Axiomatic Set Theory Sheet 4 — TT21

Section A

1. Prove that for any infinite cardial κ , $cf(\kappa)$ is a regular cardinal and show that every infinite successor cardinal κ^+ is regular.

Solution: The first bit follows from $cf(cf(\kappa)) = cf(\kappa)$ (lecture notes).

The second one follows because a κ -union of κ -sized sets has size (at most κ). More formally, assume that $\alpha < \kappa^+$ and $f : \alpha \to \kappa^+$ unbounded, meaning

$$\kappa^+ = \sup f[\alpha] = \bigcup_{\beta \in \alpha} f(\beta).$$

Then $|\alpha| \leq \kappa$ and by assumption each $|f(\beta)| \leq \kappa$ so that $\left|\bigcup_{\beta \in \alpha} f(\beta)\right| \leq \kappa \times \kappa = \kappa$ a contradiction.

2. Suppose κ is an uncountable regular cardinal and let $g: \kappa \to \kappa$ be any function.

Show that for any $\alpha \in \kappa$ there is $\beta \in \kappa$ with $\alpha \subseteq \beta$ and such that β is closed under g, i.e. $\gamma \in \beta \to g(\gamma) \in \beta$.

Solution: Recursively define $\alpha_0 = \alpha$, $\alpha_{n+1} = \alpha_n \cup \sup g[\alpha_n]$ and $\beta = \sup_{n \in \omega} \alpha_n = \bigcup_{n \in \omega} \alpha_n$. The second step makes sense since $g[\alpha_n]$ is bounded in κ by regularity of κ and hence $\sup g[\alpha_n] \in \kappa$. Since κ is uncountable and regular (in particular it has uncountable cofinality) we also have $\beta \in \kappa$.

Finally, if $\gamma \in \beta$ then $\gamma \in \alpha_n$ for some $n \in \omega$ and so $g(\gamma) \in \alpha_{n+1} \subseteq \beta$.

Section B

- 3. Work in $\mathbf{ZF} + \mathbf{V} = \mathbf{L}$.
 - (a) Show that for ordinals $\alpha > \omega$, $L_{\alpha} = V_{\alpha}$ if and only if $\alpha = \aleph_{\alpha}$.
 - (b) Show that there are ordinals α with $\alpha = \aleph_{\alpha}$.
 - (c) Indicate briefly why the existence of regular ordinals α with $\alpha = \aleph_{\alpha}$ implies the consistency of **ZF**.

Solution:

(a) Suppose $L_{\alpha} = V_{\alpha}$. Then $|\alpha| = |L_{\alpha}| = |V_{\alpha}| > \aleph_0$ (since $\omega < \alpha$) and thus $|V_{\alpha}| \ge \aleph_{\alpha}$. (Note that for $\alpha > \omega^2$ we have $\alpha = \omega + \alpha$ and inductively $|V_{\omega+\alpha}| = \beth_{\alpha} \ge \aleph_{\alpha}$.) Hence $\alpha \ge |\alpha| \ge \aleph_{\alpha}$. Of course $\alpha \le \aleph_{\alpha}$ is a straightforward induction.

Now suppose $\alpha = \aleph_{\alpha}$. We always have $L_{\alpha} \subseteq V_{\alpha}$.

Now α is an infinite limit ordinal and a cardinal (as it equals \aleph_{α}) and is uncountable (since $\omega \neq \aleph_{\omega}$). Now let $x \in V_{\alpha}$. As α is a limit ordinal there is $\beta < \alpha$ with $\omega^2 < \beta$ and $x \in V_{\beta}$ and hence $|TC(x)| \leq |V_{\beta}| = \beth_{\beta} = \aleph_{\beta} < \aleph_{\alpha}$ (by **GCH** from **V=L**). Thus $x \in H_{\aleph_{\alpha}}$ and since **ZF+V=L** implies $H_{\kappa} = L_{\kappa}$ for every cardinal κ we get $x \in L_{\aleph_{\alpha}} = L_{\alpha}$.

- (b) We construct fixed points of $\alpha \mapsto \aleph_{\alpha}$ as usual (this is a continuous, strictly increasing function so has arbitrarily large fixed points by an earlier sheet).
- (c) First assume $L \models \alpha = \aleph_{\alpha}$, i.e. work inside L: If α is regular uncountable cardinal then L_{α} satisfies **ZF-Powerset** and V_{α} satisfies **Powerset**. If $\alpha = \aleph_{\alpha}$ then $L_{\alpha} = V_{\alpha}$ so that $V_{\alpha} \models \mathbf{ZF}$.

