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Simulating physical systems with neural networks (Raissi 19")

OXFORD

Mathematical
Institute

Vorticity
3
5 2
1
—1
T T T T T T T —3
—15 —10 —5 o 5 10 15 20 25
The dynamics is governed by the Navier-Stokes equations:
u+A(u-V)u=—-Vp+ Au.
Can the function approximation qualities of NN be used to
simulate the dynamics?
https://www.sciencedirect.com/science/article/abs/pii/S0021999118307125
Oxford Physics-Informed Neural Networks 2

Mathematics


https://www.sciencedirect.com/science/article/abs/pii/S0021999118307125

Two possible modalities of using neural networks for PDEs

Insti

Consider an abstract difNFerentiaI equation (for time-dependent
problems Q = [0, T] x Q):

Dlu; A] = f, x €Q,

u(x) = g(x), x € 09.
Two types of problems for which NNs can be helpful:

» Given fixed model parameters \ what can be said about the
unknown hidden state u of the system?

» What are the parameters X\ that best describe the observed
data?

Using Neural Networks as basis for the approximation to reduce
the number of degrees of freedom to represent the solution.
Moreover, easy to combine data and physics in loss function.
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Data-driven inference - supervised learning
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So far focussed on architecture, what about design of loss function?
With given training data can enforce observations with MSE:

_ 1 Naata 2
Laata(0) =y St lulx) — ui, m&Y 4+ pde + ku =0,
\ Training step: 10
. \
\ Exact solution

=== Neural network prediction
Training data

https://benmoseley.blog/my-research/so-what-is-a-physics-informed-neural-network/
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Data-driven inference - supervised learning

Mathematical
Institute

So far focussed on architecture, what about design of loss function?
With given training data can enforce observations with MSE:

»Cdata(e): 1 Z’Iv_data

Naata

u(x;) — uil?, dx2 —|—,u Y1 ku=0.

Training step: 1000

Exact solution
=== Neural network prediction
Training data

https://benmoseley.blog/my-research/so-what-is-a-physics-informed-neural-network/
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Physics-informed inference: unsupervised training & PINNs
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Incomplete data can be supplemented with physical knowledge.
Physics-informed loss, L£¢ enforces the PDE:

Neo
i 2o P10 = PP,

where {(x})},’\i‘i’ represents the coIIocatlon points on .
Note: Require NN to be sufficiently differentiable for this PDE
residual to be well-defined, i.e. no RelLU activation .

Typically have to impose also (initial) and boundary conditions:

. 2
b' NbZ’ Xb )|7

with {(x)}Ne, < 9.

Lr(6 1
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Incomplete data can be supplemented with physical knowledge
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Differential equation (damped oscillator): m% + u% + ku = 0.

Mixed Loss: £(0) = aLyata(0) + (1 — @)L (), a € (0,1).

\ Training step: 10 \ Training step: 150

\ / Y —— Neural netuor

Training data

K prediction

Data Alone Data + Physics.

https://benmoseley.blog/my-research/so-what-is-a-physics-informed-neural-network/
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Incomplete data can be supplemented with physical knowledge

Mathematical
Institute

Differential equation (damped oscillator): m% + u% + ku = 0.

Mixed Loss: £(0) = aLyata(0) + (1 — a)L£(0), o € (0,1).

Training step: 1000 Training step: 15000

Exact solution

Data Alone Data + Physics.

https://benmoseley.blog/my-research/so-what-is-a-physics-informed-neural-network/
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Data-driven discovery of PDE: Example, Navier—Stokes
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ur + A1 (uux +vuy) = —px+ Ao (U + uyy)

ve+ AL (uve +vvy) = —py + Ao (Vi + vyy)
Here, A = (A1, A\2) are the unknown parameters (inverse of fluid density and the
kinematic viscosity). Given noisy measurements {ti,xi,yi, u', v"};V:1 of the
velocity field, we are interested in learning the parameters X\ as well as the

pressure p(t, x,y). For this choose NN which approximates velocity field 1
(0« = u, 0,9 = v) and pressure field p and minimize the mixed loss:

L = NZ:\I:I (|u(t’,x’7y’)—u’|2—|—|v(t’,x’,y’)—v”2)
1
gy i [t A (uth + vity) + P = 2o (thoc + )

1
+NZIN:1 |Vt + M (UVX + VV)’) +py — A2 (VXX + Vy)’)l?t",x") ’
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Data-driven discovery of PDE (Raissi et al. 19') F
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Predicted pressure Exact pressure
2
1.4 0.0
1.3 1 —o1
125 o —-0.2
1.1 —0.3
1.0 -1 —0.4
0.9 —2 —05
2 4 6 8
z T
U uu, U, — 0.01(u u
Correct PDE ¢+ (uus +vuy) = —ps + (Uge + Uyy)

v + (uvg 4 vy) = —py + 0.01(vge + vyy)
. e + 0.999 (wug + vuy) = —pe + 0.01047 (ug + uyy)
Identified PDE (clean data) v+ 0.999(wvs + v0,) = —py + 0.01047(vya + vyy)

. . ug + 0.998(uty + vuy) = —pg +0.01057 (Ugy + Uyy)
Identified PDE (1% noise) | " 5 008 (up, + vv,) = —py + 0.01057(vrg + vyy)

Predicted vs exact pressure and PDE parameters

https://www.sciencedirect.com/science/article/abs/pii/S0021999118307125
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Incomplete data can be supplemented with physical knowledge
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Differential equation (damped oscillator): m dX2 + u 2+ ku = 0.

Mixed Loss: £(0) = aLyata(0) + (1 — @)L (), a € (0,1).

Training step: 15000

Exact solution

=== Neural network prediction
Training data
Physics loss training locations

Generalisation error: fOT lu(x) — up(x)|dx
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The generalisation error of physics-informed neural networks

The error of PINNs on unseen points in the spatio-temporal
domain can be controlled in terms of training error, if:

» The solution of the underlying PDE is well-behaved (with
respect to perturbations of inputs) in a very precise manner.

» The number of collocation points is sufficiently large.

» Implicit constants that arise in the stability and quadrature
error estimates, which depend on the underlying PINNs, are
controlled in a suitable manner.

For the time being the precise architecture of the neural network
will be secondary, and we focus on the physics-informed loss.

Slightly simplified from: https://doi.org/10.1093/imanum /drab093
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Example - Poisson’s equation with Dirichlet bound. cond.

Let Q =[0,1] C R. For f € L2(]0,1];R) consider

Oxxt = f, x € Q,

=0, x € 09.
This is an example of a weII posed PDE with the following

properties:
» Existence and uniqueness of solutions: for every
f € L2([0,1]; R) there is a unique solution u € H3(w) such
that Poisson eq. is satisfied.

» Stability: By a standard (Poincaré) estimate:

Ju=vllwzzqr) < CallOxu — IV 2(q;R)-
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An abstract framework for PDE problems

Abstract formulation of PDE D(u) = f, where D : X* — Y™ with
X* C W*9(Q;R™) is a bounded operator and, Y* C LP (Q2; R™) are
closed subspaces, for some m > 1,1 < p,qg < oo and s > 0. Note
Q=(0,T) x Qqpace for time-dependent problems.

In previous example:
X = H?([0,1]), X* = H3([0,1]), Y* =Y = L([0, 1]).
Well-posedness

» Existence and uniqueness of solutions: D : X* — Y™ is a bijection.

» Stability: For any u,v € X*, the differential operator D satisfies
[u—=vlx < Goae [D(u) = D(v)ll¥

Here, the constant C,ge > 0 can explicitly depend on |jul|z and
Iv||z, for some norm || - ||z, on a subspace Zx C X*.

Oxford Physics-Informed Neural Networks 16
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PINNs loss and generalisation error
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» PDE Residual for neural network approximation:
Ro = R(uj) :==D(uj) —f e Y™

» Training/collocation points for PINN-loss: S = {y,}N_, c Q.

