C2.3 Representations of semisimple Lie algebras

Mathematical Institute, University of Oxford Hilary Term 2020

Problem Sheet 2

All Lie algebras are defined over an algebraically closed field k of characteristic zero.

1. Let \mathfrak{g} be a finite dimensional semisimple Lie algebra with a nondegenerate symmetric bilinear \mathfrak{g} -invariant form $B: \mathfrak{g} \times \mathfrak{g} \to \mathsf{k}$. Let $\{x_i \mid 1 \leq i \leq n\}$ and $\{y_i \mid 1 \leq i \leq n\}$ be dual bases of \mathfrak{g} with respect to B. Define the *Casimir element* of \mathfrak{g} (with respect to B) to be $C := \sum_{i=1}^{n} x_i y_i \in U(\mathfrak{g})$.

- (i) Show that the definition of C does not depend on the choice of dual bases. Prove that C is in $Z(\mathfrak{g})$, the centre of $U(\mathfrak{g})$.
- (ii) Suppose that \mathfrak{g} is a simple Lie algebra. Show that if C and C' are Casimir elements with respect to the forms B and B', respectively, than C' is a scalar multiple of C. [Hint: there is only one nondegenerate symmetric bilinear \mathfrak{g} -invariant form up to scalar. Why?]
- (iii) Suppose L is a finite dimensional simple \mathfrak{g} -module. Deduce that C acts on L by a scalar.
- (iv) Let $\mathfrak{g} = \mathfrak{sl}(n)$ and take $B(x, y) = \operatorname{tr}(xy)$, for $x, y \in \mathfrak{g}$. Verify that B is a nondegenerate symmetric bilinear \mathfrak{g} -invariant form and define C with respect to convenient dual bases. How does C differ from C', the Casimir element defined with respect to the Killing form?
- (v) Let V be a finite dimensional simple $\mathfrak{g} = \mathfrak{sl}(n)$ -module with highest weight λ . Compute the scalar by which the Casimir element C from (iv) acts on V.

Let \mathfrak{g} is a semisimple Lie algebra, \mathfrak{h} a Cartan subalgebra, Φ the system of roots \mathfrak{g} with respect to \mathfrak{h} . Fix a base of simple roots Π and the corresponding positive roots Φ^+ .

2. Let $\rho := \frac{1}{2} \sum_{\alpha \in \Phi^+} \alpha \in \mathfrak{h}^*$. Show that:

- (a) For every $\alpha \in \Pi$, $s_{\alpha}(\rho) = \rho \alpha$.
- (b) For every $\alpha \in \Pi$, $\rho(h_{\alpha}) = 1$, where h_{α} is the coroot of α .
- (c) Write $\Pi = \{\alpha_1, \ldots, \alpha_k\}$ and define $\omega_i \in \mathfrak{h}^*$ by $\omega_i(h_{\alpha_j}) = \delta_{ij}$ for each i, j. Show that $\{\omega_1, \ldots, \omega_k\}$ is a \mathbb{Z} -basis of the weight lattice P of \mathfrak{g} .
- (d) Show that $\rho = \sum_{i=1}^{k} \omega_i$.
- **3.** Let P be the weight lattice and let Q be the root lattice of $\mathfrak{g} = \mathfrak{sl}(n)$. Show that $P/Q \cong \mathbb{Z}/n\mathbb{Z}$.
- **4.** Let $\mathfrak{g} = \mathfrak{sl}(3)$ and let $\alpha := \epsilon_1 \epsilon_2$ and $\beta := \epsilon_2 \epsilon_3$.
 - (a) Show that $\{\alpha, \beta\}$ forms a base for \mathfrak{g} and write down Φ^+ and Φ^- for this base.
 - (b) What is the angle between α and β ?
 - (c) Show that W is isomorphic to the symmetric group S_3 .
 - (d) Calculate ω_1 , ω_2 and ρ in terms of α and β .
 - (e) What is the highest weight of the adjoint representation of \mathfrak{g} ?

5. Let \mathfrak{g} be a finite dimensional Lie algebra and let $\mathfrak{a}, \mathfrak{b}$ be subalgebras of \mathfrak{g} such that $\mathfrak{g} = \mathfrak{a} \oplus \mathfrak{b}$ as vector spaces. Let $\lambda : \mathfrak{b} \to \mathsf{k}$ be a Lie algebra homomorphism and let k_{λ} be the 1-dimensional \mathfrak{b} -module defined by this character. Prove that the induced module $U(\mathfrak{g}) \bigotimes_{U(\mathfrak{b})} \mathsf{k}_{\lambda}$ is free of rank 1 as a $U(\mathfrak{a})$ -module.