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The ever increasing size of Machine Learning models
Ever larger deep nets show improved performance

”The results we survey show that today’s sparsification methods can lead

to a 10-100x reduction in model size, and to corresponding theoretical

gains ... all without significant loss of accuracy.”

https://arxiv.org/pdf/2102.00554
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The importance of computational efficiency
The energy cost is substantial

”People are often curious about how much energy a ChatGPT
query uses; the average query uses about 0.34 watt-hours, about
what an oven would use in a little over one second. (Sam Altman,
OpenAI CEO)”
https://blog.samaltman.com/the-gentle-singularity

Review of energy consumption of open source image and video
models suggest video generation is about 2000 times more costly
than text generation; strongly dependent on text / video length
and resolution; details in:
https://arxiv.org/pdf/2509.19222?

Estimate 10-second Sora video consumes 1kWh of electricity; UK
house 8-10kWh per day.
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The importance of computational efficiency
The energy cost at inference is a primary limitation to deployment

”On September 30, OpenAI debuted its Sora video creation app
for Apple’s iOS platform racking up a stunning 1 million downloads
in a week despite an invitation-only rollout. By Halloween the app
had been downloaded 4 million times, per AppFigures, and was
churning out millions of 10-second AI-generated videos per day.

More than $5 billion annualized, or around $15 million per day,
according to Forbes estimates and conversations with experts.
When Bill Peebles, OpenAI’s head of Sora, observed on October 30
that “The economics are currently completely unsustainable,” he
was right on the money.”
https://www.forbes.com/sites/phoebeliu/2025/11/10/openai-
spending-ai-generated-sora-videos/
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Sparsifying deep networks
Severe overparameterisation and scale of modern nets

I Deep nets for some state of the art tasks have vast numbers
of trainable parameters:

I ResNet101, image classification - 45 million parameters
I GPT-3, text generation - 175 billion parameters
I T5-XXL, language model - 1.6 trillion parameters

I An approximation theory viewpoint suggest this isn’t necessary
at inference, see Optimal Approximation with Sparsely
Connected Deep Neural Networks, Bolcskei et al. 2019.
https://arxiv.org/abs/1705.01714

I Practise tell us the number of parameters in MLP and CNNs
can be reduced to 5% or fewer parameters without loss of
accuracy.
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Sparsity throughout deep learning (Hoefler 21’)
Sparsity appears in numerous aspects of deep learning

https://arxiv.org/pdf/2102.00554
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Sparsifying and the lottery ticket hypothesis
Reducing the number of parameters initially improves accuracy

https://arxiv.org/pdf/2102.00554.pdf
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How to create sparse networks
At initialisation and dynamic pruning

I Starting with a sparse network: pruning at initialisation:
I From any network, random or trained, determine a measure of

importance for a parameter in the network and set the
parameter to zero if below that threshold.

I Examples include: magnitude of the parameters, gradient of
the loss with respect to that parameter, or measure of
information flow.

I Dynamic sparsifying the network:
I Prune as above, but allow some entries to be reintroduced and

then pruned again during training.
I Most successful is to prune based on magnitude and

re-introduce based on training gradient magnitude.

I This is an increasingly active area due to the every growing
size of networks.
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Deep network pruning algorithms
Consider the network linearization in parameter space

Expand the loss in parameter space and measure loss changes with

parameters; identify parameters that don’t impact the loss function

L(θ + δθ)− L(θ) ≈ (δθ)T∇θL(θ) +
1

2
(δθ)TH(θ)(δθ)

I Lecun et al. 89’ considered convergence, ∇θL(θ) ≈ 0, and

approximate the Hessian H(θ) as diagonal, then the change in the

loww by removing an entry θi is 1
2θ

2
i ∇2

θi
L. This is a ”saliency score”

for each parameter and those with small values can be removed.

https://proceedings.neurips.cc/paper/1989/file/6c9882bbac1c7093bd25041881277658-Paper.pdf

I Wang et al. 19’ consider a much simply version where the Hessian

is the Identity, H(θ) = I , which simplifies to removing the entries

with smallest magnitude; Iterative Magnitude Pruning (IMP).

https://proceedings.mlr.press/v97/wang19g/wang19g.pdf
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Neural network pruning techniques
A few examples

I L0−regularization of the weights by adding sparsifying weight
decay; Louizos et al. 18’
https://arxiv.org/pdf/1712.01312

