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Simulating physical systems with neural networks (Raissi 19’)

The dynamics is governed by the Navier-Stokes equations:

u + λ1(u · ∇)u = −∇p + λ2∆u.

Can the function approximation qualities of NN be used to
simulate the dynamics?
https://www.sciencedirect.com/science/article/abs/pii/S0021999118307125

Physics-Informed Neural Networks 2

https://www.sciencedirect.com/science/article/abs/pii/S0021999118307125


Two possible modalities of using neural networks for PDEs

Consider an abstract differential equation (for time-dependent
problems Ω = [0,T ]× Ω̃):

D[u;λ] = f , x ∈ Ω,

u(x) = g(x), x ∈ ∂Ω.

Two types of problems for which NNs can be helpful:

I Given fixed model parameters λ what can be said about the
unknown hidden state u of the system?

I What are the parameters λ that best describe the observed
data?

Using Neural Networks as basis for the approximation to reduce
the number of degrees of freedom to represent the solution.
Moreover, easy to combine data and physics in loss function.
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Data-driven inference - supervised learning

So far focussed on architecture, what about design of loss function?
With given training data can enforce observations with MSE:

Ldata(θ) = 1
Ndata

∑Ndata

i=1 |u(xi )− ui |2, m d2u
dx2 +µ du

dx + ku = 0.

https://benmoseley.blog/my-research/so-what-is-a-physics-informed-neural-network/
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Physics-informed inference: unsupervised training & PINNs

Incomplete data can be supplemented with physical knowledge.
Physics-informed loss, Lf enforces the PDE:

Lf (θ) =
1

Ncol

Ncol∑
i=1

|D[u](x if )− f (x if )|2,

where {(x if )}Ncol
i=1 represents the collocation points on Ω.

Note: Require NN to be sufficiently differentiable for this PDE
residual to be well-defined, i.e. no ReLU activation .
Typically have to impose also (initial) and boundary conditions:

Lb :=
1

Nb

Nb∑
i=1

|u(x ib)− g(x ib)|2,

with {(x ib)}Nb
i=1 ⊂ ∂Ω.
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Incomplete data can be supplemented with physical knowledge

Differential equation (damped oscillator): m d2u
dx2 + µdu

dx + ku = 0.

Mixed Loss: L(θ) = αLdata(θ) + (1− α)Lf (θ), α ∈ (0, 1).

Data Alone Data + Physics.
https://benmoseley.blog/my-research/so-what-is-a-physics-informed-neural-network/
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Data-driven discovery of PDE: Example, Navier–Stokes

ut + λ1 (uux + vuy ) = −px + λ2 (uxx + uyy )

vt + λ1 (uvx + vvy ) = −py + λ2 (vxx + vyy )

Here, λ = (λ1, λ2) are the unknown parameters (inverse of fluid density and the

kinematic viscosity). Given noisy measurements
{
t i , x i , y i , ui , v i

}N
i=1

of the

velocity field, we are interested in learning the parameters λ as well as the

pressure p(t, x , y). For this choose NN which approximates velocity field ψ

(∂xψ = u, ∂yψ = v) and pressure field p and minimize the mixed loss:

L :=
1

N

∑N
i=1

(∣∣u (t i , x i , y i
)
− ui

∣∣2 +
∣∣v (t i , x i , y i

)
− v i

∣∣2)
+

1

N

∑N
i=1 |ut + λ1 (uux + vuy ) + px − λ2 (uxx + uyy )|2(t i ,x i )

+
1

N

∑N
i=1 |vt + λ1 (uvx + vvy ) + py − λ2 (vxx + vyy )|2(t i ,x i ) .
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Data-driven discovery of PDE (Raissi et al. 19’)

Predicted vs exact pressure and PDE parameters
https://www.sciencedirect.com/science/article/abs/pii/S0021999118307125
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Incomplete data can be supplemented with physical knowledge

Differential equation (damped oscillator): m d2u
dx2 + µdu

dx + ku = 0.

Mixed Loss: L(θ) = αLdata(θ) + (1− α)Lf (θ), α ∈ (0, 1).

Generalisation error:
∫ T

0 |u(x)− u∗θ(x)|dx

Physics-Informed Neural Networks 13



The generalisation error of physics-informed neural networks

The error of PINNs on unseen points in the spatio-temporal
domain can be controlled in terms of training error, if:

I The solution of the underlying PDE is well-behaved (with
respect to perturbations of inputs) in a very precise manner.

I The number of collocation points is sufficiently large.

I Implicit constants that arise in the stability and quadrature
error estimates, which depend on the underlying PINNs, are
controlled in a suitable manner.

For the time being the precise architecture of the neural network
will be secondary, and we focus on the physics-informed loss.

Slightly simplified from: https://doi.org/10.1093/imanum/drab093
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Example - Poisson’s equation with Dirichlet bound. cond.

