
Axiomatic Set Theory

Sheet 1 — TT21

Section A

1. Most of these do not have unique or ‘right’answers.

For each of the concepts below give a formula in LST which is a ‘natural’ definition.

Where possible for you, give a ∆0-formula which is equivalent under ZF.

(a) Concepts:

(i) z = {x0, . . . , xn}

(ii) z = 〈x0, . . . , xn〉

(iii) z is an n-tuple

(iv) z is an n-tuple and πi(z) = x

(v) z = x ∪ y;

(vi) z = x ∩ y;

(vii) z =
⋃
x;

(viii) z =
⋂
x;

(ix) z = x \ y;

(x) z is an n-ary relation on y;

(xi) z is a function;

(xii) z = x× y;

(xiii) z is a function and dom(z) = x;

(xiv) z is a function and ran(z) = x;

(xv) z is transitive;

(xvi) z is a successor ordinal;

(xvii) z is a limit ordinal;

(xviii) z = ω;

Solution: See lecture notes.

2. Deduce Pairing from the other axioms of ZF−.
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Solution: We write 0 = ∅ and 1 = {∅} = P (∅), 2 = {0, 1} = P (1) so 0, 1, 2 exist by

Emptyset and Powerset (and these are well-defined by Extensionality).

Let

φ(a, b, x, y) ≡ (x = 0→ y = a) ∧ (x = 1→ y = b).

Fix a, b.

Apply Replacement with φ and parameters a, b to 2 to obtain z such that z =

{y : ∃x ∈ 2 φ(a, b, x, y)}. We should of course check that φ codes a function on 2: if

x ∈ 2 then x = 0 or x = 1 and hence a (resp b) witness ∃y φ(a, b, x, y) and if φ(a, b, 0, y)

then y = a (and similar for b).

Thus z exists and we can verify that z = {a, b}: with x = 0 ∈ 2 (resp x = 1) we get

a ∈ z (resp b ∈ z) and if t ∈ z then φ(a, b, 0, t) or φ(a, b, 1, t) so that t = a or t = b.

3. Suppose φ is a formula of LST. Write an LST formula for ‘z = {t : φ(t)}’, relativize it

to a class A and then write the abbreviation in terms of z and {. : .}.

If A is a transitive class, φ, ψ are formulae and x, d, z ∈ A, what are the relativizations

of z = {t ∈ x : φ(t)} and z = {y : ∃x ∈ d φ(x, y)} to A?

Solution:

z = {t : φ(t)} ≡ ∀t (t ∈ z ↔ φ(t)).

Thus

[z = {t : φ(t)}]A ≡ ∀t ∈ A (t ∈ z ↔ φA(t))

↔ ∀t t ∈ z ∩ A↔ t ∈ A ∧ φA(t)

≡ z ∩ A =
{
t ∈ A : φA(t)

}
If A is transitive and b ∈ A then b ∩ A = b so

[z = {t ∈ x : φ(t)}]A ↔ z =
{
t ∈ x : φA(t)

}
and [

z =
{
y : ∃x ∈ d ψA(x, y)

}]A ↔ z =
{
y : ∃x ∈ d y ∈ A ∧ ψA(x, y)

}

4. Show that the transitive set (M,∈) constructed in question 6 below satisfies Extensionality,

Emptyset and Pairing.
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Solution:

Extensionlity: Since M is transitive, Extensionality holds.

Emptyset: We note that z = ∅U ∈ M and M is transitive so that the formula

z = ∅ ≡ ∀t ∈ z t 6= t is absolute for M,U . Hence z witnesses EmptysetM .

Pairing: Let x, y ∈M and set z = {x, y}U ∈M by the properties of M . Transitivity

of M and thus absoluteness of z = {x, y} gives that z witnesses Pairing (for x, y).
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Section B

5. Interpret the strict total order (Q, <) as a model of the LST, i.e. interpret the binary

predicate ∈ as <.

Which axioms of ZF hold? Give brief proofs or counterexamples.

Solution:

(a) Extensionality: True. We decode the axiom: ∀t ∈ Q [(t < p↔ t < q)→ p = q]

and note that this is true for any p, q ∈ Q e.g. by totality and anti-reflexivity of <:

if p 6= q then one of p < q or q < p must hold and this t contradicts the premise.