Now assume that $V \models \alpha = \aleph_{\alpha}$ and don't assume V = L. Being a cardinal is downwards absolute (it says something like $\forall f \ \forall \beta \in \kappa f$ is not a surjection $\beta \to \kappa$) so $\aleph_{\alpha}^{L} \leq \aleph_{\alpha}^{V}$ (inductively). Hence we have $\alpha \geq \aleph_{\alpha}^{L}$ or equivalently $L \models \alpha \geq \aleph_{\alpha}$. As before we always have $L \models \alpha \leq \aleph_{\alpha}$, so $L \models \alpha = \aleph_{\alpha}$ and we can do the above argument inside L.

- 4. Suppose κ, λ are infinite cardinals.
 - (a) Show that if $cf(\kappa) \leq \lambda \leq \kappa$ then $\kappa < \kappa^{\lambda}$.
 - (b) Show that if $\lambda < cf(\kappa)$ and for every cardinal $\mu < \kappa$ we have $2^{\mu} \leq \kappa$ then $\kappa^{\lambda} = \kappa$.
 - (c) If **GCH** is assumed, give a simple formula (with three non-trivial cases) for computing κ^{λ} .

Solution:

(a) Let $f : \lambda \to \kappa$ be unbounded. Then $\forall \alpha \in \lambda$, $|f(\alpha)| < \kappa$ so that by König's Lemma

$$|\kappa| = \left| \bigcup_{\alpha \in \lambda} f(\alpha) \right| \le \sum_{\alpha \in \lambda} |f(\alpha)| < \prod_{\alpha \in \lambda} \kappa = \kappa^{\lambda}.$$

(b) Note that if $\lambda < cf(\kappa)$ then for every $f : \lambda \to \kappa$ there is $\alpha \in \kappa$ with $f : \lambda \to \alpha$ (α being an upper bound for ran(f) which is bounded in κ). Thus

$$\begin{split} \kappa^{\lambda} &= |\{f : \lambda \to \kappa\}| \\ &= \left| \bigcup_{\alpha \in \kappa} \{f : \lambda \to \alpha\} \right| \\ &\leq \sum_{\alpha \in \kappa} \lambda^{|\alpha|} \\ &\leq \sum_{\alpha \in \kappa} (2^{\lambda})^{|\alpha|} \\ &= \sum_{\alpha \in \kappa} 2^{\lambda \otimes |\alpha|} \\ &\leq \sum_{\alpha \in \kappa} \kappa = \kappa \otimes \kappa = \kappa \end{split}$$

(since $\mu = \lambda \otimes |\alpha| < \kappa$ and the assumption $2^{\mu} \leq \kappa$).

Of course since $1 \leq \lambda$ we have $\kappa \leq \kappa^{\lambda}$.

(c) We note that **GCH** implies the condition in part (b) (since $\mu < \kappa$ gives $2^{\mu} = \mu^+ \leq \kappa$).

We claim:

$$\kappa^{\lambda} = \begin{cases} \kappa; & \lambda < cf(\kappa) \\ \kappa^{+}; & cf(\kappa) \leq \lambda \leq \kappa \\ \lambda^{+}; & \kappa < \lambda. \end{cases}$$

Most of the work was done before. It remains to observe that

$$\kappa^+ = 2^{\kappa} \le \kappa^{\kappa} \le 2^{\kappa \otimes \kappa} = 2^{\kappa} = \kappa^+$$

and if $\kappa < \lambda$ then

$$\lambda^+ = 2^\lambda \le \kappa^\lambda \le 2^{\kappa \otimes \lambda} = 2^\lambda = \lambda^+$$

 $Rolf\ Suabed is sen:\ rolf.suabed is sen@maths.ox.ac.uk$

5. Work in **ZFC**.

Suppose κ is an uncountable regular cardinal such that for every $\mu < \kappa$ we have $2^{\mu} < \kappa$ (this is called strongly inaccessible).

Note that ω is strongly inaccessible and regular (but of course not uncountable).

- (a) Show that if $\alpha < \kappa$ then $|V_{\alpha}| < \kappa$.
- (b) Show that $|V_{\kappa}| = \kappa$.
- (c) Indicate why $(V_{\kappa}, \in) \models \mathbf{ZFC}$.
- (d) Deduce that if ZFC is consistent then it can't prove the existence of a strongly inaccessible cardinal.
- (e) Show that if κ is an uncountable regular cardinal such that for every $\mu < \kappa$ we have $\mu^+ < \kappa$ (in V) then κ is strongly inaccessible in L.

