Axiomatic Set Theory Sheet 4 — TT21

Section A

- 1. Prove that for any infinite cardial κ , $cf(\kappa)$ is a regular cardinal and show that every infinite successor cardinal κ^+ is regular.
- Suppose κ is an uncountable regular cardinal and let g : κ → κ be any function.
 Show that for any α ∈ κ there is β ∈ κ with α ⊆ β and such that β is closed under g,
 i.e. γ ∈ β → g(γ) ∈ β.

Section B

- 3. Work in $\mathbf{ZF} + \mathbf{V} = \mathbf{L}$.
 - (a) Show that for ordinals $\alpha > \omega$, $L_{\alpha} = V_{\alpha}$ if and only if $\alpha = \aleph_{\alpha}$.
 - (b) Show that there are ordinals α with $\alpha = \aleph_{\alpha}$.
 - (c) Indicate briefly why the existence of regular ordinals α with $\alpha = \aleph_{\alpha}$ implies the consistency of **ZF**.
- 4. Suppose κ, λ are infinite cardinals.
 - (a) Show that if $cf(\kappa) \leq \lambda \leq \kappa$ then $\kappa < \kappa^{\lambda}$.
 - (b) Show that if $\lambda < cf(\kappa)$ and for every cardinal $\mu < \kappa$ we have $2^{\mu} \leq \kappa$ then $\kappa^{\lambda} = \kappa$.
 - (c) If **GCH** is assumed, give a simple formula (with three non-trivial cases) for computing κ^{λ} .
- 5. Work in **ZFC**.

Suppose κ is an uncountable regular cardinal such that for every $\mu < \kappa$ we have $2^{\mu} < \kappa$ (this is called strongly inaccessible).

Note that ω is strongly inaccessible and regular (but of course not uncountable).

- (a) Show that if $\alpha < \kappa$ then $|V_{\alpha}| < \kappa$.
- (b) Show that $|V_{\kappa}| = \kappa$.
- (c) Indicate why $(V_{\kappa}, \in) \models \mathbf{ZFC}$.
- (d) Deduce that if ZFC is consistent then it can't prove the existence of a strongly inaccessible cardinal.
- (e) Show that if κ is an uncountable regular cardinal such that for every $\mu < \kappa$ we have $\mu^+ < \kappa$ (in V) then κ is strongly inaccessible in L.

Section C

6. Assume \mathbf{ZF} .

For a set a, define L[a] by recursion (with parameter a) on On by

$$L_0 = TC(\{a\})$$

$$\forall \alpha \in \text{On } L[a]_{\alpha+1} = Def(L[a]_{\alpha})$$

$$\forall \gamma \in \text{Lim } L[a]_{\gamma} = \bigcup_{\beta \in \gamma} L[a]_b eta$$

and set

$$L[a] = \bigcup_{\alpha \in \mathrm{On}} L[a]_{\alpha}.$$

- (a) Show that $L[a] \models \mathbf{ZF}$.
- (b) Show that if $a \subseteq$ On then $L[a] \models \mathbf{ZF}$.
- (c) Show that if $a \subseteq \omega$ then $L[a] \models \mathbf{GCH}$.
- (d) (very difficult) Show that if $a \subseteq \omega_1$ and $\mathbf{V=L[a]}$ then $L[a] \models \mathbf{CH}$