Let Ω = [0, 1] ⊂ R. For f ∈ L2([0, 1];R) consider

∂xxu = f , x ∈ Ω,

u = 0, x ∈ ∂Ω.
This is an example of a well-posed PDE with the following
properties:

I Existence and uniqueness of solutions: for every
f ∈ L2([0, 1];R) there is a unique solution u ∈ H2

0 (ω) such
that Poisson eq. is satisfied.

I Stability: By a standard (Poincaré) estimate:

‖u− v‖W 2,2(Ω;R) ≤ CΩ‖∂xxu− ∂xxv‖L2(Ω;R).
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An abstract framework for PDE problems

Abstract formulation of PDE D(u) = f, where D : X ∗ 7→ Y ∗ with
X ∗ ⊂W s,q (Ω;Rm) is a bounded operator and, Y ∗ ⊂ Lp (Ω;Rm) are
closed subspaces, for some m > 1, 1 ≤ p, q <∞ and s > 0. Note
Ω = (0,T )× Ωspace for time-dependent problems.

In previous example:
X = H2([0, 1]),X ∗ = H2

0 ([0, 1]),Y ∗ = Y = L2([0, 1]).

Well-posedness

I Existence and uniqueness of solutions: D : X ∗ → Y ∗ is a bijection.

I Stability: For any u, v ∈ X ∗, the differential operator D satisfies

‖u− v‖X ≤ Cpde ‖D(u)−D(v)‖Y

Here, the constant Cpde > 0 can explicitly depend on ‖u‖Z and
‖v‖Z , for some norm ‖ · ‖ZX

on a subspace ZX ⊂ X ∗.
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PINNs loss and generalisation error

I PDE Residual for neural network approximation:
Rθ = R(u∗

θ) := D(u∗
θ)− f ∈ Y ∗.

I Training/collocation points for PINN-loss: S = {yn}Nn=1 ⊂ Ω.

I We monitor the training error given by (recall Y ∗ ⊂ L2([0, 1])):

ET :=

(
N∑

n=1

wn |Rθ∗ (yn)|p
) 1

p

Definition (Generalisation error)
The error of approximating the solution u of PDE by the PINN u∗

θ,

EG = EG (θ∗;S) := ‖u− u∗
θ‖X = ‖u− u∗

θ‖W s,q .

Goal: Relate the generalisation error (unknown!) to the training error (known!).
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Choice of collocation points - numerical quadrature

To this end, we consider a generic mapping g : Ω 7→ Rm with
g ∈ Y ∗. We are interested in approximating the integral,

ḡ :=

∫
Ω
g(y)dy ,

with dy denoting the Lebesgue measure. In order to approximate
the above integral by a quadrature rule, we need the quadrature
points yi ∈ Ω for 1 ≤ i ≤ N for some N ∈ N as well as weights wi

with wi ∈ R+. Then a quadrature is defined by

ḡN :=
N∑
i=1

wig (yi )

for weights wi and quadrature points yi .
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Numerical approximation of integrals - quadrature

Assumption (Quadrature error)

We take a quadrature rule for which the error is bounded as

|ḡ − ḡN | ≤ Cquad

(
‖g‖ZY

, d̄
)
N−α,

for some α > 0, where ‖ · ‖ZY
is a norm on a suitable subspace

ZY ⊂ Y .

Example: Trapezoidal rule on Ω = [0, 1]. Take
xi = (i − 1)/(N − 1), i = 1, . . . ,N and
w1 = wN = 1/(2(N − 1)),wi = 1/(N − 1), i = 2, . . . ,N − 1. Then
the quadrature error satisfies the following bound:

|ḡ − ḡN | ≤
1

12
‖g ′′‖L∞N−2.
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Estimating the generalisation error

Theorem
Let u ∈ ZX ⊂ X ∗ be the unique solution of the PDE with all above
assumptions. Let u∗ ∈ ZX ⊂ X ∗ be the PINN. Further assume that
the residual Rθ∗ ∈ ZY and that the quadrature assumption is
satisfied. Then the following estimate on the generalization error
holds:

EG ≤ CpdeET + CpdeC
1
p

quadN
−α

p ,

with constants Cpde = Cpde

(
‖u‖ZX

, ‖u∗‖ZX

)
and

Cquad = Cquad

(
‖|Rθ∗ |p‖ZY

)
. Note that these constants

Cpde,Cquad depend on the underlying PINN u∗, which in turn can
depend on the number of training points N.
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Estimating the generalisation error

The theorem tells us that the generalisation error for the PINN is
small as long as:

I The training error ET is sufficiently small. Note that we have
no a priori control on the training error but can compute it a
posteriori.

I The quadrature error of the PDE residual is small, i.e. we
have sufficiently many well-chosen collocation points.

