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The ever increasing size of Machine Learning models

Ever larger deep nets show improved performance

Mathematical
Institute

"The results we survey show that today's sparsification methods can lead
to a 10-100x reduction in model size, and to corresponding theoretical
gains ... all without significant loss of accuracy.”
https://arxiv.org/pdf/2102.00554
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The importance of computational efficiency

The energy cost is substantial

"People are often curious about how much energy a ChatGPT
query uses; the average query uses about 0.34 watt-hours, about
what an oven would use in a little over one second. (Sam Altman,
OpenAl CEO)"

https://blog.samaltman.com/the-gentle-singularity

Review of energy consumption of open source image and video
models suggest video generation is about 2000 times more costly
than text generation; strongly dependent on text / video length
and resolution; details in:
https://arxiv.org/pdf/2509.192227

Estimate 10-second Sora video consumes 1kWh of electricity; UK
house 8-10kWh per day.

Oxford Computational efficiency of deep nets: pruning and sparsity
Mathematics


https://blog.samaltman.com/the-gentle-singularity
https://arxiv.org/pdf/2509.19222?

The importance of computational efficiency

The energy cost at inference is a primary limitation to deployment

"On September 30, OpenAl debuted its Sora video creation app
for Apple's iOS platform racking up a stunning 1 million downloads
in a week despite an invitation-only rollout. By Halloween the app
had been downloaded 4 million times, per AppFigures, and was
churning out millions of 10-second Al-generated videos per day.

More than $5 billion annualized, or around $15 million per day,
according to Forbes estimates and conversations with experts.
When Bill Peebles, OpenAl’s head of Sora, observed on October 30
that “The economics are currently completely unsustainable,” he
was right on the money.”

https://www.forbes.com /sites/phoebeliu/2025/11/10/openai-
spending-ai-generated-sora-videos/
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Sparsifying deep networks

Severe overparameterisation and scale of modern nets

» Deep nets for some state of the art tasks have vast numbers
of trainable parameters:

> ResNetl101, image classification - 45 million parameters
» GPT-3, text generation - 175 billion parameters
» T5-XXL, language model - 1.6 trillion parameters
» An approximation theory viewpoint suggest this isn't necessary
at inference, see Optimal Approximation with Sparsely
Connected Deep Neural Networks, Bolcskei et al. 2019.
https://arxiv.org/abs/1705.01714

» Practise tell us the number of parameters in MLP and CNNs
can be reduced to 5% or fewer parameters without loss of
accuracy.

Oxford Computational efficiency of deep nets: pruning and sparsity
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Sparsity throughout deep learning (Hoefler 21")

Sparsity appears in numerous aspects of deep learning

OXFORD

Mathematical
Institute
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Sparsifying and the lottery ticket hypothesis

Reducing the number of parameters initially improves accuracy

Mathematical
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How to create sparse networks

At initialisation and dynamic pruning

Institute

» Starting with a sparse network: pruning at initialisation:

» From any network, random or trained, determine a measure of
importance for a parameter in the network and set the
parameter to zero if below that threshold.

» Examples include: magnitude of the parameters, gradient of
the loss with respect to that parameter, or measure of
information flow.

» Dynamic sparsifying the network:

» Prune as above, but allow some entries to be reintroduced and
then pruned again during training.

» Most successful is to prune based on magnitude and
re-introduce based on training gradient magnitude.

» This is an increasingly active area due to the every growing
size of networks.

Oxford Computational efficiency of deep nets: pruning and sparsity 8
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Deep network pruning algorithms

Consider the network linearization in parameter space

Expand the loss in parameter space and measure loss changes with
parameters; identify parameters that don't impact the loss function

L(6 4 60) — L(0) = (60)TVoL(6) + %(59)%(0)(59)

> Lecun et al. 89" considered convergence, Vo L(6) ~ 0, and
approximate the Hessian H(6) as diagonal, then the change in the
loww by removing an entry 6; is 362V L. This is a "saliency score”
for each parameter and those with small values can be removed.

https://proceedings.neurips.cc/paper/1989/file/6c9882bbac1c7093bd25041881277658-Paper . pdf

» Wang et al. 19' consider a much simply version where the Hessian
is the Identity, H(6) = I, which simplifies to removing the entries
with smallest magnitude; Iterative Magnitude Pruning (IMP).
https://proceedings.mlr.press/v97/wangl19g/wangl9g.pdf
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Neural network pruning techniques

A few examples

» [O0—regularization of the weights by adding sparsifying weight
decay; Louizos et al. 18’
https://arxiv.org/pdf/1712.01312

