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These notes are a slightly edited version of those written by Victor Flynn. Please send
any typos or queries to newton@maths.ox.ac.uk

The first part of the lecture notes overlaps with the final part of the Preliminary Reading
file. References with numbers 0.z refer to that file.

SECTION 1. GEOMETRIC PRELIMINARIES
Affine curves.

Definition 1.1. Let K be a field. We define A™(K) = {(x1,...,2,) : T1,...2, € K},
and refer to a point P € A"(K) as a K-rational point of the affine n-space A™. We also
say that a point P € A"(K) is defined over K.

Definition 1.2. An algebraic expression such as a curve, polynomial, rational function,
is said to be defined over K (or K-rational) if it can be described by an equation with
coefficients in K.

Definition 1.3. A (non-constant) polynomial in two variables f(x,y), with coefficients
in K, defines an (affine) curve defined over K. For any field L with K C L, the set of
L-rational points {(a,b) € A%(L) : f(a,b) = 0} on a curve C with equation f(z,y) is
denoted C(L). The field K is often called the field of definition (or the ground field).

Example 1.4. Let C : f(x,y) = 2° + y* = 0. This defines an affine curve over Q. Of
course, this same curve C could be regarded as having field of definition (ground field)
Q,Q(v/2),R, C or indeed any field containing Q. When the field of definition is not stated
explicitly, it is taken to be the smallest possible field over which the curve is defined (in
this case, Q). The point (0,0) is Q-rational and it is the only Q-rational point on C, so
that C(Q) = {(0,0)}. It has many C-rational points, for example (i,1) € C(C).

Comment 1.5. Our affine curves are by definition embedded in the plane A2, and cut out
by a single polynomial equation. It is also possible to embed curves in higher dimensional
space, as long as the number of ‘independent’ polynomials defining the curve is one less

than the number of variables; for example the 2 equations: y?>+42?>—1=0,22—2?—2 =0
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define a curve in the variables x,y, z. However, we shall not concern ourselves with that
here.

Definition 1.6. The degree of a polynomial is the degree of its highest degree monomial.
A homogeneous polynomial is a polynomial whose terms all have the same degree.

Example 1.7. f(z,y) = 2+ y — 8 = 0 defines a curve of degree 1 (a linear curve),
g(z,y) = 2y + > —y + 3 = 0 defines a curve of degree 2 (a quadratic curve) and
h(z,y) = 3 + y> + y — 1 defines a curve of degree 3 (a cubic curve). None of these
polynomials are homogeneous.

If you try drawing an accurate sketch of, for example, the three curves Cy, Cs, C5 defined
by 2?2 + y? = 1,y? = 23,9 = z(x — 2)?, respectively, you will notice distinguishing
features. The first curve C; appears smooth at all points, and it is easy to see that there
is a unique tangent at each point. The curve Cy has a ‘sharp corner’ at (0,0), and the
third curve C3 crosses itself at the point (2,0), when there is a plausible choice of two
distinct tangents. These sharp corners and crossing points are typified by the fact that
both partial derivatives of f vanish, when the curve is written as f(x,y) = 0.

Definition 1.8. Let C : f(z,y) = 0 be an (affine) curve defined over a field K and let
P = (29, 10) be a point in C(K), where K is an algebraic closure of K. We say that P is
a singular point (or a singularity) on C if %(P) = 0 and %(P) = (0. Otherwise, P is a
smooth point (or a nonsingular point) on C. A curve C is called smooth (or nonsingular) if
it does not contain any singular points (the curve is called singular if it contains at least
one singular point).

Comment 1.9. There is a standard technique for computing all tangents to C : f(z,y) =
0 at a point P = (zo,%), in which we first translate the curve by (—zg, —yo) (so
that (zo,0) is taken to (0,0)), then use the fact that the lowest degree terms domi-
nate near (0,0) and determine the tangent behaviour at (0,0), and then finally translate
the curve back to its original position. This gives three steps.

Step 1. Consider f(z+zo,y+yo) (thisis f(z,y) translated by (—x¢, —yo)) which contains
the point x = y = 0 and so has no constant term. We can write:

f(x+z0,y +v0) = Ri(2,y) + Rpa (2, y) + ...+ Ra(z,y),

where k£ > 1 and where each R;(x,y) is homogeneous of degree i (for k < i < n)
and Ry(x,y) # 0.

Step 2. Consider Ry(x,y), which is the lowest degree portion of f(x + o,y + yo), and
factorise Ry(x,y) = Li(x,y)La(z,y) ... Lx(z,y) over the algebraic closure, where
Ly, ..., L are linear.

Step 3. There are k tangents to f(x + xo,y + yo) = 0 at (0,0) namely: Li(x,y) =
0,...,Li(z,y) = 0. So, after reversing the translation of Step 1, there are k
tangents to C : f(z,y) =0 at P = (x¢, yo), namely:

Li(x — 20,y — o) =0, ..., Lg(x — 20,y — o) = 0.

Note that the same tangent may be repeated more than once (e.g. C : f(z,y) =
2 .3 _ . o . . .

y* — 2 = 0 has 2 tangents at (0,0), namely: y = 0 twice, in which case we can

say that the tangent y = 0 occurs with multiplicity 2).



Comment 1.10. P = (zg, o) is a smooth point on C
<= k=11in Step 1
<= there is only one tangent to C at P.
When k > 2, the singularity at P is called a double point (k = 2), triple point (k = 3),
and so on.

Example 1.11. Let C; : 22 + 3? = 1 (a circle of radius 1 and centre (0,0)). Then we
can write: C; : f(z,y) = 2> +y* — 1 = 0, and so % = 2z, g—g = 2y. A point (z,y) is
a singular point on C; exactly when: it lies on C; and both partial derivatives are zero,
that is, when:
()2 +y*—1=0, (2)2r=0, (3)2y=0.

Assuming our ground field does not have characteristic 2, equations (2),(3) force z = y =
0, but this does not satisfy (1). We conclude that there are no singular points and that C;
is smooth.

Example 1.12. Let C; : y> = 2%, that is: Co : f(z,y) = y* —2® = 0. Then & =

—3a2, 3—5 = 2y. We can see that the only singular point is (0,0). For computing tangents

at (0,0), we first take f(x+0,y+0) = y*> —2® = Ry(x,y) + R3(x,y), where Ry(z,y) = y*
and Rz(z,y) = —2®. Then Ry(z,y) = y*> = Li(z,y)Ls(x,y) = y -y, so there are two
tangents to Cy at (0,0), namely: Li(z — 0,y —0) = 0 and Le(z — 0,y — 0) = 0, that is:
y=0and y =0 (i.e. y = 0 with multiplicity 2). A double point singularity where the

same tangent line has multiplicity 2 is called a cusp (or a cuspidal singularity).

Example 1.13. Let C3 : y* = x(x — 2)?, that is: C3: f(x,y) = y*> — x(x — 2)> = 0. The
point (z,y) on Cs is singular when:

of
oy
Assuming our ground field does not have characteristic 2, from (3) we see that y = 0,
and substituting this into (1) gives: x(x — 2)> = 0, so that z = 0 or 2. Now, z = 2
satisfies (2), but z = 0 does not, giving x = 2 as the only common solution. So, the only
possible singular point is (2,0) (conversely, check that © = 2,y = 0 satisfies (1),(2),(3) so
that (2,0) is a singular point). We conclude that (2,0) is the only singularity on Cs.

For the tangents at (2, 0), first compute f(x+2,y+0) = y*>— (z+2)2? = y? — 222 —23 =
Ry(z,y) + Rs(x,y), where Ry(x,y) = y* — 22 and Rs(x,y) = —2°. Factorising Ry(x,y)
into linear factors gives: Ry(x,y) = (y+v/2x)(y —v2x) = Li(x,y)La(z,y). The tangents
to the curve C3 at (2,0) are then: Li(z — 2,y — 0) = 0 and Ls(xz — 2,y — 0) = 0, that is:
y = —2(z —2) and y = v/2(x — 2). The point (2,0) is a double point with two distinct
tangents; such a point is called a node (or a nodal singularity).

)y —a(z—22=0, (2) ===-32+8x—-4=0, (3)

of
il 2y = 0.
ox y="0

Note that the system of equations satisfied by singular points is over-represented, since
there are 3 equations and only 2 variables. If you choose a curve ‘at random’; you would
expect the first two of these equations to have only finitely many solutions, and it is
rather a fluke if one of these solutions also happens to satisfy the third equation. So, a
‘typical’ curve will be smooth.

A useful tool, for computing singularities and other purposes, is the idea of the resultant
of two polynomials.
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Definition 1.14. Let f(z) = fp,2™ + ...+ fo and g(z) = g,2" + ... + go, where f,, # 0
and g, # 0. The resultant of f(x) and g(z), denoted Res (f(z), g(x)) or just Res(f, g), is
the determinant of the following (m + n) x (m + n) matrix:

n—1 m—+1
[0 - 07 fuo fomo1 - f1 fo)
0 fm fmfl fm72 fO 0
fn - 0 0 e 00
O --- 0 gn gn—1 " g1 9o
0 - G Gn-1 Gn—2 - go O
Gn 0 G2 Q1 g - 0 0

The following are easy to show.

Lemma 1.15. Let f(x),g(x) € R[z] be polynomials of degree m,n, respectively, defined
over a commutative ring R.

(a) There exist polynomials p(x) € R[z|, of degree at most n — 1, and q(x) € Rlz|, of
degree at most m — 1, such that: p(x)f(x) + q(z)g(x) = Res (f(x), g(x)).

(b) When R is a field, Res (f(z),g9(x)) =0 <= f(z) and g(x) have a non-constant
common factor.

Definition 1.16. The discriminant of a degree n polynomial f(z) = f,z" + ... fo is
given by: Disc(f) = Res(f, f)/ fa-
Comment 1.17. (a) Given a monic polynomial f(z) € R[z], there exist polynomials

p(x), q(x) € Rlz] such that p(z)f(z) + q(x) f'(x) = Disc(f).
(b) Disc(f) =0 <= f and f’ have a common root <= f has a repeated root. For
example, Disc(z® — 222 + x) = 0, whereas Disc(x? + 1) # 0.

Example 1.18. Let f(z) = az? + bx + ¢. Then Disc(f) = Res(f, f')/a

a b c
= Res(az? + bz + ¢,2ax + b)Ja= 2| 0 2a b| =0b*—4ac,
20 b 0

which is the discriminant you know from school, appearing under the square root sign in
the quadratic formula.

Example 1.19. Let f(z) = 2° + Az + B. Then Disc(f) = Res(f, f’)

01 0 A B

10 A B O
=Res(z®+ Az + B,32*+A)= [0 0 3 0 A| =4A%+27B%

03 0 A O

30A 0 O

Example 1.20. An application of resultants to singularities is as follows. Consider the
curve C : y? = 2* + Az + B (i.e. g(z,y) = 23+ Ax+ B—y? = 0), where A, B € K, a field
of characteristic not equal to 2. Suppose (xg, 7o) is a singular point on C, so that:

(1) glan, o) =0, 2) G20, ) = 0. (3) S, 0) =0



giving:
(1) yg =2 + Az + B, (2) 325+ A=0, (3)2y,=0.
Since the characteristic of K is not equal to 2, we know that 2 # 0, and so (3) gives yo = 0.
Substituting this into (1) tells us that zq is a root of 3 + Az + B, and (2) tells us that x
is a root of its derivative; this is possible exactly when 2% 4+ Az + B has a repeated root
— in other words, when Disc(z® + Az + B) = 0. We have already seen in Example 1.19
that Disc(z® + Az + B) = 4A% + 27B2.
In summary, the curve C is smooth if and only if 443 + 2782 # 0.

Another basic idea in geometry applies to situations where f(z,y) itself has a proper
factorisation, for example: C : f(z,y) = 2> — y*> = 0. This is a quadratic curve, but it
factors as (x + y)(z — y) = 0, and so the graph of C is just the union of the graphs of
the lines z +y = 0 and x — y = 0. This seems geometrically different from curve such
as 22 — y? + 1 = 0, which has no such factorisation. This is formalised in the following
definition.

Definition 1.21. Let C : f(z,y) = 0 be a curve defined over K, and let L be any
field containing K. We say that C is irreducible over L if f(x,y) cannot be expressed
as a product of two polynomials, both of degree > 1 and both defined over L (by the
word irreducible on its own, we mean irreducible over K). For any C : f(x,y) = 0, we
can write f uniquely (up to constants and reordering) as a product f = fifs... f,, where
fi, ..., fn are irreducible over L. The curves C; : fi(z,y) = 0,...,Cp : fu(z,y) = 0 are
called the irreducible components of C over L.

Examples 1.22.

(a) C : f(z,y) = y* — 22® = 0, defined over Q. This is irreducible (by which we
mean irreducible over Q), but it becomes reducible over C, with irreducible components
Clzy:ﬂxandczzy:—\/ﬁx.

(b) C: f(z,y) = y* — 2* = 0 is reducible. Its irreducible components (over Q) are:
y—x=0,y+x=0,y%>+ 22 =0. The last of these becomes reducible over C , and the
irreducible components over C are: y —x =0,y +2x =0,y +ix =0,y —ix = 0.

It is also helpful to formalise the relationship between curves such as 22 +y3> —5 =0
and (z +1)* +y® — 5 = 0, where there are maps from one to the other. In this case, one
can map each curve to the other with a linear map, but more generally we consider maps
between curves described by rational functions (quotients of polynomials).

Definition 1.23. Let C : f(z,y) = 0 and C' : g(z,y) = 0 be curves over K. A rational
map ¢ over L from C to C' is a map given by a pair ¢, ¢ of rational functions in z,y,

defined over L (i.e. ¢y, ¢ are both of the form polynomial in z, y
polynomial in x,y

of ¢1, ¢y are in L), with the property that, given any point P = (x¢,yo) on C, then the
point (¢1(zo, Yo), P2(z0, Yo)) lies on C’ (for all but finitely many points (o, yo) at which the
denominators of ¢y, ¢, are 0). If there also exists a rational map ¢ = (¢¥1(z,y), ¥a(z,y))
from C’ to C such that ¢ ¢ is the identity on C and ¢ ¢ is the identity on C’ then we say
that ¢ is a birational transformation over L from C to C" and that C and C" are birationally
equivalent over L.

and the coefficients

Examples 1.24.
(a) Let C: 2 +¢y* =1 (ie. f(z,y) =a'+y'—1=0)andlet C' : 2 +9? =1 (i.e.
g(z,y) = 2* +y* —1 = 0). Define ¢ : C — C’ by ¢(z,y) = (x,y°) (in the notation of
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Definition 1.23: ¢y(z,y) = x and ¢o(z,y) = y?). This is a rational map from C to C’
over Q since, if (z,y) satisfies C : % +y* = 1 then 2* + (y*)? = 1 and so (z, y?) lies on C'.
This is a rational map from C to C’, but it is not a birational transformation, since there
is no inverse map (¢ is 2-to-1).

(b) Let C: 2?2+ 3> =5 =0and C' : (x +1)2+y*>—5 = 0. If (z,y) is on C then
2 +y>—5=0and so ((x — 1)+ 1)> + y> — 5 = 0, giving that (x — 1,y) lies on C'.
The map ¢(x,y) = (¢1(x,y), p2(x,y)) = (x — 1,y) is then a rational map over Q from C
to C', and the inverse map is clearly ¢ (x,y) = (z + 1,y). The map ¢ is a birational
transformation from C to C’ over Q, and so C and C’ are birationally equivalent over Q.

Note that the rational map from C to C’ is in the opposite direction to the variable
replacement which transforms the equations. In the above example, ¢(z,y) = (z — 1,y)
is the map from C to C’ (in that it maps points on C to points on C’: for example, the
point (2,1) on C maps to (1,1) on C’), but the variable replacement ‘replace x by z — 1
and y by 3’ changes the equation for C’ into the equation for C.

(c)Let C: 2> —y* =0and C' : 2>+ y* = 0. Clearly ¢ : C — ', defined by ¢(x,y) =
(x,iy) is a rational map from C to C', with inverse ¢ (z,y) = (x,—iy). This shows
that C and C’ are birationally equivalent over C. However, C and C’ are not birationally
equivalent over Q, since any such map would take the infinitely many members of C(Q)
to infinitely many members of C'(Q), contradicting the fact that C'(Q) = {(0,0)}.

(d) Let C : y* = z* + 322 + 5 and C' : y? = 5z* + 32 + 1. Define ¢(xz,y) = (1, %).
If (z,y) is a point on C then y* = 2% + 322 + 5 and so z—j =1+ 3 + &, giving:
(%)2 =1+3 (%)2 +5 (%)4, so that (%,%) is a point on C’. Our map ¢ is then a
rational map (over Q) from C to C'. The inverse map is ¢(z,y) = (3, %) (check that

(o) = v (4 25) = (. %5) = (2,y), so that ¥ ¢ is the identity, as s ¢ 1))

Hence ¢ is a birational transformation over Q; the curves C and C' are birationally
equivalent over Q.

(e) Let C : 22 +y* = 1 and ¢’ : y = 0. It might at first seem surprising that a
circle should be birationally equivalent to a line, but we can establish the map first by
fixing a specific point on C, say P = (—1,0), and mapping a point on C to s = 5,
the slope of the line from Py to (z,y) (literally, we are mapping it to (s,0)). Define:
¢(z,y) = (325,0) from C to C' (defined everywhere except at the point (—1,0), but this
is allowed, since the definition of rational map allows us to have a finite number of points
where the map is not defined). For the inverse, note that if the slope is s, then the
line through Py and (x,y) has equation: y = s(z + 1); substituting this into C gives
2 +s*(z+1)2 =1, and so: (z+ 1)(x — 1+ s*(x + 1)) = 0. When = # —1, this

gives x = ;jz and y = s(z + 1) = 1?'82. This suggests that, for the inverse map, we
should take: ¢ (z,y) = (ﬁ—ﬁz, %) It is straightforward to check that this is indeed a

2
map from C’ to C (since (;;2) + (1%;2)2 = 1 for any ), that ¢ ¢ = identity on C and

that ¢ ¢ = identity on C’. Hence C and C’ are birationally equivalent over Q.