I The PDE is well-posed: this is encoded in the constant Cpde .

I The Neural Network is well-behaved: this is encoded in Cpde

and Cquad .

The above constants depend on the details on the underlying PDE
and quadrature rule and cannot be worked out in the abstract
setup here but can be computed in specific cases.
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Estimating the generalisation error (proof 1 of 2)

Apply the stability bound to the generalisation error to find

EG = ‖u− u∗‖X
≤ Cpde ‖D (u∗)−D(u)‖Y
≤ Cpde ‖R‖Y

where we recall R = Rθ∗ = D(u∗
θ)− f, is the residual corresponding to

the trained neural network u∗ and we used that D(u) = f .

By the fact that Y = Lp(Ω), the definition of the training error and the

quadrature rule, we see that

‖R‖pY ≈

(
N∑

n=1

wn |Rθ∗ |p
)

= EpT .
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Estimating the generalisation error (proof 2 of 2)

Hence, the training error is a quadrature for the residual and the
resulting quadrature error translates to

‖R‖pY ≤ E
p
T + Cquad N−α.

Therefore,

EpG ≤ Cp
pde‖R‖

p
Y

≤ Cp
pde

(
EpT + CquadN

−α) .
Thus,

EG ≤ CpdeET + CpdeC
1
p

quadN
−α

p

which is the desired estimate.
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Choice of collocation points in PINNs

The above theorem shows that the generalisation error is strongly dependent
on the quadrature error of the PDE residual Rθ∗ in ‖ · ‖Y , i.e.

‖R‖pY ≈
(∑N

n=1 wn |Rθ∗ |p
)

= EpT .

Equidistribution principle: Consider simple example,
∫ b

a
R(x)dx . Using

trapezoidal rule we have for a = x1 < · · · < xN = b∫ b

a

R(x)dx ≈
N−1∑
i=1

xi+1 − xi
2

(R(xi ) +R(xi+1)),

Error =
N−1∑
i=1

(xi+1 − xi )
2

12
maxx∈[xi ,xi+1]|R′′(x)|.

This suggests we want xi+1− xi small when maxx∈[xi ,xi+1]|R′′(x)| is large, i.e. we

want many collocation points in regions where the PDE residual varies rapidly.

→ if we have access to residual can sample collocation points adaptively!
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Adaptive collocation point sampling in PINNs

Residual-based Adaptive Distribution (RAD, Wu et al. 2023):
Sample collocation points according to the distribution

p(x) ∝ |Rθ(x)|k

E [|Rθ(x)|k ]
+ c

where Rθ(x) = D(u∗θ )(x)− f (x). Then repeatedly update collocation
points during training:

0. Choose initial set of collocation points (e.g. uniform sampling);

1. Train the PINN for a certain number of iterations;

2. Sample new set of collocation points according to PDE;

3. Repeat 1. & 2.

https://doi.org/10.1016/j.cma.2022.115671

Physics-Informed Neural Networks 25

https://doi.org/10.1016/j.cma.2022.115671
https://doi.org/10.1016/j.cma.2022.115671


Residual-based Adaptive Distribution (Lau 24’))

Convection equation:
∂u

∂t
+ β

∂u

∂x
= 0,

for x ∈ [0, 1], t ∈ [0,T ], u(x , 0) = h(x), x ∈ [0, 1].

https://openreview.net/pdf?id=GzNaCp6Vcg
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Failure modes of PINNs (Krishnapriyan et al. 21’)

Consider the effect on the optimisation landscape. Test case: 1d convection
∂u
∂t

+ β ∂u
∂x

= 0, for x ∈ Ω, t ∈ [0,T ], u(x , 0) = h(x), x ∈ Ω.
Here, β is the convection coefficient. General loss function for this problem is

L(θ) =
1

Nu

Nu∑
i=1

(
û − ui

0

)2

︸ ︷︷ ︸
inital data

+
1

Nf

Nf∑
i=1

λi

(
∂û

∂t
+ β

∂û

∂x

)2

︸ ︷︷ ︸
PDE

+
1

Nb

Nb∑
i=1

(û(θ, 0, t)− û(θ, 2π, t))2

︸ ︷︷ ︸
boundary data

where û = NN(θ, x , t) is the output of the NN.

https://arxiv.org/abs/2109.01050
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PINNs loss landscape (Krishnapriyan et al. 21’)

Loss landscapes for varying values of convection coefficient.
Observation: Non-trivial convection regime leads to more
challenging optimisation landscapes and reduces PINN
approximation quality. PDE solutions “less regular”...
https://arxiv.org/abs/2109.01050
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Transfer learning in PINNs (Krishnapriyan et al. 21’)

Performance of curriculum training on PINN
Observation: Instead of training the PINN to learn the solution
right away for cases with higher β, we start by training the PINN
on lower β (easier for the PINN to learn), then gradually move to
training the PINN on higher β.
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Adaptive collocation point sampling revisited (Lau et al. 24’)

Recall from lecture 9 (and neural tangent kernel theory) that for small stepsizes
η in gradient descent the training dynamics at training step t of the PINN is
approximately linear

R[u∗θt+1
](x)−R[u∗θt ](x) ≈ −ηΘt(x , x

′)R[u∗θt ](x
′),

where
Θt(x , x

′) = ∇θR[u∗θt ](x)∇θR[u∗θt ](x
′)>.

