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1 Introduction

Classical algebraic geometry is the study of the sets of of simultaneous solutions of collections of polynomial
equations in several variables with coefficients in an algebraically closed field. Such sets are called algebraic
varieties. So eg the set of simultaneous solutions of the equations 22 + y? — 1 = 0,2y = 0 in C? is an

algebraic variety.

Because they are so easy to define, algebraic varieties appear in almost every area of mathematics. They
play a crucial role in number theory, in topology, in differential geometry and complex geometry (ie the
theory of complex manifolds). When the base field is C, an algebraic variety defines a complex manifold

provided it has ”no kinks” (we shall give a precise definition later).

A basic reference for classical algebraic geometry is chap. I of D. Mumford’s book The Red Book of Varieties
and Schemes (Springer Lecture Notes in Mathematics 1358). Another reference is chap. I of R. Hartshorne’s
book Algebraic Geometry (Springer). One might also consult the book by M. Reid Undergraduate algebraic
geometry (London Mathematical Society Student Texts 12, Cambridge University Press 1988). An updated

free online version of M. Reid’s lectures can be found under
https://homepages.warwick.ac.uk/staff/Miles.Reid/MA4A5/UAG.pdf

The natural generalisation of classical algebraic geometry is the theory of schemes, which will be taught in
Hilary Term. In Grothendieck’s theory of schemes, the base field can be replaced by any commutative ring
but the absence of Hilbert’s Nullstellensatz, which is at the root of the material presented here, means that

different techniques have to be used.

There are three important tools, which will not be presented in this course:
e The theory of sheaves

e Cohomological techniques

e The technique of base change

These tools are very powerful but there will not be enough time to present them in these lectures. Also,
the best framework for them is the theory of schemes (although they could also be used in the restricted
setting of this text).

There is also a tool from Commutative Algebra, which will not be used here but which is very useful in
Algebraic Geometry: the tensor product of modules over a ring. Tensor products are ubiquitous in the

theory of schemes.

The prerequisites for this course are the part A course Rings and Modules and the part B course Commutative
Algebra. It is assumed that the reader is familiar with the terminology used in the notes of the commutative
algebra course. We shall often quote results proven in that course, referring to it as ”CA”. I have put the

CA notes on the web page of the present course for easy reference.

Throughout the course, we shall work over a fixed algebraically closed field k. As in the CA course, a ring
will be a commutative ring with unit, unless stated otherwise. The reader may assume that for any n > 1,
the ring of polynomials k[z1,...,x,] is a UFD (Unique Factorisation Domain). It can also be assumed that

the localisation k[z1,...,z,]s is a UFD for any multiplicative set S C k[z1,...,z,].



2 Hilbert’s Nullstellensatz and algebraic sets

Let n > 0 and let R, := k[x1,...,x,]. Let ¥ C R,,. The algebraic set associated with ¥ is

Z(X) = zero set of ¥ :={(t1,...,t,) € K" |VP € X : P(t1,...,t,) =0}
Note the following simple fact. Let X R,, be the ideal generated by ¥ in R,,. Then we have Z(X) = Z(ZR,,).
We now recall two basic results in commutative algebra.
Theorem 2.1 (Hilbert’s basis theorem; see Th. 7.6 in CA). The ring k[x1,...,x,] is noetherian.
Recall that a noetherian ring is a ring all of whose ideals are finitely generated. In particular, by the remark
above any algebraic set in k" is the zero set of a finite number of polynomials.

Theorem 2.2 (Hilbert’s strong Nullstellensatz; see Cor. 9.5 in CA). For any ideal I C R,, we have

t(I) = {P € Ry |Y(t,... . tn) € ZU) : P(ty, ... 1) = 0}

Recall that ©(7) is the radical (or nilradical) of I, ie the intersection of all the prime ideals of R,, containing
I. One can show that t(I) consists of all the elements Q of R, such that Q' € I for some | = [(Q) (see

Prop. 3.2 in CA). Recall also that a radical ideal is an ideal which coincides with its own radical.

If A C k™ is subset, we shall write
IZ(A):={P € R, |Y(t1,...,ty) € A: P(t1,...,t,) = 0}.
The set Z(A) is clearly an ideal in R,,. Note that in terms of the operator Z(-), the strong HNS implies that
Z(Z(I)) = t(I) for any ideal I of R,,.
We may now prove the basic

Proposition 2.3. Let V. C k™ be an algebraic set and let I C R, be an ideal. Then the identities
Z(I) =Z(x(D)), Z(Z(I)) = v(I) and Z(Z(V)) =V hold.

In particular, the two maps
z
{algebraic sets in k"} = {radical ideals in R, }
z

are inverse to each other. Note that in this correspondence, we have Vi C Vs iff Z(Vy) D Z(V2) for any two
algebraic sets V; and V, (why?).

Proof. (of Proposition 2.3) The identity Z(I) = Z(¢(I)) follows from the definitions and the identity
Z(Z(I)) = t(I) was noted just before the statement of the proposition. We thus only have to prove that
Z(Z(V)) = V. To see this, note that by definition we have V' C Z(Z(V)). On the other hand, by definition
V =Z(J) for some ideal J in k[z1,...,2,]. By construction, we have J C Z(V), so Z(J) =V D Z(Z(V)).
Hence V =Z(Z(V)). O

We also note the following identities, whose proof is left as an exercise for the reader:

(1) Z(Vh U Va) = Z(V1) N Z(Va)



2) Z(NiVi) = v(32, Z(V))
3) Z(I N L) = Z(I;) U Z(I2)

4) Z(3_; Ii) = MiZ(1;)

(
(
(
(where the V; are algebraic sets, the I; are ideals and the symbol )" refers to the sum of ideals).

In view of the properties (4) and (3) above, the algebraic sets in k™ can be viewed as the closed sets of a
topology on k™, called the Zariski topology. If V- C k™ is an algebraic set, we endow V with the topology

induced by the Zariski topology of k™. This topology is called the Zariski topology of V.
We can refine the correspondence above as follows.

Say that an algebraic set V' C k™ is reducible if V' = V; U Va, where V1, V5 C k™ are non empty algebraic
sets, V1 € Vo and Vo € Vi. An algebraic set V' C k™ is said to be irreducible if it is not reducible. One
verifies from the definition that an algebraic set is irreducible iff all its non empty open subsets are dense.

