4x4 (stride 2),
64x4x4 (stride 2), FC 256. ReLLU activation.
Latents 32
Decoder Deconv reverse of encoder. ReLLU activation. Bernoulli.

https://arxiv.org/pdf/1706.02262.pdf
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Autoencoders summary

NNs used as nonlinear maps to lower dimensional latent spaces

Institute

» Principal component analysis (PCA) reveals the low
dimensional latent space within a data matrix by projecting to
the space of low-rank matrices.

» Autoencoders (AE) extend this notion allowing more general
maps to and from a low dimensional parameter space.

» Variational AEs (VAEs) give a probabilistic notion that gives a
natural generative model.

> Inference VAEs and S—VAEs are further extensions to
improve VAEs and for interpretability respectively.

» (V)AEs are a flexible structure allowing general maps; an area
open for great further analysis.

Oxford Autoencoders, GANs, and Diffusion 22
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Generative Adversarial Networks (GANs)
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Generative deep nets (Goodfellow et al. 14")

Generative model from 100 latent variables

Mathematical
Institute

Example of a deep convolutional generator:

1024

—
NN
S ———

Project and reshape CONV 1

CONV 2
G(2)

Figure 1: DCGAN generator used for LSUN scene modeling. A 100 dimensional uniform distribu-
tion Z is projected to a small spatial extent convolutional representation with many feature maps.

https://arxiv.org/pdf/1511.06434.pdf
https://arxiv.org/pdf/1406.2661.pdf
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Generative deep nets (Goodfellow et al. 14")

Generative model from 100 latent variables

OXFORD

Mathematical
Institute

Train the two network parameters using the objective

min maxpn™* 2_)1 log(D (X, i) + Pt Z log (1 — D(G(25), ¥»))

Algorithm 1 Minibatch stochastic gr;
steps to apply to the discriminator, A, is
experiments.
for number of training iterations do
for /4 steps do
imple minibatch of 772 noise samples {=(1), ..
mple minibatch of 77 examples {x(!)

ive adversarial nets. The number of
1. the least expensive option. in our

ent descent training of genel
hyperparameter. We used A

, ="} from noise prior p,(=).
@} from data gen

ribution

Paawa () .
e Update the discriminator by a

V,,‘,'I:’ ; [lnu. D (@) +i1og (1 — D (& (:“’))ﬂ X

ock

cending

stic gradient:

end for
mple minibatch of 772 noise
pdate the generator by dex

Vou 3otom (1= 2 (@ (=) -

mples { =),
ding its stochas

="} from noise prior p, (=).
gradient:

end for
The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.

https://arxiv.org/pdf/1406.2661.pdf
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Generative deep nets (Radford et al. 16") S

Early training examples Mathematical
Institute

Figure 2: Generated bedrooms after one training pass through the dataset. Theoretically, the model
could learn to memorize training examples, but this is experimentally unlikely as we train with a
small learning rate and minibatch SGD. We are aware of no prior empirical evidence demonstrating
memorization with SGD and a small learning rate.

https://arxiv.org/pdf/1511.06434.pdf
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Generative deep nets (Radford et al. 16")

Later training examples

Mathematical
Institute

Figure 3: Generated bedrooms after five epochs of training. There appears to be evidence of visual
under-fitting via repeated noise textures across multiple samples such as the base boards of some of
the beds.

https://arxiv.org/pdf/1511.06434.pdf
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Wasserstein GAN (Arjovsky et al. 17")

Optimal transport decoder

Mathematical
Institute

One of the central challenges with GANs is the ability to train the
parameters. Improvements have been made through choice of
generative architecture (DC-GAN of Radford) and through
different training objective functions (W-GAN)

Algorithm 1 WGAN with gradient penalty. We use default values of X — 10, 7zenine — b, v —

0.0001, B = 0, B> = 0.9.

Require: The gradient penalty coefficient A, the number of critic iterations per generator iteration
Tcritic, the batch size 1, Adam hyperparameters v, 31, 32.

