
Axiomatic Set Theory

Sheet 3 — TT21

Section A

On this sheet all questions can be done in ZFC (unless otherwise indicated) but Choice

is not needed in several and should be avoided if possible.

1. Complete the proof that L satisfies ZF (again, probably Union and Infinity). Solu-

tion: lecture notes

2. Work in ZF−.

Show that if A is a transitive non-empty class such that

∀z [z ⊆ A→ z ∈ A]

and such that A satisfies Separation then A satisfies ZF−.

Solution:

� Extensionality follows from transitivity of A;

� Emptyset: ∅ ⊆ A so ∅ ∈ A and ∅ is absolute;

� Pairing: if x, y ∈ A then {x, y} ⊆ A so {x, y} ∈ A and {x, y} is absolute;

� Union: if x ∈ A then
⋃
x ⊆ A (by transitivity of A: if t ∈ y ∈ x ∈ A then

t ∈ y ∈ A and so t ∈ A) giving
⋃
x ∈ A and

⋃
x is absolute;

� Powerset: if x ∈ A then z = P (x) ∩ A ⊆ A so z ∈ A and A |= z = P (A) (by

transitivity of A);

� Replacement: follow the proof that V |= Replacement to get

z =
{
y : ∃x ∈ d y ∈ A ∧ φA(a1, . . . , an, x, y)

}
⊆ A.

Thus z ∈ A and as for V this is the correct z.

� Infinity: by induction on n, for each n ∈ ω, n ∈ A (∅ ∈ A by Emptyset and

absoluteness; Pairing, Union and absoluteness of a+ 1 for inductive step); thus

ω ⊆ A so ω ∈ A and Ind(x) being absolute.
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3. The rank of a set a, rk(a), is the least α ∈ On such that a ⊆ Vα.

(a) Show that rk(a) is the least α ∈ On such that a ∈ Vα+1.

(b) Show that ∀α ∈ On rk(α) = α.

(c) Show that ∀α ∈ On rk(Lα) = α.

(d) Compute rk({x, y}) in terms of rk(x), rk(y).

(e) Compute rk(
⋃
x) in terms of rk(x).

(f) Compute rk(P (x)) in terms of rk(x).

(g) Why do we not define rk(a) as the least α ∈ On such that rk(a) ∈ Vα?

Solution: Note that clearly a ⊆ b → rk(a) ≤ rk(b) and also a ∈ b → rk(a) < rk(b): if

a ∈ b ⊆ Vα then α 6= 0; if α = β + 1 then a ∈ Vβ+1 = P (Vβ) gives a ⊆ Vβ; if α ∈ Lim

then a ∈ Vα =
⋃
β<α Vβ give a ∈ Vβ for some β < α.

(a) if a ⊆ Vα then a ∈ P (Vα) = Vα+1; conversely if a ∈ Vα+1 = P (Vα) then a ⊆ Vα.

Hence a ⊆ Vα ↔ a ∈ Vα+1.

(b) This follows immediately from Vα ∩On = α.

(c) Inductively Lα ⊆ Vα gives rk(Lα) ≤ α. Conversely α = Lα ∩On so rk(Lα) ≥ α.

(d) rk({x, y}) = max(rk(x) + 1, rk(y) + 1) (by the two properties at the beginning)

(e) if rk(x) = α + 1 then rk(
⋃
x) = α: firstly if t ∈

⋃
x then find y ∈ x with t ∈ y;

then rk(y) < rk(x) so rk(y) ≤ α and hence t ∈ Vα; next if
⋃
x ⊆ Vβ for β < α then

every y ∈ x is contained in Vβ (as a subset) and hence every y ∈ x is in Vβ+1 as an

element so x ⊆ Vβ+1 a contradiction;

if rk(x) = 0 then x = ∅ and
⋃
x = ∅ so rk(

⋃
x) = 0;

if rk(x) ∈ Lim then rk(
⋃
x) = rk(x) as for the successor case.

(f) rk(P (x)) = rk(x) + 1: since x ∈ P (x) we have ≥. But if x ⊆ Vα and y ⊆ x then

y ⊆ Vα, so y ∈ Vα+1. Thus rk(P (x)) ≤ α + 1.

