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Simulating physical systems with neural networks

Figure: Vortex shedding behind a circular cylinder, Raissi et al. 2019

The dynamics is governed by the Navier–Stokes equations:

u+ λ1(u · ∇)u = −∇p + λ2∆u.

Can the function approximation qualities of NN be used to simulate the dynamics?

https://www.sciencedirect.com/science/article/abs/pii/S0021999118307125
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Two possible modalities of using neural networks for PDEs

Consider an abstract differential equation (for time-dependent problems
Ω = [0,T ]× Ω̃): {

D[u;λ] = f , x ∈ Ω,

u(x) = g(x), x ∈ ∂Ω.
(1)

Two types of problems for which NNs can be helpful:

▶ Given fixed model parameters λ what can be said about the unknown hidden state
u of the system?

▶ What are the parameters λ that best describe the observed data?

By using Neural Networks as basis for the approximation, one might expect to
achieve reduction in number of degrees of freedom based on exponential expressivity
(cf. Lectures 3 & 4). Moreover, the nature in which training results in a “soft”
constraint allows for easy combination of data and physics.
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Data-driven inference - supervised learning

So far focussed on architecture, what about design of loss function? With given
training data can enforce observations with MSE:

Ldata(θ) =
1

Ndata

∑Ndata
i=1 |u(xi )− ui |2, m d2u

dx2
+ µdu

dx + ku = 0.

Figure: The generalisation error of supervised learning. Source: Dr Ben Moseley’s blog
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Physics-informed inference: unsupervised training & PINNs

Incomplete data can be supplemented with physical knowledge.
Physics-informed loss, Lf enforces the structure imposed by equation (1):

Lf (θ) =
1

Ncol

Ncol∑
i=1

|D[u](x if )− f (x if )|2,

where {(x if )}
Ncol
i=1 represents the collocation points on Ω.

Note: Require NN to be sufficiently differentiable for this PDE residual to be
well-defined, i.e. ReLu activation may not be allowed.
Typically have to impose also (initial) and boundary conditions:

Lb :=
1

Nb

Nb∑
i=1

|u(x ib)− g(x ib)|2,

with {(x ib)}
Nb
i=1 ⊂ ∂Ω.
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Incomplete data can be supplemented with physical knowledge

Differential equation (damped oscillator): m d2u
dx2

+ µdu
dx + ku = 0.

Mixed Loss: L(θ) = αLdata(θ) + (1− α)Lf (θ), α ∈ (0, 1).

Figure: Data alone. Figure: Data + Physics.

Source: Dr Ben Moseley’s blog
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Data-driven discovery of partial differential equations

Example: Navier–Stokes equations:

ut + λ1 (uux + vuy ) = −px + λ2 (uxx + uyy )

vt + λ1 (uvx + vvy ) = −py + λ2 (vxx + vyy )

Here, λ = (λ1, λ2) are the unknown parameters (inverse of fluid density and the

kinematic viscosity). Given noisy measurements
{
t i , x i , y i , ui , v i

}N
i=1

of the velocity
field, we are interested in learning the parameters λ as well as the pressure
p(t, x , y). For this choose NN which approximates velocity field ψ (∂xψ = u, ∂yψ = v)
and pressure field p and minimize the mixed loss:

L :=
1

N

∑N
i=1

(∣∣u (t i , x i , y i
)
− ui

∣∣2 + ∣∣v (t i , x i , y i
)
− v i

∣∣2)
+

1

N

∑N
i=1 |ut + λ1 (uux + vuy ) + px − λ2 (uxx + uyy )|2(t i ,x i )

+
1

N

∑N
i=1 |vt + λ1 (uvx + vvy ) + py − λ2 (vxx + vyy )|2(t i ,x i ) .
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Data-driven discovery of partial differential equations

Figure: Predicted vs exact pressure and PDE parameters (Source: Raissi et al. 2019)
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Incomplete data can be supplemented with physical knowledge

Differential equation (damped oscillator): m d2u
dx2

+ µdu
dx + ku = 0.

Mixed Loss: L(θ) = αLdata(θ) + (1− α)Lf (θ), α ∈ (0, 1).

Generalisation error:
∫ T
0 |u(x)− u∗θ(x)|dx

Physics-Informed Neural Networks 13



The generalisation error of physics-informed neural networks

The error of PINNs on unseen points in the spatio-temporal domain can be controlled
in terms of training error, if:

▶ The solution of the underlying PDE is well-behaved (with respect to
perturbations of inputs) in a very precise manner.

▶ The number of collocation points is sufficiently large.

▶ Implicit constants that arise in the stability and quadrature error estimates, which
depend on the underlying PINNs, are controlled in a suitable manner.