Emptyset: False. Take any x ∈ Q and let y = x − 1 ∈ Q. Then y < x so that

(∃y (y ∈ x))(Q,<).

Pairing: False. We think about the meaning of z = {x, y} in (Q, <). This says

x < z ∧ y < z ∧ ∀t < z [t = x ∨ t = y]. So let x = y = 0 and z ∈ Q. We must

have z > 0 by the first two conjuncts, but then 0 6= z/2 < z contradicting the last

conjunct.

Union: True. Take x ∈ Q and let z = x. If t < y < x then t < x = z and if t < z

then t < x, so (z =
⋃
x)(Q,<).

Powerset: False. First note that (a ⊆ b)(Q,<) ≡ a ≤ b ≡ a < b ∨ a = b: Suppose

(a ⊆ b)(Q,b), i.e. ∀t t < a → t < b. If a > b then then consider t = b for a

contradiction. Thus by totality we must have a < b ∨ a = b. Conversely suppose

a ≤ b. Then by transitivity t < a→ t < b.

Now take x = 0 ∈ Q and assume (z = P (x))(Q,<): then x ≤ x, i.e. (x ⊆ x)(Q,<) so

(x ∈ z)(Q,<) ≡ x < z by assumption. But then let y = x+z
2
< z and t = x 6≤ y gives

(y ∈ z)(Q,z) but (¬y ⊆ x)(Q,<).

Separation: False. Applying Separation to φ(t) ≡ t 6= t and any z ∈ Q would

produce ∅(Q,<) which does not exist.

Replacement: False. Applying Replacement with φ(a, x, y) ≡ y = a, a = 0

and z = 0 would yield z = {0}(Q,<) so that 0 < z. But then −1 < z gives a

contradiction.

Infinity: False. Since there is no emptyset, the condition ∅inz (formally ∃x ∈
z x = ∅ cannot hold.

Foundation: False. Let x = 0. We clearly have −1 < x so x 6= ∅(Q,<). But for

any m < x we consider t = m− 1 to get t < m∧ t < x contradicting ∈-minimality

of m.
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6. Work in ZF−.

Show that there exists a transitive set M such that

∅ ∈M ;

∀x, y ∈M {x, y} ∈M ;

∀x ∈M |x| ≤ 2.

Carefully show that neither Union nor Powerset is satisfied in (M,∈).

Solution: First note that

F (x) = x ∪ {y ∈ P (x) : |x| ≤ 2}

(where |x| ≤ 2 could be expressed by x = ∅ ∨ ∃a, b ∀t ∈ y t = a ∨ t = b) is a class

function by Powerset, Separation and the existence of finite unions (following from

Pairing and Union).

Other choices are possible (using Replacement instead of Powerset could be inter-

esting).

By recursion on ω + 1 we define G : ω + 1→ U such that

G0 = ∅

Gn+1 = F (Gn)

Gω =
⋃
n∈ω

Gn

and let M = Gω.

Note that by construction Gn ⊆ Gn+1 and hence by induction n < m ≤ ω → Gn ⊆ Gm.

We will use that silently below.

Transitivity: By induction on n we claim that each Gn is transitive (i.e. y ∈ Gn →
y ⊆ Gn): this is vacuously true for G0. For the inductive step, let y ∈ Gn+1: if y ∈ Gn

then by IH g ⊆ Gn ⊆ Gn+1. Otherwise y ∈ P (Gn) so y ⊆ Gn.

∅ ∈ M : Thus M = Gω is transitive as the union of transitive sets (if y ∈ Gω then

y ∈ Gn for some n then y ⊆ Gn ⊆ Gω).

x, y ∈ M → {x, y} ∈ M : Next ∅ ∈ G1 ⊆ Gω = M since ∅ ⊆ ∅ = G0 and |∅| ≤ 2 (e.g.

take a = b = ∅).

Now fix x, y ∈M = Gω =
⋃

n∈ω Gn: find nx, ny ∈ ω such that x ∈ Gnx and y ∈ Gny and

let n = max {nx, ny} to get x, y ∈ Gn. Then {x, y} ∈ Gn+1 by construction.