(g) In this case we would have no elements with a limit rank (at limit stages we don’t

get any new elements).

With our current definition we have the pleasing recursive formula

rk(x) = sup {rk(y) + 1 : y ∈ x} .
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Section B

4. A club (in On) is a closed unbounded class of ordinals, i.e. a class C ⊆ On such that

∀x [x ⊆ C → supx ∈ C] (closedness) and ∀α ∈ On ∃β ∈ C α ∈ β (unboundedness).

(a) Prove that is C1 and C2 are clubs then so is C1 ∩ C2.

(b) Suppose thatX ⊆ ω×On is a class and for each i ∈ ω we writeXi = {α ∈ On : 〈i, α〉 ∈ X}.

Carefully write down one formula expressing that for all i ∈ ω, Xi is a club.

Carefully define
⋂
i∈ωXi and prove that it is a club.

Solution:

(a) For unboundedness, recursively (on ω, with parameter α ∈ On) define

α0 = α + 1

αn+1 =

least δ ∈ C1 δ > αn; n odd

least δ ∈ C2 δ > αn; n even

and set β = supn αn. Since the sequence of αn are strictly increasing we have

β = supk α2k+1 ∈ C1 and β = supk α2k ∈ C2 and clearly α ∈ α0 ⊆ β.

Closedness is straightforward: if s ⊆ C1∩C2 then s ⊆ Ci, i = 1, 2 so sup s ∈ Ci, i =

1, 2 as each Ci is closed.

(b) The formula is

φ ≡∀i ∈ ω ∀α ∈ On ∃β ∈ On 〈i, β〉 ∈ X ∧ α ∈ β

∧ ∀s ∀i ∈ ω [(∀α ∈ s 〈i, α〉 ∈ X)→ 〈i, sup s〉 ∈ X] .

We similarly define ‘
⋂
i∈ωXi’ by

{β : ∀i ∈ ω 〈i, β〉 ∈ X} .

To prove unboundedness we take a function f : ω → ω which hits every k ∈ ω

infinitely often (e.g. take a bijection f : ω → ω×ω and take π1◦f) and by recursion

on ω with parameter α define α0 = α + 1 and

αn+1 = least δ ∈ On δ > αn ∧ 〈f(n+ 1), δ〉 ∈ X.

As before αn is a strictly increasing sequence and since each f−1(k) is unbounded

in ω we get that

β := sup {αn : n ∈ ω} = sup
{
αn : n ∈ f−1(k)

}
, k ∈ ω
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so that

∀i ∈ ω 〈i, β〉 ∈ X.

Closedness is the same as in the previous part.

Comment: It is important that we have one (or finitely many) formulae and use

the parameter i to ‘split’ these into ‘infinitely many’ classes, i.e. our classes have

a uniform formula. Of course in the meta-theory (depending on whether you have

an axiom of infinity) we can imagine infinitely many formulae defining infinitely

many classes, but we have no way of writing a formula involving all of them in the

theory.

5. We use the following fact: there is a formula φ(x) of LST (with all free variables shown)

such that (in ZF one can prove that) for any set a, ‘φ(a) if and only if a is transitive

and (a,∈) |= ZF’. Further this formula is absolute for any non-empty transitive classes

A ⊆ B satisfying enough of ZF.

(a) Show that if ZF ` ∃x φ(x) then ZF is inconsistent. [Consider the least α ∈ On

such that ∃x ∈ Vα φ(x).]

(b) Show that if ZF is consistent then there is no finite collection T of axioms of ZF

such that T ` ZF. (Note that axiom schemes like Separation and Replacement

count as infinitely many axioms, one for each formula.)

(c) Give a formula φ of LST such that the classAφ = {α ∈ On : φ is absolute for Vα, V }
is not a club.

(d) (Difficult) If φ is a formula of LST, show that the class Aφ contains a club Cφ.

Solution:

(a) Suppose ZF ` ∃x φ(x). Let α ∈ On be minimal s.t. ∃x ∈ Vα φ(x) (since ZF

implies ∀x x ∈ V ). Then x |= ZF and hence x |= ∃y φ(y). Pick some y ∈ x

such that φx(y). By absoluteness of φ for x, V (x is transitive) we have φ(y). But

because y ∈ x we have rk(y) < rk(x) contradicting minimality of α.