For the following two lemmata, we shall need the following result from CA:

Theorem 2.4. Let R be a noetherian commutative ring and let I C R be a radical ideal. Then there is a
unique finite set of prime ideals {p;} such that I = Mip; and such that for all indices | we have p; 2 Njp;.
Furthermore, the p; are the prime ideals of R, which are minimal for the inclusion relation among the prime

ideals containing I.

Proof. This follows from the Lasker-Noether theorem (see Prop. 7.8 in CA) and the remark after Th. 6.7
in CA. O

Lemma 2.5. Let V C k™ be an algebraic subset. Then V is irreducible iff (V) is a prime ideal.

Proof. "<”: Suppose that V is reducible. Then V' = V;UV,, where V; and V, are two algebraic subsets not
contained in each other (and in particular not empty). By property (1) above, we have Z(V') = Z(V1)NZ(Va),
where Z(V7) and Z(V3) are two ideals not contained in each other. In particular, there is a; € Z(V;) such
that a; € Z(V2) and ag € Z(Va) such that as € Z(V1). In particular a1,as € Z(V). On the other hand
ayag € Z(V) so that Z(V) is not prime.

”=": Suppose that Z(V') is not prime. Let {p;};ca be the set of prime ideals in R, which are minimal
among the prime ideals containing Z(V'). By Theorem 2.4 we know that A is finite and that Z(V) = n;p;.
Hence #A > 1 since Z(V) is not prime. Let I; be any element of A. By Theorem 2.4 again (or Prop. 6.1 (ii)
in CA and the minimality of the p;) we have p;; 2 Nz, pi. On the other hand, we also have p;, € Ny, by
by minimality. Hence Z(p;,) € Z(Miz1, 1) and Z(py,) 2 Z(Mizr,pi). Finally, we have Z(Z(V)) = V =
Z(p1,) U Z(My1, 1) by (3) above and Proposition 2.3 so that V' is reducible. [

Lemma 2.6. Let V C k™ be an algebraic set. Then there is a unique finite collection {Vi}iea of irreducible
algebraic subsets of k™ such that

(Z) V =uV;

(2) V1V, L U;uVj.

Furthermore, the V; are the irreducible algebraic sets in k™, which are mazimal among the irreducible alge-

braic sets contained in V.



Proof. In view of the remark after Prop. 2.3, the properties (1)...(4) above and Lemma 2.5, this is
equivalent to Theorem 2.4 for R=R,,. [

Example. The algebraic set defined by the equation 2125 = 0 in k2 has the irreducible components x; = 0
and x2 = 0. Indeed, the two components are clearly not contained in each other and x; = 0 defines an
irreducible algebraic set because k[r1,xs]/(x;) ~ k[z] and thus the ideal (x;) is prime in k[z,xs] (use

Lemma 2.5).

Proposition 2.7. Let V C k™ be an algebraic set defined by a radical ideal I. Let v = (v1,...,v,) € V and
let m be a mazimal ideal of R,,. Suppose that m O I. Then

(1) Z({v}) 2 I and Z({v}) is a mazimal ideal of Ry;
(2) Z(m) consists of one point 4 = (uq,...,un) € V;

3) m = (z1 —u1,...,Tn — Up) where @ is as in (2).

Proof. Unravel the definitions and apply Proposition 2.3. O

The last proposition in particular provides a correspondence between the points of V' and the maximal ideals
of R, containing Z(V'), or equivalently with the maximal ideals of R,,/Z(V'). In other words, if we write for
any ring R

Spm(R) := {maximal ideals of R}

then there is a natural bijection Spm(R,,/Z(V)) ~ V.

Lemma 2.8. Let V C k™ be an algebraic set. Under the bijection Spm(R,/Z(V)) ~ V, the closed subsets
of V' correspond to the subsets of Spm(R,/Z(V)) of the form

Z(S) :={m e Spm(R,/Z(V))|m D S}
where S C R, /Z(V). The closed subsets of V' are in one to one correspondence with the radical ideals of
R, /Z(V) via Z(-).
Proof. Left to the reader. Unroll the definitions. [

Note that the set {m € Spm(R,/Z(V))|m D S} corresponds in V to the set Z(S’) NV for any lifting
S’ of S to R,. So the notation Z(S) will not lead to any confusion. Also, if C' C V is a closed subset,
then we have C = Z(Z(C) (mod Z(V))) = Z(Z(C)) N V. So we will sometimes use the shorthand Z(C) for
Z(C) (mod Z(V)) C R,/Z(V) if C is a closed subset of V. With this notation, the properties (1),...,(4)
listed above are also valid for the correspondence described in Lemma 2.8.

3 Regular maps between algebraic sets

Letn,t > 0. Amap ¢ : k™ — k' is said to be polynomial if there are elements Py (x1,...,2Tn), ..., P(21,...,%,) €
R, = k[z1,...,x,], such that

dar,...,an) =(Pi(ar,...,an), ..., Plar,...,an))

for all (a1,...,an) € k™.



Note that the polynomials P; define a map of k-algebras ¢* : Ry — R,, by the formula

O (Qy1, - u)) = Q(P(z1, .., Tn)y e, Pe(T1, ..., 2p))

and on the other hand, if we are given a map of k-algebras ® : kly1,...,y:] = Rt = Ry, = k[x1,..., 2],

then we can define polynomials Ti(x1,...,2,),. .., Tt (z1,...,2,) € R, by the formula
T‘i(xh e 7xn) = (I)(y’t)

and these two processes are obviously inverse to each other. So to give polynomials P; as above is equivalent
to giving a map of k-algebras R; — R,,. Note that from definitions we see that the composition of two

polynomial maps is a polynomial map.

If ®: Ry — R, is a map of k-algebras, we shall write Spm(®) : k™ — k* for the corresponding polynomial

map (defined as above from the polynomials arising from ®).

Lemma 3.1. The map
Spm : {maps of k-algebras Ry — R,} — {polynomial maps k™ — k'}
s bijective.

Proof. The surjectivity of Spm is a tautology so we only have to prove injectivity. Let ®1,®5 : Ry —
R, be two maps of k-algebras. Suppose that Spm(®;) = Spm(®P3). We have to prove that ®; =
®,. Suppose that @1 (resp. P3) is defined by polynomials Pyi(xy,...,24),..., Pie(x1,...,2,) (resp.
Poi(x1,. o y@n)y ooy Py, yx)). Let ¢ € {1,...,t}. If Spm(®;) = Spm(Py) then the polynomial
Py; — Py; vanishes for all the values of its variables. This implies that P;; = P»; (why?). Since i was

arbitrary, we conclude that ®; = ®5. [

In view of the lemma, for any polynomial map ¢ : k™ — k¢, there is a unique map of k-algebras ¢* : R; — R,
such that Spm(¢*) = ¢. Note that the operation (-)* (resp. Spm(-)) is compatible with composition of

polynomial maps (resp. composition of maps of k-algebras). This follows from the definitions.

