Axiomatic Set Theory Sheet 3 — TT21

Section A

On this sheet all questions can be done in **ZFC** (unless otherwise indicated) but **Choice** is not needed in several and should be avoided if possible.

- 1. Complete the proof that *L* satisfies **ZF** (again, probably **Union** and **Infinity**). Solution: lecture notes
- 2. Work in \mathbf{ZF}^{-} .

Show that if A is a transitive non-empty class such that

$$\forall z \ [z \subseteq A \to z \in A]$$

and such that A satisfies **Separation** then A satisfies \mathbf{ZF}^{-} .

- 3. The rank of a set a, rk(a), is the least $\alpha \in On$ such that $a \subseteq V_{\alpha}$.
 - (a) Show that rk(a) is the least $\alpha \in On$ such that $a \in V_{\alpha+1}$.
 - (b) Show that $\forall \alpha \in \text{On } \mathrm{rk}(\alpha) = \alpha$.
 - (c) Show that $\forall \alpha \in \text{On } \operatorname{rk}(L_{\alpha}) = \alpha$.
 - (d) Compute $rk(\{x, y\})$ in terms of rk(x), rk(y).
 - (e) Compute $rk(\bigcup x)$ in terms of rk(x).
 - (f) Compute $rk(\mathcal{P}(x))$ in terms of rk(x).
 - (g) Why do we not define rk(a) as the least $\alpha \in On$ such that $rk(a) \in V_{\alpha}$?

Section B

- 4. A club (in On) is a closed unbounded class of ordinals, i.e. a class $C \subseteq$ On such that $\forall x \ [x \subseteq C \rightarrow \sup x \in C]$ (closedness) and $\forall \alpha \in$ On $\exists \beta \in C \ \alpha \in \beta$ (unboundedness).
 - (a) Prove that is C_1 and C_2 are clubs then so is $C_1 \cap C_2$.
 - (b) Suppose that $X \subseteq \omega \times \text{On}$ is a class and for each $i \in \omega$ we write $X_i = \{\alpha \in \text{On} : \langle i, \alpha \rangle \in X\}$. Carefully write down **one** formula expressing that for all $i \in \omega$, X_i is a club. Carefully define $\bigcap_{i \in \omega} X_i$ and prove that it is a club.
- 5. We use the following fact: there is a formula $\phi(x)$ of LST (with all free variables shown) such that (in **ZF** one can prove that) for any set a, ' $\phi(a)$ if and only if a is transitive and $(a, \in) \models \mathbf{ZF}$ '. Further this formula is absolute for any non-empty transitive classes $A \subseteq B$ satisfying enough of **ZF**.
 - (a) Show that if $\mathbf{ZF} \vdash \exists x \ \phi(x)$ then \mathbf{ZF} is inconsistent. [Consider the least $\alpha \in On$ such that $\exists x \in V_{\alpha} \ \phi(x)$.]
 - (b) Show that if \mathbf{ZF} is consistent then there is no finite collection \mathbf{T} of axioms of \mathbf{ZF} such that $\mathbf{T} \vdash \mathbf{ZF}$. (Note that axiom schemes like **Separation** and **Replacement** count as infinitely many axioms, one for each formula.)
 - (c) Give a formula ϕ of LST such that the class $A_{\phi} = \{\alpha \in \text{On} : \phi \text{ is absolute for } V_{\alpha}, V\}$ is not a club.
 - (d) (Difficult) If ϕ is a formula of LST, show that the class A_{ϕ} contains a club C_{ϕ} .
- 6. Let e denote the set of even natural numbers. Prove that $e \in L_{\omega+1}$.
- 7. Suppose $F: V \to V$ is a class function (without parameters, i.e the formula defining the class F has one free variable) which is an elementary map, i.e. for every formula $\phi(v_0, \ldots, v_n)$ of LST (with all free variables shown) we have

$$\forall a_0, \ldots, a_n \ \phi(a_0, \ldots, a_n) \leftrightarrow \phi(F(a_0), \ldots, F(a_n)).$$

Prove that F is the identity.