(b) Let T be a finite collection of axioms of ZF such that T ` ZF.

Work in ZF (i.e. the following is always ‘ZF proves ...’): by the Levy Reflection

Principle there is α such that Vα |= T. But then Vα is a transitive set satisfying T

and hence ZF. Thus ∃x φ(x).

Hence ZF ` ∃x φ(x) and thus ZF is inconsistent.
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(c) We can take φ to be the disjunction of ‘there is a maximal ordinal’ and Infinity:

since InfinityV we have φV . For α ∈ ω, α 6= 0 we have φVα (since there is a

maximal ordinal in Vα and this is absolute) and for α > ω we have InfinityVα .

But (again absoluteness of both disjunction for Vω, V ) ¬φVω and also ¬φ∅. Thus

Aφ = On \ {∅, ω} which is not closed.

(d) In the proof of the LRP we define (implicitly) a class function F : On → On

which gives αm+1 = F (αm) and then use recursion on ω + 1. We could use F and

recursion on On to get a class function G : On → On in the usual way (starting

with G(0) = 1 for example) and then check that G[Lim] is club which follows from

noting that G is continuous and increasing. Also the Tarski-Vaught criterion shows

that for every α ∈ G[Lim] we have that φ is absolute for Vα, V (in the same way

as in the proof of the LRP).

6. Let e denote the set of even natural numbers. Prove that e ∈ Lω+1.

Solution: Let φ(n) ≡ n ∈ On ∧ (n = ∅ ∨ ∃m ∈ n n = m + m). Note that OnLω = ω,

(n = ∅)Lω ↔ n = ∅ and (for n,m ∈ ω) (n = m+m)Lω ↔ n = m+m. Thus

e = z = {n ∈ Lω : Lω |= φ(n)} ∈ Lω+1.

Note that we are not allowed to use ω as a parameter (since ω 6∈ Lω) but instead use

On (this works because (x ∈ On)Lω ↔ x ∈ ω).

7. Suppose F : V → V is a class function (without parameters, i.e the formula defining

the class F has one free variable) which is an elementary map, i.e. for every formula

φ(v0, . . . , vn) of LST (with all free variables shown) we have

∀a0, . . . , an φ(a0, . . . , an)↔ φ(F (a0), . . . , F (an)).

Prove that F is the identity.

[You may want to show that for all ordinals α, F (α) = α by considering the least failure,

but other (quicker) methods are available.]

Solution: F is injective by considering φ(a0, a1) ≡ a0 = a1: this gives F (a0) = F (a1)→
a0 = a1.

F is surjective by considering φ(a0) ≡ ∃a1 F (a1) = a0: suppose x ∈ V and let y =

F (x). Then φ(y) (as witnessed by x) and hence φ(F (x)) (since y = F (x) and thus by

elementariness of F we have φ(x) as required.
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F is the identity: suppose not and let x be ∈-minimal (e.g. take x of minimal rank) such

that F (x) 6= x. Let φ(a0, a1) ≡ a0 ∈ a1. If t ∈ x then F (t) = t and so by elementariness

t = F (t) ∈ F (x). Conversely if t ∈ F (x) then t = F (u) for some u by surjectivity and

thus u ∈ x meaning u = F (u) = t.

8. The collection of Σ1 formulae are defined (recursively in the meta-theory) as follows:

� ∆0 formulae are Σ1;

� if φ, ψ are Σ1 then so are φ ∨ ψ, φ ∧ ψ,∀x ∈ y φ and ∃x φ;

� nothing else is a Σ1 formula.

(a) Show that for every Σ1 formula φ(v1, . . . , vn) there is a corresponding ∆0 formula

ψ(v1, . . . , vn, w1, . . . , wm) such that

ZF ` ∀x1, . . . , xn [φ(x1, . . . , xn)↔ ∃y1, . . . , ym ψ(x1, . . . , xn, y1, . . . , ym)] .