Mathematical Institute, University of Oxford

Rolf Suabedissen: rolf.suabedissen@maths.ox.ac.uk

Page 5 of 11



Axiomatic Set Theory: Sheet 1 — TT21

x ∈ M → |x| ≤ 2: Finally suppose x ∈ M = Gω. Let n ∈ ω be minimal such that

x ∈ Gn. Note that n 6= 0 as x 6∈ ∅. Thus n = m + 1 and by minimality x 6∈ Gm.

Therefore x ⊆ Gm such that |x| ≤ 2 by construction of Gn = Gm+1.

Union False. Note that a = 0, b = 1, c = {1} , d = {1} ∈ M are four elements of

M and they are distinct. Thus u = {a, b} , v = {c, d} , x = {u, v} ∈ M . Now suppose

z ∈M with (z =
⋃
x)M . Since M is transitive the formula z =

⋃
x is absolute for M,U

so that z =
⋃U x = {a, b, c, d} and clearly |z| > 2 contradicting z ∈M .

Powerset False. Note that x = 2 = {0, 1} ∈ M (since as above 0, 1 ∈ M). Suppose

z ∈M with (z = P (x))M , i.e.

∀t ∈M
[
t ∈ z ↔ (t ⊆ 2)M

]
.

Since M is transitive the formula t ⊆ x is absolute for M,U so that

∀t ∈M
[
t ∈ z ↔ (t ⊆ 2)U

]
.

But 0, 1, 2 ∈M and (0 ⊆ 2)U , (1 ⊆ 2)U , (2 ⊆ 2)U giving that |z| ≥ 3 > 2 a contradiction.

Separation True. Observe that if z ⊆ x ∈ M then z ∈ M . If x ∈ M then x = ∅ or

x = {a, b} for some a, b. If x = ∅ then z = ∅ ∈ M . Otherwise by transitivity of M we

have a, b ∈M and z = ∅ ∨ z = {a} ∨ z = {b} ∨ z = x. In all cases z ∈M .

Suppose x ∈ M , φ(t, a1, . . . , an) is a formula of LST and x1, . . . , xn ∈ M . In U apply

Separation to get z =
{
t ∈ x : φM(t, x1, . . . , xn)

}
.

Note that z ∈M since z ⊆ x. By 3 and the construction of z (in U) it satifies

(z = {t ∈ x : φ(t, x1, . . . , xn)})M .

Replacement True. Let φ(v1, . . . , vn, x, y) for a formula of LST, a1, . . . , an, d ∈ M

and assume

[∀x ∈ d ∃!y φ(a1, . . . , an, x, y)]M ≡ ∀x ∈ d ∩M∃!y ∈MφM(a1, . . . , an, x, y).

Let

ψ(v1, . . . , vn, x, y) ≡ y ∈M ∧ φM(v1, . . . , vn, x, y).

We claim ∀x ∈ d ∃!y ψ(a1, . . . , an, x, y): fix x ∈ d. Since d ∈ M and M is transitive

we have x ∈ d ∩ M so ∃!y ∈ M φM(a1, . . . , an, x, y). Pick y ∈ M ⊆ U such that
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φM(a1, . . . , an, x, y) to witness ∃y ψ(a1, . . . , an, x, y). If y1, y2 satisfy ψ(a1, . . . , x, yi) then

y1, y2 ∈M and φM(a1, . . . , an, x, y) so that y1 = y2 by assumption.

Thus we can apply Replacement in U to obtain

z = {y : ∃x ∈ d ψ(a1, . . . , an, x, y)} .

We note that z ∈ M (because d in M , z contains at most two elements and by con-

struction both of them are in M).

Thus by question3 we have

[z = {y : ∃x ∈ d φ(a1, . . . , an, x, y)}]M .

7. Work in ZF.

Show that if a is a non-empty transitive set then ∅ ∈ a.

Explain why the following sketch proof is not correct: Suppose ∅ 6∈ a. By recursion on

n ∈ ω find xn ∈ a such that xn+1 ∈ xn (in the inductive step we use that xn ∈ a means

that xn 6= ∅ and then transitivity of a to get xn+1 ∈ a as well). Then {xn : n ∈ ω} is a

subset of a with no minimal element, contradicting Foundation.