Let now V C k™ and W C k! be algebraic sets in k™ and k!, respectively. A map ¢ : V — W is said to be
regular if there is a polynomial map ¢ : k" — k' such that ¢(V) C W and such that ¢ (v) = ¢(v) for all
v € V. Note that if ¢ is given, there might be several different ¢ inducing 1) (what is an obvious example
of this phenomenon?). Note also that a regular map is continuous for the Zariski topology (why?). Also, a

composition of regular maps is regular (unroll the definitions).

We shall attempt to generalise Lemma 3.1 to algebraic sets.

For this, we make the following definition.

Definition 3.2. Let V C k™ be an algebraic set. The coordinate ring C(V') of V is the ring
C(V):=R,/Z(V).

Note that since Z(V) is a radical ideal (see above - this also follows directly from the definitions), the ring

C(V) is a reduced ring, ie the only nilpotent element of C(V') is the zero element. We also recall that any

finitely generated algebra over a field is a Jacobson ring (see Cor. 9.4 in CA). In particular, C(V) is a
Jacobson ring. Recall that a Jacobson ring R is a ring such that for any ideal I C R, we have

mmGSpm(R),mQI = mpeSpec(R)7p2[ = ‘C(I)



where Spec(R) is the set of prime ideals of R (see section 4 in CA).

Let again V C k™ and W C k' be algebraic sets in k™ and k?, respectively. Let ¢ : V — W be a regular
map and let ¢ : k™ — k' be a polynomial map inducing 1, as above. Suppose that ¢ = Spm(®) for the map
of k-algebras ® : Ry — R,,.

Lemma 3.3. We have ®(Z(W)) CZ(V).

Proof. I am grateful to one of the members of the audience for pointing out a simplified proof of this
lemma. Suppose @ is given by elements P (z1,...,2p),..., Pi(21,...,2n) € Ry = k[x1,...,2,], as above.

By assumption, for all v € V', we have
(P1(0),...,P(0)) e W
and so for any Q(y1,...,t) € Z(W) and any v € V, we have Q(Py(?), ..., P.(?)) = 0. In other words,
D(Q)=Q(Pi(x1,...,xpn), ..., Pe(x1,...,2,)) € Z(V)
as required. [

From the lemma, we see that ® induces a map of k-algebras @y w : C(W) — C(V).

The next lemma is needed in the next proposition.
Lemma 3.4. If 0 := (v1,...,v,) € V then the mazimal ideal of C(W) corresponding to 1¥(v) is the ideal
@;’11,[,((951 — U1, Ty — vy) (Mod Z(V))) = &1 (21 —v1, ..., 2p — vy)) (mod Z(W)).

In particular, ‘I’;lw sends mazximal ideals to maximal ideals and ®v,w entirely determines ¢ : V. — W.

Proof. Note first that ®~!((x; — v1,...,2, — v,)) is maximal in R; because there is by construction an

injection of k-algebras
Ri/® Y(xy —v1,. .y —vp)) = Ry /(w1 — 1, 2 —vp) > k

so that Ry /®~((x1 — v1,...,7n — v,)) = k (isomorphism of k-algebras). On the other hand, any maximal
ideal in Ry = k[y1,. ..,y is likewise of the form (y; — u1,...,y: — us) by Proposition 2.7. So in order to

determine the ideal ®~((z1 — v1,...,2, — v,)) we only need to find uy,...,u; € k such that
P(y; —ug) € (x1 — 1,0, Ty — Vp). (1)

By the correspondence between algebraic sets and radical ideals, condition (1) is equivalent to the condition

that the polynomial ®(y; — u;) vanishes on (v1,...,v,). We compute

D(y; —ui)((v1, .oy on)) = P(y:) ((V1, -y vn)) — s = Gi((V1, -+, UR)) — 1y

where ¢; is the projection of the map ¢ : k* — k' to the i-th coordinate. We thus see that ®(y; — u;)

vanishes on (vy,...,v,) for all ¢ € {1,... ¢} iff ¢((v1,...,vn)) = (u1,...,us). Hence
O (xy — w1,y —vn)) = (1 — 01(D), ..., yr — H¢(D)).
In particular, the maximal ideal of C(W') corresponding to t(%) is the ideal CI)‘_/lw((:z:l — V1., Ty — Up) (mod Z(V))).

We now have the



Proposition 3.5. The map ®v,w : C(W) — C(V) depends only on 1.

Proof. Suppose that 1 is also induced by another polynomial map ¢’ : k* — k!, associated with a map
of k-algebras ® : Ry — R,. Let ®{,y : C(W) — C(V) be the map of k-algebras induced by ¢’ via
Lemma 3.3. Let » € C(W) and let m € Spm(V)). By the above remark and the assumptions, we have
((I)’)‘_/,lw(m) = <I>‘771V(,(m) € Spm(C(W)). Let n:= (iI”)‘_/lW(m) = @;},V(m). We have commutative diagrams

and also

In particular, we see that ®y w (r) (modm) = @y, (r) (modm). Since m was an arbitrary maximal ideal of
C(V), we conclude that ®v,y (1) — @7,y (r) lies in the Jacobson radical of C(V'). Since C(V') is a Jacobson
ring and is reduced, we thus see that @y, (r) = @i,y (r). Since r € C(W) was arbitrary, we conclude that
By = By O

From the last lemma, we see that we may write @y =: ¥*.

Lemma 3.6. Let A : C(W) — C(V) be a map of k-algebras. Then there is a regular map X\ :' V — W such
that \* = A.

Proof. Let Ag: Ry — R, be a map of k-algebras such that the diagram

Ry =Kkly1, ...,y i>Rn =kl[x1,..., 2]
c(w) A c(v)

commutes. We may obtain such a map by choosing representatives in R,, of A(y; (modZ(W))) for each
i € {1,...,2¢}. By construction, we then have Ao(Z(W)) C Z(V). Applying Lemma 3.4, Lemma 3.1
and Proposition 2.7, we conclude that Ay arises from a polynomial map Spm(Ag) : k™ — k' such that
Spm(Ag)(V) C W. By construction, we have (Spm(Ag)|y)* = A so we may choose A = Spm(Ag)|y. O

From the last lemma, Lemma 3.4 and Proposition 3.5, we see that given a map of k-algebras A : C(W) —
C(V), there is a unique regular map Spm(A) : V' — W such that Spm(A)* = A (note that this generalises
the operator Spm(-) defined before Lemma 3.1). On the other hand, by Proposition 3.5, Lemma 3.4 and the
previous lemma, given a regular map A : V' — W, the map of k-algebras \* : C(W) — C(V) is the unique
one such that Spm(A*) = A.