Definition 1.25. A parametrisation of a curve C is a birational equivalence between C
and a line.

Comment 1.26. The birational transformation in Example 1.24(e) is a parametrisation
of the circle 22 + y?> = 1. Note that a parametrisation is an unusual type of birational
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. . . . . . Lo . 1—s2 2g
transformation, in that it gives a map to a single variable; in this case, ({35, 11

gives a description of the points on C in terms of the parameter s. Since the maps ¢
and ¢ are defined over Q, this gives a way of describing all Q-rational points on C,

namely: (z,y) € C(Q) <= s € Q. For example, s = 2 gives (—2,2) € C(Q). This
parametrisation can be used to describe all Pythagorean triples.

The curve z2 + y? = 1 is a special case of the following class of curves.

Definition 1.27. A conicis a smooth quadratic curve. The general form of the equation
is ax? + 2bxy + cy? + 2dx + 2fy + g = 0, satisfying

a b d
b ¢ f| #0 (which guarantees that the curve is smooth).
d [ g

A conic is an ellipse, hyperbola or parabola; the name ‘conic’ refers to the fact that
these are the curves which can be obtained by intersecting a plane and a double-cone
(two cones with the same axis, placed apex to apex). The parametrisation of the circle
given in Example 1.24(e) is a special case of the following result.

Theorem 1.28. Any conic C (over K ) with a K -rational point is birationally equivalent
to a line (i.e. it is parametrisable).

Proof. We are given that there exists a K-rational point (g, yo) on the curve C : f(x,y) =
0. Let g(z,y) = f(x + 2o,y + yo). This contains the point (0,0) so that we can write:
g(z,y) = g1(x,y) + go(z,y), where g; is homogeneous & linear, and g5 is homogeneous &
quadratic. Hence g(x,tx) = x¢;1(t) + 2°¢2(t) = 0. Apart from z = 0, we can take z =
—d1(t)/p2(t), y = —to1(t)/P2(t) (with inverse t = y/x) as a parametrisation of g(x,y) =
0. The parametrisation of C is then: © = xq — ¢1(t)/Pa(t),y = yo — tP1(t)/p2(t) (with
inverse t = (y — yo)/(x — x0)). O

Definition 1.29. The curves C : f(x,y) = 0 and C' : g(z,y) = 0 intersect at P = (zo, yo)
if P lies on both of C and C’ [that is, f(zo,%0) = g(z0,%0) = 0].

Definition 1.30. Suppose the curves C : f(z,y) = 0 and C' : g(x,y) = 0 intersect
at P = (x,y0) € C(L) (with L a field containing the field of definition of the curve). The
curves intersect with multiplicity r > 0 at P if the dimension of the quotient ring

dimy, Lz, y]/(f(z + z0, y + o), 9(x + z0,y + o)) =7

The intersection multiplicity is oo if and only if C and C’ have a common irreducible
component containing P. We refer to Fulton Algebraic Curves for details and proofs of
the fundamental properties of the intersection multiplicity. You can also take a look at
Part B Algebraic Curves for an approach via resultants.

The proofs of the following two lemmas can be found in the preliminary reading file.

Lemma 1.31. Consider a curve C : f(x,y) = 0 over K and a line D parameterised by
r=at+b,y=ct+d, witha,b,c,d € K and a,c not both zero. Then C and D intersect
at the points P = (aty+b, cto+d) with ty a root of the polynomial F(t) = f(at+b, ct+d).
If F(t) is identically O, then C contains the line D.

Suppose ty € K is a root of F(t) and let P = (aty+b,cto+d). Then C and D intersect
at P with multiplicity equal to the multiplicity of ty as a root of F(t).
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Lemma 1.32. Suppose C and C' are two curves intersecting at a point P € C(K)NC'(K).
Suppose moreover that P is a nonsingular point on both curves. Then the intersection
multiplicity at P is > 1 if and only if the tangent lines to C and C' at P coincide.

Example 1.33. Let C: 4> = 2>+ 22+ 1 and D : y = x + 1. On substituting D into C we
see that the z-coordinate of any point of intersection must satisfy (z +1)? = 2% + 2z + 1,
and so z?(x — 1) = 0, giving only # = 0,1 as possibilities. Substituting z = 0 in D
gives y = 1; substituting x = 1 in D gives y = 2. So, the only possible points of
intersection are (0,1) and (1,2) [and these do indeed lie on C and D). It also follows from
Lemma 1.31 that the intersection multiplicities at these points are 2 and 1 respectively.

Comment 1.34. For more complicated examples, we cannot always find the points of
intersection by a straightforward substitution of one equation into the other. Given two
curves C : f(x,y) = 0 of degree m and D : g(z,y) = 0 of degree n, a systematic approach
to finding the points of intersection is possible via resultants. One initially picks one
of the variables, y say, and computes the resultant of f(z,y) and g(z,y), regarded as
polynomials in y, by writing them as: f(z,y) = fu(z)y™ + ... + fo(z), and similarly
for g(x,y). The matrix in Definition 1.14 will have entries that are polynomials in z,
and consideration of the degrees of these polynomials shows that the resultant of f(z,y)
and g(z,y) (regarded as polynomials in y) will be a polynomial in x of degree at most mn.
Any point of intersection of C and D must have x-coordinate which is a root of the at-
most-degree-mn polynomial. For each value of z, one can then substitute back into C
and D to find the corresponding y-coordinates.

Projective curves. There are several respects in which affine space is unsatisfying. Con-
sider, for example, the true statement in affine space: two distinct lines meet at exactly
one point, except when parallel. It would be much nicer to have a cleaner statement, in
which we remove ‘except when parallel’. Intuitively, parallel lines intersect ‘at infinity’,
given that the point of intersection shoots off to infinity as two lines become closer and
closer to parallel.

Similarly, consider the affine curves: C : y> = 23+ 1 and D : y = x + 1; these meet at
the points (—1,0),(0,1),(2,3), each with multiplicity 1. On trying other lines in place
of D, one typically finds again that there are 3 points of intersection (when counted
with multiplicity). An apparent exception is D : x = 0, which intersects C only at two
points, (0,1) and (0, —1), and this is true for any vertical line. We seem to have a rule:
any line intersects C at exactly 3 points (counted with multiplicity) except when the line
is vertical. Again, we would like a cleaner statement, in which we remove ‘except when
the line is vertical’. Again, the third point of intersection seems to be ‘at infinity’.

Points at infinity are intuitively points (z,y) where there is a denominator of 0.
We cannot express this idea using only pairs (z,y), where z,y lie in a field K. A
natural approach is to write: * = X/Z,y = Y/Z and identify the point (z,y) with
the triple (X,Y,Z). As long as Z # 0, we can go in the other direction from the
triple (X, Y, Z) to (z,y). Note that, for any k € K*, the triple (kX, kY, kZ) corresponds
to (kX/kZ, kY /kZ) = (X/Z,Y/Z) = (z,y), and so we impose a relation, that two triples
are regarded as being the same if they are nonzero scalar multiples of each other. Subject
to this relation, there is then a 1 — 1 correspondence between (z,y) and triples (X,Y, Z)
with Z # 0. On the other hand, the triples (X,Y, Z) with Z = 0 do not correspond to
any x,y € K, and such triples give us a way of describing formally these new points at
infinity.



9

Definition 1.35. Let K be a field. P"(K) = {(zo,..., %) : Zo,..., T, € K, not all 0},
subject to the relation that (z,...x,) = (vo, .., ¥ys) in P*(K) if there exists r € K,r # 0,
such that (yo,...,yn) = (rxo,...rz,). P*(K) is called projective n-space over K.

Example 1.36. (1,2,3) = (3,6,9) in P2(Q). (N.B. (0,0,0) € P2(Q).)

Definition 1.37. A polynomial in n projective variables is an (n + 1)-variable homoge-
neous polynomial. A projective curve in P? is defined by a homogeneous polynomial in 3
variables F(X,Y, Z) = 0, for example, X3 + Y3 — 73 = (.

Definition 1.38. Let C : f(z,y) = 0 be an (affine) curve. The homogenisation of C
is the projective curve F(X,Y,Z) = 0 of the same degree as f(z,y), with the property
that F(x,y,1) = f(x,y). A point (Xo, Yy, Zo) on F(X,Y,Z) =0 with Zy = 0 is called a
point at infinity on C. When Zy # 0, the point (X, Yy, Zo) corresponds to (Xo/Zo, Yo/ Z0)
on f(x,y)=0.

Example 1.39. Let C : y*> = 42? + 1, so that f(z,y) = y> — 42> —1 = 0. The
associated projective curve (the homogenisation) is: Y? = 4X?+ 72 (so that F(X,Y,Z) =
Y? —4X? — Z?%). The two points at infinity are: (1,2,0) and (1, —2,0).

Example 1.40. For the curve C : y? = 23 + 1, the associated projective curve is ZY? =
X3 + Z3. To find the points at infinity (the points where Z = 0), substitute Z = 0 into
the equation, giving X? = 0 and so X = 0. This forces Y # 0 (since (0,0,0) is not
allowed as a point in P?). So, the points at infinity are of the form (0,Y,0), where Y # 0.
But these are all the same in P?, since they are scalar multiples of each other; therefore
this is exactly one point at infinity, which we can represent by (0, 1,0), say.

Comment 1.41. Two distinct affine lines ayx+b1y+c; = 0 and asx+byy+co = 0 meet at
exactly one point, except when parallel. For example, z4+y+2 = 0 and x+y+3 = 0 do not
intersect. For projective lines, the rule is the same, but we can remove the phrase ‘except
when parallel’. For example, the projective lines X +Y +2Z =0and X +Y +3Z2 =0
have (1,—1,0) as the unique point of intersection.

Definition 1.42. A projective curve F(X,Y,Z) = 0 has a singularity at (Xo, Yo, Zo)
when:
F<X07}/07 ZO) = g_i(X(b%? ZO) = %<X07%7 ZO) = g_g(XO,}/E), ZO) = 0

Lemma 1.43. Suppose (Xo, Yo, Zo) is a nonsingular point on the projective curve F(X,Y, Z) =
0. Then the tangent line at the point (Xo, Yo, Zo) has equation

OF OF OF

— (X0, Y0, Z0) X + — (X0, Yo, Z0)Y + —(Xo, Yo, Zy)Z = 0.

8X( 0, Y0, Zo) X + (9Y( 0, Y0, Zo)Y + 6’2( 0, Y0, Zo)
Proof. Permuting the coordinates and rescaling if necessary, we may assume that Z; = 1.
Then our point lies on the affine curve F(x,y,1) = 0. We compute the tangent line as in
Comment 1.9 and get equation

oF oF
_(X07 YO7 1)(1' - XO) + W(XCH}/O? 1)(y - }/E)) =0.

0X
Homogenising gives the projective tangent line
oF OF
— (X0, Yo, DN(X — XoZ) + — (X0, Yo, 1)(Y = Y Z) = 0.

0X Y
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Finally, we use the fact that

oOF OF oF
— (X0, Yo, )Xo+ — (X0, Y, DYy + — (X0, Yp,1) =0
8X( 0, Yo, 1) 0+8Y( 0, Yo, 1) 0+8Z( 0, Yo, 1)
which is a consequence of Euler’s identity (which can be checked on monomials):

OF OF OF
o XY DX + 5o (X.Y.2)Z + S (XY, 2)Z = deg(F)F (X, Y, 2).

U

Comment 1.44. Note that, by multiplying through by denominators, we can take ra-
tional maps and birational transformations between projective curves to be of the form:

Qb(X?Yv Z) - (¢1(X7KZ)7¢2(X7Y7 Z)7¢3(X7Y7 Z)),

where ¢1, @2, @3 are homogeneous polynomials, rather than rational functions.

Comment 1.45. Suppose that two projective curves F(X,Y,Z) =0and G(X,Y,Z) =0
have a point of intersection (X, Yy, Zp). The multiplicity of intersection can always be
computed by using some associated affine curve. At least one of Xy, Yy, Zy must be
nonzero, since (0,0, 0) is not allowed in P2, If Z; # 0 then the multiplicity of intersection
is the same as that of (Xo/Zy, Yo/Zp) on the affine curves F'(x,y,1) = 0 and G(x,y,1) =0
(here, v = X/Z,y = Y/Z). If Yy # 0 then one can use F(z,1,z),G(z,1,z), where
x=X/Y,z=Z7/Y. If Xy # 0 then one can use F(1,y,2),G(1,y,z2), wherey =Y/X,z =
Z/X.

We can now state one of the basic results in the projective geometry of curves, gener-
alising the fact that two projective lines have a unique point of intersection.

Theorem 1.46. [Bézout’s Theorem] Two projective curves, with no common component,
of degrees m,n intersect at precisely mn points, counted with multiplicity.

Example 1.47. The projective curves ZY? = X3+ 73 and X = 0 intersect at the points
(0,1,1),(0,—1,1),(0,1,0), each with multiplicity 1.

Elliptic Curves. Curves can be classified according to a property called genus, which
is invariant under birational equivalence. We shall not go into the technicalities of what
precisely is meant by genus, and its properties, which would be an entire lecture course in
its own right. The simplest type are curves of genus 0, which can be defined by quadratic
and linear equations. Recall from Theorem 1.28 that any conic with a rational point can
be parametrised.

Curves of genus 1 are the next natural class of curves to consider; they are, in a sense,
the next ‘simplest’ type of curve after conics. Please don’t confuse ‘elliptic curves’ (which
are of genus 1) with ellipses (which are of genus 0). The classical terminology comes from
a relationship between cubic curves and elliptic integrals, which were much studied in the
19th century. It can be shown that a curve of genus 1 is not parametrisable. An elliptic
curve over K is defined to be a nonsingular projective curve of genus 1, defined over K,
together with a K-rational point on the curve. It can also be shown that any curve of
genus 1 is birationally equivalent over K to a nonsingular projective cubic curve. For the
purposes of this lecture course, you can forget about the term ‘genus’ and will simply
take this as the definition of an elliptic curve.
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SECTION 2. THE GROUP LAW ON AN ErLLIPTIC CURVE

Definition 2.1. An elliptic curve over a field K is a nonsingular projective cubic curve,
defined over K, with a specified K-rational point.

This means that an elliptic curve is defined by a degree 3 homogeneous polynomial, in
3 variables and with coefficients in K.

Remark 2.2. We won’t discuss this in the course, but elliptic curves over the complex
numbers have a simple description following from the Weierstrass uniformization theorem
(see Chapter VI in [2] for more details). This says that for an elliptic curve C defined
over C, we can make an identification

C(C) = C/A

where A is a free rank two abelian group generated by two complex numbers wy, wy which
are linearly independent over R. The identification sends the specified point of C to the
coset 0 + A. We deduce from this that C(C) has the structure of an abelian group. It
turns out that this group law can be defined purely algebraically which is what we are
going to do next.

Definition 2.3. Let C : F(X,Y,Z) = 0 be an elliptic curve /K (the notation /K
means ‘defined over K’; that is, all of the coefficients of C are in the field K). So, C is a
nonsingular projective cubic curve, with a K-rational point, which we shall denote o. For
any two points a, b on C (defined over a common extension field L/K), let £, , denote the
line which meets C at a,b (if a, b are distinct then £, is the unique line through a, b;
if a = b then £, is the line tangent to C at a = b).

a b

Lab | | d Let la 1 denote the line which meets C at a, b.
Then 4, 1, and C have 3 points of intersection (Bézout).
Let d be the third point of intersection between C
¢ and lap.

Now, let /4 4 denote the line which meets C at o and d.
o Let c be the third point of intersection between C
B and gg,d-

Define a+ b =c.

Jf"a:k k

Let {5, be the line tangent to C at o.
Let k be the third point of intersection between C
and (o o.

Now, let £,k be the line which meets C at a and k.
Let @ be the third point of intersection between C
and ga,k-

Define —a to be a.

=]

Ie
[=]
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We shall soon show that a + b is a commutative group law on the points on C, with
identity o and the inverse of a given by —a. A priori, the various new points we con-
structed in the above diagrams will be defined over a chosen algebraic closure L of the
field of definition for the points a, b. But we will show that these points are all L-rational.

First we need the following technical lemma.

Lemma 2.4. Let P, ..., Ps be such that no 4 points lie on a line and no 7 points lie on
a conic. Then there exists a unique point Py which is a 9th point of intersection of any
two cubics passing through Py, ..., Py.

Optional Proof. See 0.140.
Theorem 2.5. Let C be an elliptic curve /K, with K -rational point o. Then
(a,b) — a+ b,

as in Definition 2.3, gives a commutative group law on the points of C, with identity o.
The inverse of a is given by the point —a, constructed in Definition 2.5.

Furthermore, the K-rational points C(K) form a group under this group law, called
the Mordell-Weil group'. More generally, for any extension field L/K the L-rational
points C(L) form a group under the group law.

Proof. Tt is easy to show commutativity, the fact that o is the identity, and the fact
that —a is the inverse of a. The only difficult problem is associativity. In order to prove
associativity, consider the following diagram:

¢ m n

Here, r,s,t,¢,m,n are lines. On each line, the labelled points are the points of inter-
section between C and that line. From the construction of Definition 2.3, a+ b = e, and
so (a+ b) + c is the 3rd point of intersection on /q .

Similarly, b+ ¢ = v, and a + (b + ¢) is the 3rd point of intersection on (g .