(b) Show that Σ1 formulae are upwards absolute for non-empty transitive classes A ⊆
B, i.e. if φ(v1, . . . , vn) is Σ1 then

∀a1, . . . , an ∈ A
[
φ(a1, . . . , an)A → φ(a1, . . . , an)B

]
.

(c) Give an example of a Σ1 formula that is not absolute for non-empty transitive

classes.

Solution:

(a) By induction on the complexity of φ:

For a ∆0 formula φ we take ψ = φ and m = 0.

If φ1, φ2 are equivalent to ∃y1, . . . , ymi ψi with ψi ∆0 then relabel the free occur-

rences of y1, . . . , ym2 in ψ2 to ym1+1, . . . , ym1+m2 in ψ2 and note that φ1 ∧ φ2 ↔
∃y1, . . . , ym1+m2ψ1 ∧ ψ2 and similarly for ∨.

If φ is equivalent to ∃y1, . . . , ym ψ with ψ ∆0 then ∃xφ↔ ∃x∃y1, . . . , ym ψ.

Now suppose φ is equivalent to ∃y1, . . . , ym ψ with ψ ∆0. We let

ψ′ ≡ ∀x ∈ y∃y1, . . . , ym ∈ ym+1 ψ

and claim this works for ∀x ∈ y φ, i.e. that

∀x ∈ y φ↔ ∃ym+1 ψ
′

(or more precisely that ZF proves its universal closure).
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Firstly ∀x ∈ y∃y1, . . . , ym ∈ ym+1 ψ is clearly ∆0 provided ψ is.

Now for the equivalence fix the free variables (in particular y):

Assume ∀x ∈ yφ; for each x ∈ y we have ∃y1, . . . , ym ψ and because we assume ZF

this means that there is αx ∈ On (minimal) such that ∃y1, . . . , ym ∈ Vαx ψ. So we

can take α = supx∈y αx to get

∀x ∈ y ∃y1, . . . , ym ∈ Vα ψ.

Thus ym+1 = Vα witnesses ∃ym+1ψ
′ (for these free variables).

Conversely assume that ∃ym+1ψ
′ and fix some such. Fix x ∈ y. Then ∃y1, . . . , ym ∈

ym+1ψ and thus ∃y1, . . . , ym ψ. Thus by I.H. we have φ. But since x ∈ y was

arbitrary we actually have ∀x ∈ y φ as required.

(b) An easy induction on the complexity of the formula. Everything proceeds as for

the ∆0 case except that when we come to a ∃xφ we can only prove upwards abso-

luteness.

(c) A straightforward example is Infinity. This is Σ1 but not absolute for V1, V .
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Section C

9. This question extends question 4.

A club on ω1 is a closed unbounded subset of ω1, i.e. a set c ⊆ ω1 such that x ⊆ c →
supx ∈ c and ∀α ∈ ω1∃β ∈ c α ∈ β.

(a) Show that a club on ω1 is a club in On relativized to Vω1 .

(b) Show that the collection of clubs on ω1 form a countably complete filter, i.e. that

the intersection of countably many clubs is club.

(c) Suppose that cα, α ∈ ω1 is an uncountable family of clubs indexed by ω1. Show

that the diagonal intersection

∆α∈ω1cα = {β ∈ ω1 : ∀δ ∈ β β ∈ cδ}

is a club.

(d) [Difficult] A set s ⊆ ω1 is stationary if and only if it intersects every club. Show

that there is a stationary, non-club subset.

(i) Note that Lim ∩ ω1 is club.

(ii) For each α ∈ Lim let (aαn)n∈ω be a strictly increasing sequence with supn∈ω a
α
n =

α.

Show that

∃n ∈ ω ∀ξ ∈ ω1 Sξ = {α ∈ Lim : aαn ≥ ξ} is stationary.

(iii) Fix some n ∈ ω as above and show that for each ξ ∈ ω1 there is η ∈ ω1 such

that ξ ≤ η and {α ∈ Lim : aαn = η} is stationary.

(iv) Deduce that there are ω1 many disjoint stationary sets (none of which can be

club).

