C2.3 Representations of semisimple Lie algebras

Mathematical Institute, University of Oxford
Hilary Term 2020

Problem Sheet 4

Throughout, \mathfrak{g} is a semisimple Lie algebra over an algebraically closed field k of characteristic zero.

1. Let V and W be two finite dimensional \mathfrak{g}-modules. Prove that $\mathrm{ch}_{V \otimes W}=\mathrm{ch}_{V} \cdot \mathrm{ch}_{W}$.
2. Let $\omega_{1}, \ldots, \omega_{n}$ be the fundamental weights of \mathfrak{g}. Show that every finite dimensional simple \mathfrak{g}-module occurs as a direct summand in a suitable tensor product (repetitions allowed) of the simple modules $L\left(\omega_{1}\right), \ldots, L\left(\omega_{n}\right)$. We call these simple modules the fundamental representations of \mathfrak{g}.
3. Use Weyl's dimension formula to show that for every natural number k, there exists a simple \mathfrak{g}-module of dimension k^{r}, where r is the number of positive roots of \mathfrak{g}.
4. The length of an element $w \in W$ is the smallest $n \in \mathbb{N}$ such that w can be written as a product of n simple reflections. Prove that $\ell(w)=\left|\left\{\alpha \in \Phi^{+} \mid w(\alpha) \in \Phi^{-}\right\}\right|$.
[Hint: Sheet 2 Question 2 may be useful.]
5. (i) Let L be a finite dimensional \mathfrak{g}-module. Show that L is simple if and only if L^{*} is simple.
(ii) Let $L(\lambda)$ be a simple \mathfrak{g}-module with highest weight $\lambda \in P^{+}$. Show that the dual $L(\lambda)^{*}$ is isomorphic to $L\left(-w_{0}(\lambda)\right)$, where w_{0} is the Weyl group element sending the positive roots Φ^{+}to $-\Phi^{+}$.
6. Let $\mathfrak{g}=\mathfrak{s l}(n)$.
(i) Use Weyl's dimension formula to calculate $\operatorname{dim} L\left(\omega_{i}\right)$ for each $1 \leq i \leq n-1$.
(ii) Why is the adjoint representation \mathfrak{g} irreducible?
(iii) Find non-negative integers k_{1}, \ldots, k_{n-1} such that $\mathfrak{g} \cong L\left(k_{1} \omega_{1}+\cdots+k_{n-1} \omega_{n-1}\right)$ as \mathfrak{g}-modules.
7. Define the Casimir element C in $U(\mathfrak{g})$ with respect to the Killing form of a semisimple Lie algebra
\mathfrak{g}. Compute $\chi_{\lambda}(C)$ for the infinitesimal character defined by $\lambda \in \mathfrak{h}^{*}$, and the image of C under the Harish-Chandra isomorphism.
[Hint: Sheet 2 Question 1 may be useful.]
8. Let $\mathfrak{g}=\mathfrak{s l}(3)$ and $L\left(\omega_{1}\right), L\left(\omega_{2}\right)$ the two fundamental representations. Verify:
(i) $L\left(\omega_{1}\right)^{*} \cong L\left(\omega_{2}\right)$.
(ii) Kostant's multiplicity formula, and
(iii) Weyl's character formula for these two representations.
9. Let $M(\lambda)$ be a Verma module for the semisimple Lie algebra \mathfrak{g}, and let L be a finite dimensional module. Consider the tensor product $T=M(\lambda) \otimes L$; it is in category \mathcal{O} by Proposition 4.6(3). Prove that there exists a chain of submodules:

$$
0=T_{n+1} \subset T_{n} \subset T_{n-1} \subset \cdots \subset T_{2} \subset T_{1}=T
$$

where $n=\operatorname{dim} L$, and $T_{i} / T_{i+1} \cong M\left(\lambda+\mu_{i}\right)$, where μ_{1}, \ldots, μ_{n} are the weights of L (counted with multiplicity) in an appropriate order.
[Hint: try to generalise Sheet 3 Question 3(c) and try to use formal characters.]

10 (Optional. But if you wish to have more practice more with finite dimensional representations and learn more examples...). Let $\mathfrak{g}=\mathfrak{s p}(2 n)$ realized as the space of matrices $X \in \mathfrak{g l}(2 n)$ such that $X^{t} J+J X=0$, where X^{t} is the transpose matrix, and $J=\left(\begin{array}{cc}0 & I_{n} \\ -I_{n} & 0\end{array}\right)$; here I_{n} is the $n \times n$ identity matrix.
(i) Show that every $X \in \mathfrak{g}$ is of the form $X=\left(\begin{array}{cc}A & B \\ C & -A^{t}\end{array}\right)$, where B and C are symmetric $n \times n$ matrices and A is an arbitrary $n \times n$ matrix.
(ii) Let \mathfrak{h} be the subalgebra consisting of diagonal matrices. Determine the set of roots of \mathfrak{h} in \mathfrak{g} and the Cartan decomposition.
(iii) Choose the system of positive roots such that the corresponding root vectors lie in matrices of the form $\left(\begin{array}{cc}A & B \\ 0 & -A^{t}\end{array}\right)$, where A is an upper triangular matrix and B is a symmetric matrix as before.
(iv) Determine the fundamental weights.
(v) Let $V=\mathrm{k}^{2 n}$ be the standard representation of \mathfrak{g} - it is the restriction of the natural representation of $\mathfrak{g l}(2 n)$ to \mathfrak{g}. Show that V is an irreducible \mathfrak{g}-representation and it is in fact a fundamental representation.
(vi) Show that $\bigwedge^{2} V$ decomposes as $W \bigoplus \mathrm{k}$, where k is the trivial representation and W is an irreducible (fundamental) representation.
(vii) For $\mathfrak{s p}(4)$, describe all the weights of the fundamental representations V and W and verify that the Weyl dimension formula holds for V and W.
(viii) In $\mathfrak{s p}(2 n)$, show that the k-th fundamental representation is contained in $\bigwedge^{k} V$ and in fact it is precisely the kernel of the contraction map $\phi_{k}: \bigwedge^{k} V \rightarrow \bigwedge^{k-2} V$ defined by

$$
\phi_{k}\left(v_{1} \wedge \cdots \wedge v_{k}\right)=\sum_{i<j} Q\left(v_{i}, v_{j}\right)(-1)^{i+j-1} v_{1} \wedge \cdots \wedge \hat{v}_{i} \wedge \cdots \wedge \hat{v}_{j} \wedge \cdots \wedge v_{k}
$$

where Q is the skew-symmetric form defining \mathfrak{g}, i.e., $Q(v, u)=v^{t} J u$.
[For this exercise, you may consult Section 16 in Fulton-Harris "Representation Theory", especially for the structural results on roots and the Cartan decomposition.]