1Typically this name is reserved for the case where K is a number field.
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To show (a+ b) +c =a+ (b + c), it is therefore sufficient to show that f = w. Let
Fy = {mn and F; = rst, both of which are cubic curves (recall that each line corresponds
to a degree one homogeneous polynomials, so their product is a degree three polynomial
defining a cubic curve).

Now we observe that C and F} has the following 8 points in common: a,b,c,d,e,u,v,o
(f is the 9th common point). C and F; also have same 8 points in common, together
with w. From Lemma 2.4, the 9th point of intersection of C and F} must be the same
as the 9th point of intersection of C and F3; that is, f = w, as required. Hence, + is a
commutative group law.

It remains to show that C(K) forms a group under +. We are given that o € C(K).
Let a,b € C(K). It is sufficient to show that a+ b € C(K) and that —a € C(K).

Let a = (z1,71) and b = (29, y2), where x1, 1, X2, yo € K. Then the line through a, b is
(in affine form) lap, : y = lx+m, where £ = 2=2 € K and m = #2=72% € K. Substitute

= (x + m into the cubic equation for C to get; ¢(z) = 23 + cux* + c12 + ¢y = 0, defined
over K. Let ¢(z) = (x — 1) (x — 22)(x — x3) be the factorisation of ¢(z). Then z1, z9, x3
are the 3 roots of ¢ and so xy + x5 + x3 = —co, giving: x3 = —cy — 1 — x5 € K and
ys = Lxs +m € K. The line ¢, then meets C at a,b,d = (z3,y3) € C(K). The same
argument shows that the line ¢, 4 through o,d has 3rd point of intersection ¢ which is
also in C(K). But ¢ = a + b and so we have shown that a +b € C(K). A similar
argument shows that if a € C(K) then —a € C(K). Hence C(K) is a group, as required.
The same argument applies when we replace K by any extension field L/K. O

Aside: It is apparent that, in the above proof, we have dealt with the ‘typical’ case,
where none of our points are repeated (for the proof of associativity), and none are at
infinity (for the proof that C(K) is a group, since the points were written in affine form).
It is straightforward to check these special cases; we shall not bother to do so here.

Comment 2.6. When two nonsingular cubics C;,Cy are birationally equivalent over K
(under ¢ : C; — Cy), with ¢(O;) = O, it can be shown that ¢ induces a group
isomorphism between C;(K) and Cy(K). If ¢ is just a rational map, still sending O; to
O,, it induces a group homomorphism.

(For those who have learned some more algebraic geometry.) A rational map from a
nonsingular curve to a projective variety always extends to a morphism of varieties. In
particular, it can be defined at every point of the curve, so the birational transformation
¢ automatically induces a bijection between the sets of K-rational points.

Comment 2.7. By an elliptic curve, we shall always mean a projective curve, but often
write the equation in affine form. Note that, whichever way it is written, we are always
referring to the projective curve. For example, if we say ‘let C : y*> = 23 + 3 be an elliptic
curve’, it should be understood that this is a shorthand notation for the corresponding
projective curve ZY? = X3 + 373,

Theorem 2.8. Let K be a field satisfying char(K) # 2,3 (recall — this means that
1+1#0and 1+1+1+#0). Then any elliptic curve over K is birationally equivalent
over K to a curve of the form y* = x® + Ax + B, with the birational transformation
sending the identity o to the point at infinity ((0:1:0) in projective coordinates).
When K = Q, we can birationally transform any y?> = cubic in x to a curve of the
form y? = 23+ Az + B, with A, B € Z, using only maps of the form (x,y) — (ax+b,cy).
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Comment 2.9. Let K be a field satisfying char(K) # 2,3, and let g(z) be a quartic
polynomial over K with nonzero discriminant. It can be shown that any affine curve

D:y* =g(x)

with a K-rational point, is birationally equivalent over K to an elliptic curve C of the
form y? = 2% + Az + B (see p. 35 of [1]). Note that the point at infinity (0: 1:0) in the
homogenisation of D is singular. The affine curve D is sometimes called an ‘affine model’
for the elliptic curve C.

Comment 2.10. When char(K') # 2, 3, we shall typically take our elliptic curves to have
the form

E:y* =14+ Ax + B, where A, B € K,

which should be regarded as shorthand for the projective curve ZY? = X34+ AX 7%+ BZ3.
Sometimes it will be convenient to include an 22 term. Since £ is nonsingular, we must
have A = 4A3 + 27B? # 0, as was shown in Example 1.20 (note the assumption there
that char(K) # 2). The notation A = 4A3 4 27B? is standard.

It is conventional to choose o = (0, 1,0), the point at infinity, as the identity (we shall
always take o = (0, 1,0) unless otherwise stated). Note that the line Z = 0 meets £ at o
three times (such a point is called an inflexion). Given a point a = (XY, Z), if we take
the line through a and o = (0,1,0) then the third point of intersection is (X, —Y, Z),
which must then be —a. In affine form:

_(:E7y) = (I’, _y)'

This gives an easy rule for finding the inverse of a point, under the group law, namely:
the inverse of a is its reflection in the z-axis.

So, for an elliptic curve £ written in the form y? = cubic in z, the points are o (the
point at infinity) and the affine points (z, y), and the group law has a simpler description:

Let d = (x3,y3) the 3rd point of intersection of £ and £, p.

Then a + b = (z3, —y3), the reflection of d in the z-axis.

We illustrate the group law with the following computation.

Example 2.11. Let £ : y*> = 2% + 1. Let us compute a+ b, where a = (z1,y;) = (—1,0)
and b = (x9,92) = (0, 1).

The line through a,b is {ap : y = o 4+ 1. Substituting this into £, we see that the
z-coordinate of any point of intersection satisfies: (z + 1)* = 2% + 1, and so:

2? — 2% — 27 = 0. (%)

We are looking for (x3,ys), the 3rd point of intersection of £ and l,1. We first find x3;
note that x1, 22, x3 must be the roots of (x).

Method A (for finding x3). Since the roots of (x) are x1, g, x3, it follows that z* —
2? —2x = (v — x1) (2 — 22)(x — x3); equating coefficients of x? gives that:

Ty + 29 + 23 = —(coefficient of 2% in (x)) = —(—1) =1,

so that (—1) + 0+ x5 = 1, giving z3 = 2.

Method B (for finding z3). Factorise (x) to give: z(x + 1)(x — 2), whose roots are:
0,—1,2. Two of these are the already known x; = —1, 25 = 0, and so x3 must be the
remaining root: rs = 2.
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Having found z3 (by either method), we use the equation of ¢, to compute y3 =
3+ 1 = 3. In summary: £ and (5}, intersect at: (—1,0),(0,1),(2,3), and so (—1,0) +
(0,1) +(2,3) = 0.

Finally, this gives: (—1,0) 4+ (0,1) = —(2,3) = (2, —3), using the rule that negation is
given by reflection in the z-axis.

One can also obtain an explicit general formula for the group law.

Lemma 2.12. Let £ : y* = 2 + Ax + B, where A, B € K, with (as usual) o = the point

at infinity. Let (v3,y3) = (21,y1) + (72, ¥2).
Case 1. When x1 # x5 then:

1173 + 23wy + A(z1 + 22) + 2B — 24140

T3 = ) ) Ys = —E.Ig —m,
(21 — 22)
Y1 — Y2 T1Y2 — T2Y1
where: { = , m=——""—
Tr1 — T2 Tr1 — X2

Case 2. When (z1,1y1) = (22,92) then (z3,y3) = (21,91) + (x1,y1) (which can be written
as 2(z1,y1)), and:

x] — 2Az} — 8Bwy + A* a2 — 2Ax} — 8Bz + A®

= - — —fpa—
3x2 + A —z3 4+ A 2B
where: { = L, m = —21 At .
2y1 2y,

Optional Proof See 0.147.

The above formulas give an alternative method for computing the group law, although
in practice it often turns out to be easier to compute the group law from first principles,
as in Example 2.11.

Comment 2.13. When A = 4A3 + 27B? # 0, all 3 roots of 2° + Az + B are distinct,
guaranteeing that y?> = z® + Az + B has no singularities and is an elliptic curve (if
char(K) # 2).

When A = 0, then this is no longer an elliptic curve and at least two roots of the cubic
are repeated: y* = (z — a)?(x — B). Tt is still the case that the set of nonsingular points
on &, denoted &,, forms a group (see pp. 3941 of [I]). When 8 # « the singularity

at (a,0) is a node. When = « the singularity is a cusp. In either case, the curve can

be written: (#)2 = 2 — f3, and so is birationally equivalent to the conic w? = x — 3.

Definition 2.14. Let £ be an elliptic curve and let P be a point on £. For any positive
integer m, let mP denote P + ...+ P (m times). We say that P is an m-torsion point
if mP = o. The m-torsion group of £, denoted £[m], is the set of all m-torsion points
(defined over a fixed algebraic closure K of the field of definition K).

We also say that P has order m (or that P is a point of order m) if m is the smallest
positive integer for which mP = o. When such m exists, P is a torsion point (P has finite
order). If no such m exists, then P is a non-torsion point (P has infinite order). The
group of all K-rational torsion points on £ is denoted E;os(K) (or sometimes E(K )iors)-

Examples 2.15.

(a) Let £ :y*> = 2% —x, and let P = (1,0) so that —P = (1,—0) = (1,0) = P, so that
2P=P+P=P—P=0. But 1-P = P # 0, and so 2 is the smallest m > 0 such
that mP = o. P has order 2 and P € &,5(Q).
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(b) Let £ : 9> =23+ 1, and let P = (0,1). First compute P + P. Using 2yy’ = 3z?
at (0,1) gives 21y’ = 3-0? and so the tangent line {pp to € at P has slope 0 and
equation of form y = 0 - x + m. But the line goes through (0,1) and so m = 1 and the
tangent line is y = 1. Substituting y = 1 into y? = 2® + 1 gives 23 = 0, with roots 0, 0, 0.
So, € meets (pp at (0,1) with multiplicity 3, and (0,1) + (0,1) + (0,1) = o. Hence:
(0,1) + (0,1) = —(0,1) = (0, —1). In summary:

1-(0,1) = (0,1), 2-(0,1) = (0,~1), 3-(0,1) = o.

So (0,1) has order 3 and (0, 1) € Eois(Q).

When K = F,, a finite field with p elements, there are of course only finitely many
members of E(F,).

Aside: FEach of the p possible x-coordinates 0,...,p — 1 has about a 50% chance of
making x> + Ax + B a square modulo p. When x® + Az + B is not a square, there are
no corresponding y-coordinates. When x® + Az + B is a square, there are at most two
corresponding y-coordinates. So, one might expect ‘on average’ about p affine points, that
is, about p 4+ 1 points, including the point at infinity.

The following result gives a bound within which the number of points must lie.

Theorem 2.16. (Hasse). Let € be an elliptic curve over IF,. Let N, = #&E(F,) where, as
usual, E(F,) should be taken to including o (so that N, is the number of affine points (z,y)
on & with x,y € Fy, plus 1, to include the point at infinity o). Then:

[N, — (p+1)] < 24/p, that is, N, € [(p+1) — 2y/p, (p+ 1) + 21/1).

Similarly, any curve y?> = Q(z), where Q(z) = fix* + ...+ fo has nonzero discriminant,
has at least p — 1 — 2,/p affine points.

Proof. See p. 118 of [1] or p. 131 of [2]. O
Example 2.17. Let £ : y? = 2% + 42 + 1, defined over F;3. Then:

#E(F13) 2134+ 1—-2vV13 >13+1—2-4 =6, so that #E(Fy3) > 7.

Note that at most 4 of the points on £(FF13) can be o and points of the form (z,0), so
there must exist at least 3 affine points (x,y) € £(F3) with y # 0.
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SECTION 3. THE p-ADIC NUMBERS Q,

For Q, let | |« denote the standard absolute value (e.g. | — 5|o = |5]oc = 5). Consider
the sequence: xy = 14,29 = 1.41,x3 = 1.414, ..., where z,, is the largest decimal to n
decimal places satisfying z2 < 2. Then |x,, — Zy|eoc — 0 as m,n — oo, so that the
sequence is Cauchy in Q,| |». The sequence x,, cannot be convergent, since if z,, — «
then clearly a? = 2 and no such « exists in Q. We say that (Q,| |) is incomplete (since
not every Cauchy sequence is convergent) and the real numbers R give the completion
of (Q,| |s)- The absolute value | |, is a special case of the following.

Definition 3.1. Let K be a field. A valuation on K is a function | | : K’ — R satisfying:

(1) |z| = 0 for all z € K, with equality if and only if z = 0.

(2) |zy| = |z| - Jy| for all z,y € K.

(3) |+ y| < |z| + |y| for all x,y € K (the triangle inequality).

If a valuation also satisfies the stronger property:

(3) |z + y| < max(|z|, |y|), for all z,y € K,

then we say that it is a non-Archimedean valuation; otherwise it is an Archimedean
valuation.

For example, Q,| |« (or R,| |«) is a valuation. It is Archimedean since, for example,
11+ 1|oo € max(|1|eo, |1|oc). We shall now introduce another valuation on Q, which gives
a different notion of size and distance.

Definition 3.2. Fix a prime p. Let 2 = ™ € Q. Write ™ = p"¢, where pt a,p{b. Then
the p-adic valuation (or p-adic absolute value or p-adic size) is defined to be:

aly = 1=l =p"
zlp = |E|p =

so z is ‘smaller’ the higher the power of p dividing x.

We also define |0], = 0. For any z,y € Q, the p-adic distance between x and y is
defined to be: dy(z,y) = |z — y|,. (Note that d, is a metric)

Example 3.3. In Q, | |5, we have: |3]3 = [37'1|3 = (3707D) =3,|9|5 = 323 |3 =372 = §,
and |7|3 = |30%|3 =30=1.

AlSO dg( 5 3) = | —5—3|3 = | —8|3 = 1,d3(—5,19) = | —5— ].9|3 = | —24:|3 = 371,
and d3(2, $) = |]s = 371 For integers m,n, m # n (mod 3) <= ds(m,n) = 1,
m =n (mod 3) <= ds(m,n) < i, m =n (mod 3%) <= ds(m,n) < 3, and so on.
The integers m,n are 3-adically closer when they are congruent modulo a higher power

of 3.

Lemma 3.4. The function | |, of Definition 3.2 is a non-Archimedean valuation on Q.

Proof. (1),(2),(3)" are trivially true when z or y = 0. Let x,y € Q, z,y # 0, and write
r=p"¢,y=0p°S where pfa,b,c,d
(1) [z], =p™" > 0.

r+s ac

(2) |zyl, = P78 p*el, = [ 2], = p~ " (since pfac,bd) =p~"p~* = |z[,|yl,.

(3) Wlog r < s, giving: |z +yl, = [p"¢ +p*<l, = [P (4 +p°7"¢) |, 'rad—l—];;*Tbc’p
— |prEt €|p for some k£ > 0 and ¢ € Z with pﬁ(f (since ad + p*~"bc € Z)
= 00 <7 = fal, = max(fel o) O
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Comment 3.5. By induction, |a; + ...+ a,|, < max(|ai|p, ..., |a,|,). It is also a good
exercise to show that |z|, # |y|, = |z + y|, = max(|z|,, |y|,). We will use this fact
repeatedly. Furthermore, if |ax|, > |a;|, for all 4, 1 < i < n,i # k, then |a; + ...+ a,|, =
max([ailp, ..., |anlp) = |ax]p-

Definition 3.6. Let K,| | be a field with valuation. For a,,/ € K, we say that the
sequence a,, converges to ¢ (denoted a,, — ¢) in (K| |) when |a, —¢| = 0in (R,| |») as
n — oo.

That is: for any € > 0 there exists N € N such that, |a, — ¢| < € for all n > N.

Given a sequence a,, € K, if there exists ¢ € K such that a,, — ¢ in K| | then we say
that a,, convergesin K| |, or that it is convergent in K| |. It is Cauchy if |a,, — a,| — 0
inR,| |« asm,n — oco. That is: for any € > 0 there exists N € N such that, |a,,—a,| < €
for all m,n > N. We say that K| | is complete if every Cauchy sequence is convergent.

All of these definitions coincide with the usual definitions for metric spaces, when we
equip K with the metric d(x,y) = |z — y|.

Examples 3.7.

(a) Let a, = 6". Then |a, —0[3 = |6"]3 =3"" = 0asn — 00. Soa, = 0in Q,| |5.

(b) Let a1 =1, ag =11, ag = 111,... so that 9a,, = 999...9 (n times) and 9a,, + 1 =
10™. Then |9a,, — (—=1)|5 = |10"|5 = 57" — 0, giving 9a, = —1in Q, | |;. It follows that
a, — —% in Q,| ;.

(c) Let g = ag = 3. Then a2 = 9 = 2(mod 7), and |22 —2|; = [a2 2|, = |7, =T <
1. We want to find a; € {0,...,6} such that (ag + a;7)? =2 (mod 7?).

This is satisfied <= a2 + 2a9a,7 + a37? = 2 (mod 7?)

< 6;7=2-9= -7 (mod 7°) <= 6a; = —1 (mod 7) <= a; =1 (mod 7),

so we can take a; = 1.

Let 1 = ap+ a7 =3+ 1 x 7=10. Then 22 = 100 = 2 (mod 7?) and |2? — 2|, = 772

Aside: note how the solvability of the last congruence is affected by |2ao|7 = | f'(ao)|7,
where f(x) = 2% —2. We will see this more generally in the statement of Hensel’s lemma.

When we similarly solve for ay € {0, ..., 6} such that (ag+a;7+a27?)* = 2 (mod 73) we
find that ay = 2, giving zy = ag+a17+ ax7> = 3+ 7+ 98 = 108. Check: 23 = 2 (mod 73)
and |23 — 2], < 773,

We can inductively find z,, = ap + @17+ ... + a, 7" such that z2 = 2 (mod 7"'), that
is, |22 — 2|, < 77D, Hence 22 — 2in Q,| |,.