Solution: By Foundation find m ∈ a such that ∀t ∈ a t 6∈ m. We claim m = ∅: if

there is t ∈ m ∈ a then by transitivity of a we have t ∈ a contradicting minimality of ∈.

The sketch proof uses (countable dependent) Choice to choose the xn.

8. Explain how you would formally express the statement of the following informal meta-

theorem (we will take it as a fact and use it freely):

If A ⊆ B are non-empty transitive classes satisfying (enough of) ZF, F is a class function

that is absolute for A,B and a ∈ A then the class function G given by recursion on On

is absolute for A,B.

Solution: First we think about the assumptions:

• A is a non-empty transitive class means

τA ≡ (∃x ∈ A x = x) ∧ ∀x ∈ A ∀t ∈ x t ∈ A

and similarly for B.

• A ⊆ B ≡ ∀x ∈ A x ∈ B.
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• ‘satisfying (enough of) ZF’: here we list the relevant axioms we care about and

relativize these to A, i.e. φA
1 ∧ φA

2 · · · ∧ φA
n where φ1, . . . , φn are axioms of ZF

(and similarly for B). The axioms we care about include those that we use in our

discussion of ordinals and the proof of the Recursion Theorem (for F ) on ordinals

(this includes an instance of Replacement for a suitable formula φ given by F ).

• F is really some formula φ(p) with one free variable p. We assert that A |=
φ is a class function on U = {x : x = x} (and the same for B) which becomes

something like

∀p ∈ A (φA(p)→ (p is an ordered pair))

∧∀x ∈ A ∃y ∈ A φA(〈x, y〉)

∧∀x ∈ A ∀y1, y2 ∈ A (φA(〈x, y1〉) ∧ φA(〈x, y2〉)→ y1 = y2).

Note that since we may insist that A (and B) satisfy Pairing and Extensionality

and are transitive so that being an ordered pair and z = 〈x, y〉 are absolute for

A,U (and B,U resp.) we don’t have to relativize ‘is an ordered pair’ and 〈x, y〉
and also don’t need to worry too much what φA(〈x, y〉) actually means (e.g. you

could take it to mean ∃p ∈ A p = 〈x, y〉 ∧ φA(p) or ∀p ∈ A p = 〈x, y〉 → φA(p) or

the conjuction of the two).

• F is absolute for A,B should be (with F represented by φ as above)

∀p ∈ A φA(p)↔ φB(p)

(noting that this says nothing about p ∈ B \ A).

• we of course need a ∈ A;

We then take a conjunction over all these as our premise and now think about the

conclusion. Recall that in the Recursion Theorem we had a formula for G, namely

GF,a ≡ {〈α, y〉 : α ∈ On ∧ [∃g [ψF,a(α, g) ∧ 〈α, y〉 ∈ g]]} .

where

ψF,a(α, g) ≡α ∈ On ∧ g is a function on α + 1∧

g(0) = a∧

∀β ∈ α [g(β + 1) = F (g(β))]∧

∀γ ∈ Lim ∩ α + 1
[
g(γ) =

⋃
{g(β) : β ∈ γ}

]
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Thus our conclusion is

∀p ∈ A((p ∈ GF,a)
A ↔ (p ∈ GF,a)

B).

A couple of points are important: in ψ we need to relativize F to A and B respectively;

we should also relativize On, α + 1, ’being a function on ‘, 0, β + 1, Lim and
⋃

to

A (resp. B) and of course the 〈., .〉 should also be relativized. Finally don’t forget to

bound all quantified variables to A (resp. B)! However, because of our insistence that

A,B satisfy enough of ZF we have

• being an ordinal is absolute for A,U so the (α ∈ On)A can be replaced by α ∈ On;

• ordered pairs exist and are absolute for A,U so all the 〈., .〉 do not in fact need to

be relativized; for the same reason we don’t need to worry about all the g(.) = .

(which is really 〈., .〉 ∈ g) provided both the . in LHS and RHS exist (in A) so

that we really should insist on UnionA in our premises;

• similarly α + 1, being a function, 0, being a limit ordinal and
⋃

are absolute for

A,U so don’t need relativization.