» LAP removes small weights while taking into account
magnitude of incoming and outgoing connections; Park et al.
20" https://openreview.net/pdf?id=ryl3ygHYDB

> A review of methods suggests few methods are reliably better

than simple magnitude pruning; Gale et al. 19’
https://arxiv.org/pdf/1902.09574

Oxford Computational efficiency of deep nets: pruning and sparsity 10
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Pruning at initialization: example score functions

Randomly initialize, then score the value of weights

> SNIP by Lee et al. 19'; ‘%&9) .«9’
https://openreview.net/pdf?id=B1VZqjAcYX

» GraSP by Wang et al. 19" — (H%(:)) .0
https://openreview.net/pdf?id=SkgsACVKPH

» FORCE by de Jorge et al. 21’ ‘%&9) . 9‘ with @ after pruning
https://openreview.net/pdf?id=9GsFOUyUPi

» And many many more....

Oxford Computational efficiency of deep nets: pruning and sparsity 11
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Dynamic sparse training

Include rules to train, prune, regrow, repeat

Mathematical
Institute

» SET by Mocanu et al. 18": magnitude pruning and random
regrowing entries
https://www.nature.com/articles/s41467-018-04316-3.pdf

» DSR by Mostafa and Wang et al. 19': similar to SET but
proportion pruned not constant throughout iterates and
sparsity across layers can vary
https://proceedings.mlr.press/v97/mostafal9a/mostafal9a.pdf

> RiglL by Evci et al 20": magnitude pruning and regrowing
based on gradient magnitude
https://arxiv.org/pdf/1911.11134

» And many many more....

Oxford Computational efficiency of deep nets: pruning and sparsity
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Dense trained networks can be pruned and re-trained

Succesively increasing sparsity constraints

Mathematical
Institute
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Fig. 9. An illustration of a standard gradual pruning schedule including fine-tuning periods, applied to
RESNET-50 on the ImageNet dataset. The graph depicts the evolution of the validation accuracy for two
different methods (global magnitude pruning and WoodFisher [Singh and Alistarh 2020]) across time.

https://arxiv.org/pdf/2102.00554
Structure: Entries of dense nets can be pruned individually to
effectively architecture adaptation by removing entire filters in
CNNs or heads in multi-head attention.

Oxford Computational efficiency of deep nets: pruning and sparsity
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Fraction of active per layer is key (Frankle 21")

Fix a fractional sparsity at initialization

"Pruning neural networks at initialization: why are we missing the
mark?" (Frankle et al. 2021) conjecture the key ingredient is the
fractional sparsity per layer, not the particular algorithm.

"When using the methods for pruning at initialization, it is possible
to reinitialize or layerwise shuffle the unpruned weights without
hurting accuracy. This suggests that the useful part of the pruning
decisions of SNIP, GraSP, SynFlow, and magnitude at initialization
are the layerwise proportions rather than the specific weights or
values.”

https://arxiv.org/pdf/2009.08576
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Extreme sparsity with additive component (Price et al. 21") .

Dense for the price of sparse; including a dense additive component

Mathematical
Institute
Rather than sparse weight matrices alone, use a dense fast
transform plus a trainable sparse matrix
CIFAR10 CIFAR100
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Sketching and low-rank models
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Low-rank weight matrices, sketching

Low-rank structure has immediate computational benefits

OXFORD

Mathematical
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Between the matrix vector multiplication learn sketching matrices
51 and S, then absorb Sy into the weight matrix and apply S1 and
W sequentially
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Learning low-rank projections of pre-trained DNN

Examples on pre-trained VGG and ResNet

OXFORD

Mathematical
Institute

The hidden layer outputs have varying sizes. Apply sketching to fit
within a maximum memory constraint. Large hidden layers not
stored, only their sketches, but retain the original dimensions.
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Low-rank " pruning” during training
Observing training through the spectra

Mathematical
Institute

(a) (b)

Figure 4: Comparison of Normal DNN, trained normally, and pruned DNN, trained using the RMT
approach on the training set. The sub-figures correspond to the different initial topologies: (a)
[784, 3000, 4000, 3000, 500, 10], (b) [784, 2000, 2000, 2000, 2000, 1000, 500, 10].

Spectra of randomly initialized matrices have known distributions. During
training check the spectra and project out spectra that is consistent from
unlearned random matrices.