Intuitively, (34+1-74+2-72+...)> =2 in | |,. The sequence z, is easily seen to be
Cauchy in Q,| |,. The sequence is not convergent since if z, — o in Q,| |, then a? = 2,
which is impossible for a € Q.

(d) Again, let ap = 3, but now define a,+1 = ay, Jan) for p > 0, where flx) =2*-2

~ fl(an)’
(the Newton-Raphson formula). Then:
2 11y2_ o
ap =3, a1 =3 — 32'32 = %, azz%— (62)% :%, and so on.

Check that: |af — 2|7 = [32 = 2| < 774, [a? — 2|7 = [()? — 27 = |52]7 < 7% and
that a,, satisfies the same properties as x,, of Example (c), namely: |a2 — 2|, < 77+
so that a2 — 2 in Q, | |, again forcing a, to be Cauchy but not convergent.

The last two examples show that Q is incomplete with respect to the valuation | |,
and indeed Q is incomplete with respect to any | |,. We now define an extension of Q
which performs the same role with respect to | |, that R performs with respect to | |-
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Definition 3.8. The set of p-adic numbers Q, is the completion of Q with respect to
the valuation | |,, and is the smallest field containing @Q which is complete with respect
to | [p-

For any «, 8 € Q,, we say that a = § (mod p") <= |a— |, < p™" (‘a is congruent
to 8 modulo p™’). A member of Q, (a p-adic number) x can be written uniquely in the
following form (the p-adic expansion of x):

xr = Zanp", where N € Z,ax # 0 and each a,, € {0,...,p — 1},
n=N

in which case |z|, = p~", and the a,, are the digits of x. We might use the shorthand no-
tation ay . ..ag,ajas ... to represent the above sum. Note that, as for decimal expansions
in (R, |»), z € Q exactly when the p-adic digits are eventually periodic.

Examples 3.9.

Q) w=4-524+1-51+4-59+1-5'+4-5>+... € Q5 and |w|s = 5% This can be
denoted 414, 14.

b)a=3-7+1-7"+2.-7+ ... € Q; from Example 3.7(c) satisfies a? = 2.

On the other hand, there is no 8 € Q such that 3% = 3 since any such 3 would satisfy
1812 = |8%|]7 = |3]r = 1 and so would have 7-adic expansion 3 = by + 0,7 + by7* + . ..
and would satisfy (b + 0,7 4+ by7% +...)% = 3. This would give: b = 3 (mod 7), which
is impossible, since 3 is not a quadratic residue mod 7 (none of 0%, 12,22, 3% 42 52 62 are
=3 (mod 7)).

(c)InQ5: 27=2+52=2-54+0-5"+1-5% =2 01 (the 5-adic expansion of 27).

(d) Let us find the 5-adic expansion of —1/4. We have | — 1/4|5 = 1 so that the 5-adic
expansion of —1/4 must be of the form a = ag + a15 + a25* + . . ., each a; € {0,1,2,3,4}
and ag # 0. This satisfies —1 = 4(ag + a15 + a25* + ...) which gives —1 = 4ag (mod 5)
and so ag = 1. Then —1 = 4(1 + a;5 + a25* + ...) gives =5 = 4a;5 (mod 5?), giving
—1 = 4a; (mod 5), and so a; = 1. Similarly, we find that a; = 1,a3 = 1,... and we
suspect that —1/4 =1, 1.

Let @ = 1,1. Then a —1 = 0,1 = 5a, so that 4o = —1, giving a = —1/4, proving that
we have the correct 5-adic expansion.

Comment 3.10. The field Q is often referred to as a global field and its completions
with respect to valuations, namely R and Q,, for any prime p, are its local fields (or
localisations). An equation defined over Q which has points in R and every Q,, but not
in Q, is said to wviolate the Hasse Principle.

Definition 3.11. Let K be a field with a non-Archimedean valuation | |. We say that « €
K is an integer (with respect to the valuation) when |z| < 1, and R = {z € K : |z| < 1}
is the ring of integers (or wvaluation ring) of K. The set m = {x € K : |z| < 1} is
the maximal ideal, and k = R/m is the residue field. The wvaluation group is the set
Gk = {|z| : « € K*} under multiplication.

We say that the valuation is discrete if there exists 6 > 0 such that 1 —§ < |z| <
14+ = |z| = 1. When the valuation is discrete, there exists an element w € m such
that m = (w) is principal with generator . We say that such an element is a uniformizer
or prime element for the valuation.

The ring of integers for Q, is often denoted Z, = {z € Q, : |z|, < 1}. The valuation
group Go, = {p" :r € Z} = {...,p %, p~",p°, p', p? ...}, so that Q, is discrete, and we
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can take p as a prime element (or indeed any element with valuation p~!). The maximal
ideal is m = pZ, = {r € Q, : |z|, < p~'} and the residue field Z,/pZ, is isomorphic
to I, the finite field with p elements.

The following result show how, in some respects, analysis is simpler for non-Archimedean
valuations.

Theorem 3.12. Let K be a field, complete with respect to a non-Archimedean valua-

tion | |, and let x,, be a sequence in K. Then: x, — 0 in K <= Y x, is convergent in K.
Proof. Let Sy = 22;1 T
= : Assume that x,, — 0 in K. Then:
ISy — Su| = |y + -+ 2| < max (|zaga], - .-, |zn]) = 0 as M, N — oc.

Sy is Cauchy and so convergent (since K is complete), giving that ) x,, is convergent.
< : Assume that ) x,, is convergent, that is, Sy — ¢ for some ¢ € K. Then:

|z, — 0| = |z, = |Sn — Sne1| =[S — 0+ 0 — Spa| <|Sy, — 4| + |Sne1 — €] = 0
as n — oo, so that x, — 0in K,| |. O

For example, > n! converges in any Q,, since |n!|, — 0 (it is unknown whether the
limit of this sequence in any Q, is in Q).

The above result applies to @, (since it is non-Archimedean), but not to R (where, for
example, z,, = % is a standard counterexample).

Comment 3.13. It is not too hard to check that the rules for finite sums in Comment 3.5
also apply to infinite series. In other words, when ) a, converges, | a,| < max]a,|.
Furthermore, if there exists a; such that |ag| > |a;| for all ¢ # k, then | > a,| = |ag|; in
particular, it is then impossible for > a,, = 0.

Aside: Recall Example 5.7(d), where xo = 3, and x,11 = x, — Jf,((g;z)), where f(x) =

x? — 2, defined a sequence, which is Cauchy (but not convergent) in Q,| |., and which is
convergent in Q7 to a root of f(x). The following describes when an initial approzima-
tion ag gives a solution to f(x).

Theorem 3.14. (Hensel’s Lemma). Let K be a field, complete with respect to a non-
Archimedean valuation | |, with valuation ring R = {z € K : |z| < 1}.
Let f(z) € R[z] and let ag € R satisfy:

[f(a0)] < |f'(ao)]® (%)
Then there exists a unique a € R such that f(a) = 0 and |a — ao| < |f'(ao)|. This
solution moreover satisfies |a — ao| < | f(ao)|/|f (ao)l.

Proof. Define polynomials f;(x) by

flx+y) = folx) + fi(@)y + fo(z)y® + ...
so that fo(z) = f(x) and fi(z) = f'(z). If f(z) = 2™, then f;(z) = (})a" 7. It follows
from this that f;(z) € R[] for arbitrary f(z).
Define by = —f(ao)/f'(ao). By (), |bg| < 1. Define a; = ag + by = ag — f(ao)/f'(ao).
We are going to show that a; is a better approximation to a root of f(z) than ag. We
compute:

|f'(a1) = f'(ao)| = | f'(ao + bo) — f'(ao)| = | fi(ao)bo + f5(ao)bg + - . .|
< |bol < [f'(ao)| (by (%)),
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so that |f'(a1)| = |f'(ao)|. Also,
|f(a1)| = |f(ao + bo)| = | folao) + fi(ao)bo + falao)bg + ... | = [falao)by + ... |

since fo(ao) + f1(ao)bo = 0.
We deduce that

) fla 2
|f(a)| < max;=o| f;(ao)|bol’ < |bol* = \|f'((a(:)>)||2 = p|f(ao)| < [f(ao)l,
where p = ‘}{((Zg))‘lz <1
Summarising: |f'(a1)| = [f'(ao)| and |f(a1)[ < plf(ao)| < [f(ao)], where
|f(ao)|
p= < 1.
|f"(a0)[?
We proceed by iterating this procedure. So, assume we are given aq,...,a, € R such
that
[f'(an)l = ... = [f(a1)| = | f(a0)|
and

[f(an)l < plf(ana)l < - < p"|f(ao)]-
Define b, = —f(a,)/f'(an) and an11 = an + b, = a, — f(an)/ f'(ay).

Then, as in the case n = 0, we have |f'(an41)| = | f'(a,)| and
[flan)? _ 1f(a)l* _ 1f(ao) |

fan gbnzz = S fan == fa'n < n+fa .

| ( +1)‘ | | ’f/(an)|2 ’f/(a())’Q ’f’(aO)P‘ ( )’ p| ( )‘ p ‘ ( 0)|

In conclusion, we have defined an infinite sequence (ay),>0 with |f'(a,)| = | f'(ao)| and

|f(an)| < p™ f(ao)] which — 0 as n — oo.
We also have |b,| = |f(an)|/|f'(an)] = | f(an)|/|f (ao)] = 0, so by Theorem 3.12

an:a0+b0+b1+...+bn

converges to a limit a € R.
By continuity of polynomials, f(a) = lim f(a,) = 0. Furthermore:

[flan)l _ [flan)l  [f(ao)]

la — aol = ) byl < max|b,| = maxy—<

Flan)] ~ " ao) [ (ao)]

as required.

For uniqueness, imagine @ # a also satisfied f(a) = 0 and |a — ag| < |f"(ap)|- Let
b=a—a#0. Then

0=f(a) = f(a) = fla+b) = fla) = bfi(a) + B*fala) + ..

But |b] = [a — ao + ap — a| < max(|a — aol, [a — aol) < |f"(a0)| = [f1(a0)| = |f1(a)| (by
continuity of |f'(x)]).

This gives |07 f;(a)] < [b7] < |b?] < |bfi(a)| (since |b] # 0 & |b] < |fi(a)]) for j > 2, so
that the leading term of the sum in (3) has valuation strictly greater than the valuations
of the other terms, which is inconsistent with the sum being 0. Hence a is unique. U

Example 3.15. Let f(z) = 23 — 7 and ag = 3. Then |f(ag)|s = [3* — 7|5 = 57! and
| f'(ao)]5 = |3-32|5 = 1. So | f(ao)l5 < |f’(ao)|? and by Hensel’s Lemma there exists a € Zs
such that f(a) =0, that is: a®> = 7.

Corollary 3.16. Let a € Q, with |a|, = 1. When p # 2, « is a square in Q, iff it is a
square modulo p. When p =2, « is a square in Q, iff « =1 (mod 8).
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Example 3.17. 23 € (Q2)” since [23]; = 1 and 23 = 2 = 32 (mod 7). However,
24 ¢ (Q%)? since |24]; = 1 and 24 = 3 (mod 7), which is not a quadratic residue mod 7.

The corollary does not apply to decide the status of 14, but in fact we can see that
14 ¢ (Q2)?, since if 14 = 42 for some v € Q7 then |v|? = |y2|; = [14]; = 7', contradicting
the fact that |y|; = 7" for some r € Z.
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SECTION 4. THE REDUCTION MAP ON AN ELLIPTIC CURVE

Throughout this section, K denotes a complete non-Archimedean field, with valuation
ring R = {z : |z| < 1}, maximal ideal m = {z : || < 1} and residue field k = R/m.

Definition 4.1. Then natural mod m map R — k = R/m : r — r + m, is a surjection
and is denoted a — @ (or sometimes a). For example in Zs, if a = 3 +2-5" + ... then
a=3;als017/3=2/3=2-2=4.

Let a = (ao, ..., a,) € P*(K). We define the reduction map to P"(k) as follows.

Step 1. There exists ig such that |a;,| > |a;| for i = 0,...,n. We replace each q;
by a;/a;, (which leaves a unchanged) so that now the largest valuation is 1 (normalised
form).

Step 2. Define a = (ao, . .., a,) (easy to check that this is well defined).

In affine space, if a = (a4, ...,a,) then a = (ay,...,a,) , provided that all |a;| <1
When K = Q,, this is just the ‘mod p’ map, where the coordinates are reduced
modulo p.

Example 4.2. In P?(Qs), let a = (1/5,2/15,2). Dividing through by aq = 1/5 gives
a = (1,2/3,10) so that @ = (1,2/3,10) = (1,4,0) € PX(F;). For b = (2/3,25) in affine
space A%(Qs) (an affine point with no denominators of 5), then b = (4,0) € A%(Fs).

For the point P = (1/4,7/8) € £(Q) C £(Q2) on the elliptic curve £ : y* = z3—z+1, we
should first write P in projective form: (1/4,7/8,1) = (2/7,1,8/7) (after dividing through
by 7/8), which reduces modulo 2 to (0,1,0), the point at infinity on &(Fs). Clearly any
(z,y) € £(Q,) will reduce mod p to the point at infinity iff |z|, > 1 and |y|, > 1.

Definition 4.3. Let C : F(X,Y,Z) = 0 be a projective curve, defined over K. Let {f;}
be the set of all coefficients of C. The curve is unchanged if we multiply all the f; by a
nonzero constant, so after dividing through by f;, such that |f;,| > |fi| for all i, we can
assume that max(|f;|) = 1.

The reduction of C mod m is then C : ﬁ(X, Y,Z) = 0, defined over k = R/m, where
every coefficient has been reduced mod m. When K = Q,, this is again just a matter of
reducing the coefficients mod p.

Clearly, a lies on C = a lies on C. , when we say that a reduces to a.

Definition 4.4. Let b € C(k). If there exists a € C(K) such that @ = b, we say that b
lifts to C (or that b lifts to a point on C).

Example 4.5. Let £ : ZY? = X® + pZ?, defined over Q,, and E:7Y? = X3, defined
over F,. Consider (0,0,1) € £(F,). Does it lift to a point in £(Q,)? Imagine (X,Y, Z) €
€(Q,) reduces mod p to (0,0,1) € g(Fp). Then p|X,p|Y,p 1 Z, that is, | X|, < 1,|Y], <
L|Z|, =1 But all p-adic values are of the form: ...,p‘Q,p_l,pO,pl, ... so that | X, <

p LY, <p7' and | XP], < p~°. Furthermore, [pZ®], = |p|,|Z[3 =
Since |X3|p 7é IpZ3|, we must have | X3 —FpZSU7 max(|X3|p, |pZ?’| ) =p~'. But then
V2|, = |ZY?|, = |X®+pZ3|, = p', a contradiction. We conclude that (0,0,1) € £(F,)

does not lift to a point in £ (Qp)
If we had represented the above curves with the affine shorthand: £ : y = 2%+ p and

€ : y2 = 2%, then the above would be expressed by saying that (0,0) € 5( ») does not
lift.
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On the other hand, the following result shows that we can guarantee lifting a nonsin-
gular point on &.

Theorem 4.6. Let C be defined over K, written so that the coefficients lie in R. Let 5,
defined over k, be the reduction of C modulo m. Let b € C(k) be a nonsingular point.
Then b lifts to C; that is, there exists a € C(K) such that a = b.

Proof. Write C : F(Xo, X1, X2) = 0 (normalised), so that C : ﬁ(XO,X1,~X2) = 0. Let
b = (bo,b1,b2) € C(k) be a nonsingular point. Then at least one of the 2 (b) % 0; wlog
say that ;—;}(b) # 0. Let ag,ay,a3 € R be such that each &; = b; under the natural

surjection from R to k = R/m. Then a = (ap, a1, az) satisfies & = b; however, we have
no guarantee that « lies on C. We shall construct an adjustment of a which lies on C,

and which has the same reduction as «. Let f(t) = F(t, a1, as). Then ?(\ozo/) —F(b)=0
so that |f(ap)| < 1. Furthermore, f'(ag) = 2£-(a) = aaTFo(b) # 0, so that |f'(a)| = 1.

59X,
By Hensel’s Lemma, there exists agp € R such that f(ag) = 0 and |ag — ap| < 1, so that
a = (ag, a1, ) is a point on C and @ = & = b, as required. O

We wish to see under what circumstances the reduction map is a homomorphism on
an elliptic curve.

Theorem 4.7. Let C : F(Xy, X1, X2) = 0 be a cubic curve defined over K, written so
that coefficients of F' have maximum valuation 1. Suppose the line L : L(Xg, X1, X2) =0
meets C at a,b,c. Then either: e

(1) L CC, that is, F(Xo, X1, Xs) = LM, for some M.

or:

(2) L meets C precisely at a, b, é.

Proof. Let L : 0y Xy + (41X + X5, written so that max(|lo, |¢1],|¢2]) = 1, wlog |¢] = 1;
after dividing through by ¢y (and relabelling ¢, /¢y, l2/¢y as £y, {s), we can take £ : Xy =
—Ele — €2X2, where 51, gQ € R. Write a = (CL(), as, CLQ), b= (bo, bl, bg), C = (Cg, Cy, Cg) with
max|a;| = max|b;] = max|c;] = 1. Note that, since a,b,c lie on £, we must then have
max(|a, [az]) = max(|bs], |b2]) = max(|cy|,|c]) = 1.