I LAP removes small weights while taking into account
magnitude of incoming and outgoing connections; Park et al.
20’ https://openreview.net/pdf?id=ryl3ygHYDB

I A review of methods suggests few methods are reliably better
than simple magnitude pruning; Gale et al. 19’
https://arxiv.org/pdf/1902.09574
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Pruning at initialization: example score functions
Randomly initialize, then score the value of weights

I SNIP by Lee et al. 19’;
∣∣∣∂L(θ)
∂θ · θ

∣∣∣
https://openreview.net/pdf?id=B1VZqjAcYX

I GraSP by Wang et al. 19’ −
(
H ∂L(θ)

∂θ

)
· θ

https://openreview.net/pdf?id=SkgsACVKPH

I FORCE by de Jorge et al. 21’
∣∣∣∂L(θ̃)
∂θ · θ

∣∣∣ with θ̃ after pruning

https://openreview.net/pdf?id=9GsFOUyUPi

I And many many more....
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Dynamic sparse training
Include rules to train, prune, regrow, repeat

I SET by Mocanu et al. 18’: magnitude pruning and random
regrowing entries
https://www.nature.com/articles/s41467-018-04316-3.pdf

I DSR by Mostafa and Wang et al. 19’: similar to SET but
proportion pruned not constant throughout iterates and
sparsity across layers can vary
https://proceedings.mlr.press/v97/mostafa19a/mostafa19a.pdf

I RigL by Evci et al 20’: magnitude pruning and regrowing
based on gradient magnitude
https://arxiv.org/pdf/1911.11134

I And many many more....
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Dense trained networks can be pruned and re-trained
Succesively increasing sparsity constraints

https://arxiv.org/pdf/2102.00554

Structure: Entries of dense nets can be pruned individually to
effectively architecture adaptation by removing entire filters in
CNNs or heads in multi-head attention.
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Fraction of active per layer is key (Frankle 21’)
Fix a fractional sparsity at initialization

”Pruning neural networks at initialization: why are we missing the
mark?” (Frankle et al. 2021) conjecture the key ingredient is the
fractional sparsity per layer, not the particular algorithm.
”When using the methods for pruning at initialization, it is possible
to reinitialize or layerwise shuffle the unpruned weights without
hurting accuracy. This suggests that the useful part of the pruning
decisions of SNIP, GraSP, SynFlow, and magnitude at initialization
are the layerwise proportions rather than the specific weights or
values.”
https://arxiv.org/pdf/2009.08576
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Extreme sparsity with additive component (Price et al. 21’)
Dense for the price of sparse; including a dense additive component

Rather than sparse weight matrices alone, use a dense fast
transform plus a trainable sparse matrix
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Sketching and low-rank models
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Low-rank weight matrices, sketching
Low-rank structure has immediate computational benefits

Between the matrix vector multiplication learn sketching matrices
S1 and S2 then absorb S2 into the weight matrix and apply S1 and
W̃ sequentially
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Learning low-rank projections of pre-trained DNN
Examples on pre-trained VGG and ResNet

The hidden layer outputs have varying sizes. Apply sketching to fit
within a maximum memory constraint. Large hidden layers not
stored, only their sketches, but retain the original dimensions.

6x

Compressed Acc: 73.0%
Baseline Acc: 73.36%

Compressed Acc: 74.0% 
Baseline Acc: 74.2%

8x
4x

Compressed Acc:  68.2%
Baseline Acc: 69.7%
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Low-rank ”pruning” during training
Observing training through the spectra

Spectra of randomly initialized matrices have known distributions. During

training check the spectra and project out spectra that is consistent from

unlearned random matrices.

Enhancing accuracy in deep learning using random matrix theory by

Berlyand et al. 2023.

https://arxiv.org/abs/2310.03165
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Attention mechanism (Vaswani 17’), equations
Key and Query quadratic form to highlight relations

Patches of inputs of a fixed dimension are extracted and arranged into a
matrix X , similar to CNNs. They queries, keys, and values are then
computed with matrix-products QT = WQX

T , KT = WKX
T , and

V T = WVX
T then the re-activation attention layer is

H = softmax
(
QKTn−1/2

)
V

The scaling α is typically 1/2, but also sometimes 1, and generally Q and
V have layer-norm applied to enforce fixed mean and variance.
Multi-head attention concatenates many of these and multiply by a
weight matrix.
https://arxiv.org/abs/1706.03762

https://arxiv.org/abs/1607.06450
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Attention quadratic bottleneck
Hashing to generate block sparse matrices