Solution:

(a) Since Vω1 satisfies ZF −Replacement we get that x ∈ On is absolute for Vω1 , V

so OnVω1 = On ∩ Vω1 = ω1.

A subtlety is that (possibly) not every club subset of ω1 is a class (given by a

formula).

(b) The same proof as in question 4 works (this time instead of a formula whose slices

are the club classes, we have a function f : ω → V such that each f(n) is a club

on ω1 (so again, we have only one uniform description in terms of f). We need to

observe that using Choice we can show that a countable union of countable sets

is countable, i.e. the sup we construct is in ω1.
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(c) For closedness, let c′α = cα∪ [α, ω1) (closed as a finite union of closed sets) and note

that

∆α∈ω1cα =
⋂
α∈ω1

c′α.

For unboundedness, let α ∈ ω1 and set β0 = α. By the previous part we can find

β1 ∈ ω such that β1 ∈
⋂
δ∈β0 cδ with β0 < β1. Continue recursively, i.e. find

βn+1 ∈ (βn, ω1) ∩
⋂
δ∈β1

cδ

and let β = sup {βn : n ∈ ω} =
⋃
n∈ω βn.

Note that n 7→ βn is strictly increasing so β ∈ Lim.

Also if δ ∈ β then δ ∈ βn for some n ∈ ω and thus δ ∈ βn+k for all k ∈ ω. Thus

βn+1 ∈ cδ and continuing inductively βn+1+k ∈ cδ for k ∈ ω. But then as cδ is

closed we must have β = supk∈ω βn+1+k ∈ cδ.

Thus ∀δ ∈ β β ∈ cδ as required.

(d) (i) Straightforward (the limit limits is a limit and for each α ∈ ω1 we have α+ω ∈
Lim ∩ ω1).

(ii) Suppose not: for each n ∈ ω fix ξn ∈ ω1 such that Sξn is not stationary as

witnessed by some club Cn that doesn’t meet Sξn .

Let ξ = supn∈ω ξn ∈ ω1 (a countable sup of countable ordinals is countable).

Then for each n ∈ ω the set {α ∈ Lim : aαn ≥ ξ} ⊆ Sξn misses Cn and hence

their union, S = {α ∈ Lim : ∃n ∈ ω aαn ≥ ξ} misses C =
⋂
n∈ω Cn. But C is

club (a countable intersection of clubs) and S ⊃ {α ∈ Lim : α > ξ} contains a

club and hence must intersect C, a contradiction.

(iii) Fix n ∈ ω and ξ ∈ ω1 and assume ∀η ∈ [ξ, ω1) there is a club Cη which misses

{α ∈ Lim : aαn = η}. Fix such Cη and let C = ∆ξ≤η∈ω1Cη which is club by (c).

Then C intersects Sξ in some α (as Sξ) is stationary.

We claim that this contradicts the choice of aαn: firstly α ∈ Sξ gives ξ ≤ aαn.

Next since (aαk )k is strictly increasing with supremum α we must have aαn < α.

But then since α ∈ C = ∆ξ≤η<ω1Cη we must have α ∈ Caαn (taking δ = aαn in

the definition of the diagonal intersection) contradicting the choice of Caαn .

(iv) Fix an n from (ii). Now take ξ = 0 and use (iii) to get a η0 ∈ ω1 such that

S0 = {α ∈ Lim : aαn = η0} is stationary. Then take ξ = η0 + 1 and use (iii)

to get η1 > η0 S1 = {α ∈ Lim : aαn = η1} is stationary. Clearly S0 and S1 are

disjoint (since aαn can only be one of η0 or η1). Neither can be club since if one

of them is the other can’t be stationary (as they are disjoint).
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In fact continuing recursively we get ω1 many disjoint stationary sets (none of

which can be club).

10. This question extends question 5.

(a) Indicate how to write down φ.

(b) What is wrong with the following argument: let φi, i ∈ ω be an enumeration of all

the axioms of ZF. For each i ∈ ω, let Ci = Cφ be a club such that for α ∈ Ci, φi is

absolute for Vα, V , so that φVαi holds (because V |= φi). Then
⋂
iCi is a club and

so non-empty. Let β ∈
⋂
iCi so that (Vβ,∈) |= φi for every i and hence (Vβ,∈) is

a model of ZF. Thus ∃x φ(x) and so ZF is inconsistent.