Now, substitute L into F' to get: G(X1, Xo) = F(—01 X1 — (X5, X3, Xs) € R[ X, X5).
Since the points a, b, c lie on both £ and C, the roots of the projective polynomial GG
are (ay,as), (b1, bs), (c1,c0) € P1(K), so that:

G(Xl, XQ) = F( £1X1 KQXQ, Xla XQ) = )\(Cngl - a1X2)(b2X1 - leQ)(CQXl - Cle)

for some A € R*. Now consider F( 01 X1 — U5 Xo, X1, X3). If this is 0 then L is a factor
of ﬁ giving case (1). Otherwise, this is a nonzero projective polynomial, defined over k,
equal to )\(CLQXI — ang)(ngl leQ)(CQXl — ClX2> with (al, (~1,2), (bl, bg), (61, 62) S Pl(k’)
as roots, so that a, b ¢ lie on £ and C. Since L and F have no common factor, these must
be precisely the points of intersection of £ and C. O

When we have an elliptic curve written, not as a general cubic, but birationally trans-
formed to the form & : y*> = 2® + Az + B with A, B € R (which, as usual, is shorthand
for the prOJectlve curve ZY? = X3 + AXZ2 + BZ3), the reduction € will still be of the
form y? = 2® + .... This cannot contain a line, since any (y +rz +...)(y — 2%/r +...)
would have an 2%y term and so would not give y? — cubic in #. For such a curve, only
option (2) can apply in the previous theorem. Even though £ is an elliptic curve (and
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therefore nonsingular), the reduction £ might be singular (for example, when p|A € Z
so that A =0 in F,), but even in that case we still have the group &,(k) of nonsingular
points (see Comment 2.13). Since the group law is constructed by finding intersections
between the curve and lines, and since only option (2) applies, the construction of the
group law respects the reduction map, giving the following result.

Corollary 4.8. Let £ : y*> = 2° + Az + B be an elliptic curve, with A,B € R, with
reduction €. Let E,4(k) denote the group of nonsingular points in E(k), and let Ey(K)
denote the set of points in E(K) which reduce to members of Ens(k), that is, define:
Eo(K)={P € &E(K): P e &,(k)}. Then the reduction map P — P is a homomorphism
from E(K) to Eps(k).

Definition 4.9. Let £(K) and &,,(k) be as in Corollary 4.8. The kernel of reduction,
denoted & (K), is the kernel of the reduction map from & (K) to Eus(k). That is:

E(K) = {Pc £(K): P =0},

where, as usual, o is the identity element, usually taken to be the point at infinity, in
which case
E(K) ={P = (z,y) € &(K) : [z[ > 1, [y[ > 1},

since these are the points that map to the point at infinity under the reduction map.

We can summarise what we know so far by the following exact sequence:

0 — &(K) SELEN Eo(K) — Ens(k) — 0,
where ¢ is the inclusion map.

We now wish to look more closely at how we can describe the group law inside & (K),
the kernel of reduction, for an elliptic curve:

E:y* =134+ Az + B, where A, B € R.

We adopt the usual convention that the identity is o, the point at infinity so that, as
already observed, & (K) = {(z,y) € E(K) : |z| > 1, |y| > 1}. The members of & (K)
are in a neighbourhood of o, and it is natural to try to describe the group law as a
power series. This will be more transparent if we write our equation in a form where the
points in the neighbourhood have coordinates with small, rather than large, valuation.
We therefore perform the following birational transformation:

z=—x/y, w=—1/y, with inverse z = z/w, y = —1/w.

This transforms £ to: 5

1

R Z_ + Ai + B7

w? w3 w
giving the equation

Ew=f(z,w) = 2> + Aw?z + Buw®.

Note that the point at infinity o on €& maps to the point (0,0) on &', which we take as
our group identity on &£. The condition |z| > 1,|y| > 1 corresponds to |z| < 1,|w| < 1,
so that the kernel of reduction for £ is:

ENK)={(z,w) € &'(K) : |z| <1, |w| < 1}.
We now recursively substitute w = f(z,w) into itself. For the first step:
w= f(z,w) = f(z, f(z,w)) = 2* + A(Z* + Aw’z + Bw*)?z + B(2* + Aw’z + Bw?*)?
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=234 AT+
Inductively define f,(z,w) by: fi(z,w) = f(z,w) and f,11(z,w) = fu(z, f(z,w)). Define
w(z) = 1};11010 fn(2,0) € Z[A, B][z].

The following is then easy to show.

Lemma 4.10. The power series w(z) = 2*(1 4 ...) € Z[A, B][z] defined above is the
unique power series satisfying w(z) = f (z,w(2)).

This means that (z,w(z)) satisfies £. Since we are working in a non-Archimedean
field K, we can appeal to the fact (see Theorem 3.12) that a series converges iff its terms
converge to 0. When we are in the kernel of reduction |z| < 1,|w| < 1, this applies to
the above series w(z) (since A, B € R and so |A|,|B| < 1). Any (z,w) in the kernel of
reduction must satisfy w = w(z) (by the uniqueness part of Hensel’s lemma), and so is
uniquely determined by z, which is called a local parameter.

Comment 4.11. We can recover x,y on £ as formal Laurent series:
z z 1
)= em T Aar ) 2
(2) 1 1 1 n
z) =— =— =——4...
Y w(z) 2(1+...) 23

which gives a formal solution to £.

Let us now perform the addition (z1, w;)+ (22, ws). As usual, we first write the line w =
Az+pu through the points, given by A = (wy—ws) /(21 —29) and p = (z1wy—2z0w1) /(21— 22).
As long as we are in the kernel of reduction, w; = w(z;) and ws = w(29), and so:

w(z) —w(z0) 21 +..)—201+...) .

A=\ — = 7|A, B
(217 22) 21 — 29 2 — 2 [ ) ][[217 zZ]]y

with all terms being of degree > 2, and:

=iz, 2) = aw(z) = zwla) Z[A, B][21, 2].

21 — 29

Substituting w = Az + p into &’ gives Az + p = 2° + A(Xz + p)*z + B(Az + p)?, and so:

(14 AN 4+ BX*)2® + (2AMp + 3B N p)22 + ... = 0.
Let (z3,w(z3)) be the third point of intersection of £ and the line w = Az + pu, so that
21, z2, 23 are the roots of the above cubic, giving that z;+2zy+23 = —(coeff of 22)/(coeff of 23),
s0:

2AMu + 3B
BECAT AT TG s € Z[A, B][z1, 2],

since the denominator is of the form 1 + ¢(z1, 29), where ¢(z1, z2) has no constant term
(and so is an invertible power series, with 1/(1+¢(z1, 22)) = 1—¢(21, 22) + & (21, 20)* +. . .).
The sum (z1,w;) + (22,ws) + (23, ws) = the identity, and so (z1,w;) + (22, w2) =
—(z3,w3). Negation (z,y) — (z,—y) induces (z,w) — (—z,—w) (since z = —z/y,w =
—1/y), so that the z-coordinate of (z1,w;) + (22, ws) is given by Fe(z1, 22), where:

Fe(z1,29) = 21 + 22 + (terms of degree > 2) € Z[A, B|[z1, 22].

We summarise this as follows.
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Lemma 4.12. Any point (z,y) on € (< (z,w) on &) in the kernel of reduction (ex-
plicitly: |x| > 1)yl > 1 < |2| < 1,|w| < 1) is uniquely determined by z, with
w = w(z) € Z|A, B][z]. The group law is completely described by the above Fe(z1,z2) €
Z|A, B][z1, z2], which converges to the z-coordinate of the sum of (z1,w(z1)) and (22, w(z2)).

We have already observed that Fe(z, z2) = 21 + 22+ terms of higher degree. The asso-
ciativity and commutativity properties of the group law on £ also induce the properties:

Fe(X Fe(Y,2)) = Fe(Fe(X,Y), Z), Fe(X,Y) = Fe(Y, X).

Of course, the power series Fe(z1, 22) € Z[A, Bl[z1, 22] can be derived for any & defined
over any ring, regardless of convergence considerations. In the next section, we shall
consider power series F'(X,Y’) which satisfy the above properties, and then apply the
results to the special case of Fg(X,Y).
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SECTION 5. FORMAL GROUPS

Let R be any ring (by ring I shall alway mean a commutative ring with 1).

Definition 5.1. A (one-parameter, commutative) formal group defined over R is a power
series F(X,Y) € R[X,Y] satisfying:

(1) F(X,Y) =X +Y + terms of degree > 2.

(2) F(X,F(Y,Z)) = F(F(X,Y), Z).
(3) F(X Y)=F(,X).

Example 5.2. The following are all formal groups.
The formal group Fe¢(X,Y) of an elliptic curve defined over R, as described in Section 4.
The formal additive group F(X,Y) = Go(X,Y) =X + Y.
The formal multiplicative group FI(X,Y) = @rm(X7 Y)=X+Y+ XY.
Note: the last of these is just XY, but translated one unit to the left: (1+X)(14+Y)—1
so that the identity is changed from 1 to 0.

Aside: A formal group does mot necessarily induce an actual nontrivial commutative
group, since there is no guarantee that the power series will converge for any nonzero
X,Y; indeed, our arbitrary ring R may not even come together with any structure (such
as a valuation or metric) that provides a definition of convergence. It is merely a power
series satisfying properties analogous to associativity and commutativity. The definition
appears to be missing properties analogous to the existence of an identity element and
inverses. In fact, the following result shows these can be deduced from the given axioms.

Lemma 5.3. Let F(X,Y) be a formal group over a ring R.
(1) There is a unique power series i(T) € TR[T] such that F (T,i(T)) = 0.
(2) F(X,0) =X and F(0,Y) =Y.

Proof. (1) Let Z; = =T € TR[T]; then the terms of F(T,Z;) all have degree > 2.
Suppose we have Z, € TR[T] of degree < n such that F(T,Z,) = a1 T"™ + ... has
terms all of degree > n + 1. Define Z,,,; = Z,, — ap41T™"!; then:

F(T, Zn+1) = F(T, Zn — an+1T”+1) =T 4+ (Z Cln+1Tn+1) —+ ...
= F(T,Z,) — ap1T"™ + (terms of degree > n + 2)
= ap T — a, T + (terms of degree > n + 2),

which has terms all of degree > n + 2. Moreover Z,,,; is the unique polynomial of degree
< n + 1 with this property.

This defines a sequence (Z,,),>1 with Z,,1 = Z, mod T""!. Letting n tend to infinity,
we can define a power series i(T") whose first n terms give Z, for each n. It satisfies
F(T,i(T)) =0 (since F (T,i(T)) = F (T, Z,) = 0 mod T"*! for every n). Furthermore,
if i(T') satisfies F' (T,i(T")) = 0 and we look at the degree n part of i(T") (discarding terms
of degree > n + 1), we must get the uniquely determined polynomial Z,. We deduce
that ¢(7) is unique.

(2) By a similar argument to (1), there exists a unique j(T) € TR[T] such that
F@(T),i(T)) = 0. By (1) we can take j(T') = T. By associativity F(F(0,7),i(T)) =
F(0,F(T,i(T))) = F(0,0) = 0, so that we can also take j(T) = F(0,T). Since j(T) is
unique, it follows that F'(0,7) = T. Similarly for F(7,0) =T. O

Definition 5.4. Let F, G define formal groups over R. A power series f(T') € TR[T] is
a homomorphism from F to G if it satisfies f (F(X,Y)) = G (f(X), f(Y)). When there
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also exists an inverse g(7) € TR[T] (that is: f(g(T)) = g(f(T)) = T), then f(T) is an

isomorphism.

Example 5.5. If char(R) = 0 and * € R for all n, then f(T) =T —T?/2+T3/3 — ...
(i.c. the power series expansion of log(1 + T)) is a homomorphism from G,, to G,.

Definition 5.6. Let F' define a formal group over R. Define the multiplication by m map
[m](T) € R[T], for m € Z, inductively by: [0](T) = 0, [m + 1)(T) = F([m](T),T) and
m — 1)(T") = F(Im](T"),i(T)). This is clearly a homomorphism from F' to F', and is of
the form: [m](T) = mT + terms of degree > 2.

Lemma 5.7. Let a € R* (that is: a € R and a™' € R), and let f(T) € TR[T] be of the
form f(T) =aT + ... Then there exists a unique g(T) € TR[T] such that f(g(T)) =T.
Furthermore, g satisfies g(f(T)) =T.

Proof. We shall construct g(T) = i,/T + byT? + ..., the limit of ¢,(T) = 0T, go(T) =
biT + b T2, ..., first defining ¢;(T) = a™'T, so that the terms of f(g;(T)) — T all have
degree > 2. Suppose we have g,(T) of degree n such that f(g,(T)) — T = bT™ + ...
and define g,1(T) = g,(T) — a~*'bT™"!. Then

(g (T)) =T = f(gn(T)) — aa”"bT™ 4 (terms of degree > n +2) — T,

whose terms are all of degree > n+ 2. The resulting g(7") then satisfies f(g(T")) = T and
is unique, since each choice of coefficient was forced.

There similarly exists h(T) € R[T] such that g(h(T)) = T, and so f(g(h(T))) =
f(T), giving h(T) = f(T'). Substituting this into g(h(T")) = T gives g(f(T)) = T,

required.

O &

Aside: The arguments in Lemma 5.3 and Lemma 5.7 can be rewritten as an application
of an appropriate version of Hensel’s Lemma. We can equip the ring R[T] with valuation
|f(T)| = p", where p is a fized real number satisfying 0 < p < 1 and n is the degree of
the smallest nonzero degree term (for example, |21 +5T* +...| = p®). Here T takes on
a similar role for R[T] to that performed by p for Z,. See Examples 10.10 and 10.11 in
https: //kconrad. math. uconn. edu/blurbs/ gradnumthy/hensel. pdf.

Lemma 5.8. The homomorphism [m| : F — F of Definition 5.6 is an isomorphism
whenever m € R*.

Proof. Since [m|(T) = mT + terms of degree > 2, we have from the previous lemma
that the homomorphism [m] has an inverse, and so is an isomorphism. O

Aside: You might have wondered in school about the connection between the two prop-
erties of log, that it is the integral of 1/x, and that log(ab) = log(a) + log(b) (a homo-
morphism from multiplication to addition). One way of seeing the connection is to define
log(T) = [v(T) (with log(1) = 0), where v(T') = %dT', and note that (regarding T as
a variable and S as a constant) v(T'S) = 7gd(T'S) = v(T), that is, v remains invariant
under replacing T by T'S. Therefore log(T'S) = log(T) + f(S), where f(S) is a constant;
setting T' =1 gives f(S) = log(S). If we were to adjust the multiplicative group, translat-
ing by —1 so that the identity is 0: F(X,Y)=(1+X)(14+Y)—-1=X+Y + XY, then
w(T) = 7dl = (1=T+T*—...)dT" would have the property that wo F(T, S) = w(T) (and

[ w(T) would give a homomorphism from Gy to @a) It is natural to ask whether w is
unique (up to constants), and how we would construct w for a general choice of F(X,Y).
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Definition 5.9. A differential form on R[] is an expression of the form Y. | P,(T)dQ;(T),
where each P;(T),Q;(T) € R[T], and these satisfy the natural rules:

n=1

d(P(T)) = P/(T)dT, where P'(T) = 32° a,nT™~", for any P(T) = a,T",
n=0

d(P(T) +Q(T)) = dP(T") +dQ(T), d(P(T)Q(T)) = P(T)dQ(T) + Q(T)dP(T).

We can see from the first rule that each differential form can be written uniquely as
w(T) = P(T)dT with P(T) € R[T].

More formally, the space of differential forms on R[T] is defined to be the quotient
of the free R[T]-module spanned by the symbols {df : f € R[T]} by the submodule
spanned by {df — f'dT": f € R[T]}. This is a free R[T]-module with basis element d7.

An invariant differential on a formal group F, defined over R, is a differential form:

w(T) = P(T)dT € R[T]dT, satisfying wo F(T,S) = w(T).

Note that w o F(T,S5) is the same as P(F(T,9))d(F(T,S)) = P(F(T,S))Fx(T,S)dT,
where Fx(X,Y) denotes the partial derivative of F'(X,Y) with respect to X. So, the
above condition on w is equivalent to:

w(T) = P(T)dT € R[T]dT, satistying P (F(T,S)) Fx(T,S) = P(T).
An invariant differential w(7") = P(T)dT is said to be normalised if P(0) = 1.

Example 5.10. On @a, the formal group defined by FI(X,Y) = X + Y, we can take

w(T) = dT as a normalised invariant differential. On G,,, the multiplicative formal group
defined by F'(X,Y) = X4+Y+XY, we can take w(T) = (147)~1dT = (1-T+T?*—...)dT.

Theorem 5.11. Let F be a formal group over R. There exists a unique normalised
invariant differential given by w(T) = Fx(0,T)"YdT € R[T]dT. Every invariant differ-
ential is of the form aw for some a € R.

Proof. Let P(T) = Fx(0,T)~!. Note that Fx(0,T) = 1+ ... is invertible, so that P(T')
is indeed a member of R[T]. Furthermore, P(0) = 1, so that it is normalised.

We need to show that w is an invariant differential. Recall from Definition 5.9 that this
is equivalent to: P (F(T,S)) Fx(T,S) = P(T) so, in our case, it is sufficient to show:

Fx (0, F(T,S)) " Fx(T,S) = Fx(0,T)7",

which is true iff:
FX (OvF(TWS’)) = FX(Ta‘S)FX(OvT)

But this last statement is immediate from differentiating F' (U, F(T,S)) = F (F(U,T), S)
(associativity) with respect to U to get: Fx (U, F(T,S5)) = Fx (F(U,T),S) Fx(U,T) and
setting U = 0. Hence w is an invariant differential.