Regquire: initial critic parameters wq, initial generator parameters 60g.

while 6 has not converged do

1:

2: fort — 1,

3: fori — 1

4: Sample real data  ~ P, latent variable z ~ p(z). a random number ¢ ~ U [0, 1].
5: & <+ Go(=z

6: T < ex + (1 —e)x

7: LD < Dy(&) — Duw(x) + A(||VaDuw(@)||2 — 1)?
8: end for

9: w <+ Adam(V ., 5 S0 L5 w, o, B, B2)
10: end for
11: Sample a batch of latent variables {=z() }7 | ~ p(=z).
12: 0 < Adam (V5 327 | — D, (Go(2)). 0., B, B2)

13: end while

https://arxiv.org/pdf/1704.00028.pdf
https://arxiv.org/pdf/1701.07875.pdf
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Wasserstein GAN (Arjovsky et al. 17")

Examples of output from GAN architectures

Mathematical
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DCGAN LSGAN WGAN (clipping) WGAN-GP (ours)
Baseline (G: DCGAN, D: DCGAN)
5 T

Figure 2: Different GAN architectures trained with different methods. We only succeeded in train-
ing every architecture with a shared set of hyperparameters using WGAN-GP.

https://arxiv.org/pdf/1704.00028. pdf
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Wasserstein GAN (Arjovsky et al

Training rate

17)

Mathematical
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Convergence on CIFAR-10

—— Weight clipping

~— Gradient Penalty {(RMSPop)
9 — Gradient Penalty {Adam)
— DCGAN

0.0 05 1.0 15 20

Generator iterations o

Convergence on CIFAR-10

— Weight clipping
— Gradient Penalty (RMSProp)
9 —— Gradient Penalty (Adam)
— DCGAN

0 1 2 3 1

3
Wallelock time (in seconds) w

Figure 3: CIFAR-10 Inception score over generator iterations (left) or wall-clock time (right) for
four models: WGAN with weight clipping, WGAN-GP with RMSProp and Adam (to control for
the optimizer), and DCGAN. WGAN-GP significantly outperforms weight clipping and performs

comparably to DCGAN.

https://arxiv.org/pdf/1704.00028.pdf
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Large scale WGAN (Karras et al. 18")

Growing the encoder/decoder complexity Mathematical
Institute

G Latent Latent Latent
4 4
x4 x4
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Caa ] Caa ]

Training progresses ——————————————»

Figure 1: Our training starts with both the generator (G) and discriminator (D) having a low spa-
tial resolution of 4 x4 pixels. As the training advances, we incrementally add layers to G and D,
thus increasing the spatial resolution of the generated images. All existing layers remain trainable
throughout the process. Here refers to convolutional layers operating on N x N spatial
resolution. This allows stable synt| in high resolutions and also speeds up training considerably.
One the right we show six example images generated using progressive growing at 1024 x 1024.

https://arxiv.org/abs/1710.10196
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Large scale WGAN (Karras et al. 18")

Examples of synthetic faces
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Understanding individual units in a DNN (Bau et al. 20")

Single units which reliably detect object classes

OXFORD
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2 VGe-16 architecture dissection of each ional layer () abject detection test: conv5_3 unit 150 activation on airplanes
input image
N —— non-airplane imagenet images, mean=0.
z —— imagenet sirpiane images, mean-g5.1
convolution £
pooling 2
®) unit 10 actvation ~
o)

convS_3 — - non-airplane airplane images

fully connected layers 16, c7, fc8

“conterence room* «— scene prediction
(d) convs_3 summary

| | =
R M i %
(© single unnsk—llesied on scenes

unit 150 “airplane” (object) unit 208 “person top” (part) unit 141 “fur” (material)