Solution:

- (a) Induction on α with successor step $|V_{\alpha+1}| = 2^{|V_{\alpha}|} < \kappa$ if $|V_{\alpha}| < \kappa$ and at limit steps (for $\alpha \in \kappa$ so that $|\alpha| < \kappa$) regularity.
- (b) \leq follows from (a) and \geq follows from $\kappa \subseteq V_{\kappa}$.
- (c) Only **Replacement** needs checking since κ is an infinite limit ordinal. For this follow the usual proof to construct

$$z = \left\{ y : y \in V_{\kappa} \land \exists x \in d \ \psi^{V_{\kappa}}(a_1, \dots, a_n, x, y) \right\}$$

which will witness **Replacement** provided $z \in V_{\kappa}$.

But since $d \in V_{\kappa}$ we have $d \subseteq V_{\alpha}$ for some $\alpha \in \kappa$ so that $|d| < \kappa$ and thus writing α_y for the least $\alpha \in \kappa$ with $y \in V_{\alpha}$ we get that $z \subseteq V_{\sup_{y \in \alpha} \alpha_y}$ and by regularity $\hat{\alpha} = \sup_{y \in \alpha} \alpha_y < \kappa$. Thus $z \in V_{\hat{\alpha}+1} \subseteq V_{\kappa}$.

- (d) If **ZFC** is consistent then by a previous sheet it cannot prove the existence of a transitive set satisfying **ZFC** and hence the existence of a strongly inaccessible κ .
- (e) We note that being an uncountable regular cardinal is downwards absolute for nonempty transitive classes satisfying **ZFC** (because we can write it as a Π_1 formula). Now assume that we have κ in V with the given properties (relative to V).

If $\alpha \in \text{On then } |\alpha|^L \leq |\alpha|^V$ (since every V-cardinal is an L-cardinal) and so $(|\alpha|^+)^L \leq (|\alpha|^+)^V$ (previous fact and the same reason again) and hence $(2^{|\alpha|})^L = (|\alpha|^+)^L \leq (|\alpha|^+)^V$. Thus if $\alpha \in \kappa$ then $|\alpha| < \kappa$ and so by assumption $(2^{|\alpha|})^L < \kappa$.

Section C

6. Assume **ZF**.

For a set a, define L[a] by recursion (with parameter a) on On by

$$L_0 = TC(\{a\})$$

$$\forall \alpha \in \text{On } L[a]_{\alpha+1} = Def(L[a]_{\alpha})$$

$$\forall \gamma \in \text{Lim } L[a]_{\gamma} = \bigcup_{\beta \in \gamma} L[a]_b eta$$

and set

$$L[a] = \bigcup_{\alpha \in \mathrm{On}} L[a]_{\alpha}.$$

- (a) Show that $L[a] \models \mathbf{ZF}$.
- (b) Show that if $a \subseteq$ On then $L[a] \models \mathbf{ZF}$.
- (c) Show that if $a \subseteq \omega$ then $L[a] \models \mathbf{GCH}$.
- (d) (very difficult) Show that if $a \subseteq \omega_1$ and $\mathbf{V}=\mathbf{L}[\mathbf{a}]$ then $L[a] \models \mathbf{CH}$

7. Show that there are arbitrarily large $\alpha \in \omega_1$ such that $\mathcal{P}(\omega) \cap L_{\alpha+1} \setminus L_{\alpha} \neq \emptyset$.

Solution: We start by working in L (i.e. under $\mathbf{ZFC} + \mathbf{V} = \mathbf{L}$ so that $H_{\omega_1} = L_{\omega_1}$. Since $\mathcal{P}(\omega)$ is uncountable and each $L_{\alpha}, \alpha \in \omega_1$ is countable (note that $L_{\alpha}^L = L_{\alpha}$) we cannot have $\mathcal{P}(\omega) \subseteq L_{\alpha}$ for any $\alpha \in \omega_1$. But $\mathcal{P}(\omega) \subseteq H_{\omega_1} = L_{\omega_1}$ so the result follows. Now without assuming V = L we see that $\mathcal{P}(\omega)^L \subseteq \mathcal{P}(\omega)$ (and $L_{\alpha}^L = L_{\alpha}^V$).