We conclude that there is a bijection from the set of regular maps V' — W to the set of maps of k-algebras
C(W) — C(V), which sends A : V — W to A* and who inverse is given by Spm(-).

Finally note that any finitely generated reduced k-algebra is isomorphic as a k-algebra to the coordinate
ring of some algebraic set (why?).

All this leads to an intrinsic characterisation of algebraic sets and regular maps between them. We may
view algebraic sets as a category whose objects are pairs (V,n) (n > 0), where V is the zero set in k™ of a

set of k-polynomials in n variables, and where the arrows from (V,n) to (W,t) are the maps from V to W

which are restrictions of polynomial maps from k" to k°.

The following theorem summarises the previous discussion.

Theorem 3.7. The category of algebraic sets is antiequivalent to the category of finitely generated reduced
k-algebras.

Note that in this antiequivalence, a finitely reduced k-algebra R is not naturally associated with an algebraic
set. However if V7 C k™ and V5 C k™2 are two algebraic sets such that C(V;) ~ C(V3), then the algebraic sets
Vi C k™ and V, C k™2 are isomorphic, and any such isomorphism corresponds to precisely one isomorphism
of k-algebras C(V) ~ C(V3). Also, if V' C k™ is an algebraic set, there is a canonical identification between
the set V and the set Spm(C(V)). Finally, we see from Lemma 2.8 that the topology induced on Spm(C(V))
by this identification is determined by C(V') only.

4 Varieties

Let V C k™ be an algebraic set. Note that from Theorem 3.7, there is a natural identification between the
regular maps from V to k (where k is viewed as an algebraic set) and the elements of C(V'). Indeed the
elements of C(V') are in one-to-one correspondence with the morphisms of k-algebras k[z] — C(V) and in
turn these morphisms correspond to regular maps V' — k. More concretely, let f € C(V) = R, /Z(V) and
let fbe an arbitrary lifting of f to R, = k[x1,...,2,]. The regular function V' — k corresponding to f is
then the restriction of the map k™ — k given by the polynomial f

We would also like to make sense of regular maps from open subsets of V' to k.

We first note the

Lemma 4.1. Any open set in V is a union of open subsets of the form V\Z(f), for f € C(V).

Proof. Left to the reader. Unroll the definitions. [

Definition 4.2. Let U C V be an open subset. A function u: U — k is said to be reqular if for any regular
map of algebraic sets 7 : T — V such that 7(T') C U, the function T o u is regular on T (ie corresponds to
an element of C(T)).

To show that this definition is useable, we shall need the following

Lemma 4.3. Suppose that the regqular map h : V' — V makes C(V') isomorphic to C(V)[f~!] as a C(V)-
algebra for some f € C(V). Then

(1) h is injective and h is a homeomorphism onto V\Z(f);

10



(2) if g : V" — V is a regular map such that g(V") C V\Z(f), then there is a unique regular map
g V" =V such that g=h-g'.

Proof. (1) The injectivity follows from the fact that for any maximal ideal m of C(V)[f~!], m is generated
by the image of mNC(V) = (h*)~Y(m) in C(V)[f~!] (recall that (h*)~!(m) is maximal by Lemma 3.4 - one
could also appeal to Cor. 10.4 in CA). See Lemma 5.6 in CA for this.

Next, we show that h(V’) C V\Z(f). In terms of maximal ideals, this translates to the statement that
f & (h*)~Y(m) =mNC(V) for all the maximal ideals of C(V)[f~!]. By the general properties of localisations
(see Lemma 5.6 in CA), m N C(V) does not meet the multiplicative set generated by f, so in particular
f¢mnNC(V). This shows that h(V') C V\Z(f).

We now show that hly: : V! — V\Z(f) is surjective. For this, note that if n is a maximal ideal of C(V) such
that f ¢ n then there is a unique prime ideal ng of C(V)[f~!] such that no NC(V) = (h*)~(ng) = n (again
use Lemma 5.6 in CA). The ideal ng is also maximal. To see this, let nj, D ny be a maximal ideal. Since we
have (h*)~!(n})) 2 n, we thus have (h*)~!(n}) = n. Since as before ng (resp. nj)) is generated by the image
of n (resp. (h*)~(n})) in C(V)[f~1], we see that ng = nj, ie ng is maximal.

To show that h is a homeomorphism onto V\Z(f), it is sufficient to show that image of any closed subset
of V' maps to a closed subset of V\Z(f). In terms of ideals, this translates to the statement that for any
ideal J of C(V)[f1], there exists an ideal I = I(J) of C(V) such that m O J if m N C(V) D I for all
m € Spm(C(V)[f~!]). Letting J be an ideal of C(V)[f~}], define I := JNC(V). If m D J we clearly have
mNC(V) 2 I. On the other hand, if mNC(V) D I, we have m = (mNC(V))-C(V)[f ] 2I-C(V)[f1]=J
(again use Lemma 5.6 in CA, in particular (ii) in the proof of Lemma 5.6). So for any ideal J of C(V)[f~}],
we may choose I = I(J) =JNC(V).

(2) We first translate this into a statement of commutative algebra. We are given a map of k-algebras
g* : C(V) — C(V") such that for any maximal ideal m of C(V"), we have f & (¢*)~!(m). We would like to
show that there is a map of C(V)-algebras from C(V)[f~!] to C(V"). In view of the universal property of
localisation (see Lemma-Definition 5.1 in CA), it is sufficient for this to show that ¢*(f) is a unit in C(V").

Now suppose for contradiction that g*(f) is not a unit in C(V"’). Then ¢*(f) is contained in a maximal ideal
m of C(V"). Hence f € (¢*)~!(m), which is a contradiction. [

We give a description of regular functions in terms of the ambient space in the next corollary.

Corollary 4.4. Let f € C(V'). The regular functions on V\Z([f) are the restrictions of the functions k™ — k
which are of the form % (1 >0 ), where P(xy,...,x,) € Ry, and F(x1,...,x,) € R, is any lifting
of f to R,,.