The product QKT generates a large matrix whose computation is
one of the main bottlnecks for Attention based models. Hashing
computes a block sparse approximation as follows: letting
Q,K ∈ Rn×d draw W ∈ Rd×s with s � d the hasing number of
blocks. Form QW ∈ Rn × p where (QW )ij measures the
correlation of row i in Q with column j in W . The largest entry in
the i th row of QW indicates the column in W most aligned with
the i th row in Q; letting λj be the index set of rows in Q most
aligned with column j of W . Repeat for K to get a similar
partitioning λ̃j of the rows in K . Rather than compute QKT , form
just the s blocks with rows in λj and columns in λ̃j for j = 1 . . . s.
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Attention quadratic bottleneck (Han et al. 23’)
Hashing to generate block sparse matrices

Rather than computing the product

H = softmax
(
QKTd−α

)
V

approximate
(
QKTd−α

)
by hashing, and then sketch its product

with V by selecting a subset of columns on A and associated rows
in V .
HyperAttention: Long-context attention in near-linear time, Han et
al., 2023.
https://arxiv.org/pdf/2310.05869
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Pruning and low-rank for Attention
Local and global structure by combining sparse plus low-rank

Pixelated Butterfly: Simple and Efficient Sparse Training for
Neural Network Models by Dao et al, 2022.
https://arxiv.org/abs/2112.00029
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Low-rank in deep nets is being studied more broadly
LoRA and Galore

LoRA: Low-rank adaptation of large language models by Hu et al.
2021 takes a pre-trained network and includes a low-rank addition
for fine-tuning. Specifically, the original weights are held fixed, but
for each layer they add a low-rank trainable component for
time-tuning / transfer learning.
https://arxiv.org/abs/2106.09685

GaLORE: Memory-efficient LLM training by gradient low-rank
projection by Zhao et al. 2024 uses a low-rank gradient update.
https://arxiv.org/abs/2403.03507

”Low-rank” is a growing theme at the leading ML conferences.
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Some approximation theory for sparsity
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The Lottery Ticket Hypothesis (Frankle 19’)
Theory suggesting pruning at initialization is possible

”A randomly-initialized, dense neural network contains a subnet-
work that is initialized such that—when trained in isolation—it can
match the test accuracy of the original network after training for at
most the same number of iterations.”

https://arxiv.org/pdf/1803.03635
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Proving the Lottery Ticket Hypothesis (Malach 20’0
Approximation theory of sparse nets

Theorem: (Malach et al. 20’)

Let F be a network of depth ` such that ‖W F‖2 ≤ 1, ‖W F‖max ≤
n−1/2 where n is the width. Fix some ε, δ ∈ (0, 1). Let G be a
network of width poly(d , n, `, ε−1 log(1/δ) and depth 2` with W G

initialized U[−1, 1]). Then with probability at least 1 − δ over the
the initialization of G , there exists a sub-network G̃ of G with
supx∈χ |G̃ (x) − F (x)| ≤ ε and G̃ has at most O(dn + n2`) neu-
rons.

Note, the sub-network has the same order number of parameters
n2`, potentially with a worst constant. No direct training!
https:

//proceedings.mlr.press/v119/malach20a/malach20a.pdf
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Optimal approximation rates with sparse nets
Bolcskei et al. 2018.

In the below paper they show that all functions that can be
approximated well using ”affine-systems” (e.g. Wavelets and
similar) can also be well approximated by sparsely connected deep
networks.
These results are achieved by considering the class of networks
with a fixed budget of parameters and considering the union of
possible width and depth networks.
https://arxiv.org/pdf/1705.01714
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Some theory for initialization and sparsity in
the hidden layers
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Fully connected and convolutional neural network
Increasingly large networks scaled through n

We will consider sequences of increasing size fully connected
networks

h
(`)
i (x)[n] =

N`−1[n]∑
j=1

W
(`)
ij z

(`−1)
j (x)[n]+b

(`)
i , z

(`)
j (x)[n] = φ(h

(`)
j (x)[n]),

The objects h
(`)
i (x)[n] are referred to as pre-activation values and

φ(·) is the nonlinear activation, here applied entrywise.

Typical initializations of such networks have parameters, weight
matrices W (`) and biases b(`), which are drawn i.i.d. such as
N (0, σ2

w/N
(`)[n]) and N (0, σ2

b).