Suppose that w(7T') = Q(T)dT € R[T]dT is also an invariant differential, so that Q(7T")
satisfies Q (F/(T,S)) Fx(T,S) = Q(T). Substituting 7' = 0 gives Q(S)Fx(0,5) = Q(0),
so that Q(S) = Q(0)Fx(0,5)~!. Tt follows that & = aw, where a = Q(0). O

Corollary 5.12. Let f be a homomorphism over R from the formal group F' to the formal
group G. Let wp,wg be the normalised invariant differentials on F, G, respectively. Then

wgo f=f(0) wp.
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Proof. First, note that wgo f (F(T,S5)) =wa (G(f(T), f(S))) = wgo f(T), so that wgo f
is an invariant differential on F'. From the previous result, it follows that wg o f = a wp,
for some a € R. Since wp,wq are normalised, (1 +...)df(T) = a(1 + ...)dT, and so
(1+...)f(T)dT = a(1+...)dT; equating constant terms gives a = f'(0), as required. [

Corollary 5.13. Let F' be a formal group over R and let, as usual, [m](T) € R[T] denote
the multiplication by m map on F', as in Definition 5.6. Let p be prime. Then there exist

f,g € R[T] (f(T)=T+...), such that [p|(T) = pf(T) + g(T?).

Proof. Let w be the normalised invariant differential on F. Since [p|(T) = pT + ..., it
satisfies [p]'(0) = p. Applying the previous result to [p], a homomorphism from F' to
itself, gives: w o [p] = [p]'(0)w = pw, and so

p(T) = wo [pl(T) = (1+...)A(pI(T)) = (1 +...)[pl (T)dT.

Hence [p]'(T) € p R[T]. Each term a, 7" in [p|(T") must then satisfy p|na, in R, and so
pln in Z or pla, in R, as required. O

Definition 5.14. Let w(T) = P(T)dT = (1 + 1T + ¢eT? + ...)dT be the normalised
invariant differential for the formal group F' over R. For the special case when our ring R
is a field of characteristic 0, we can define the formal logarithm by: log.(T) = [w(T) =
JP(T)dT =T 4+ $T% 4+ £T° + ... and the formal exponential function expp(T') as the
unique member of R[T] satisfying logp(expp(T)) = expp(logp(T)) = T, which exists by
Lemma 5.7.

Theorem 5.15. Let R be a field of characteristic 0; then logg (as in the previous defi-
nition) is an isomorphism from F to G,, the additive group X +Y .

Proof. Differentiating logy (F(T,S)) — logp(T) with respect to T' gives:

P(F(T,S)) Fx(T,S) — P(T) (and this = 0, since w(T') = P(T)dT is an invariant
differential),

and so logy (F/(T,S)) —logr(T') is a power series purely in S, which we denote f(.5);
that is: logp (F(T,95)) = logp(T) + f(S). Putting 7" = 0 forces f(S) = logp(S). Hence
log is a homomorphism; the inverse is expy, and so log is an isomorphism. Il

Comment 5.16. Note that our proof of the existence of the invariant differential re-
quired no appeal to the commutativity axiom F(X,Y) = F(Y, X). If our formal group F'
is defined over any integral domain R of characteristic 0 (such as Z or any Z,), we
can define logy,expp over K, the field of fractions of R, and see that F(X,Y) =
expp (logp(X) + logp(Y)), which forces F' to be commutative. So, at least when F' is
defined over an integral domain of characteristic 0, we have the somewhat surprising fact
that the commutativity axiom is redundant; it can be deduced from: F(X,Y) = X +
Y + terms of degree > 2 and associativity. It is possible to construct non-commutative
formal groups, but only when defined over unusual rings.

Definition 5.17. Let K be a field, complete with respect to a discrete non-Archimedean
valuation, R = {x € K : |z| < 1} be the valuation ring, m = {x € K : |z| < 1} be
the maximal ideal, and assume that £ = R/M (the residue field) is of characteristic p
(for example, K = Q,, R = Z,, m = pZ,, k = F,). Let F be a formal group defined
over R. The group on m associated to F(X,Y), denoted F'(m), is the set m together with
the group operation: = @ y = F(x,y) (which converges for any z,y € m). The identity
element is 0, and the inverse of z is given by i(x) of Lemma 5.3. Similarly, for any n > 1,
define F'(m™) to be the set m" with the same group operation.
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Comment 5.18. To check that (F'(m), @) is indeed a group requires checking that various
identities between formal power series imply equalities when substituting arguments in
m for the variables. You can refer to Question 10 on Problem Sheet 3 if you want to see
an example of a general result showing that this is valid.

Lemma 5.19. Let F, K, R,m, k (with char(k) = p) be as in Definition 5.17.
(a) The identity map: F(m™)/F(m™*h), & — m™/m"™ + is an isomorphism.
(b) Every torsion element of F(m) has order a power of p.

Proof. (a) For any z,y € m", &y =z +y + ... = v + y (mod m*"), and so is
=+ y (mod m™1).

(b) It is sufficient to show there does not exist a point of finite order m for any m > 1
with p { m (since any w of order mp" gives p™w of order m). But, since char(k) = p, and
ptm, we have |m| = 1 and so m € R*. By Lemma 5.8, [m] is an isomorphism from m
to m, which must then have trivial kernel: [m]z =0 = z = 0, as required. U

Theorem 5.20. Let F, K, R,m, k (with char(k) = p) be as in Defn 5.17. Suppose that z €
F(m) has ezact order p", for some n > 1, so that [p"](z) =0, but [p"~'](z) # 0. Then:

1
21> 7=
Proof. If char(R) # 0 then |p| = 0, so assume that char(R) = 0. We have from Corol-
lary 5.13 that [p|(T) = pf(T) + g(T?) for some f(T) =T +... € R[T] and ¢(T") € R[T].
We shall proceed by induction on n.

Suppose z # 0, z € m and [p|](z) = 0. Then 0 = pf(2) + g(z) = p(z + ...) + g(zP).
We cannot have |pz| > |zP|, since then the term pz would have valuation strictly greater
than the valuations all other terms. Hence [pz| < |2P| = |2|?, and so |p| < |z[P7, giving

1
|z| = |p|*"°, proving the result for n = 1.
Now, assume the result is true for n, and let 2 € F(m) have order p™*'. Then [p](z)

has order p", and by the induction hypothesis, |[p](z)| = |p|*"—+""T. Hence:

Pl < |[pl(2)] = Ipf(2) + 9(=")| < max (|pz], |7])

But |z| < 1,[p| < 1, so that |p|P"—11>”‘1 > |p| > |pz|, giving ]p|p“—110”‘1 < |2P|, and so

1 .
|z| = |p|?"TT-r", as required. O
This has immediate consequences for elliptic curves.

Corollary 5.21. Let £ : y* = 2® + Ax + B, be an elliptic curve, where A, B € Z,. The
kernel & (Q,) of the reduction map ~ : Ey(Q,) — Ens(F,) has no torsion (apart from o).
Any (z,y) € Eors(Q,) satisfies |x], < 1,]yl, < 1. When £ is non-singular, Eiors(Qp) is
isomorphic to a subgroup of E(Fp).

Proof. Let o # (z,y) € £(Q,) be in the kernel of reduction, that is, |z|,,|y|, > 1. Then,

from the equation for &, |y|, = z|3% and |2] = | — z/yl, = 1z, % < 1, |w| = | - 1/yl, <

1. If (z,y) were torsion, then z would be a torsion point in Fg(m) = Fe¢(pZ,). By

Lemma 5.19(b) it must be of order p", and so by Theorem 5.20 must satisfy 1 > |z|, >
1

pn,pnfl

Iplp . Note that, since |p|, = p~', any p" apart from 2' (so that p" — p"~! > 1)
would force 1 > |z|, > p~!, contradicting the fact that |z|, is p” for some integer r. The
only remaining possibility is that (z,y) is of order 2; but then y = 0 and z is a root
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of 3 + Ax + B; this is incompatible with |z|, > 1 (which makes z* have strictly larger
valuation than Az and B). We conclude that x,y cannot be torsion, and that there is no
torsion (apart from o) in the kernel of reduction.

When € is non-singular, £&(Q,) = £(Q,), &u.(F,) = E(F,), and the kernel of the
reduction map ~ : £(Q,) — £(IF,) contains no nontrivial torsion. So it is injective when

restricted to Eors(Qy); hence ;o (Q)) is isomorphic to a subgroup of £ (F,). O
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SECTION 6. GLOBAL TORSION

Aside: We now turn to elliptic curves defined over Q, initially concentrating on the
group Eiors(Q) of points of finite order. Any elliptic curve € : y* = 23 + Az + B, defined
over Q can be transformed with a map of the form (z,y) — (k*z, k3y) so that A, B € Z.
The following result is a consequence over Q of the p-adic results of the last section.

Lemma 6.1. Let € : y?> = 23 + Az + B, where A, B € Z, be an elliptic curve (so that
A =4A3+27TB? #£0). Let p be a prime satisfying: p # 2 and pt A (such a prime is said
to be of good reduction, since £ mod p is still an elliptic curve over F),). Then Es(Q) is

isomorphic to a subgroup of g(Fp), and 0 #Eors(Q) | #g(]Fp).

Proof. Since Q C Q,, for any p, £(Q) < £(Q,) and Eiors(Q) < Eiors(Qy). Since p 1 A we
have A # 0 in F,,; since char(F,) # 2, this is enough to guarantee that £ is non-singular,
and so gns(Fp) =& (F,). By the last result of the previous section (Corollary 5.21),
Eiors(Qy) is isomorphic to a subgroup of £ (F,), as must also be Eors(Q) (since s (Q) <
Eiors(Qp)). Lagrange’s Theorem then tells us that #&(Q) | #g(lﬁ‘p) O

Note that, in particular, the above result tells us that &s(Q) is always finite. In
practice, we can use reductions modulo finite fields to try to determine E;u5(Q).

Example 6.2. Let £ : y?> = 2*+3, defined over Q. Then A = 4A34+27B? = 4.034+27-3% =
3%. We can choose any prime p # 2,p{ A, that is, p # 2, 3.

p=5. &:y*=23+3, defined over Fs5. Then g(&) consists of: o, (1, £2),(2,£1),(3,0),
giving 6 points. S0 #Es(Q) | #g(IF5), that is: #&0s(Q) | 6.

p=7 &:y?=2°+3, defined over F;. Then éN’(]F7) consists of:

o, (1,£2), (2,£2), (3, £3), (4, £2), (5, £3), (6, £3), giving 13 points. So #&rs(Q) | 13.

The only possibility is: #E&ors(Q) = 1, and so & (Q) = {0}. Note that (1,2) € £(Q),
but we know that (1,2) is not of finite order, so that (1,2),2(1,2),3(1,2),... are all
distinct, and can conclude that £(Q) is infinite.

Note that, if we are given (for example) F : y*> = 2% + =, we can apply (z,y) —
(5%z, 5%y) [with inverse (x,y) — (&, &)] to transform F to £ and so deduce that Fio.s(Q) =
{o} also.

Aside: Another consequence of the p-adic results of the last section is the integrality of
the coordinates of any torsion point.

Lemma 6.3. Let (x1,y1) # 0 be a Q-rational torsion point on € : y* = 2® + Az + B,
where A, B € Z. Then x1,y; € Z.

Proof. For any prime p, we have A,B € Z C Z,. Furthermore, (z1,v1) € Eos(Q) C
Eiors(Qyp). By the last result of the previous section (Corollary 5.21) we know that |x;], <
L |yil, < 1. In summary: z1,y; € Q and xy,y; € Z, for all primes p.

Imagine that z, ¢ Z, that is, 1 = 2, where m,n € Z, ged(m,n) = 1, n # £1.
Then some prime p must divide n (and not divide m), giving |z1], = ||, = p" (for
some r > (), which is > 1. This contradicts € Z,, and so we conclude that z; € Z.
Similarly y; € Z. O

For example, this tells us immediately that the point (%, %) is of infinite order on the
elliptic curve € : > = 2% — 2 + 1,

Aside: Reduction to finite fields usually works well enough in practice, but there is the
potential problem that it might leave us with Eyos(Q) undetermined. For example, suppose
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that, after trying several primes, we repeatedly find that 3 | #g(lﬁ‘p), but a search has not
found a point of order 3. In that case, the group Euos(Q) would be unresolved. It would
be nice to have a finite search area within which the members of Eors(Q) must lie. This
1s provided by the following result.

Theorem 6.4. (Nagell-Lutz). Let 0 # (21,%1) € Eios(Q), where £ : y* = 23 + Az + B,
and A, B € Z. Then x1,y1 € Z and either y; =0 or y? | A, where A = 4A3 + 27B%.

Proof. From the last lemma, x1,y; € Z. If y; = 0 then the result is satisfied; otherwise,
(1,y1) is not 2-torsion and we can consider (za,ys) = 2(x1,y1), with (z2,y2) # 0, and
SO T2,y2 € Q. But (x9,ys) is also a torsion point, so xg,y> € Z. The line tangent to &€
at (z1,y1) has slope A = (322 + A)/(2y;1); as usual, substituting y = Az + p into &
gives (A\r + p)? = 2 + Az + B and so 2® — N?2? + ... = 0, giving z; + 71 + 19 =
—(coeff of 22)/(coeff of £3) = A2, that is:

322 + A\ ?
3:2:($1+ ) —2$1€Z.
2

2
Now, we know z1,zy € Z and so <33‘§;A) € Z. Tt follows that 4y? | (322 + A)? and so

y? | (322 + A)2. Also, y? = 23 + Axy + B and so trivially y? | (23 + Az, + B). Applying
Euclid’s Algorithm to (322 + A)? and 2® + Az + B gives the identity

P1(x)1(x) + go(w)ta(x) = 4A% + 2787,

where ¢n(x) = 322 1 44, ¥a(x) = (3% + A, o(a) = ~27(" + Az — B), th(a) =
23 + Ax + B. Since y} | ¥1(z1) and y? | ¥o(z1) we must have y? | (¢1(z1)1(z1) +
¢o(x1)1ha(x1)) = A, as required. O

Example 6.5. Let £ : 4> = 23 + 32+ 1. Then A = 4-334+27-12 = 135 = 5 - 33,
If (z,9) € Eos(Q), (7,y) # 0, then x,y € Z and either y = 0 or y* | 5 - 33, giving only
= 0,+£1, +3 as possibilities.

Case y = +1. From &, (£1)* = 2® + 3z + 1 and so z(z* + 3) = 0. The only solution
in Z is x = 0, giving (0, £1) as the only possibilities.

Case y = 3. In this case, x € Z satisfies (£3)? = 2® + 3x + 1 and so z° + 3z — 8 = 0.
Let f(z) = 23 +3x—8. Any integer root z of f(z) must satisfy z|(constant term) = (—8),
giving x = £1, 42, +4, £8 as the only possibilities. When we substitute these, we find
that f(1), f(—1),..., f(—8) are all nonzero, so there are no points on £ with x € Z and
y = +£3.

Case y = 0. In this case, v € Z satisfies 0 = 2® + 3z + 1, and we only need to check
x = +1. neither of which are roots of z* + 3z + 1. So, there are no points on £ with
r € Z and y = 0.

In summary, o, (0,1), (0, —1) are the only possible torsion points. Is (0,1) € Eos(Q)7
If it were then so would be 2(0, 1). But 2(0,1) = (0,1)+(0,1) = (%, —22); the coordinates
are not in Z and so this is not a torsion point. Hence (0, 1) must have infinite order. The
same must be true for (0, —1), since it is the inverse of (0, 1). Conclusion: &;,s(Q) = {o}.

The previous method of reductions modulo finite fields is usually quicker in practice,
but the Nagell-Lutz method is an effective procedure.

Comment 6.6. It was merely to ease the algebra in previous sections that we used only
the form y? = 2® + Az + B, and all of the previous arguments apply equally well to any
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elliptic curve &€ : y? = 23 + az? + bx + ¢, where a,b, ¢ € Z, with A now taken to be the
discriminant of 22 + ax? + bz + ¢, which has the formula:
A =4a’c + 27¢* + 4° — a*b* — 18abe.

So, it remains true that, for any prime p 1 2A, Eos(Q) is isomorphic to a subgroup

of g(Fp), that #&0s(Q) | #E(F,), and that any (z,y) € Eos(Q) ((x,y) # o) satisfies
x,y € Z, with y = 0 or y* | A.
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SECTION 7. A 2-ISOGENY ON AN ELLIPTIC CURVE

(In the following, we shall use upper case letters X, Y ... for variables, and lower case
letters z, vy, ... for a point (x,y).)

Suppose that £ is an elliptic curve over Q, together with a Q-rational point of order 2:
(x0,0). After a birational transformation (x,y) — (z—xo,y) (inverse (x,y) — (z+z¢,y))
we can assume that (0,0) € £(Q), so that Y? = cubic in X, with no constant term. As
usual, after mappings of the form (z,y) — (k®z, k3y), we can assume that the coefficients
are in Z. So, our elliptic curve can be taken to have the form

C:Y?*=X(X?*+aX+0b), a,bcZ, bla*>—4b) # 0,

the last condition ensuring that the curve is non-singular. The point (0,0) is of order 2
on C.
Let P = (x,y) be a point on C, and let P, = (z,y) 4+ (0,0) = (x1,41). Define T{g ) by:

Tw0) : C = C: (z,y) = (z,y) +(0,0) = (21, 1)
That is, P — P + (0,0). What are xy, ¥, in terms of x,y?