Proof. Note first that C(V)[f~1] ~ C(V)[t]/(tf — 1) as a C(V)-algebra (see Lemma 5.3 in CA). Hence
C(V)[f~] corresponds to the algebraic set Z in k"1 given by the ideal generated by the sets Z(V) and
tF(zy,...,m,) — 1 in k[xq,...,2,,t]. The polynomial map ¢ : k"™t — k™ inducing the map of k-algebras
C(V) = C(V)[t]/(tf — 1) is simply given by the formula ¢((v1,...,vn,2)) = (v1,...,v,). The inverse of
the map Z jakg V\Z(f) is given by the formula (vq,...,v,) = (v1,..., 0, F(v1,...,0,)7 %) (it must be this
map since the map Z ol V\Z(f) is bijective and (vy,...,v,, F(v1,...,v,)"t) € Z by construction). Hence
a regular map on V\Z(f) is given by the evaluation of a polynomial in the variables z1,...,z,,t on the
vector (v, ..., 0n, F(v1,...,v,)7 1) (for (v1,...,v,) € V\Z(f)). This is the conclusion of the corollary. [

Note that the last lemma implies that the regular functions on V\Z(f) are all quotients of restrictions of
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regular functions on V' by powers of f. Also, Lemma 4.3 implies that if & € C(V) is a regular function on
V and hly\zy) = 0, then f-h =0 (by the definition of localisation and the fact that C(V) is reduced).

Proposition 4.5. Let U be an open subset of the algebraic set V C k™. A function a : U — k is regular iff
for any point u € U, there is a polynomial F' € R,,, such that F(u) # 0 and a polynomial P € R,, such that

a coincides with P/F in a neighbourhood of .

This implies in particular that if a function a : U — k is regular and nowhere vanishing, then 1/a : U — k
is also a regular function. In other words, the units in the ring of regular functions U — k are the nowhere

vanishing regular functions.
Proof. (of Proposition 4.5). We first show the following.
Let W C k* be an algebraic set. Let fi,..., fi € C(W) and suppose that (f1,..., ;) =C(W). Leth: W — k

be a function (not assumed regular) and suppose that for each i € {1,...,1} there is an integer n; > 0 and
an element ¢; € C(W) such that hlyz(s,) = ¢i/fi"*. We claim that the function A is then regular on W (ie
arises from an element of C(W), or in other words by restriction to W of a polynomial map k* — k).

To prove this, note first that we may assume that all the n; are equal to some m > 1. Indeed, if we let
m := 14sup,; n; then we may write h|yzcs,) = cif;" "/ f" for all i. Now notice that for all 4,5 € {1,...,(}
we have

Mz ) = a0 = ¢/ f]
so that (fif;)™(ci/fI" —c;/f]") = ftci — ¢; fi* = 0 on W\Z(fif;). We deduce from the remark preceding
the proposition that

(fifi)fj"ei = (fifi)es fi

on V. Now let b; € C(W) be functions such that

S
(note that we also have (fZ™,..., f2™) = C(W) - prove this or see Lemma 12.2 in CA). Let

E = Zbifimci-

We compute

REF™ =i e = > bi(fif)) " e = Y bi(fif) " e = O bifFm e = £t

so that %\W\Z(fj) = c;j/f]". Hence h = h. This completes the proof of the claim.

Coming back to the proposition, note that the ”=-" direction of the equivalence stated in the proposition is
clear from Lemma 4.1 and Corollary 4.4. Thus we only have to prove the ”<" direction of the equivalence.
Since the topology of U is quasi-compact (this will be proven in exercise sheet 2, question 2.5 (4) - you
can also prove this directly), we may reword this implication as follows. Let ¢1,...,¢9; € C(V) and suppose
that U = U;(V\Z(g:)). Let V' C k™ be an algebraic set and let H : V' — V be a regular map such
that H(V') C U. Suppose that for all i € {1,...,1} we have al|y\z(y,) = di/g: for some n; > 0 and some
d; € C(V). The ”<" direction of the equivalence of the proposition is then the statement that ao H = H*(a)

is a regular function on V’. So we only have to prove this last statement under the just stated assumptions.

12



Note first that by construction, for all i € {1,...,l} we have
H*(a)lvnzm+(g:)) = H*(di)/H"(9:)-

Also, since H(V') C U, we have (H*(g1),...,H*(g:)) = C(V'). Hence we may apply the preceding claim to
W =V’ f;=H*(g;) and h = H*(a) to conclude that H*(a) is regular on V'. O

Note that in view of the previous proposition, the following property holds trivially: if U’ C U is an inclusion
of open subsets of V', then the restriction to U’ of a regular function on U is also regular. We encapsulate
this property in the following

Definition 4.6. Let T be a topological space. A sheaf of functions O onT with values in k is an assignment,
which associates with each open subset O of T a sub k-algebra Or(O) of Maps(O, k), with the following
property: for any open covering {O;} of an open subset O, a function f : O — k lies in Or(O) iff flo, €
Or(0;) for all i.

Here Maps(O, k) is the set of functions from O to k, with its natural k-algebra structure (given by pointwise
multiplication and addition).

Note that if O is an open subset of a topological space endowed with a sheaf of k-valued functions, O inherits
a sheaf of k-valued functions from 7.

Proposition 4.5 implies that for any algebraic set V' C k™, the regular functions on Zariski open subsets of

V define a sheaf of functions Oy with values in k on V.

There is a natural notion of mapping between topological spaces endowed with sheaves of k-valued functions:

Definition 4.7. Let (T, Or) and (T, O1) be two topological spaces endowed with sheaves of functions with
values in k. A morphism (sometimes loosely called a map) from (T, Or) to (T',Or:) is a continuous map
a:T — T such that for any open subset U' C T' and any element f € Or(U’), the function f o alq-1ur
on a=*(U") lies in Op(a=1(U")).

We will also need the following definition.

Let T be a topological space endowed with a sheaf of functions Op with values in k. Let t € T. Let
(/Q\T,t = U0 open, teco Or(0) (where all the Or(O) are considered to be disjoint from each other). Define an
equivalence relation on (7)\T,t by declaring two functions in @T,t equivalent if they coincide in some open
neighbourhood of ¢. The set of equivalence classes in @T7t has a natural k-algebra structure and we denote it
by Ot . The k-algebra O is called the local ring att. Note that by definition, for any open neighbourhood
O of t, there is a natural map of k-algebras Op(O) — Orpy. Also, there is a natural map of k-algebras
Or+ — k, which is given by evaluation at ¢.

If we are given a morphism from (7, Or) to (T”,Or) as in the last definition, the pull-back of functions
gives a map of k-algebras Or o) — Or for any t € T'.