Solution:

(a) First we have to agree what (a,∈) |= ZF means internally: for this we can

write down an condition Ax(n) on Gödel codes n in the meta-theory which express

that it is the Gödel code for some axiom and we then take this formula and say

(a,∈) |= ZF if and only if ∀n ∈ ω Ax(n)→ val(a, 0, n) = 1.

Note that this may be different from the ‘intended’ meaning because there might

be (additional) non-standard natural numbers which satisfy Ax(n). We then only

have to check that we can write down Ax(n) as an absolute formula for transitive

classes (and this is fine because it will only involve finite ordinal arithmetic).

φ(a) will then be that a is transitive and that ∀n ∈ ω Ax(n)→ val(a, 0, n) = 1.

(b) The problem with the argument is that we cannot reference all the Ci at once. There

is no one (uniform) formula which given n (such that Ax(n)) spits out a slice Cn

which is a club. In particular our proof of LRP gets longer the more complicated

the formula is and thus we can’t prove in the theory that ∀n ∈ Ax Cn is club

although for each individual axiom of ZF we could write down a club C and a

proof that C is a club.

Trying to internalize doesn’t help: we cannot even express what it means that

V |= φn for infinitely many φn (since we can’t define val(V, 0, dne)) so even if we

code up axioms by integers we can’t even express that ‘all axioms are absolute for

Vβ, V ’.
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11. Work in ZF+Global Choice which means that there is a (defined) well-order of V

(this follows for example from V=L).

An ultrafilter on ω is a collection p of subsets of N such that ∅ 6∈ p, a, b ∈ p→ a∩ b ∈ p,
a ∈ p ∧ a ⊆ b→ b ∈ p and ∀a [a ∈ p ∨ ω \ a ∈ p].

Assume that p is an ultrafilter on ω.

Let P = {f : N→ V } and for f, g ∈ P define f ≡ g if and only if {n ∈ ω : f(n) = g(n)} ∈
p and fEg if and only if {n ∈ ω : f(n) ∈ g(n)} ∈ p.

Write W for the quotient of P by ≡ (strictly speaking this could be P ′ from part (b)) and

∈W for the relation induced by E on W (strictly speaking this could be the restriction

of E to P ′).

Identify elements x of V with the equivalence class of the constant function with value

x.

(a) Show that ≡ defines an equivalence relation on P and show that E is invariant on

equivalence classes. We write [f ] for the equivalence class of f (this is a proper

class).

(b) By considering minimal elements of [f ] (using Global Choice) find a class P ′ ⊆ P

such that ∀f ∈ P ∃!f ′ ∈ P ′[f ] = [f ′].

(c) Show that every formula is absolute for (V,∈), (W,∈W ) (they are elementarily

equivalent) and hence that W satisfies ZF and ωW = ωV (under the identification).

(d) Let fn : ω → ω be given by fn(m) = max {0,m− n}. Show that if n < m then

[fm] ∈W [fn] ∈W ω (so each [fn] is an ‘infinite’ natural number).

Deduce that {[fn] : n ∈ ω} 6∈ W .

(e) Think about what that means for internalizing formulae, the satisfaction relation

and proofs.

Solution:

(a) Straightforward checks using that p is a filter. Symmetry is immediate, reflexivity

follows from ω ∈ p and transitivity follows from a, b ∈ p→ a ∩ b ∈ p.

(b) This is Scott’s trick which enables us to pretend to talk about ‘collections of classes’.

(c) This is essentially  Loś’s Theorem on ultraproducts.

To see that it is an elementary embedding we prove by induction on the complexity

of the formula φ(v1, . . . , vk) that

(W,∈W ) |= φ([f1], . . . , [fk])↔ {n ∈ ω : (V,∈) |= φ(f1(n), . . . , fk(n))} ∈ p.
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This is true at atomic formulae by definition of ∈W .

For conjunctions use that p is closed under finite intersections (for one direction)

and supersets (for the other direction).