When (z,y) = (0,0), then T{o) : (0,0) — o, since (0,0) is of order 2. When x # 0, we
first find the line through (0,0) and (z,y), which is: Y = £X. Substituting this into C
gives:

Y\ 2 _ 2
IV X2 = X(X? + aX +b)
x
v’ X? = 22X + ar’ X? + b’ X
o(z® 4+ ax + b)X? = 22 X? + az? X? + ba* X [since (z,y) is on C]
0=aX?— (22 +b)X?+ bz X, [since z # 0]

and so X (X —z)(zX —b) = 0. The roots of this cubic are: X =0,X =2z, X =b/z. The
line Y = £X and C intersect at:

b b
(0,0), (x,y) and (—, —Z) (since X = & gives Y = 42 = by )
T

T T x2

and so (z,y) + (0,0) = (2, —Z—g) = (x1,41), where z; = 2, y; = —i—g.
We want to construct a 2-to-1 map ¢ from C to another curve D such that ¢ (P + (0,0)) =
¢(P) for any P. We want expressions in z,y, call them A(x,y), u(x,y), such that
P = (z,y) and P + (0,0) = (z1,y1) map to the same (A, ). Natural attempts are:
rT+x =1+ % and y +y1 = y — %. It turns out to be more convenient to choose

x2°
T + x1 + a instead of x + x4.

b 2 b 2 2
Define: A\=x+4+z1+a=2+—+a= z(z +62m+ ) Y _ (y) )
x x
by
P.
Both A, it are invariant under T(o ). We have a map from C, given by (z,y) — (A, u) =

(3)2 ,y — %), which we shall call ¢. We want to find the new curve D which this map

x Z‘Q )

Define: p=y+y, =y —

is to, that is, we want the equation satisfied by A and p. Try:

() () - () ()
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b b\’
=D) <x2 +2b+ — - 4b) =\ ((:c + ;> — 4b) = A ((A—a)® — 4b) = AM(N*—2ar+a°—4b).

So (A, p) is a point on the curve D : V? = U(U? + ayU + by), where a; = —2a and
by = a* — 4b. Our map ¢ is a rational map (but not a birational transformation, since it
is 2-to-1). It is easy to check that it is a homomorphism, with kernel {o, (0,0)}; such a
map ¢ is a 2-isogeny on C.

We can apply the same process to D, taking (u,v) — ((—)2 v — bl_“> from D to the

u u?
curve Y2 = X(X? — 2a; X + a? — 4b;), which is the same as Y? = X (X? + 4aX + 16b)
(since —2(—2a) = 4a and a? — 4b; = (—2a)* — 4(a® — 4b) = 16b), that is:

64 4

Y? X(X2 4a X 16b) X(X2 aX b)
=7 - ,

6 16 16) 4\16 1

and so (5)* = % ()" +a (%) +0). So, themap ¢ : (u,v) — (§(2)",4 (v - )
is a map from D back to C (the dual isogeny). The properties are the same as for ¢,
namely: ¢ is a homomorphism with kernel {o, (0,0)}.

Note also that, if we let a; = @, g = %m denote the roots of X2+aX +b,
then ¢ ((ay,0)) = ¢ ((arz,0)) = (0,0), and so the kernel of ¢ o ¢ consists precisely of the
2-torsion of C, namely: {0, (0,0), (ay,0), (az,0)}. Indeed, it is easy to show that ¢ o ¢ is
the multiplication by 2 map on C. We summarise as follows.

Lemma 7.1. Let C : Y? = X(X? + aX +b), where a,b € Z,b # 0,a®> — 4b # 0, and let
D:V?2=UU?+ a U + by), where a; = —2a and by = a® — 4b.

b
Define ¢ :C — D by ¢(x,y) = <(%>2,y——y).

xr2

Define ¢:D —C by qg(u,v): (le (%)2,é(v—2—;})>

Then the 2-isogenies ¢, ¢ are 2-to-1 homomorphisms, each with kernel {0,(0,0)}. Since
¢, ¢ are defined over Q, we also have ¢ : C(Q) — D(Q) and ¢ : D(Q) — C(Q). The
compositions ¢po ¢ and ¢po ¢ are the multiplication by 2 maps [2] on C and D, respectively.

We shall concentrate for the moment on ¢ : C — D. Note that we can formally invert
(u,v) = ¢(z,y) = <(3)2 Y — %), as follows. Since u = (%)2, we have £ = +u!/2. For

xr
1/2

the moment, say £ = u'/*. We also have

i, T by _ b
u v y( x2> X x,

2 2 2 b b
u:<y> _ Y _a@tart ):93+a—|——,
x x? x? x
and so: u~Y?v + u = 2z + a. Solving for z,y then gives the following preimages.
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Lemma 7.2. Let C, D, ¢ be as in Lemma 7.1, and let (u,v) be a point on D with u # 0.
Let

T = (u +u V2 — a) /2, y1 = uPry = ul/? (u +u V2 — a) /2,

Ty = (u —u My — a) /2, ys = —u'Pyy = —'/? (u —u Y2y — a) /2.
Then ¢(z1,y1) = d(@2,y2) = (u,v).

We shall shortly make use of these to define helpful maps on C(Q) and D(Q). First, we
recall the notation Q* and Q*/(Q*)? (see also Example 0.30(b)). As usual, let Q* denote

the group of nonzero members of Q under multiplication, so that Q*/(Q*)? is Q* modulo
squares.  For example, 22 = 3 in Q*/(Q*)? since £ = 35 = 3 (%)2 = 3 in Q*/(Q*)2.
Note that any member of Q*/(Q*)? can be written uniquely as a square free integer (that

is, as an integer not divisible by any square except 1).
Aside: Our main aim here is to show the Weak Mordell-Weil Theorem, that C(Q)/2C(Q)

is finite, which we shall achieve by showing that D(Q)/(C(Q)) and C(Q)/H(D(Q)) are
finite, and then using the fact that ¢ o ¢ = 2].

From now on, we denote C(Q) by G and D(Q) by H (both groups under addition +
given by the group law on elliptic curves, with identity o).

Lemma 7.3. Let (u,v) € H. Then:
(u,v) € #(G) <= u € (Q*)? or (u=0 and a®> — 4b € (Q*)?).
Proof. Case 1 u # 0. From the expressions in Lemma 7.2 for (z1,¥1), (z1,y1) such that
d(z1, 1) = ¢(29,92) = (u,v), which are in terms of u, v, u'/?, we see that:
(u,v) € $(G) <= u'? € Q < uec (Q)~

Case 2 u = 0. The expressions in Lemma 7.2 do not apply here, since they include
u~/2. But we know that ¢(a,0) = ¢(az,0) = (0,0), where

—a++vVa?—4b —a —+va? —4b
,062 —
2 2
denote the roots of X? + aX + b. Hence:
(0,0) € $(G) <= ajoray € Q — a® —4b e (Q*)?

as required. O

a1 =

This suggests the following map on .
Definition 7.4. Define the map ¢ : H — Q*/(Q*)? by:

(u, ) u when u # 0
U, v) =
K by =a®> —4b when u = 0.

We also define ¢(o) = 1.

Note that we can equivalently define g(u,v) to be d such that the preimages of (u,v)
under ¢ are defined over Q(v/d).

Lemma 7.5. The map q : H — Q*/(Q*)? of Definition 7./ is a homomorphism with
kernel ¢(G) (so that the induced map q : H/d(G) — Q*/(Q*)? is an injective homomor-
phism).
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Proof. We only show that ¢(P+Q) = q(P)q(Q) in the typical case when none of P, Q), P+
Q are (0,0) or o.

Let (uy,v1), (u2, vs), (us, v3) be 3 points on H = D(Q) which sum to o, (so that (uy, v;)+
(ug,v2) = (ug,—v3)). Then these are the 3 points of intersection between D and some
line defined over Q: V = ¢U + m, say.

Substituting V' = €U + m into D gives: U(U? + a,U + by) — (¢U + m)?, whose 3 roots
must be uq, us, ug. So

UU? + a,U +by) — (0U +m)?* = (U —wy) (U — uz) (U — us).

Equating constant terms gives: ujusus = m? =1 in Q*/(Q*)?, and so uyus = 1/uz = uz
in Q*/(Q*)2. (Note ujusuz # 0, by our assumption.)
Therefore, by the definition of ¢ we have:

q ((u1,v1)) g ((uz,v2)) = q ((uz, —v3)) = q ((ur,v1) + (uz,v2)),

so that ¢ is a homomorphism.
The fact that ker ¢ = ¢(G) is an immediate consequence of Lemma 7.3. O

Lemma 7.6. The map q : H — Q*/(Q*)? of Definition 7./ has finite image. Moreover,
if r € Q*/(Q*)? is written as a square free integer, then r € im ¢ = r|b;.

Under q, H/$(G) is isomorphic to the subgroup of Q*/(Q*)? consisting of all square
free integers r|by such that there is are solutions ¢, m,n € Z, not all 0, with gcd(¢,m) =1
to the equation:

W, : rl* + a1*°m? 4 (by /r)m* = n”.

When this is satisfied, there is a point (u,v) € H such that q(u,v) = r, satisfying
u=r (2
Proof. Let r € Q*/(Q*)%,r € imq,r € Z,r square free. We want to prove that r|b;.
Suppose r = ¢(u,v), where (u,v) € D(Q), which must exist since r € imq. Then:
r = q(u,v) = u = u®> + au + by in Q*/(Q*)? (since u(u? + aju + by) = v?). So,
r,u,u? 4+ a;u + by are all the same modulo squares, which means we can write:

u? 4+ aju + by = rs? and v = rt? for some s,t € Q.

Hence: (rt?)? + ai(rt?) + by = rs®. Let t = {/m, where {,m € Z and gcd({,m) = 1.
Then: r20*/m* + a;r0?/m? + by = rs?, and so: r20* + ayr?>m? + bym* = r(m?s)?. Now,
ai,bi,r, 0, m € 7Z, so the LHS of this last equation is in Z, and so the RHS is also in Z;
that is: r(m?s)? € Z. Since r is square free, we must therefore have m?s € Z. Define:
n = m?s € Z. Then our equation becomes:

r20* 4 ayrf®m? + bym* = rn?, for some £, m,n € Z with ged(f,m) = 1 (%)

(from which we have W, in the statement of the lemma, after dividing both side by r).
We want to show that r|by, and we know that r is square free. It is sufficient to show,
for any prime p, that p|r = p|b;.

Suppose, for a contradiction, that p|r and p{ by, for some prime p. Then

p|rie*, ayrf®m?, and rn?
and so by (), p|bym?*, which in turn gives: p|m (since p { b;). Hence, since now p|r
and p|m, we have: p?|r20* a;rf?m?,bym*, and so by (x), p?|rn?, which in turn gives: p|n
(since 7 is square free). Hence, since now p|r, m,n, we have: p3|a;rf?>m?2, bym?*, rn?, and
so by (x), p?|r*¢*, which in turn gives: p|¢ (since r is square free). This is a contradiction,
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since p|¢ and p|m but ged(¢,m) = 1. We deduce that p|r = p|b; for any prime p, so r|b;
as desired.
We finally note that if  satisfies W,., then (r(€/m)2)? +ayr(£/m)? + by = r(n/m2)%, so

r(e/m)? ((r(e/m)?)" + ar(¢/m)? + by) = (rén/m*)?.
This tells us that (u,v) = (r(¢/m)? rfn/m?) is in H; we have g(u,v) = r, which gives

r € im q. Il
Comment 7.7. If we similarly define ¢ : G — Q*/(Q*)? by:

(o) = x when z # 0

a®Y) = b=a?—4b; when z =0,

and ¢(0) = 1, then, by the same argument, ¢ has finite image. If r € Q*/(Q*)? is written
as a square free integer, then r € im ¢ = r|b. Under ¢, G/¢(H) is isomorphic to the
subgroup of Q*/(Q*)? consisting of all square free integers r|b such that

/I/T?T rl* 4 al’m? 4 (b/r)m* = n?, for some £, m,n € Z, not all 0, with ged(¢,m) = 1.
When Wr is satisfied, there is a point (x,y) € G such that ¢(z,y) = r, satisfying z =
r (5"

Since H/$(G) and G/p(H) have been shown to be isomorphic to finite groups, we can
immediately deduce one of our main goals.

Theorem 7.8. Both G/¢(H) and H/$(G) are finite.

Corollary 7.9. (The Weak Mordell-Weil Theorem, for an elliptic curve C which has a
rational point of order 2). G/2G = C(Q)/2C(Q) is finite.

Proof. We know from Theorem 7.8 that G/¢(H) and H/$(G) are finite, so let G/p(H) =
{91,y gr} and H/P(G) = {h1,..., he}. Let g € G. We can write g as:

9= gi+o(h), for some g; € {g1,..., 9}, h € H
= gi+ ¢ (h; +6(g)), for some h; € {hy,...,h}, § €G
=g+ gg(hj) + gﬁ(gb(g')) (since b is a homomorphism)
= g+ &(hy) +2¢ (since $o ¢ = [2])
=g+ d(h;) in G/2G.

Hence G/2G is a subset of {g; + ¢(h;) : 1 < i < k, 1 < j < ¢}, which is finite, and so
G/2G is finite. O

The above proves the Weak Mordell-Weil Theorem, that C(Q)/2C(Q) is finite, for the
case when C : Y? = X(X? + aX + b) has a Q-rational point of order 2. In fact, the same

result can be proved for any elliptic curve £ : Y2 = F(X), regardless of whether it has a
Q-rational point of order 2 (see Chapter VIII of [2]), giving:

Theorem 7.10. (The Weak Mordell-Weil Theorem). Let € be any elliptic curve over Q.
Then £(Q)/2E(Q) is finite.

The proof of the more general version is in a similar spirit, but requires some algebraic
number theory, working in the number field Q(«), where « is a root of F(X).
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Comment 7.11. A Boolean group is defined to be a group such that g % g is the iden-
tity, for any element g. A finite Boolean group, generated by the independent elements
g1, .-, gn, has 2" elements. Given any Abelian group G, the quotient group G/2G is
always Boolean. When G/2G is finite, #G/2G is always a power of 2 and is isomorphic
to Cy x ... x (5.

Suppose we are give an elliptic curve of the form C : Y2 = X(X?% 4+ aX + b), and we
derive the associated objects already described, namely D : V2 = U(U? + a,U + by),
where a; = —2a,b; = a® — 4b, with G = C(Q),H = D(Q), ¢ : G — H, ¢ : H — G,
q: H/$(G) = Q*/(Q)2, G : G/d(H) — Q°/(Q*)% Then the above results and their
proofs give a method for trying to compute G/2G.

Step 1. Try to find H/¢(G) by finding all square free integers r|b; satisfying W,.

Step 2. Try to find G/¢(H) by finding all square free integers r|b satisfying W,.

Step 3. Combine G/¢(H) and ¢ (H/$(G)) to generate G/2G.

Example 7.12. Let C: Y? = X(X? — X 4+ 6). Then G/2G = C(Q)/2C(Q) = Cy x Cy.

Proof. Here, a = —1,b =6 and so a; = —2a = 2, by = a® — 4b = —23, giving D : V? =
U(U? 42U — 23). The isogeny ¢ : C — D is given by

s () 0-38) = (0 5)

The isogeny ¢ : D —s C is given by

QAﬁ( ) 1 (v)Q 1 biv 1 <v)2 1 n 23v
u,v)=1\—-\— —|lv——F B — |l v —_
’ 4 \u/ '8 u? 4 \u/ '8 u?

Step 1. Find H/¢(G). We need to consider r|by = —23,r € Z, r square free, that is,
r = =+1,423, and g(o) = 1, ¢(0,0) = by = —23, so that: {1,—23} < im ¢ < {1, +23}.
Note that —1 € im ¢ <= 23 € im ¢, and so it is only necessary to check one member

of the coset {—1,23}.

Choose r = —1. Then equation W,., rf* + a10*m?* + (b1 /r)m* = n? becomes:

W_y: —0* 4 20°m? + 23m* = n?,  for some £, m,n € Z, not all 0, with ged(¢,m) = 1.
On completing the square, we obtain:

—(* —m*? +24m* =n? (1)
This gives — (2 — m?)? = n? (mod 3).

Imagine 3 1 (¢2 — m?); then (2 — m? would have an inverse a mod 3, and so —1 =
(an)? (mod 3), contradicting the fact that —1 is not a quadratic residue mod 3.

We deduce that 3|(¢2—m?), and so 3|n (since 3|n?), giving that 3%|(¢> —m?)? and 3?|n?.
Then, from (1), 3%24m*, and so 3|m* and hence 3|m.

But combining 3|m with 3|(¢* — m?) gives 3|¢?, so that 3|¢. We have shown that 3|¢
and 3|m, contradicting ged(¢, m) = 1. Hence there are no solutions to W_y, giving that
—1 ¢ im ¢ (indeed, we have shown that there are no solutions (¢,m,n) # (0,0,0) in Qs).

This gives im g = {1, —23} and H/#(G) = {0, (0,0)} = ((0,0)) = Cs.

Step 2. Find g/gg(’H) We need to consider r|b = 6,r € Z, r square free, that is,
r=+1,42 43, 46. Also, (o) = 1, §(2,4) = 2, §(3,—6) = 3, §(0,0) = b = 6, so that
{1,2,3,6} < im § < {£1,+£2,+3,46}. Note that —1 € im § <= -2 €im§ <=
—3 €im ¢ <= —6 € im ¢, and so it is only necessary to check one member of the coset

{-1,-2,—-3,—6}.
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Choose r = —1. Then W_y, rf* + al®m? + (b/r)m* = n* becomes:
/I/I7_1 c 0t — *m?* — 6m* =n?, for some £,m,n € Z, not all 0, with ged(¢,m) = 1.
For any ¢,m,n € Z, (*,0*>m?,6m* > 0, so —¢* — *>m? — 6m* <0, and
LHS = —0* = ’m? —6m* =0 < (' =Cm’ =6m"' =0 < (=m=0.