From the very definition of regularity, we see that any regular map from an algebraic set to another induces

a morphism between the associated topological spaces with sheaves of k-valued functions.

We are now ready to define a general variety.

Definition 4.8. Let T be a topological space endowed with a sheaf of functions with values in k. We say
that T is a variety if there is a finite open covering {U;} of T, such that U; with its induced sheaf of k-valued
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functions is isomorphic to an algebraic set endowed with its sheaf of reqular functions. A morphism of

varieties is a morphism of the corresponding topological spaces with sheaves of k-valued functions.

Lemma 4.9. Let V C k™ be an algebraic set and let (V,Oy) be the associated topological space with sheaf
of k-valued functions. Let v € V. Then the natural map of k-algebras C(V) = Oy (V) — Oy extends

(necessarily uniquely) to an isomorphism of k-algebras C(V)z ~ Oy 3.

Here we identified & with the corresponding maximal ideal Z({o}) when writing C(V)z (so that C(V)z is the
localisation of C(V') at the multiplicative set C(V)\Z({7})).

Proof. We first show that the map C(V) — Oy extends to a map of k-algebras C(V); — Oy 3.

To show this, we have to show that a regular function f € C(V'), which does not vanish at o, maps to a
unit in Oy 3. Now by definition a unit in Oy is represented by a regular function in a neighbourhood of
0, which vanishes nowhere in that neighbourhood (see the remark before Definition 4.6). Now since f does
not vanish at v, it is nowhere vanishing in the set V\Z(f), which is a neighbourhood of ©. So the image of

fin Oy is a unit.

So we have a unique extension of the map C(V) — Oy to a map of k-algebras C(V); — Oy5. We still

have to show that this last map is injective and surjective.

We first show injectivity. Let f/s € C(V)5 (where s € C(V)\Z({v})). Suppose that the image of f/s in Oy 3
vanishes. By definition, this means that the function f vanishes in a neighbourhood of ©. In particular,
there exists an h € C(V') such that f vanishes in V\Z(h), where h does not vanish at o (use Lemma 4.1). In
other words, the image of f in C(V)[h~!] vanishes (use Lemma 4.4 and the commentary thereafter). Since
h & Z({v}), the natural map C(V) — C(V); factors through C(V)[h~!] and hence the image of f in C(V);

also vanishes. This settles injectivity.

Now for surjectivity. By Lemma 4.1, an element ¢ € Oy 5 is represented by a regular function on V\Z(h),
for some h which does not vanish at 9. Such a function corresponds to an element of C(V)[h™!] and again
since the natural map C(V) — C(V); factors through C(V)[h™!], we see that € lies in the image of C(V)s.
Since € € Oy 3 was arbitrary, the natural map C(V); — Oy 5 is surjective. O

Note the following consequences of the last lemma. With the terminology of the lemma, the ring Oy 5 is
local. Also, note that the natural evaluation map Oy — k is surjective, because all constant functions
are regular on V. Hence the kernel of the map Oy 3 — k is maximal. Hence this kernel coincides with the

unique maximal ideal of Oy 3.

For Definition 4.8 to be coherent, we need to check that we can recover an algebraic set from its associated

topological space with sheaf of k-valued functions:

Lemma 4.10. Let V C k™ and W C k' be two algebraic sets. Let (V,Ov) and (W,Ow) be the associated
topological spaces with sheaves of k-valued functions. Let g be a morphism from (V,Ov) to (W,Ow). Then
g 1s induced by a regular map ¢ : V. — W.

Proof. By definition, the morphism g provides a map of k-algebras C(W) — C(V). Furthermore, for any

v € V, we have a commutative diagram of k-algebras

14



cw) —L— )

|,

Ow,g(v) < Oy

From the remark after Lemma 4.9, the ring Oy is a local ring and its maximal ideal consists of the
elements represented by the regular functions h defined in a neighbourhood of ¥ such that h(v) = 0. A
similar statement is true for Oy, ) and g(v) in place of ©. In particular, the map g* : Ow gz — Ovp
sends the maximal ideal of Oyy 4(3) into the maximal ideal of Oy 5. Since the involved rings are local, this
implies that the inverse image by g* of the maximal ideal of Oy is the maximal ideal of Oy 4(3). Using
standard properties of localisations and Lemma 4.9, we conclude that the inverse image of Z({7}) C C(V)
by ¢* : C(V) — C(W) is Z({g(v)}). In particular, g(v) = Spm(g*)(?) (use Lemma 3.4). Hence g is induced
by the map of k-algebras ¢* : C(W) — C(V) and hence by a regular map V' — W (by Theorem 3.7). O

In categorical terms, this implies that the category of algebraic sets embeds in the category of topological
spaces with sheaves of k-valued functions by a fully faithful functor. We shall from now on call affine variety

a variety isomorphic to a variety associated with an algebraic set.

We shall often abbreviate ”topological space with sheaf of k-valued functions” as ”Topskf” from now on.

5 Open and closed subvarieties

Proposition 5.1. Let (V, Oy ) be a variety. Let U CV be an open subset and let Oy be the sheaf of k-valued

functions induced by Oy . Then (U, Oy) is a variety and the inclusion map is a morphism of varieties.

Proof. Let {V;} be an open covering of V' such that each V; is isomorphic as a Topskf to an affine variety
(where V; is endowed with the sheaf of k-valued functions induced by V'). Then {V;NU} is an open covering
of U. Since V; NU is open in V;, there is for each i a subset E; C C(V;) such that Ueecg, (Vi\Z(e)) =V;NU
(use Lemma 4.1). Hence we only have to show that the open subset V;\Z(e) of V; is isomorphic as a Topskf
to an affine variety. But this follows from Lemma 4.3. [

An open subset of a variety is called an open subvariety if it is endowed with the structure of Topskf described

in the last Proposition.

Let (V,0y) be a variety. Let Z C V be a closed subset. Endow Z with the topology induced by V. For
any open subset O of Z, define a function f : O — k to be regular if there is a collection of open subsets
{U;} of V and regular functions g; : U; — k such that

- (WU)NZ=0;
- gilonu, = flonu,-

In words, f: O — k is regular iff in the neighbourhood of every point of O the function f is the restriction
of a regular function on some open subset of V. This endows Z with a structure of topological space with
k-valued functions. We shall write Oz for the corresponding sheaf of k-valued functions. The sheaf of

k-valued functions Oz on Z is said to be induced by Oy .