Enhancing accuracy in deep learning using random matrix theory by
Berlyand et al. 2023.

https://arxiv.org/abs/2310.03165
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Attention mechanism (Vaswani 17’), equations
Key and Query quadratic form to highlight relations

Patches of inputs of a fixed dimension are extracted and arranged into a
matrix X, similar to CNNs. They queries, keys, and values are then
computed with matrix-products @7 = WX T, KT = Wi XT, and
VT = Wy XT then the re-activation attention layer is

H = softmax (QKTn_l/z) 74

The scaling « is typically 1/2, but also sometimes 1, and generally Q and
V have layer-norm applied to enforce fixed mean and variance.
Multi-head attention concatenates many of these and multiply by a
weight matrix.

https://arxiv.org/abs/1706.03762

https://arxiv.org/abs/1607.06450
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Attention quadratic bottleneck

Hashing to generate block sparse matrices

The product QKT generates a large matrix whose computation is
one of the main bottlnecks for Attention based models. Hashing
computes a block sparse approximation as follows: letting

Q,K e R"™d draw W € R¥*S with s < d the hasing number of
blocks. Form QW € Rn x p where (QW);; measures the
correlation of row i in @ with column j in W. The largest entry in
the i" row of QW indicates the column in W most aligned with
the it row in Q; letting A; be the index set of rows in Q most
aligned with column j of W. Repeat for K to get a similar
partitioning 5\1- of the rows in K. Rather than compute QK T, form
just the s blocks with rows in A; and columns in 5\j forj=1...s.

Oxford Computational efficiency of deep nets: pruning and sparsity 21
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Attention quadratic bottleneck (Han et al. 23")

Hashing to generate block sparse matrices

Rather than computing the product
H = softmax (QKTd*a) Vv

approximate (QKTd ™) by hashing, and then sketch its product
with V' by selecting a subset of columns on A and associated rows
in V.

HyperAttention: Long-context attention in near-linear time, Han et
al., 2023.

https://arxiv.org/pdf/2310.05869
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Pruning and low-rank for Attention

Local and global structure by combining sparse plus low-rank Mathermatical
Model Schema % Pixelated Butterfly Sparse Masks
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Pixelated Butterfly: Simple and Efficient Sparse Training for
Neural Network Models by Dao et al, 2022.
https://arxiv.org/abs/2112.00029
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Low-rank in deep nets is being studied more broadly
LoRA and Galore

LoRA: Low-rank adaptation of large language models by Hu et al.
2021 takes a pre-trained network and includes a low-rank addition
for fine-tuning. Specifically, the original weights are held fixed, but
for each layer they add a low-rank trainable component for
time-tuning / transfer learning.
https://arxiv.org/abs/2106.09685

GaLORE: Memory-efficient LLM training by gradient low-rank
projection by Zhao et al. 2024 uses a low-rank gradient update.
https://arxiv.org/abs/2403.03507

"Low-rank” is a growing theme at the leading ML conferences.
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Some approximation theory for sparsity
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The Lottery Ticket Hypothesis (Frankle 19")

Theory suggesting pruning at initialization is possible

Mathematical
Institute

" A randomly-initialized, dense neural network contains a subnet-

work that is initialized such that—when trained in isolation—it can
match the test accuracy of the original network after training for at
most the same number of iterations.”

reinit —— rate 0.1, warmup 10K
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Figure 7: Test accuracy (at 30K, 60K, and 112K 1terar.10ns) of VGG-19 when 1terat1vely pruned.

https://arxiv.org/pdf/1803.03635
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Proving the Lottery Ticket Hypothesis (Malach 20’0

Approximation theory of sparse nets

Let F be a network of depth £ such that |WF |z <1, [[WF | max <
n~—1/2 where n is the width. Fix some €,0 € (0,1). Let G be a
network of width poly(d, n,¢,e 1 log(1/6) and depth 2¢ with W¢
initialized U[—1,1]). Then with probability at least 1 — ¢ over the
the initialization of G, there exists a sub-network G of G with
SUPxey |G(x) — F(x)] < e and G has at most O(dn + n?¢) neu-
rons.

Note, the sub-network has the same order number of parameters
n?/, potentially with a worst constant. No direct training!
https:
//proceedings.mlr.press/v119/malach20a/malach20a.pdf
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Optimal approximation rates with sparse nets

Bolcskei et al. 2018. Mathematical

In the below paper they show that all functions that can be
approximated well using " affine-systems” (e.g. Wavelets and
similar) can also be well approximated by sparsely connected deep
networks.

These results are achieved by considering the class of networks
with a fixed budget of parameters and considering the union of
possible width and depth networks.
https://arxiv.org/pdf/1705.01714
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Some theory for initialization and sparsity in
the hidden layers
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Fully connected and convolutional neural network

Increasingly large networks scaled through n

We will consider sequences of increasing size fully connected
networks

Ng 1”]

W (x)[n] = Z 92V 00n+6, 200 = o(h” (x)[n)),

The objects h,( (x)[n] are referred to as pre-activation values and
¢(+) is the nonlinear activation, here applied entrywise.