To optimise training dynamics, we would want to maximise the change in
residual on the collocation points, i.e. the quantity

∆Rθt (x ,S) = Rθt+1 (x ;S)−Rθt (x).

Instead of considering this for individual points, would be preferrable to have a
measure for change in R for a given set S of collocation points.

https://openreview.net/pdf?id=GzNaCp6Vcg
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Adaptive collocation point sampling revisited (Lau et al. 24’)

For this we fix a set of collocation points St . And given the neural
tangent kernel Θt(x , x

′) we can consider the inner product 〈·, ·〉HΘt

associated with this kernel and define

α(St) := 〈∆Rθt (·,St),∆Rθt (·,St)〉HΘt
,

where, for f1, f2 : Ω→ R,

〈f1(·), f2(·)〉HΘt
=

∫
Ω×Ω

f1(x)f2(x ′)

Θt(x , x ′)
dxdx ′.

https://openreview.net/pdf?id=GzNaCp6Vcg
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Refined generalisation error estimate (Lau et al. 24’)

Theorem
Suppose Ω = [0, 1]d and S ⊂ Ω is an i.i.d. sample of size NS from a fixed
distribution. Let ûθ be a NN which is trained on S by GD to convergence, with
a small enough learning rate such that Θt remains constant. Then, there exists
constants c1, c2, c3 = O (poly (1/NS , λmax (Θ0,S) /λmin (Θ0,S)) such that with
high probability over the random model initialization and the sample S,∫

Ω

|ûθ∞(x)− u(x)| dx ≤ c1 ‖Rθ∞(·)‖`1(S) + c2α(S)−1/2 + c3.

Previously: EG ≤ CpdeET + CpdeC
1
p

quadN
−α

p .

→ If training and architecture is taken into account (captured by Θt) then
generalisation error is smallest when α(S) is largest.

https://openreview.net/pdf?id=GzNaCp6Vcg
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PINNACLE (PINN Adap. ColLoc. and Exp. points selec.) (Lau 24’)

0. Initialise the NN with θ0.
1. Estimate the eigenfunctions ψt,i and eigenvalues λt,i of Θt :

Θt,St (x , x
′) =

∞∑
i=1

λt,iψt,i (x)ψt,i (x
′).

2. Observe that for any S̃ (even of size one):

α(S̃) = 〈∆Rθt (·, S̃),∆Rθt (·, S̃)〉HΘt
=
∞∑
i=1

λt,i |〈ψt,i (S̃),Rθt (S̃)〉|2︸ ︷︷ ︸
inner product of vectors

.

3. Sample collocation points St+1 from the estimated density

p(x) ∝ α̂(x), where α̂(x) = α({x}).

4. Take a gradient descent step and repeat 1.-3.

https://openreview.net/pdf?id=GzNaCp6Vcg
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PINNACLE (PINN Adap. ColLoc. and Exp. points selec.) (Lau 24’)

Adaptive collocation point selection for PINN

Convection equation:
∂u

∂t
+ β

∂u

∂x
= 0, x ∈ [0, 1], t ∈ [0,T ],

with u(x , 0) = h(x), x ∈ [0, 1].

https://openreview.net/pdf?id=GzNaCp6Vcg
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PINNACLE (PINN Adap. ColLoc. and Exp. points selec.) (Lau 24’)

Generalisation error during PINN training
https://openreview.net/pdf?id=GzNaCp6Vcg
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Further topics in deep learning for scientific computing

I Operator learning:
Boullé, N. & Townsend, A. (2024) ’A mathematical guide to
operator learning’, Handbook of Numerical Analysis.

Lu, L. et al. (2021) ’Learning nonlinear operators via DeepONet
based on the universal approximation theorem of operators’, Nature
Machine Intelligence.

I Large-scale Spatiotemporal Forecasting:
Bi, K. et al. (2023) ’Pangu-Weather: Accurate medium-range
global weather forecasting with 3D neural networks’, Nature.

Lam, R. et al. (2023) ’GraphCast: Learning Skillful Medium-Range
Global Weather Forecasting’, Science.

I Hybrid methods:
Song, W. et al. (2022) ’M2N: Mesh Movement Networks for PDE
Solvers’, NeurIPS.
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