Proposition 5.2. The topological space Z with sheaf of k-valued functions Oz is a variety. The inclusion

map Z — V is a morphism of varieties.
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Proof. The inclusion map Z — V provides us with a morphism (Z, Oz) — (V, Oy ) of Topskf by construc-
tion. Hence we only have to show that (Z,0z) is a variety (see Definition 4.8). Let {V;} be a covering of
V by open subsets such that (V;, Oy,) is isomorphic as a Topskf to an affine variety. By definition, it is
sufficient to show that for each i, the Topskf Z NVj is isomorphic to an affine variety. Hence we may assume
that V is affine to begin with. Hence we are reduced to the situation where V' C k™ is an algebraic set and
Z C k™ is another algebraic set such that Z C V. Endow Z with the sheaf of functions Oz induced by
Oy. We would like to show that (Z, Oyz) is isomorphic to an affine variety as a Topskf. Now note that by
Proposition 4.5 the sheaf O is precisely the sheaf of regular functions on Z viewed as an algebraic subset

of k™. So (Z,0y) is isomorphic to an affine variety as a Topskf. [

An closed subset of a variety V is called a closed subvariety if it is endowed with the structure of Topskf
induced by V.

Lemma 5.3. Let (W,0w) and (V,Oy) be two varieties. Let Z (resp. O) be a closed subset (resp. open
subset) of V.. Endow Z (resp. O) with its structure of closed (resp. open) subvariety. Let A : W — V
be a morphism of Topskf such that N\(W) C Z (resp. A(W) C O). Then the induced map W — Z (resp.
W — O) is a morphism of Topskf.

Proof. Left to the reader. Unroll the definitions. [
We also record a consequence of the proof of Proposition 5.2:

Lemma 5.4. Let V. C W C k™, where V and W are algebraic sets in k™. Let (V,0vy) — (W, Ow) be the
corresponding morphism of topological spaces with sheaves of k-valued functions. Then Oy is induced by

Ow.

6 Projective space

Projective varieties arise when one tries to find an algebraic counterpart of the topological notion of com-

pactness. We will revisit this later when we consider complete varieties.

Let n > 0. A line through the origin of k"1 is by definition the vector subspace [v] of k"T1 generated by
a vector v € k"T1\{0}. We define projective space of dimension n to be the set P"(k) of lines through the
origin of k"L, If v = (v, ...,v,) € k"T1\{0}, we shall write [vg,...,v,] for [{ve,...,v,)].

We shall endow P™(k) with a variety structure. For i € {0,...n}, define
Ui ={[vo, ., vn] € P" (k) |v; # 0},

In the following, we shall write the symbol ~ over a term that is to be omitted. The map u; : k™ — U; such
that

'Uq'(<’1)0, sy Uiy ey UTL>) = [Uo, sy Vi1, 17Ui+1a s vn]
is clearly a bijection and we have

- Vo Vi [3)
U, 1([UOa...7Un]):<;7...7i,...7f>,
i i i

if [’1)07...,’[}”] e U;.
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If j <iand v; # 0, we compute

(uj_loui)(<v0,...,vvi,...,vn>):uj (o, -y vim1, Lvigr, - cvp]) = (o, = — —— o )

and if 7 > ¢ and v; # 0, we have similarly

(ujf1 ou;)({voy . vy UiynevyUn))

—
~

Hence, if i # j, the map uj_l ou; gives a map from the open subset of k"
uij = {<U0,...,1\]/i7...,1}n> S k;"\vj 7&0}

into the open subset of k™
Z/[ji = {<1}0,...,17j,...,1}n> Ek‘n|’l}i 750}

and Uz(u”) = Ul N Uj = Uj(uﬂ) Let U5 = ’(,Lj_l O U; :L{ij — Uﬂ

Note that if one sees U/;; as an open subvariety of k", then U;; is an affine variety associated with the
coordinate ring

~

Klzoy .. @i agzy ] = klzo, . 2, [t]/ (b2 — 1)

and similarly, ¢;; is an affine variety associated with the coordinate ring

k[yOa"'vz;ja"'ayn][yi_l] = k[yOavy\;aayn][Z]/(Zyz - 1)

One checks from the definitions that u;; arises from the polynomial map which sends z to z; and y; to z; - ¢
if I # 4 and to t if | = 4. Hence u;; defines a morphism of varieties from U;; to U;;. One checks from the

formula just given that u;; and u;; are inverse to each other, so u;; is an isomorphism of varieties.

Now we define a topology on P™(k) by declaring a subset O C P™(k) to be open iff u;*(O) is open in k"
for all i € {0,...,n} (why does this define a topology?). Furthermore, if O C P"(k) is open, we define
a k-valued function f : O — k to be regular iff f o “i|u;1(0) is a regular function on ui_l(O) for all i.
Since (K™, Ogn) is a Topskf, we see that with this definition, P"(k) becomes a Topskf (why? - unroll the
definitions). We shall write Opn (i) for the just defined sheaf of k-valued functions on P" (k).

Proposition 6.1. The sets U; are open in P*(k) for all i € {0,...,n} and the maps u; : k™ — P"(k)
restrict to isomorphisms of Topskf between k™ and (U;, Oy,), where Oy, is the sheaf of k-valued functions
induced on U; by Opn (. In particular, the Topskf (P"(k), Opn(xy) is a variety.

The U; are called the standard coordinate charts of P™(k). We shall sometimes write U for U; to emphasise

the dependence on n.

Proof. To show that U; is open, we have to show that uj_l(Ui) is open in k™ for all j. We have shown

above that uj_l(Uz) = Uj; is open, so U; is open.

Next, we have to show that the map u; is a homeomorphism onto its image. The map wu; is continuous and
injective by definition, so we only have to show that u; is an open map. So let O C k™ be an open set. We
have to show that u;(O) is open, or in other words that uj_l(uz(O)) is open for all j. Now we have

ui N (ui(0)) = uy H(wi(0) N (Ui N ;) = uj H(wi(O NUij)) = i (O N Uy )
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and wu;; (O NU;;) is open in Uj; since u;j : U;; — U,; is a homeomorphism by the above. On the other hand

Uj; is open in Uj, so u;;(O NU;;) is also open in U;. So w; is a homeomorphism onto its image.