For the time being the precise architecture of the neural network will be secondary, and
we focus on the physics-informed loss.

Slightly simplified from:
https://www.sciencedirect.com/science/article/abs/pii/S0021999118307125
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Example - Poisson’s equation with Dirichlet boundary conditions

Let Ω = [0, 1] ⊂ R. For f ∈ L2([0, 1];R) consider{
∂xxu = f , x ∈ Ω,

u = 0, x ∈ ∂Ω.
(2)

This is an example of a well-posed PDE with the following properties:

▶ Existence and uniqueness of solutions: for every f ∈ L2([0, 1];R) there is a
unique solution u ∈ H2

0 (ω) such that (2) is satisfied.

▶ Stability: By a standard (Poincaré) estimate:

∥u− v∥W 2,2(Ω;R) ≤ CΩ∥∂xxu− ∂xxv∥L2(Ω;R).
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An abstract framework for PDE problems

Abstract formulation of PDE

D(u) = f, (3)

where D : X ∗ 7→ Y ∗ with X ∗ ⊂ W s,q (Ω;Rm) is a bounded operator and,
Y ∗ ⊂ Lp (Ω;Rm) are closed subspaces, for some m ⩾ 1, 1 ≤ p, q <∞ and s ⩾ 0. Note
Ω = (0,T )× Ωspace for time-dependent problems.

In previous example: X = H2([0, 1]),X ∗ = H2
0 ([0, 1]),Y

∗ = Y = L2([0, 1]).

Well-posedness
▶ Existence and uniqueness of solutions: D : X ∗ → Y ∗ is a bijection.
▶ Stability: For any u, v ∈ X ∗, the differential operator D satisfies

∥u− v∥X ≤ Cpde ∥D(u)−D(v)∥Y (4)

Here, the constant Cpde > 0 can explicitly depend on ∥u∥Z and ∥v∥Z , for some
norm ∥ · ∥ZX

on a subspace ZX ⊂ X ∗.
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PINNs loss and generalisation error

▶ PDE Residual for neural network approximation: Rθ = R(u∗θ) := D(u∗θ)− f ∈ Y ∗.

▶ Training/collocation points for PINN-loss: S = {yn}Nn=1 ⊂ Ω.

▶ We monitor the training error given by (recall Y ∗ ⊂ L2([0, 1])):

ET :=

(
N∑

n=1

wn |Rθ∗ (yn)|p
) 1

p

Definition (Generalisation error)

The error of approximating the solution u of (3) by the PINN u∗θ,

EG = EG (θ∗;S) := ∥u− u∗θ∥X = ∥u− u∗θ∥W s,q .

Goal: Relate the generalisation error (unknown!) to the training error (known!).
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Choice of collocation points - numerical quadrature

To this end, we consider a generic mapping g : Ω 7→ Rm with g ∈ Y ∗. We are
interested in approximating the integral,

ḡ :=

∫
Ω
g(y)dy ,

with dy denoting the Lebesgue measure. In order to approximate the above integral by
a quadrature rule, we need the quadrature points yi ∈ Ω for 1 ≤ i ≤ N for some
N ∈ N as well as weights wi with wi ∈ R+. Then a quadrature is defined by

ḡN :=
N∑
i=1

wig (yi )

for weights wi and quadrature points yi .
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Numerical approximation of integrals - quadrature

Assumption (Quadrature error)

We take a quadrature rule for which the error is bounded as

|ḡ − ḡN | ≤ Cquad

(
∥g∥ZY

, d̄
)
N−α,

for some α > 0, where ∥ · ∥ZY
is a norm on a suitable subspace ZY ⊂ Y .

Example: Trapezoidal rule on Ω = [0, 1]. Take xi = (i − 1)/(N − 1), i = 1, . . . ,N and
w1 = wN = 1/(2(N − 1)),wi = 1/(N − 1), i = 2, . . . ,N − 1. Then the quadrature
error satisfies the following bound:

|ḡ − ḡN | ≤
1

12
∥g ′′∥L∞N−2.
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Estimating the generalisation error

Theorem
Let u ∈ ZX ⊂ X ∗ be the unique solution of the PDE with all above assumptions. Let
u∗ ∈ ZX ⊂ X ∗ be the PINN. Further assume that the residual Rθ∗ ∈ ZY and that the
quadrature assumption is satisfied. Then the following estimate on the generalization
error holds:

EG ≤ CpdeET + CpdeC
1
p

quadN
−α

p ,

with constants Cpde = Cpde

(
∥u∥ZX

, ∥u∗∥ZX

)
and Cquad = Cquad

(
∥|Rθ∗ |p∥ZY

)
.