Also, RHS = n? > 0 and n? = 0 <= n = 0. Both sides are equal <= both sides
are 0 <= (= m = n = 0, but we require ¢, m,n to be not all 0. Hence there are

no solutions to W,l, giving that —1 ¢ im ¢ (indeed, we have shown that there are no
solutions (¢, m,n) # (0,0,0) in R).
We conclude that im ¢ = {1,2,3,6} and G/¢p(H) = {0, (0,0), (2,4), (3,—6)} = ((0,0), (2,4)).
Step 3. Find G/2G. This is generated by G/¢(H) = {0,(0,0),(2,4),(3,-6)} =
((0,0), (2,4)), together with ¢ (H/p(G)) = {(0),#(0,0)} = {o}, which gives nothing
new that wasn’t already in G/¢(#). Therefore, G/2G = {o,(0,0),(2,4),(3,-6)} =
((0,0), (2,4)) = Cy x Cy, as required. Note that (0,0), (2,4) are independent in G/p(H)
and so are independent in G/2G (since 2G = ¢(d(G)) < d(H)). O
Comment 7.13. The equations
W, 27l + a,Pm? + (b /r)m* = n?,
W, 10 4 al®m? + (b/r)m* = n?,

(which can also be expressed as: 7X*+a; X% +b;/r = Y? and rX*+aX?+b/r = Y2, for
X,Y € Q) are called homogeneous spaces. Finding C(Q)/2C(Q), as in the last example,
comes down to deciding, for each r|by, whether W, has a solution ¢, m,n € Z, not all 0,
with ged(¢, m) = 1, and for each r|b, whether W, has such a solution.

In the last example, it turned out that each W, /V[Z. either had a solution ¢, m, n, or we
were able to show such a solution was impossible with a modulo-power-of-p argument (a
p-adic argument) or that it was impossible in R. That is, each W, /WT either had a point
or it was impossible in R or some Q,.

This doesn’t always happen. It is possible in some examples for W, or /WT to have
solutions in R and every Q,, but not in Q (that is, for there to be a violation of the
Hasse Principle). For example, consider C : Y? = X3+ 17X. Here, a = 0,b = 17, so that
a; = 0,b; = —68, giving D : Y2 = X3 — 68X. When computing H/¢(G), we consider
r|by = —68 and so r = +1, 42, £17,434. For the case r = 2, the homogeneous space
rlt + a1 ?m? + (by /r)m* = n2 becomes 204 — 34m* = n? Note that the equation forces
n to be even; setting n = 2k and dividing both sides by 2 gives the slightly simpler
form: ¢* — 17m4 = 2k2. As shown on Problem Sheet 3, this has no solutions k,¢,m € Z
(not all 0, ged(¢,m) = 1), and so 2 ¢ im ¢, even though there exist solutions in R and
every Q, (and so proving 2 ¢ im ¢ requires an argument different to those in the last

example). Instances of such W, (or WT) correspond to members of a structure known as
the Tate-Shafarevich group, II1(C/Q).

Comment 7.14. There is another approach to the Weak Mordell-Weil Theorem, using
Galois cohomology. Recall that the map

D(Q)/6(C(Q)) — Q*/(Q")
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is given by ¢(Q) = d, where Q(+/d) is the field over which the pre-images P, P’ of ) under
¢ are defined. Since ker ¢ = {0, (0,0)}, we must have P’ = P + (0,0). Furthermore, if
Cal(Q(v/d)/Q) = (¢) has order two (i.e. d is not a square), then P’ = o(P).

So, we have a group homomorphism

co : Gal(Q(Vd)/Q) — ker ¢

given by sending o to o(P) — P. It has the property that, for any member of { P, P’}, the
effect of applying v € Gal(Q(v/d)/Q) is the same as adding co(v). We then have a map
() — ¢ which takes a member of D(Q)/#(C(Q)) to a homomorphism between a Galois
group and ker ¢.

As we have seen, there are two main elements required to prove the Weak Mordell-Weil
Theorem: showing that ¢ is a homomorphism and that im ¢ is finite. We deal with them
both in turn. For showing that ¢ is a homomorphism, suppose that ¢(Q;) = d; and
q(Q2) = dy. Then, by definition, P;, P{ (such that ¢(P;) = ¢(P]) = Q1) are defined over
Q(V/dy), and Py, Py (such that ¢(P) = ¢(Py) = Q3) are defined over Q(y/dy). Since ¢ is
a homomorphism,

O(PL+ ) = Q1 + Q2

and Py + P, is defined over Q(v/dy, /ds). But /dy — —+/dy, \/dy — —+/d5 has the same
effect as adding (0, 0) to each of Py, P, and so leaves P; + P, unchanged. This means that
P + P; is in fact defined over Q(1/d1dy). Hence ¢(Q1 + Q2) = dids = q(Q1)q(Q2), giving
that ¢ is a homomorphism (without needing to work explicitly with the group law).

For the finiteness of im ¢, let ¢(Q)) = d, a square free integer, and imagine that an odd
prime p of good reduction is a factor of d. By the definition of ¢, there are P, P’, defined
over Q(v/d) such that ¢(P) = ¢(P') = Q. But, on reduction modulo ,/p, conjugation

Vd — —+/d has no effect modulo \/P- This shows that P’ — P is in the kernel of the
reduction map. On the other hand, we know that P’ — P is a 2-torsion point. So it
follows from Lemma 5.19 that P’ = P which is a contradiction. Hence d has only primes
dividing the discriminant as factors, and so has only finitely many possibilities. We note
in passing that we can regard each cg as a homomorphism

co : Gal(L/Q) — ker ¢

where L is the composite of the quadratic fields Q(,/p) with p = 2 or a prime of bad
reduction.

This approach is cleaner, and more amenable to generalisation, since it does not require
getting our hands dirty with explicit group law manipulations. On the other hand, it
is often worth a more from-first-principles proof (as given previously), as it provides us
with an explicit method for trying to compute C(Q)/2C(Q).
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SECTION 8. THE MORDELL-WEIL THEOREM

When € is an elliptic curve over Q, we’ve seen that &s(Q) and £(Q)/2E(Q) are finite.
But £(Q) may sometimes be infinite (if P € £(Q) and P & &o5(Q) then P is of infinite
order and so £(Q) is infinite). We shall show that £(Q) (whether finite or infinite) is
always finitely generated. That is, we aim to show that, for any elliptic curve £, there
exists finite number of elements Py,..., P, € £(Q) such that every P € £(Q) can be
written as:

P:mlpl—i—...—i—mkPk, ml,...,mkeZ.

This will be achieved via height functions; we first describe the general properties of a
height function on a general Abelian group.

Definition 8.1. Let A be an Abelian group with group operation +.
We say that h : A — R is a height function if it satisfies:
(1) For any @ € A, there exists C; = C1(Q) such that h(P 4+ Q) < 2h(P) 4+ C; for all
P e A
(2) There exists Cy, independent of P, such that h(2P) > 4h(P) — C, for all P € A.
(3) For any Cj, the set {P € A: h(P) < Cs} is finite.

Theorem 8.2. Let A be an Abelian group which has a height function h, and suppose
that A/2A is finite. Then A is finitely generated.

Proof. We are given that A/2A is finite, so let A/2A = S = {Q1,...Q,} C A. Let P

be any element of A. Then P = Q;, in A/2A for some Q;, € S and so we can write:

P = 2P, + Q,,, for some P, € A. Inductively, continue to write: P, = 2P, + Q,,, P» =

2P + Qs . .., where each P; € A and each Q;; € S. Now:
by (2) 1 by (1) 1

(h(2P) +Co) "= £ (WP = Qi)+ C2) = 5

where C7 = max{C1(—Q) : Q € S}.

So, if h(P;_1) > (C] + C3)/2 then:

h(F;) < (2h(Pj-1) + C1 + C),

o |

A(P,) <  (2h(Pros) + 2h(Py-)) = h(Py-y).

Imagine that h(P) > (C]+C3)/2 and h(P;) > (C]+Cs3)/2 for all j. Then the sequence
h(P),h(Py),h(Ps),... would be strictly decreasing, giving infinitely many distinct mem-
bers of A with height < h(P), which would contradict (3). This contradiction shows that
there must exist an n such that h(P,) < (C] + C3)/2. So, we can write:

P=2P+ Qi =202P+ Qi) + Qi = ...,

and after n steps P will be written as a linear combination of P, and members of S.
Let T = {Q € A: h(Q) < (C] + Cy)/2}. We have shown (since P, € T) that any

P € Ais a linear combination of members of S UT. Furthermore, 7T is finite, by (3). In

conclusion: A is generated by the finite set S U T, and so is finitely generated. O

A height function on £(Q) can be obtained as follows.
Lemma 8.3. Let € be an elliptic curve, defined over Q. Define h, : £E(Q) — R by:

he ((z,y)) = log max (|a|, |b]), where z = % a,b € Z, ged(a,b) = 1,
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and define h,(0) = 0. Then h, is a height function on £(Q). Indeed, there exists a
constant C, independent of P, Q, such that |h,(P+Q)+h,(P—Q)—2h,(P)—2h,(Q)| < C,
for all P,Q € £(Q), from which properties (1),(2) can be deduced (property (3) is trivially
true).

For the proof (optional) see, for example, p. 201 of [2].

Aside: The proof uses the explicit group law; for example, ' = a' /b, the x-coordinate
of 2P = 2(x,y) is given by (quartic in x)/(cubic in ), and so max(|d'|, |b'|) is ‘approx-
imately’ max(|a|, |b])*, giving that logmax(|a'|, |b']) is ‘approzimately’ 41ogmax(lal, |b|),
that is h,(2P) is ‘approximately’ 4h,(P). It is only necessary to control the amount of
cancellation occurring, when writing the x-coordinate of 2P in lowest terms.

Theorem 8.4. (The Mordell-Weil Theorem). Let € be any elliptic curve over Q. Then
E(Q) is finitely generated.

Proof. This follows immediately from Theorem 7.10, Theorem 8.2 and Lemma 8.3. [

Comment 8.5. This means that we know what £(Q) looks like:
E(Q) = &Ens(Q) x Z7, for some r = 0,7 € Z.
The number r is called the rank of £(Q) (or just the rank of £). Clearly:
€(Q) has finitely many points <= rank (£(Q)) = 0.
To solve £(Q), we want to know: Es(Q) and r (the rank). Note that:
£(Q)/28(Q) = Eiors(Q)/2E10rs(Q) % (Z/22)"
so that:
£(Q)/26(Q) = £(Q)[2] x C5,
where £(Q)[2] denotes the 2-torsion subgroup of £(Q) (see Comment 0.40).
Example 8.6. Let C : Y? = X(X? — X + 6). In Example 7.12, we found that
C(Q)/2C(Q) = Cy x Cy. Also,
1++/-23 O> <1—\/—_23 O>}
2 ) 2 ’ 7

so that C(Q)[2] = {0, (0,0)} = C,. Since C(Q)/2C(Q) = C(Q)[2] x CF, we deduce that
Cy x Cy = Uy x CF and so the rank » = 1 (C(Q) is infinite, but is generated by Ciors(Q)
and one element of infinite order).

C(C)[2] = {o} U {points of order 2} = {o, (0,0), (
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SECTION 9. FACTORISING INTEGERS USING ELLIPTIC CURVES

Public key cryptography (see also ASO Number Theory).
Public keys allow message to be encoded (not decoded). Suppose A wants to send the
integer X to B safely; we assume that everything transmitted can be intercepted.

Step 1. B (in private) takes 2 large prime numbers p, ¢ (usually about 250 digits) and
multiplies them together to give N = pq, chooses an exponent d, and publicises N, d to
the world.

Step 2. A (in private) computes Y = X% (mod N) and sends the message Y to B.

Step 3. B privately computes ¢(N) = ¢(p)¢p(q) = (p — 1)(¢ — 1) and also computes
(by Euclid’s Algorithm) e such that de =1 (mod ¢(N)). Note that:

ye = (Xd)e = xde — x1+ko(N) (for some k € Z) = X(X¢(N))k = X,

since X?W) = 1 (mod N) by Euler’s Theorem, provided that X, N are coprime. Assuming
X < N, this decodes the message.

Note that computing X¢ (mod N) (and Y¢ (mod N)) is fast even when d is large,
by writing d in base 2 as d = 2" + ... + 2% (k; < ... < k,). One then obtains
X? =X, X¥ = (X¥)2, X¥ = (X?)?2, ... X?" by k,, squaring operations, after
which:

X?= x> x? X (mod N),
which takes roughly log d operations.

Anyone wishing to crack the code must be able to compute ¢(N), which requires finding
p,q from N = pq. A naive (and very slow) approach is trial division: checking for each
c=2,...,[V/N ] whether ¢|N.

Pollard’s p — 1 factorisation method. Much better is Pollard’s p — 1 method. One
chooses base a and exponent k = product of powers of small primes. Compute a* (mod N)
(as usual, after first writing k in binary), and then ged(a*—1, N) using Euclid’s Algorithm.
If there exists prime p|N such that p — 1|k (k = (p — 1)s, say) then:

a* = (')’ =1° =1 (mod p) (by Fermat),

provided that p { a. This gives p|(a® — 1) and so p|ged(a® — 1, N). Unless we have bad
luck, ged(a® — 1, N) # N, and so ged(a® — 1, N) will be a proper factor of N.

Example 9.1. A four-letter word L;LsL3L4 has been divided into two pairs: L;Lo and
LsL,. Each of these pairs has been converted into an integer (of at most 4 digits) via
the standard map: A+ 01, B — 02,..., 7 — 26. These integers have been encoded by
taking each to the power of d = 6587, modulo N = 10123. The encoded message reads:

4268, 5744,

We shall factorise N by applying Pollard’s “p — 1”7 method, using base 2 and expo-
nent 52, and then use the factorisation of N to decode the message.

Write 52 as a sum of powers of 2: 52 = 4416+ 32. First compute (modulo N = 10123):
21 =2, 22 = (21)2 =4, 2 = (22)2 = 16, 28 = (2')? = 256, 2!6 = (28)2 = 4798,
232 = (216)2 = 47982 = 1102 (where each of these was obtained be squaring the previous
one, and reducing modulo N). Since 52 = 4 + 16 + 32, we have: 2°2 = 21216232 =
16 - 4798 - 1102 = 5907 - 1102 = 425 modulo N, so that 252 — 1 = 424 modulo N.

Now, compute ged(424, N) by Euclid’s Algorithm:

10123 =23 - 424 +371; 424 =1-371 4+ 53; 371 = 7-53 + 0.
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So, 53 is a factor of N. Compute 10123/53 = 191, giving the factorisation N = 10123 =
53 - 191.

Since N = 53191, we have ¢(N) = 52-190 = 9880. Compute the gcd of ¢(INV) = 9880
and d = 6587 we see:

(o 7 [ gssr) =077 (o 01 | gaee) =720 (L 50 [907) oM (2 210),

where the * entries need not be computed. This gives us, all in the same computation,
that ged(9880,6587) = 1, and the bottom row of the last matrix gives ged (9880, 6587) as
a linear combination of 9880, 6587, namely: 1 = —2 - 9880 + 3 - 6587. Hence 3 - 6587 =
1 (mod 9880), that is, 3 is the inverse of 6587 modulo ¢(N) = 9880.

The decoding operation is therefore Y + Y3 mod N. Computing 42683 = 42682 -
4268 = 4547-4268 = 805 (modulo N = 10123). Also: 57443 = 57442%.5744 = 2679-5744 =

1216 (modulo N = 10123). The decoded message is therefore: 0805, 1216; that is: HELP.

The exponent k is typically chosen to be a product of powers of the first r primes, for
some r. Pollard’s p—1 Method is fast when there exists at least one prime p|N such that
p — 1 = #FF; is only divisible by small primes, so that order(a)|#F;|k.

When Pollard’s p — 1 method is slow for some N, we can replace ‘powers of an integer
base a” with multiples kP of a point P on an elliptic curve &.

We hope that, there exists prime p|N such that #&(F,)|k, which would guarantee that
kP = o (the point at infinity) mod p; that is to say, a denominator divisible by p, in
which case, taking the ged of the denominator and N will reveal the factor p. This will
be fast if there exists p|N such that #&E(IF,) is only divisible by small primes. Each new
choice of elliptic curve gives a new chance of this happening.

The Elliptic Curve Method (ECM) for attempting to factor an integer N is as
follows. Choose an elliptic curve £ mod N, some point P on &£, and some choice of k
(normally a product of powers of small primes). Attempt to compute kP (mod N) and
hope that, in performing one of the additions kP = ki P + ko P, a denominator will have
ged with NV that is a nontrivial factor of N (# 1 and # N). See Section XI.2 in [2] (only
in the 2nd edition) for more details.

Example 9.2. Let N = 10123, as in Example 9.1. We shall factorise N by applying the
Elliptic Curve Method, using the curve £ : Y? = X3 +5X — 5 and 4P, where P = (1,1).

The line tangent to £ at P = (1,1) has slope y' given by 2yy’ = 3z* + 5, with
x =1,y = 1; that is, the slope is 8/2 = 4. This tangent line also goes through (1, 1) and
so has equation: Y = 4X — 3. The z-coordinate of 2P is therefore 4> — (1 + 1) = 14,
and the y-coordinate is: —(4 - 14 — 3) = —53 = 10070, so that @ = 2P = (14, 10070)
(modulo N = 10123). We now wish to double the point ) = 2P, and so again the first
step is to find the line tangent to £ at Q. This has slope 3 given by 2-10070-y’ = 3-14%4-5,
and so we need to compute (3 - 14% + 5)/(2 - 10070) (modulo N = 10123), for which the
first step is to find the inverse of 2 - 10070 = 10017 (modulo N = 10123). Using Euclid’s
Algorithm:

10123 = 110017 4+ 106; 10017 =94 - 106 4 53; 106 = 2 - 53 + 0.

So, we cannot find the inverse of 10017 (modulo N = 10123), and this step has given
us our factor 53 of N. As in the previous example, compute 10123/53 = 191, giving the
factorisation N = 10123 = 53 - 191.
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