[You may want to show that for all ordinals α , $F(\alpha) = \alpha$ by considering the least failure, but other (quicker) methods are available.]

- 8. The collection of Σ_1 formulae are defined (recursively in the meta-theory) as follows:
 - Δ_0 formulae are Σ_1 ;
 - if ϕ, ψ are Σ_1 then so are $\phi \lor \psi, \phi \land \psi, \forall x \in y \phi$ and $\exists x \phi$;
 - nothing else is a Σ_1 formula.
 - (a) Show that for every Σ_1 formula $\phi(v_1, \ldots, v_n)$ there is a corresponding Δ_0 formula $\psi(v_1, \ldots, v_n, w_1, \ldots, w_m)$ such that

 $\mathbf{ZF} \vdash \forall x_1, \dots, x_n \left[\phi(x_1, \dots, x_n) \leftrightarrow \exists y_1, \dots, y_m \ \psi(x_1, \dots, x_n, y_1, \dots, y_m) \right].$

(b) Show that Σ_1 formulae are upwards absolute for non-empty transitive classes $A \subseteq B$, i.e. if $\phi(v_1, \ldots, v_n)$ is Σ_1 then

$$\forall a_1, \dots, a_n \in A \left[\phi(a_1, \dots, a_n)^A \to \phi(a_1, \dots, a_n)^B \right].$$

(c) Give an example of a Σ_1 formula that is not absolute for non-empty transitive classes.

Section C

9. This question extends question 4.

A club on ω_1 is a closed unbounded subset of ω_1 , i.e. a set $c \subseteq \omega_1$ such that $x \subseteq c \rightarrow \sup x \in c$ and $\forall \alpha \in \omega_1 \exists \beta \in c \ \alpha \in \beta$.

- (a) Show that a club on ω_1 is a club in On relativized to V_{ω_1} .
- (b) Show that the collection of clubs on ω_1 form a countably complete filter, i.e. that the intersection of countably many clubs is club.
- (c) Suppose that $c_{\alpha}, \alpha \in \omega_1$ is an uncountable family of clubs indexed by ω_1 . Show that the diagonal intersection

$$\Delta_{\alpha \in \omega_1} c_\alpha = \{ \beta \in \omega_1 : \forall \delta \in \beta \ \beta \in c_\delta \}$$

is a club.

- (d) [Difficult] A set $s \subseteq \omega_1$ is stationary if and only if it intersects every club. Show that there is a stationary, non-club subset.
 - (i) Note that $\operatorname{Lim} \cap \omega_1$ is club.
 - (ii) For each $\alpha \in \text{Lim let } (a_n^{\alpha})_{n \in \omega}$ be a strictly increasing sequence with $\sup_{n \in \omega} a_n^{\alpha} = \alpha$.

Show that

$$\exists n \in \omega \ \forall \xi \in \omega_1 \ S_{\xi} = \{ \alpha \in \operatorname{Lim} : a_n^{\alpha} \ge \xi \}$$

is stationary.

- (iii) Fix some $n \in \omega$ as above and show that for each $\xi \in \omega_1$ there is $\eta \in \omega_1$ such that $\xi \leq \eta$ and $\{\alpha \in \text{Lim} : a_n^{\alpha} = \eta\}$ is stationary.
- (iv) Deduce that there are ω_1 many disjoint stationary sets (none of which can be club).
- 10. This question extends question 5.
 - (a) Indicate how to write down ϕ .
 - (b) What is wrong with the following argument: let $\phi_i, i \in \omega$ be an enumeration of all the axioms of **ZF**. For each $i \in \omega$, let $C_i = C_{\phi}$ be a club such that for $\alpha \in C_i, \phi_i$ is absolute for V_{α}, V , so that $\phi_i^{V_{\alpha}}$ holds (because $V \models \phi_i$). Then $\bigcap_i C_i$ is a club and so non-empty. Let $\beta \in \bigcap_i C_i$ so that $(V_{\beta}, \in) \models \phi_i$ for every *i* and hence (V_{β}, \in) is a model of **ZF**. Thus $\exists x \ \phi(x)$ and so **ZF** is inconsistent.