Note that these constants Cpde,Cquad depend on the underlying PINN u∗, which in
turn can depend on the number of training points N.
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Estimating the generalisation error

The theorem tells us that the generalisation error for the PINN is small as long as:

▶ The training error ET is sufficiently small. Note that we have no a priori
control on the training error but can compute it a posteriori.

▶ The quadrature error of the PDE residual is small, i.e. we have sufficiently
many well-chosen collocation points.

▶ The PDE is well-posed: this is encoded in the constant Cpde .

▶ The Neural Network is well-behaved: this is encoded in Cpde and Cquad .

The above constants depend on the details on the underlying PDE and quadrature rule
and cannot be worked out in the abstract setup here but can be computed in specific
cases.
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Estimating the generalisation error

Proof. We can directly apply the stability bound (4) to the generalisation error to find

EG = ∥u− u∗∥X
≤ Cpde ∥D (u∗)−D(u)∥Y
≤ Cpde ∥R∥Y

where we recall R = Rθ∗ = D(u∗θ)− f, is the residual corresponding to the trained
neural network u∗ and we used that

D(u) = f .

By the fact that Y = Lp(Ω), the definition of the training error and the quadrature
rule, we see that

∥R∥pY ≈

(
N∑

n=1

wn |Rθ∗ |p
)

= Ep
T .
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Estimating the generalisation error

Hence, the training error is a quadrature for the residual and the resulting quadrature
error translates to

∥R∥pY ≤ Ep
T + Cquad N

−α.

Therefore,

Ep
G ≤ Cp

pde∥R∥pY
≤ Cp

pde

(
Ep
T + CquadN

−α
)
.

Thus,

EG ≤ CpdeET + CpdeC
1
p

quadN
−α

p

which is the desired estimate.

□
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Choice of collocation points in PINNs

The above theorem shows that the generalisation error is strongly dependent on the
quadrature error of the PDE residual Rθ∗ in ∥ · ∥Y , i.e.

∥R∥pY ≈

(
N∑

n=1

wn |Rθ∗ |p
)

= Ep
T .

Equidistribution principle: Consider simple example,
∫ b
a f (x)dx . Using trapezoidal

rule we have for a = x1 < · · · < xN = b∫ b

a
f (x)dx ≈

N−1∑
i=1

xi+1 − xi
2

(f (xi ) + f (xi+1)), Error =
N−1∑
i=1

(xi+1 − xi )
2

12
max

x∈[xi ,xi+1]
|f ′′(x)|.

This suggests we want xi+1 − xi small when maxx∈[xi ,xi+1] |f
′′(x)| is large, i.e. we want

many collocation points in regions where the PDE residual varies rapidly. → if we have
access to residual can sample collocation points adaptively!

Physics-Informed Neural Networks 24



Adaptive collocation point sampling in PINNs

Residual-based Adaptive Distribution (RAD, Wu et al. 2023): Sample
collocation points according to the distribution

p(x) ∝ |Rθ(x)|k

E [|Rθ(x)|k ]
+ c (5)

where Rθ(x) = D(u∗θ)(x)− f (x). Then repeatedly update collocation points during
training:

0. Choose initial set of collocation points (e.g. uniform sampling);

1. Train the PINN for a certain number of iterations;

2. Sample new set of collocation points according to (5);

3. Repeat 1. & 2.
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Residual-based Adaptive Distribution (RAD)

Convection equation:
∂u

∂t
+ β

∂u

∂x
= 0, x ∈ [0, 1], t ∈ [0,T ], u(x , 0) = h(x), x ∈ [0, 1].

Figure: Generalisation error during PINN training (Source: Lau et al. 2024).
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Failure modes of PINNs

So far seen improvements on generalisability through physics-informed loss function. In
light of lectures 9 & 10 should also look at the effect on the optimisation landscape.
Test case: 1d convection

∂u

∂t
+ β

∂u

∂x
= 0, x ∈ Ω, t ∈ [0,T ], u(x , 0) = h(x), x ∈ Ω.

Here, β is the convection coefficient. The general loss function for this problem is

L(θ) = 1

Nu

Nu∑
i=1

(
û − ui0

)2
︸ ︷︷ ︸

inital data

+
1

Nf

Nf∑
i=1

λi

(
∂û

∂t
+ β

∂û

∂x

)2

︸ ︷︷ ︸
PDE

+
1

Nb

Nb∑
i=1

(û(θ, 0, t)− û(θ, 2π, t))2︸ ︷︷ ︸
boundary data

where û = NN(θ, x , t) is the output of the NN.

https://proceedings.neurips.cc/paper/2021/file/df438e5206f31600e6ae4af72f2725f1-
Paper.pdf
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PINNs loss landscape

Figure: Loss landscapes for varying values of convection coefficient.