For negation it follows by p being an ultrafilter (i.e. that for s ⊆ ω we have

ω \ s ∈ p↔ s 6∈ p).

Other logical connectives can be defined in terms of negation and conjunction (or

do them directly).

For existential quantifiers, suppose (W,∈W ) |= ∃v0 φ. Find such an [f0] and note

that {n ∈ ω : V |= φ(f0(n), . . . , fk(n)} ∈ p. For each such n we have that f0(n)

witnesses V |= ∃vn φ so {n ∈ ω : V |= ∃v0 φ} ⊇ {n ∈ ω : V |= φ(f0(n), . . . , fk(n)}
and hence is in p.

Conversely suppose T = {n ∈ ω : ∃v0 φ(v0, f1(n), . . . , fk(n)} ∈ u. By Global Choice

there is f0 : T → V such that for n ∈ T V |= φ(f0(n), . . . , fk(n)). Extend f0 to ω

arbitrarily (e.g. define f0(n) = 0 for n 6∈ T ) and observe that [f0] then witnesses

W |= ∃v0 φ.

Universal quantifiers can be defined in terms of existential quantifiers and negation.

Elementariness then follows since if V |= φ(x1, . . . , xn) and we write fi for the

constant function on ω with value xi then {n ∈ ω : φ(f1(n), . . . , fk(n)} = ω ∈ p.

Since we have defined ω by a formula we get ωW = ωV .

(d) If we write out fn(m) as a sequence we can see that it is

(0, . . . , 0, 1, 2, 3, . . . )

with n+1 many zeros at the start. Thus for every m we have fn(m) ∈ fn+1(m) ∈ ω
and hence [fm] ∈W [fn] ∈W ωW = ωV .

If z = {[fn] : n ∈ ω} ∈ W then z would contradict FoundationW .

Note that this only says that we can’t come up with a function f : ω → V in V

such that [f ] = {[fn] : n ∈ ω}. If we try to ensure that each [fn]in[f ] then we will

have ‘accidentally’ added extra elements to [f ]. In particular a minimal element,

namely if mn is ∈-minimal in each f(n) 6= ∅ then [n 7→ mn] will be minimal in [f ].

Note that for p-many n we must have f(n) 6= ∅ since we will need [f ] 6= ∅.
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12. This question extends question 7.

(a) Does your proof also work for class functions F which may depend on a parameter?

I.e. if φ(a, z) is a formula with two free variables a, z such that there is a parameter

a such that φ(a, .) codes an elementary map V → V , must this map be the identity?

(b) Now assume that M is a transitive class and j : V →M an elementary map (a class

function possibly with parameters), i.e. such that for every formula φ(v1, . . . , vn)

∀a1, . . . , an ∈ V φV (a1, . . . , an)↔ φM(j(a1), . . . , j(an)).

Show that j maps ordinals to ordinals, is strictly increasing on the ordinals, j(ω) =

ω.

Show that if V satisfies ZFC and j is the identity on On then j is the identity (and

M = V ).

(c) Continuing from the last part, assume M |= ZFC, that j : V → M is a non-

identity elementary map and let κ be the least ordinal such that j(κ) 6= κ (this is

called the critical point of j).

Show that {A ⊆ κ : κ ∈ j(A)} is a countably complete, non-principal ultrafilter on

κ.

Solution:

(a) My proof does not work: write Fa(x) for the coded elementary map. Elementariness

now means that for every formula φ(v1, . . . , vn) we have

∀a1, . . . , anφ(a1, . . . , an)↔ φ(Fa(a1), . . . , Fa(an)).

The surjectivity of Fa fails: the formula ∃a1Fa(a1) = a0 has two free variables, a0

and a, so elementariness now says

∃a1Fa(a1) = a0 ↔ ∃a1FFa(a)(a1) = Fa(a0).

In the proof we take x ∈ V , let y = Fa(x) and observe ∃a1 Fa(a1) = Fa(x) which

doesn’t match the RHS.

For more information look up ‘Kunen Inconsistency’ (which essentially says that

if you assume Choice then there is no definable elementary map with parameters

either).

(b) First note that M satsifies the same axioms as V (since these are sentences, i.e.

formulae without free variables so are preserved).