» We monitor the training error given by (recall Y* C L?([0,1])):

v )
£r = (Z i [Ry- (yn)|*’>

n=1
Definition (Generalisation error)
The error of approximating the solution u of PDE by the PINN uj,

€6 =& (0%:8) = llu = ugllx = llu = ugllys.a -

Goal: Relate the generalisation error (unknown!) to the training error (known!).
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Choice of collocation points - numerical quadrature

Insti

To this end, we consider a generic mapping g : {2 — R™ with
g € Y*. We are interested in approximating the integral,

z= /Q g(y)dy.

with dy denoting the Lebesgue measure. In order to approximate
the above integral by a quadrature rule, we need the quadrature
points y; € Q for 1 < i < N for some N € N as well as weights w;
with w; € Ry. Then a quadrature is defined by

N
gv =Y wig (i)
i=1

for weights w; and quadrature points y;.

Oxford Physics-Informed Neural Networks 18
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Numerical approximation of integrals - quadrature

Assumption (Quadrature error)
We take a quadrature rule for which the error is bounded as

2~ &l < Couna (l8llz D) N,

for some ae > 0, where || - ||z, is a norm on a suitable subspace
Zy CY.

Example: Trapezoidal rule on Q = [0, 1]. Take
xi=(i—1)/(N=1),i=1,...,N and

wi =wy=1/(2(N-1)),w;=1/(N—-1),i=2,...,N—1. Then
the quadrature error satisfies the following bound:

_ 1 _
g —&n| < EHgHHL‘X’N 2,

Oxford Physics-Informed Neural Networks 19
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Estimating the generalisation error

Theorem

Let u € Zx C X* be the unique solution of the PDE with all above
assumptions. Let u* € Zx C X* be the PINN. Further assume that
the residual Ry~ € Zy and that the quadrature assumption is

satisfied. Then the following estimate on the generalization error
holds:

1

&6 < deegT + deeC N_%

P
quad

)

with constants Cpge = Cpde (||U||Zx> HU*HZX) and

Cquad = Cquad (||\R9*|p||zy). Note that these constants

Codes Cquaa depend on the underlying PINN u*, which in turn can
depend on the number of training points N.

Oxford Physics-Informed Neural Networks 20
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Estimating the generalisation error
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The theorem tells us that the generalisation error for the PINN is
small as long as:

» The training error £t is sufficiently small. Note that we have
no a priori control on the training error but can compute it a
posteriori.

» The quadrature error of the PDE residual is small, i.e. we
have sufficiently many well-chosen collocation points.

» The PDE is well-posed: this is encoded in the constant Cpge.

» The Neural Network is well-behaved: this is encoded in Cpge
and Cquad-
The above constants depend on the details on the underlying PDE
and quadrature rule and cannot be worked out in the abstract
setup here but can be computed in specific cases.

Oxford Physics-Informed Neural Networks
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Estimating the generalisation error (proof 1 of 2)

Apply the stability bound to the generalisation error to find

&e

[Ju—u™[|x
dee HD(U*) - D(U)HY

where we recall R = Ry~ = "DD 4|— u is the residual corresponding to
the trained neural network u* and we used that D(u) = f.

By the fact that Y = LP(Q), the definition of the training error and the
quadrature rule, we see that

I/\ IN

IRIE ~ Zane* s

Oxford Physics-Informed Neural Networks 22
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Estimating the generalisation error (proof 2 of 2)
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Hence, the training error is a quadrature for the residual and the
resulting quadrature error translates to

IRIG < €7 + Cauag N7°

Therefore,
8 < ChIRIG
< D (8 + CoaN ™).
Thus,

1 a
Ec < deegT+dee qpuade;

which is the desired estimate.

Oxford Physics-Informed Neural Networks
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Choice of collocation points in PINNs
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The above theorem shows that the generalisation error is strongly dependent
on the quadrature error of the PDE residual Ro~ in || - ||y, i.e.

IRIG ~ (S wa [Ro- ) = £2.