So after all these simplifications our (p ∈ GF,a)
A becomes (with the remaining relativiza-

tions underlined)

∃α, y p = 〈α, y〉 ∧ ∃g∈ A ψA
F,a(α, g) ∧ p ∈ g

(note that we don’t need to insist that α, y ∈ A since p ∈ A, transitivity of A and

p = 〈α, y〉 gives this automatically) where

ψA
F,a(α, g) ≡α ∈ On ∧ g is a function on α + 1∧

g(0) = a∧

∀β ∈ α
[
g(β + 1) = FA(g(β))

]
∧

∀γ ∈ Lim ∩ α + 1
[
g(γ) =

⋃
{g(β) : β ∈ γ}

]
Of course the same will work for B (since p ∈ A implies p ∈ B).
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9. Work in ZF.

We define ‘x is an ordinal’ to mean ‘x is a transitive set well-ordered by ∈’.

(a) Show that ‘x is an ordinal’ is equivalent to ‘x is a transitive set totally ordered by

∈’.

(b) Deduce that ‘x is an ordinal’ is absolute for non-empty transitive classes A ⊆ B

satisfying (enough of) ZF. Does this imply that OnA = OnB (no full proof or

counterexample expected)?

Update: for a formula φ(x) coding a class C here I intended CA =
{
x ∈ A : φA(x)

}
and not the (more?) reasonable

{
x : φA(x)

}
. It turns out that for both interpre-

tations there are counterexamples.

(c) Assuming that it is consistent with ZF− that there is x with x = {x}, show that

the equivalence in part (a) requires Foundation.

Update: As has been pointed out in some solutions, the existence of a set x = {x}
is not enough because we use strict well-orders (and total orders).

Solution:

(a) The forwards implication is trivial. For the backwards implication note that

Foundation implies that ∈ is well-founded.

(b) We note that ‘x is a transitive set totally ordered by in’ can be expressed as a ∆0

formula and hence is absolute for A,B. Because A,B satisfy Foundation and the

previous part we have for x ∈ A

[x ∈ On]A ↔ [x is a transitive set totally ordered by ∈]A

↔ [x is a transitive set totally ordered by ∈]B

↔ [x ∈ On]B .

(The first and third equivalence are the previous part, the middle one is the abso-

luteness noted above.)

This only shows that OnA ⊆ OnB and that OnB ∩ A = OnA, but we might have

ordinals in B which are not in A.

Mathematical Institute, University of Oxford

Rolf Suabedissen: rolf.suabedissen@maths.ox.ac.uk

Page 10 of 11



Axiomatic Set Theory: Sheet 1 — TT21

Section C

10. In your answers to question 1:

Is the ∆0-formula you gave still equivalent without assuming ZF? Which ‘bit’ of ZF is

sufficient to give an equivalent ∆0-formula.

Is the concept (downward resp. upward) absolute for any classes A ⊆ B? For any

transitive classes A ⊆ B? For any transitive classes A ⊆ B satisfying enough of ZF?

11. For an arbitrary strict partial order (P,<), find the order theoretic interpretations of ∅,
{x, y},

⋃
x, P (x) and conditions for their existence.

Given a substructure (Q,<) of (P,<), can you find general conditions on Q (and P )

are these absolute?

12. Show that in the theory of weak partial orders (P,≤) the concepts of minimum, maxi-

mum, greatest element and least element are not absolute.

Note that in the theory of lattices (L,≤,∧,∨) where ∧ and ∨ are binary functions the

concepts of minimum and maximum are absolute (by definition of what a substructure

is).

13. In your favourite area of mathematics, think about different ways to axiomatize the the-

ory and how these may give rise to different notions of ‘substructure’ and ‘absoluteness’

of important concepts.

14. In (M,∈) as constructed in question 6, which of the other axioms of ZFC hold? Does

it depend on the precise formulation of the axiom?

15. Prove the theorem in question 8.

16. Suppose V |= ZF.

Suppose F : V → V is a bijective class function.

Define the relation E by xEy if and only if x ∈ F−1(y) and consider the structure (V,E)

and we write φE for the formula φ where ∈ is replaced by E (so we interpret φ in the

structure (V,E)).

(a) Show that (V,E) |= Extensionality.

(b) Compute ∅E, {x, y}E, (
⋃
x)E, P (x)E, ωE.

(c) Show that (V,E) satisfies ZF−.

(d) Find a concrete F so that there is x such that (V,E) |= x = {x}.
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