Observation: Non-trivial convection regime leads to more challenging optimisation
landscapes and reduces PINN approximation quality. PDE solutions “less regular”...
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Transfer learning in PINNs (cf lecture 11)

Figure: Performance of curriculum training on PINN (source: Krishnapriyan et al 2021)

Observation: Instead of training the PINN to learn the solution right away for cases
with higher β, we start by training the PINN on lower β (easier for the PINN to learn),
then gradually move to training the PINN on higher β.
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Adaptive collocation point sampling revisited (see Lau et al. 2024)

Recall from lecture 9 (and neural tangent kernel theory) that for small stepsizes η in
gradient descent the training dynamics at training step t of the PINN is approximately
linear

R[u∗θt+1
](x)−R[u∗θt ](x) ≈ −ηΘt(x , x

′)R[u∗θt ](x
′),

where

Θt(x , x
′) = ∇θR[u∗θt ](x)∇θR[u∗θt ](x

′)⊤.

To optimise training dynamics, we would want to maximise the change in residual on
the collocation points, i.e. the quantity

∆Rθt (x ,S) = Rθt+1(x ;S)−Rθt (x).

Instead of considering this for individual points, would be preferrable to have a
measure for change in R for a given set S of collocation points.
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Adaptive collocation point sampling revisited (see Lau et al. 2024)

For this we fix a set of collocation points St . Then we perform one step of gradient
descent, and estimate the empirical neural tangent kernel

Θt(x , x
′).

Finally, we can consider the inner product ⟨·, ·⟩HΘt
associated with this kernel and

define

α(St) := ⟨∆Rθt (·,St),∆Rθt (·,St)⟩HΘt
,

where, for f1, f2 : Ω → R, ⟨f1(·), f2(·)⟩HΘt
=
∫
Ω×Ω

f1(x)f2(x ′)
Θt(x ,x ′)

dxdx ′.
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Refined generalisation error estimate (see Lau et al. 2024)

Theorem
Suppose Ω = [0, 1]d and S ⊂ Ω is an i.i.d. sample of size NS from a fixed distribution.
Let ûθ be a NN which is trained on S by GD to convergence, with a small enough
learning rate such that Θt remains constant. Then, there exists constants
c1, c2, c3 = O (poly (1/NS , λmax (Θ0,S) /λmin (Θ0,S)) such that with high probability
over the random model initialization and the sample S,∫

Ω
|ûθ∞(x)− u(x)| dx ≤ c1 ∥Rθ∞(·)∥ℓ1(S) + c2α(S)−1/2 + c3.

→ If training and architecture is taken into account (captured by Θt) then
generalisation error is smallest when α(S) is largest.
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PINNACLE (PINN Adaptive ColLocation and Experimental points selection)

0. Initialise the NN with θ0.

1. Estimate the eigenfunctions ψt,i and eigenvalues λt,i of Θt :

Θt,St (x , x
′) =

∞∑
i=1

λt,iψt,i (x)ψt,i (x
′).

2. Observe that for any S̃ (even of size one):

α(S̃) = ⟨∆Rθt (·, S̃),∆Rθt (·, S̃)⟩HΘt
=

∞∑
i=1

λt,i |⟨ψt,i (S̃),Rθt (S̃)⟩|2︸ ︷︷ ︸
inner product of vectors

.

3. Sample collocation points St+1 from the estimated density

p(x) ∝ α̂(x), where α̂(x) = α({x}).

4. Take a gradient descent step and repeat 1.-3.
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PINNACLE (PINN Adaptive ColLocation and Experimental points selection)

Figure: Adaptive collocation point selection for PINN (Source: Lau et al. 2024)

Convection equation:
∂u

∂t
+ β

∂u

∂x
= 0, x ∈ [0, 1], t ∈ [0,T ], u(x , 0) = h(x), x ∈ [0, 1].
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PINNACLE (PINN Adaptive ColLocation and Experimental points selection)

Figure: Generalisation error during PINN training (Source: Lau et al. 2024)
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Further topics in deep learning for scientific computing

▶ Operator learning:
Boullé, N. & Townsend, A. (2024) ’A mathematical guide to operator learning’,

Handbook of Numerical Analysis.

Lu, L. et al. (2021) ’Learning nonlinear operators via DeepONet based on the universal

approximation theorem of operators’, Nature Machine Intelligence.

▶ Large-scale Spatiotemporal Forecasting:
Bi, K. et al. (2023) ’Pangu-Weather: Accurate medium-range global weather forecasting

with 3D neural networks’, Nature.

Lam, R. et al. (2023) ’GraphCast: Learning Skillful Medium-Range Global Weather

Forecasting’, Science.

▶ Hybrid methods:
Song, W. et al. (2022) ’M2N: Mesh Movement Networks for PDE Solvers’, NeurIPS.
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