Equidistribution principle: Consider simple example, fab R(x)dx. Using
trapezoidal rule we have fora=x; < --- < xy = b

b Nl
/ R(x)dx ~ Z %(R(X;) + R(xi+1)),

i=1

N—1 (X‘ _ X‘)2
Error = Z %maxxe[m,xﬁlﬂR”(x)\.
i=1

This suggests we want xi41 — x; small when max,cy ., ,]|R”(x)] is large, i.e. we
want many collocation points in regions where the PDE residual varies rapidly.

— if we have access to residual can sample collocation points adaptively!

Oxford Physics-Informed Neural Networks
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Adaptive collocation point sampling in PINNs

Residual-based Adaptive Distribution (RAD, Wu et al. 2023):
Sample collocation points according to the distribution

ReGIE
P * Ryl T

where Ry(x) = D(uj)(x) — f(x). Then repeatedly update collocation
points during training:

0. Choose initial set of collocation points (e.g. uniform sampling);
1. Train the PINN for a certain number of iterations;
2. Sample new set of collocation points according to PDE;

3. Repeat 1. & 2.
https://doi.org/10.1016/j.cma.2022.115671
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Residual-based Adaptive Distribution (Lau 24"))
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Convection equation:

for xe€[0,1],t€[0,T], u(x,0)= h(x), x €[0,1].

59°0:6.6.08:8:F 8 B @und
AR S S S

Mean error
=
o
i3

0 100000 200000
Steps

-4 Uniform Rand Hammersley f-- RAD

https://openreview.net/pdf?id=GzNaCp6Vcg
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Failure modes of PINNs (Krishnapriyan et al. 21")
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Consider the effect on the optimisation landscape. Test case: 1d convection

9u 1 3% =0, forx € Qte[0,T], u(x,0)=h(x), xe€Q.

Here, 3 is the convection coefficient. General loss function for this problem is

1 . 6u 2
Le) = 5 > (u— uo) ZA ( )
inital data PDE
Np

Zaem)—u(e 2m, t))?

boundary data

where & = NN(, x, t) is the output of the NN.
https://arxiv.org/abs/2109.01050

Oxford Physics-Informed Neural Networks
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PINNs loss landscape (Krishnapriyan et al. 21")
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a .:u‘ a o " -

o [N H wh : " B

- » ‘ ‘ i : i,
- io - e
(af =10 (b) B =10.0 (¢) 5 =20.0 (d) 8 =30.0
B 1 | 10 | 20 | 30

Relative error

7.84x 1073 | 1.08 x 10~2 | 7.50 x 10~! | 8.97 x 10!

Absolute error

317x1073 | 6.03x1073 | 432x 107" [ 542 x 10~ T

Loss landscapes for varying values of convection coefficient.
Observation: Non-trivial convection regime leads to more
challenging optimisation landscapes and reduces PINN
approximation quality. PDE solutions “less regular” ...
https://arxiv.org/abs/2109.01050
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Transfer learning in PINNs (Krishnapriyan et al. 21") i
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1.00 e 1.00
0.75 0.75
5
0.50

~+-Regular training = Curriculum training

i lo2s . 025
@15 / f o0 My 0.0
10 o o2

5 050 “050
~0.75 1 -0.75.

0 100 g 0 100

Training duration t
(a) Curriculum (b) Regular training PINN solution (¢) Curriculum training PINN
regularization schematic for B =30 solution for 8 = 30

Performance of curriculum training on PINN
Observation: Instead of training the PINN to learn the solution
right away for cases with higher 3, we start by training the PINN

on lower [ (easier for the PINN to learn), then gradually move to
training the PINN on higher 5.
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Adaptive collocation point sampling revisited (Lau et al. 24")

Recall from lecture 9 (and neural tangent kernel theory) that for small stepsizes
7 in gradient descent the training dynamics at training step t of the PINN is
approximately linear

Rlug, 1 1(x) — Rlug 1(x) & —nO¢(x, X' R[ug,](x'),

where
©:(x,x') = VoR[uz J(x)VoR[uz J(x') -
To optimise training dynamics, we would want to maximise the change in
residual on the collocation points, i.e. the quantity
ARgt(X, S) = R0t+1 (X; S) - Rer (X)
Instead of considering this for individual points, would be preferrable to have a
measure for change in R for a given set S of collocation points.