Intuitively the pre-activation entries are then mean-zero Gaussian.
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Pseudo-iid weight matrices
Examples include: i.i.d. entries, but also unitary, low-rank, and structured sparse matrices

Definition: Pseudo-iid distribution (Naite Saada et al. 23’)

Definition (Pseudo-iid)
The random matrix W = (Wij) ∈ Rm×n is in the Pseudo-iid distribution with
parameter σ2 if

1. the matrix is row-exchangeable and column-exchangeable,

2. its entries are centered, uncorrelated, with variance E(W 2
ij ) = σ2

n
,

3. E
∣∣∑n

j=1 ajWij

∣∣8 = K‖a‖8
2n
−4 for some constant K ,

When weight matrices W (`), 1 ≤ ` ≤ L + 1, of a neural network are drawn
from a Pseudo-iid distribution, we will say that the network is under the
Pseudo-iid regime.

The Pseudo-iid distribution generalized i.i.d. to also include suitably drawn
low-rank matrices and matrices with structured sparsity.
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Pseudo-iid matrices generate a Gaussian process
Convergence of distribution with width to Gaussian with computable co-variance

Thm: GP limit for Pseudo-iid networks (Naite Saada et al. 23’)

Fully-connected neural networks with Pseudo-iid weight matrices
with parameter σ2

W then the sequence of random fields (i , x) ∈
[N`]×X 7→ h

(`)
i (x)[n] ∈ RN` converges in distribution to a centered

Gaussian process (i , x) ∈ [N`] × X 7→ h
(`)
i (x)[∗] ∈ RN` , whose

covariance function is given by

E
[
h

(`)
i (x)[∗] · h(`)

j (x ′)[∗]
]

= δi ,jK
(`)(x , x ′),

where

K (`)(x , x ′) = σ2
b + σ2

WE(u,v)∼N (0,K (`−1)(x ,x ′))[φ(u)φ(v)], ` ≥ 1

Similar results for CNNs with increasing number of channels for
intermediate layers.
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Sparse hidden layers (Price et a. 21’)
Two natural options for sparsifying activations: shifted ReLU and Soft Thresholding

Sparse hidden layers reduce network computation: exemplar sparsity
inducing activations are the shifted ReLU and soft thresholding

ReLUτ (x) =

{
x − τ, if x > τ

0, otherwise,

STτ (x) =

{
x − sign(x)τ, if |x | > τ

0, otherwise,
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Sparsity inducing activations ReLUτ and STτ are unstable
The EoC χ = 1 condition ensures V ′(q∗) = 1 and V ′′(q∗) > 0

ReLUτ and STτ with EoC condition χ = 1 causes V ′(q∗) = 1 and
V ′′(q∗) > 0 resulting in unstable GP and failure to train:

Magnitude clipping recovers stable GP, e.g.
CReLUτ,m(x) = max(ReLUτ (x),m) and

CSTτ,m(x) =


0, if |x | < τ

x − sign(x)τ, if τ < |x | < τ + m

sign(x)m, if |x | > τ + m.
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Accuracy vs sparsity for clipped soft thresholding CSTτ,m
Fully connected shows full accuracy at 85% sparsity

DNN on MNIST CNN on CIFAR10

s m V ′(q∗) Acc. Sparsity Acc. Sparsity

0.5 2 0.9 0.92 0.5 0.71 0.5

0.7 1.2 0.7 0.94 0.7 0.68 0.67

0.8 0.72 0.5 0.92 0.80 0.66 0.79
1.06 0.7 0.95 0.80 0.65 0.78
1.61 0.9 0.11 0.15 0.31 0.18

0.85 0.67 0.5 0.76 0.85 0.63 0.84
1 0.7 0.93 0.85 0.63 0.83
1.5 0.9 0.14 0.11 0.29 0.12

The clipping magnitude, m, controls the stability of the GP by
decreasing V ′(q∗) but lower values of m limit accuracy
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Summary: Sparsity and low-rank structure for efficient DNN
A widely studied topic since 2018, increasingly important with LLMs

I Sparsity and low-rank allow gradual trade-off between
accuracy, number of parameters, and robustness

I There are a numerous algorithms and architecture specific
variants.

I The focus of pruning and sketching is typically on
computationally efficiency, but it also has benefits for
robustness; a property far less explored.

I Sparsity inducing activations can be designed to allow training
with high fractions of sparsity

I Attention matrices are notably different sparsity structures
than need more specialized approximations
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