C2.3 Representations of semisimple Lie algebras

Mathematical Institute, University of Oxford

Hilary Term 2020

Problem Sheet 3

All Lie algebras are defined over an algebraically closed field k of characteristic zero. Unless otherwise stated, \mathfrak{g} will denote a semisimple Lie algebra with maximal toral subalgebra \mathfrak{h} and root system Φ.

1. Let $\Phi^{+}=\left\{\alpha_{1}, \ldots, \alpha_{m}\right\}$ be the set of positive roots of \mathfrak{g}. Define the Kostant partition function $K: \mathfrak{h}^{*} \rightarrow \mathbb{N}$ as follows:

$$
K(\lambda):=\left|\left\{\left(i_{1}, \ldots, i_{m}\right) \in \mathbb{N}^{m}: i_{1} \alpha_{1}+\cdots+i_{m} \alpha_{m}=\lambda\right\}\right| \quad \text { for all } \quad \lambda \in \mathfrak{h}^{*} .
$$

Thus $K(\lambda)$ is the number of ways in which λ can be written as a linear combination of positive roots with nonnegative integer coefficients.

Let $M(\lambda)$ be a Verma module. Prove that $\operatorname{dim} M(\lambda)_{\mu}=K(\lambda-\mu)$, for all $\mu \in \mathfrak{h}^{*}$.
2. Let $\mathfrak{g}=\mathfrak{s l}(n)$ acting naturally on $V:=\mathrm{k}^{n}$. For $1 \leq m \leq n-1$, define $U_{m}:=\bigwedge^{m} V$.
(a) Show that each U_{m} is a simple \mathfrak{g}-module and determine its highest weight
(b) Deduce that any simple finite dimensional \mathfrak{g}-module appears as a summand of

$$
S^{m_{1}}\left(U_{1}\right) \otimes S^{m_{2}}\left(U_{2}\right) \otimes \cdots \otimes S^{m_{n-1}}\left(U_{n-1}\right)
$$

for some nonnegative integers m_{i}.
3. Let $\mathfrak{g}=\mathfrak{s l}(2)$ and let $M(\lambda)$ be the Verma module for some $\lambda \in \mathrm{k}$.
(a) Show from first principles, that if λ is a nonnegative integer then there exists an injective map $\phi: M(-\lambda-2) \hookrightarrow M(\lambda)$ whose cokernel $L(\lambda):=M(\lambda) / \operatorname{Im} \phi$ is irreducible.
(b) Show that $M(\lambda) \otimes M(\mu)$ is not in category \mathcal{O} for any $\mu \in \mathrm{k}$.
(c) Determine a composition series for $M(\lambda) \otimes L(\mu)$ when $\mu \in \mathbb{N}$.
4. Consider the shifted W-action on $\mathfrak{h}^{*}: w \bullet \lambda=w(\lambda+\rho)-\rho$, where $\rho=\frac{1}{2} \sum_{\alpha \in \Phi^{+}} \alpha$.
(a) What are the shifted W-orbits of \mathfrak{h}^{*} with the minimal, respectively maximal number of elements?
(b) Suppose $\mathfrak{g}=\mathfrak{s l}(3)$ and $\Delta=\{\alpha, \beta\}$. Calculate the shifted W-orbit of $\lambda \in P$ when: (i) $\lambda=0$, (ii) $\lambda=\alpha$, and (iii) $\lambda=\omega_{1}$ is a fundamental weight.
5. A Chevalley anti-involution of \mathfrak{g} is a k-linear map $\tau: \mathfrak{g} \rightarrow \mathfrak{g}$ satisfying the following conditions:

- τ is an anti-involution of $\mathfrak{g}: \tau^{2}=\operatorname{id}$ and $\tau([x, y])=[\tau(y), \tau(x)]$, for all $x, y \in \mathfrak{g}$,
- τ restricts to the identity map on \mathfrak{h},
- $\tau\left(\mathfrak{g}_{\alpha}\right)=\mathfrak{g}_{-\alpha}$ for all $\alpha \in \Phi$.
(a) Show that the transpose map $A \mapsto A^{T}$ on matrices is a Chevalley anti-involution when $\mathfrak{g}=\mathfrak{s l}(n)$. Suppose that τ is a Chevalley anti-involution of \mathfrak{g}.
(b) Show that τ extends to an anti-automorphism τ of $U(\mathfrak{g})$.
(c) Prove that $\tau: U(\mathfrak{g}) \rightarrow U(\mathfrak{g})$ fixes $Z(\mathfrak{g})$ pointwise.