https://openreview.net/pdf?id=GzNaCp6Vcg
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Adaptive collocation point sampling revisited (Lau et al. 24")

For this we fix a set of collocation points S;. And given the neural
tangent kernel ©(x, x') we can consider the inner product (-, )3,
associated with this kernel and define

a(St) == (AR, (-, St), AR, (-, St))He, »

where, for 1, : Q — R,

(OB, = [ ACLICMG

axa ©i(x,x’)

https://openreview.net/pdf?id=GzNaCp6Vcg
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Refined generalisation error estimate (Lau et al. 24")
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Theorem

Suppose Q = [0,1]¢ and S C Q is an i.i.d. sample of size Ns from a fixed
distribution. Let g be a NN which is trained on S by GD to convergence, with
a small enough learning rate such that ©; remains constant. Then, there exists
constants ci, ¢z, c3 = O (poly (1/Ns, Amax (©o,5) /Amin (©0,s)) such that with
high probability over the random model initialization and the sample S,

/ .. () — u()] dx < & [Rone (Y sgs) + 20(S) 2 + s
Q

o

1
Previously: Ec < CGuelr + Coae CL N 7.

quad

— If training and architecture is taken into account (captured by ©¢) then
generalisation error is smallest when «(S) is largest.

https://openreview.net/pdf?7id=GzNaCp6Vcg
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PINNACLE (PINN Adap. ColLoc. and Exp. points selec.) (Lau 24")
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0. Initialise the NN with 6. ]
1. Estimate the eigenfunctions v ; and eigenvalues A;; of ©;:

@tst X, X Z)\tﬂ/}tl X)’l/)t,(X)

i=1

2. Observe that for any S (even of size one):

a(8) = (ARe,(- 5), ARo, (- S ZA“ (©i(8), Ra (S) .

i=1

inner product of vectors

3. Sample collocation points S:+1 from the estimated density
p(x) < &(x), where &(x) = a({x}).
4. Take a gradient descent step and repeat 1.-3.

https://openreview.net/pdf?7id=GzNaCp6Vcg
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PINNACLE (PINN Adap. ColLoc. and Exp. points selec.) (Lau 24")
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0.997
0.832
0.666
0.500
0.335
0.169
0.004
-0.162
-0.327
-0.493

1000 05 100.0 05
X X

e PDECLPts = ICCLPts = BCCLPts

Adaptive collocation point selection for PINN

du

ot

Convection equation: + 5% =0, xe€]0,1],t€]0, T],
with u(x,0) = h(x), x €[0,1].

https://openreview.net/pdf?id=GzNaCp6Vcg
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PINNACLE (PINN Adap. ColLoc. and Exp. points selec.) (Lau 24")
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"('g,rwn.o_,.s.@_a_,, ...... @
¥ 11 L gpT¥

Mean error

107t § o
0 100000 200000
Steps
4= Uniform Rand ¢~ Hammersley --{-- RAD —#— PINNACLE-S

Generalisation error during PINN training
https://openreview.net/pdf?id=GzNaCp6Vcg
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Further topics in deep learning for scientific computing

>

Operator learning:

Boullé, N. & Townsend, A. (2024) 'A mathematical guide to
operator learning’, Handbook of Numerical Analysis.

Lu, L. et al. (2021) 'Learning nonlinear operators via DeepONet

based on the universal approximation theorem of operators’, Nature
Machine Intelligence.

Large-scale Spatiotemporal Forecasting:

Bi, K. et al. (2023) 'Pangu-Weather: Accurate medium-range
global weather forecasting with 3D neural networks’, Nature.

Lam, R. et al. (2023) 'GraphCast: Learning Skillful Medium-Range
Global Weather Forecasting’, Science.

Hybrid methods:
Song, W. et al. (2022) '"M2N: Mesh Movement Networks for PDE
Solvers’, NeurlPS.
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