Typical initializations of such networks have parameters, weight
matrices W) and biases b(*), which are drawn i.i.d. such as
N (0,02 /N®[n]) and N(0,02).

Intuitively the pre-activation entries are then mean-zero Gaussian.
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PSEUDO-1ID weight matrices

Examples include: i.i.d. entries, but also unitary, low-rank, and structured sparse matrices Mathematica

Institute

Definition (PSEUDO-IID)

The random matrix W = (W) € R™*" is in the PSEUDO-IID distribution with
parameter o if
1. the matrix is row-exchangeable and column-exchangeable,

. . . . 2
2. its entries are centered, uncorrelated, with variance E( W,Jz) =<,
8 _
3. IE‘ ZJ'.’ZI ajVVij’ = K||a||8n—* for some constant K,

When weight matrices W([), 1< ¢ < L+1, of a neural network are drawn
from a PSEUDO-IID distribution, we will say that the network is under the
PSEUDO-IID regime.

The PSEUDO-IID distribution generalized i.i.d. to also include suitably drawn
low-rank matrices and matrices with structured sparsity.

Oxford Computational efficiency of deep nets: pruning and sparsity
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PSEUDO-1ID matrices generate a Gaussian process

Convergence of distribution with width to Gaussian with computable co-variance

Fully-connected neural networks with PSEUDO-IID weight matrices
with parameter 0%, then the sequence of random fields (i,x) €

[Ne] x X — h,@)(x)[n] € RNe converges in distribution to a centered
Gaussian process (i,x) € [Ng] x X +— hfe)(x)[*] € RMe, whose
covariance function is given by

E[ {901 - B0 = 81,56 (x, X'),
where

KO(x,X') = 03 + oW E (1 )on(o, k-0 (e [B()D(V)], €21

Similar results for CNNs with increasing number of channels for
intermediate layers.
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Sparse hidden layers (Price et a. 21")

Two natural options for sparsifying activations: shifted ReLU and Soft Thresholding

Sparse hidden layers reduce network computation: exemplar sparsity
inducing activations are the shifted ReLU and soft thresholding
x—71, ifx>71
RelLU.(x) = ’ .
0, otherwise,
x —sign(x)r, if |x| > 7T
ST () _ X SN0 i x>
0, otherwise,
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Sparsity inducing activations ReLU; and ST, are unstable 7
The EoC x = 1 condition ensures V/(¢*) = 1 and V//(g*) > 0 Mathematial

Institute

ReLU, and ST, with EoC condition x = 1 causes V'(¢*) =1 and
V”(g*) > 0 resulting in unstable GP and failure to train:

—— t=00,5=05 —— ©=067,5=05

2.0 T 5.5 =06 2.0 T =084, 5=06
v 52,5 T=1.04,5=07

025 050 075 1.00 1.25 1.50 1.75 2.00 025 050 075 1.00 1.25 1.50 1.75 2.00

Magnitude clipping recovers stable GP, e.g.
CReLU; m(x) = max(ReLU,(x), m) and

0, if x| <7
CST,m(x) = x —sign(x)r, fr<|x|<7+m
sign(x)m, if |x| > 74+ m.
Oxford Computational efficiency of deep nets: pruning and sparsity
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Accuracy vs sparsity for clipped soft thresholding CST ,

Fully connected shows full accuracy at 85% sparsity

DNN on MNIST CNN on CIFAR10

‘ s m V'(q ‘ Acc.  Sparsity ‘ Acc.  Sparsity ‘
|05 2 09 092 05 |071 05 |
|07 12 07 094 07 |068 067 |
08 072 05 092 080 [066 0.79
1.06 0.7 095 080 |0.65 0.78
161 0.9 011 015 |031 0.8
085 0.67 05 076 085 |0.63 0.84
1 07 093 085 |063 083
15 09 014 011 |029 0.2

The clipping magnitude, m, controls the stability of the GP by

decreasing V’(g*) but lower values of m limit accuracy

Oxford
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Summary: Sparsity and low-rank structure for efficient DNN
A widely studied topic since 2018, increasingly important with LLMs

Institute

» Sparsity and low-rank allow gradual trade-off between
accuracy, number of parameters, and robustness

» There are a numerous algorithms and architecture specific
variants.

» The focus of pruning and sketching is typically on
computationally efficiency, but it also has benefits for
robustness; a property far less explored.

» Sparsity inducing activations can be designed to allow training
with high fractions of sparsity

» Attention matrices are notably different sparsity structures
than need more specialized approximations
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