C2.3 Representations of semisimple Lie algebras

Mathematical Institute, University of Oxford Hilary Term 2020

Problem Sheet 3

All Lie algebras are defined over an algebraically closed field k of characteristic zero. Unless otherwise stated, \mathfrak{g} will denote a semisimple Lie algebra with maximal toral subalgebra \mathfrak{h} and root system Φ .

1. Let $\Phi^+ = \{\alpha_1, \ldots, \alpha_m\}$ be the set of positive roots of \mathfrak{g} . Define the Kostant partition function $K: \mathfrak{h}^* \to \mathbb{N}$ as follows:

 $K(\lambda) := |\{(i_1, \dots, i_m) \in \mathbb{N}^m : i_1 \alpha_1 + \dots + i_m \alpha_m = \lambda\}| \quad \text{for all} \quad \lambda \in \mathfrak{h}^*.$

Thus $K(\lambda)$ is the number of ways in which λ can be written as a linear combination of positive roots with nonnegative integer coefficients.

Let $M(\lambda)$ be a Verma module. Prove that dim $M(\lambda)_{\mu} = K(\lambda - \mu)$, for all $\mu \in \mathfrak{h}^*$.

2. Let $\mathfrak{g} = \mathfrak{sl}(n)$ acting naturally on $V := \mathsf{k}^n$. For $1 \leq m \leq n-1$, define $U_m := \bigwedge^m V$.

- (a) Show that each U_m is a simple \mathfrak{g} -module and determine its highest weight.
- (b) Deduce that any simple finite dimensional g-module appears as a summand of

$$S^{m_1}(U_1) \otimes S^{m_2}(U_2) \otimes \cdots \otimes S^{m_{n-1}}(U_{n-1})$$

for some nonnegative integers m_i .

3. Let $\mathfrak{g} = \mathfrak{sl}(2)$ and let $M(\lambda)$ be the Verma module for some $\lambda \in \mathsf{k}$.

- (a) Show from first principles, that if λ is a nonnegative integer than there exists an injective map $\phi: M(-\lambda 2) \hookrightarrow M(\lambda)$ whose cokernel $L(\lambda) := M(\lambda)/\text{Im } \phi$ is irreducible.
- (b) Show that $M(\lambda) \otimes M(\mu)$ is not in category \mathcal{O} for any $\mu \in \mathsf{k}$.
- (c) Determine a composition series for $M(\lambda) \otimes L(\mu)$ when $\mu \in \mathbb{N}$.

4. Consider the shifted W-action on \mathfrak{h}^* : $w \bullet \lambda = w(\lambda + \rho) - \rho$, where $\rho = \frac{1}{2} \sum_{\alpha \in \Phi^+} \alpha$.

- (a) What are the shifted W-orbits of \mathfrak{h}^* with the minimal, respectively maximal number of elements?
- (b) Suppose $\mathfrak{g} = \mathfrak{sl}(3)$ and $\Delta = \{\alpha, \beta\}$. Calculate the shifted W-orbit of $\lambda \in P$ when: (i) $\lambda = 0$, (ii) $\lambda = \alpha$, and (iii) $\lambda = \omega_1$ is a fundamental weight.
- **5.** A Chevalley anti-involution of \mathfrak{g} is a k-linear map $\tau : \mathfrak{g} \to \mathfrak{g}$ satisfying the following conditions:
 - τ is an *anti-involution* of \mathfrak{g} : $\tau^2 = \mathrm{id}$ and $\tau([x, y]) = [\tau(y), \tau(x)]$, for all $x, y \in \mathfrak{g}$,
 - τ restricts to the identity map on \mathfrak{h} ,
 - $\tau(\mathfrak{g}_{\alpha}) = \mathfrak{g}_{-\alpha}$ for all $\alpha \in \Phi$.
 - (a) Show that the transpose map $A \mapsto A^T$ on matrices is a Chevalley anti-involution when $\mathfrak{g} = \mathfrak{sl}(n)$. Suppose that τ is a Chevalley anti-involution of \mathfrak{g} .
 - (b) Show that τ extends to an anti-automorphism τ of $U(\mathfrak{g})$.
 - (c) Prove that $\tau: U(\mathfrak{g}) \to U(\mathfrak{g})$ fixes $Z(\mathfrak{g})$ pointwise.