‘being an ordinal’ is preserved by j, so j maps ordinals to ordinals.
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Also α ∈ β implies j(α) ∈ j(β) so j is strictly increasing on the ordinals.

Next by induction on n ∈ ωV we get j(n) = n: since 0 is defined by ∀t ∈ z t 6= t

we have j(0V ) = 0M = 0V and then successor steps work as well since the formula

φ(m,n) ≡ n = m+ 1 is preserved. Thus j is the identity on ωV (and in particular

ωV ⊆M).

Let z = j(ωV ). By elementariness, M |= z = ω and becauseM satisfies Foundation

this is absolute for M,V , so V |= z = ω giving j(ωV ) = ωV .

Now assume that Choice (whether in M or V doesn’t matter) and that ∀α ∈
On j(α) = α. Assume j is not the identity and find x ∈ V of minimal rank such

that j(x) 6= x. In V find κ ∈ On and f : κ → x surjective. Then M |= j(f) :

j(κ)→ j(x) surjective and j(κ) = κ so M |= j(f) : κ→ j(x) surjective. But being

a surjective function from κ to j(x) is absolute for M,V so j(f) : κ → j(x) is

surjective (in V ).

Fix t ∈ j(x) and find α ∈ j(κ) = κ such that j(f)(α) = t. Note that α = j(α) so

j(f)(j(α)) = t. Let y = f(α). Then j(y) = j(f)(j(α)) = j(f)(α) (in M so in V by

absoluteness) and since j(f) is a function (in M and so in V ) j(y) = t. Thus j is

onto j(x) and as in the proof of question 7 this gives j(x) = x.

(c) Let u = {A ⊆ κ : κ ∈ j(A)}.

By the previous part we know that j(κ) ∈ On and be minimality of κ we must

have κ < j(κ). Thus κ ∈ u.

Clearly ∅ 6∈ u.

Clearly u is closed under superset.

Note that z = a ∩ b↔ j(z) = j(a) ∩ j(b) (via the formula z = a ∩ b ≡ ∀t (t ∈ z ↔
t ∈ a ∧ t ∈ b)) and then observing that this is absolute for M,V . More concisely

we can say that j(a ∩ b) = j(a) ∩ j(b) and thus that u is indeed a filter.

Similarly we can show countable completeness (in fact < κ-completeness): if f :

ω → u then j(
⋂
n∈ω f(n)) =

⋂
n∈ω j(f(n)) since j(ω) = ω. Technically we note

that

z =
⋂
n∈y

f(n) ≡ ∀t (t ∈ z ↔ ∀n ∈ y t ∈ f(n))

(with free variables z, y, f) and using y = ω = j(ω) and j(f(n)) = j(f)(j(n)) =

j(f)(n).

Finally to see that u is an ultrafilter: if a ∪ b = κ then j(a) ∪ j(b) = j(κ) 3 κ so

that one of κ ∈ j(a) or κ ∈ j(b) holds as required.
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13. Work in ZFC.

This question extends question 8.

The Π1 formulae are the negations of the Σ1 formulae. Derive the analogous results for

Π1 formulae as for Σ1 formulae.

Show that ‘r is a well-order on x’ is equivalent (in ZFC) to both a Σ1 formula and to

a (different) Π1 formula and deduce that it is absolute for non-empty transitive classes

satisfying enough of ZFC.

Prove by hand (i.e. without using the previous part) that ‘r is a well-order on x’ is

absolute for transitive classes satisfying enough of ZFC.

Solution: We can express ‘r is a well-order on x’ as ‘r is an order on x and ∀s (s ⊆
x ∧ s 6= ∅ → ∃m ∈ s ∀t ∈ m t 6∈ s)’ which is Π1 (the only unbound quantifier is that

∀s).

Using ZFC we can also express this as ∃α ∈ On ∃f : x→ α f is an ∈ −r isomorphism

which is Σ1 (when writing α ∈ On as α transitive and totally ordered by ∈ using

Foundation).

That these are equivalent is witnessed by the Mostowski collapse along r in one direction

and by defining trs↔ f(t) ∈ f(s) in the other direction.
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