Fig. 1. The emergence of single-unit object detectors a VGG-16 scene classifier. (a) VGG-16 consists of 13 convolutional layers, conv1_1 through conv5_3, followed by
three fully connected layers, £c6,7,8. (b) The activation of a single filter on an input image can be visualized as the region where the filter activates beyond its top 1% quantile
level. (c) Single units are scored by matching high-activating regions against a set of human-interpretable visual concepts; each unit is labeled with its best-matching concept
and visualized with maximally-activating images. (d) Concepts that match units in the final convolutional layer are summarized, showing a broad diversity of detectors for
obijects, object parts, materials, and colors. Many concepts are associated with multiple u Comparing all the layers of the network reveals that most object detectors
emerge at the last convolutional layers. (f) Although the training set contains no object labels, unit 150 emerges as an ‘airplane’ object detector that activates much more
strongly on airplane objects than non-airplane objocts, a5 tested against a dataset of abeled object mages not proviously soen by the network. Tho jter plot shows peak

s for the unit on randomly sampled 1,000 airplane and 1,000 non-airplane Imagenet images, and the curves show the kernel density estimates of these activations.

https://arxiv.org/abs/2009.05041
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Understanding individual units in a DNN (Bau et al. 20")

OXFORD
Single units which reliably generate object classes Mathematical
Institute
(@) Progressive GAN architecture (© dissection of each convolutional layer (0 unit 314 activation for images with and without large windows
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Fig.3. The of object- and pecific units within a Prog GAN generator(19). (a) The analyzed Progressive GAN consists of 15 convolutional layers that
transform a random input vector into a synthesized image of a kitchen. (b) A single filter is visualized as the region of the output image where the filter activates beyond its top
1% quantile level; note that the filters are all precursors to the output. (c) Dissecting all the layers of the network shows a peak in object-specific units at LayerS of the network.
(d) A detailed examination of 1ayer5 shows more part-specific units than objects, and many visual concepts corresponding to multiple units. (e) Units do not correspond to
exact pixel patterns: a wide range of visual appearances for ovens and chairs are generated when an oven or chair part unit are activated. (f) When a unit specific to window
parts s tested as a classifier, on average the unit activates more strongly on generated images that contain large windows than images that do not. The jitter plot shows the
peak activation of unit 314 on 800 generated images that have windows larger than 5% of the image area as estimated by a segmentation algorithm, and 800 generated images
that do not. () Some counterexamples: images for which unit 314 does not activate but where windows are synthesized nevertheless.

https://arxiv.org/abs/2009.05041
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Editing individual units in a DNN (Bau et al. 20")

Removing units of classes decreases their generation
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Fig.4. The causal effect of altering units
within a GAN generalor. (a) When succes-
sively larger sets of units are removed from
a GAN trained to generate outdoor church
scenes, the tree area of the generated im-
agss is reduced. Removing 20 tree units
removes more than half the generated tree
pixels from the outpul. (b) Qualitative results:
removing tree units affects trees while leaving
ather objects intact. Building parts that were
previously occluded by trees are rendered as
if revealing the objects that were behind the
trees. (c) Doors can be added to buildings by
activating 20 door units. The location, shape,
size, and style of the rendered door depends
on the location of the activated units. The
same activation lavels produce different doors,
or no door at all (case 4) depending on loca-
tions. (d) Similar context dependence can be
seen quantitatively: doors can be added in
reasonable locations such as at the location
of a window, but not in abnormal locations
such as on a tree or in the sky.
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Diffusion processes &
OXFORD

Deterministic encoder for information preserving GAN sample Mathematical

Destructing data by adding noise —— > Noise

a4
Risiiaicie

Data <———— Generating samples b denoising — Noise

Given an input xp, repeatedly scale and add additive noise

xt = (1- 5t)1/2xt—1 + N(0, B)

which is repeated from initial data xo to x; = &>/ *xo + (1 — @)%
where € ~ N(0, (1 — @;)l) with ap =1 — B¢ and @y := N:_jas.

The deep network is trained to denoise x; to recover xp, unlike in a
normal GAN x; is not purely noise. New data generated by drawing from
N(0,(1 — &;)!) as if the xp is lost in the noise.
https://arxiv.org/abs/2209.00796
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