11. Work in \mathbf{ZF} +Global Choice which means that there is a (defined) well-order of V (this follows for example from \mathbf{V} =L).

An ultrafilter on ω is a collection p of subsets of \mathbb{N} such that $\emptyset \notin p$, $a, b \in p \to a \cap b \in p$, $a \in p \land a \subseteq b \to b \in p$ and $\forall a \ [a \in p \lor \omega \setminus a \in p]$.

Assume that p is an ultrafilter on ω .

Let $P = \{f : \mathbb{N} \to V\}$ and for $f, g \in P$ define $f \equiv g$ if and only if $\{n \in \omega : f(n) = g(n)\} \in p$ and f E g if and only if $\{n \in \omega : f(n) \in g(n)\} \in p$.

Write W for the quotient of P by \equiv (strictly speaking this could be P' from part (b)) and \in_W for the relation induced by E on W (strictly speaking this could be the restriction of E to P').

Identify elements x of V with the equivalence class of the constant function with value x.

- (a) Show that \equiv defines an equivalence relation on P and show that E is invariant on equivalence classes. We write [f] for the equivalence class of f (this is a proper class).
- (b) By considering minimal elements of [f] (using **Global Choice**) find a class $P' \subseteq P$ such that $\forall f \in P \exists ! f' \in P'[f] = [f']$.
- (c) Show that every formula is absolute for $(V, \in), (W, \in_W)$ (they are elementarily equivalent) and hence that W satisfies **ZF** and $\omega^W = \omega^V$ (under the identification).
- (d) Let $f_n : \omega \to \omega$ be given by $f_n(m) = \max\{0, m n\}$. Show that if n < m then $[f_m] \in_W [f_n] \in_W \omega$ (so each $[f_n]$ is an 'infinite' natural number). Deduce that $\{[f_n] : n \in \omega\} \notin W$.
- (e) Think about what that means for internalizing formulae, the satisfaction relation and proofs.

- 12. This question extends question 7.
 - (a) Does your proof also work for class functions F which may depend on a parameter? I.e. if $\phi(a, z)$ is a formula with two free variables a, z such that there is a parameter a such that $\phi(a, .)$ codes an elementary map $V \to V$, must this map be the identity?
 - (b) Now assume that M is a transitive class and $j: V \to M$ an elementary map (a class function possibly with parameters), i.e. such that for every formula $\phi(v_1, \ldots, v_n)$

 $\forall a_1, \dots, a_n \in V \ \phi^V(a_1, \dots, a_n) \leftrightarrow \phi^M(j(a_1), \dots, j(a_n)).$

Show that j maps ordinals to ordinals, is strictly increasing on the ordinals, $j(\omega) = \omega$.

Show that if V satisfies **ZFC** and j is the identity on On then j is the identity (and M = V).

(c) Continuing from the last part, assume $M \models \mathbf{ZFC}$, that $j : V \to M$ is a nonidentity elementary map and let κ be the least ordinal such that $j(\kappa) \neq \kappa$ (this is called the critical point of j).

Show that $\{A \subseteq \kappa : \kappa \in j(A)\}$ is a countably complete, non-principal ultrafilter on κ .

13. Work in **ZFC**.

This question extends question 8.

The Π_1 formulae are the negations of the Σ_1 formulae. Derive the analogous results for Π_1 formulae as for Σ_1 formulae.

Show that 'r is a well-order on x' is equivalent (in **ZFC**) to both a Σ_1 formula and to a (different) Π_1 formula and deduce that it is absolute for non-empty transitive classes satisfying enough of **ZFC**.

Prove by hand (i.e. without using the previous part) that 'r is a well-order on x' is absolute for transitive classes satisfying enough of **ZFC**.