Finally, we have to show that if O C U; is an open set then f : O — k is a regular function iff f o “i|uf1(0)
is a regular function on the open subset u; 1(0) of k™. By definition, if f : O — k is a regular function,
then f o u,;|uf1(0) is regular. So suppose that f o u,-|u¢1(o) is regular. We have to show that for all j the

. . —1 . n o
function f o ujluj_l(O) is regular on u; (O) viewed as an open subset of k™. Now we have by definition
wiluy = wilug; © uji
and since u;l(O) C U;; we thus have
uj|u;1(0) = Ui|uijmu;1(0) © uji|u;1(0)
-1

J

where w;i|, -1 is viewed as a map from u
J
Topskf since u;; is a morphism of Topskf by the above. Also, the function f o “i|uijmu.‘1(0) is a regular

0) to Uy; Nu; *(0). The map wu;;| -1, is a morphism of
J i AT (0))]
J
function by the definition of a sheaf of k-valued functions. Hence

fo Uj|u;1(0) =(fo Ui|u,;jmu;1(0)) °© “ji|u;1(0)
is a regular function. This completes the proof. [

Example. The space P!(k) only has two coordinate charts, the charts Uy and U;. By inspection, we see
that P1(k)\U; consists of only one point. So one can see P!(k) as the ”compactification” of k obtained
by adding a "point at oo” to k. If k = C, the space P!(k) can be naturally identified (as a set) with the

Riemann sphere of complex analysis.

7 Projective varieties

What are the closed subsets of projective space? To answer this question, we shall need the following

definitions.
A polynomial P(xq,...,2z,) € k[zg,...,2,] is said to be homogenous if it is a sum of monomials of the same
degree. Any polynomial P(xo,...,x,) has a canonical decomposition

deg(P)
P= % Py
i=0
where Py is the sum of the monomials of degree 7 appearing in P (so that in particular Py; is homogenous).

Example. The polynomials g, ¥3 + xoz1 are homogenous but z2 + z; is not.

We have a decomposition of k[zg,...,z,] as an internal direct sum

k’[l’o,...,l‘n] = @k[l’o,...7$n]m

120
where k[zo, ..., z,] is the k-vector space of homogenous polynomials of degree [. In particular, we have
k[zo,...,2n]) = k. This decomposition into a direct sum makes k[xo,...,7,] into a graded ring in the

sense of section 11.2 of CA.
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Example. We have (2§ + 1)) = 23, (z§ + 21)p) = 21, (2§ + 21)j0) = 0.

Note the following elementary fact. If P(xq, ..., z,) € k[xo, ..., 2,] is homogenous then P(s-xzg,..., s x,) =
548(P) P(z, ..., x,) for all s € k.
We thus see that if P(zo,...,z,) € k[zo,...,2,] is a homogenous polynomial and ¥ € k™! is non zero, we

have P(v) = 0 iff P(s-0) = 0 for all s € k*. This gives rise to the following definition. Let S C k[xo, ..., T

be a set of homogenous polynomials. We define
7(S) := {[v] € P"(k) | v € k"T\{0},YP € S : P(v) = 0}.
A projective algebraic setin P (k) is a subset of the form Z(.S), where S C k[zo, . .., x,] is a set of homogenous
polynomials.
For convenience, we shall extend the operator Z(:) to non homogenous polynomials. For any set S C

klxo, ..., zn] (not necessarily consisting of homogenous polynomials), we set

Z(S) == {[v] | v € k"*'\{0}, P (v) = 0Vi > 0}.

Just as in the affine case, we have Z(S) = Z(S - k[xo, ..., 2zy]) (why?). Hence the projective algebraic sets in
P (k) are the sets of the type Z(I), where I C k[zg,...,x,] is an ideal generated by homogenous elements.

We shall say that an ideal of k[zo,...xz,] is homogenous if it is generated by homogenous elements.

Lemma 7.1. Let I C k[xg,...xz,] be an ideal. Then I is homogenous iff for all P € I and all i > 0, we

have Py € 1. If I is homogenous then its radical v(I) is also homogenous.

In other words, a homogenous ideal is a graded ideal in k[xo, ..., z,] (ie a graded k[xo, ..., 2,]-submodule

of k[l‘o, .. ,mn})

Proof. See exercises. [

Proposition 7.2. Projective algebraic sets are closed in P (k). Furthermore, if C C P™(k) is a closed
subset and J is the ideal generated by the homogenous polynomials which vanish on C, then Z(J) = C. In

particular, the closed subsets of P" (k) are precisely the projective algebraic sets.

Proof. Let S := {P,} be a set of homogenous polynomials in k[xo,...,2,]. By construction, we have
u; Y(Z(S)) = ZEPi(zo, ..y 21, L, Tig1, oo, ) })

so that u; ' (Z(S)) is closed in k™. By Proposition 6.1, the set Z(S) NU; is thus closed in U; (for the induced
topology). Since the U; cover P"(k), we thus see that Z(S) is closed in P™(k).

As to the second assertion, we clearly have Z(J) 2 C. So we need to prove that Z(J) C C. In other words,
we have to prove that if [7] & C, then there is a homogenous polynomial H € J, such that H([7]) # 0. Now
let j € {0,...,n} and suppose that [7] € U;. We then have [7] € C N U;. Since u;l(C) is the zero set of
an ideal in k[zo,...25,..., x,], there is a polynomial P(xo,...,2;,...2,) € k[zg,...2j,...,xy,] such that
P(uj_l([@])) # 0 and such that P € I(u]-_l(C)). Let

.y B ey

deg(P; Zo Tj—1 Tj41 x
Bi(P) =g p(X, BEL DL Iy
Lj Ly Lj Ly

19



This is a homogenous polynomial (the "homogenisation” of P with respect of the variable x;) such that

(ﬂj(P))(Io,...,Ij_l,l,Ij,...,{En) = Pj.

In particular we have Z(5;(P)) 2 CNU; and (5;(P))([7]) = P(uj ([7])) # 0. Now let Q; = z;3;(P). Then
Q; is still homogenous and we have Q;([7]) # 0 and Z(Q;) 2 C (because x; vanishes on P"(k)\U;). Hence
we may set H = ;. This completes the proof. [

If A C P*(k) is a subset, we shall write Z(A) C k[zg,...,x,] for the ideal generated by the homogenous
polynomials vanishing on A. This notation clashes with the notation in the affine case but the context
should make it clear which definition of Z(-) we use.

Now we have the analogue of Proposition 2.3:

Proposition 7.3. Let C C P"(k) be a closed subset and let J C k[zo,...,xy] be a homogenous radical ideal.
Suppose that Z(J) # 0. Then Z(C) is a (by definition homogenous) radical ideal and we have Z(Z(C)) = C
and Z(Z(J)) = J.

Proof. We first show that Z(C) is a radical ideal. To see this, let H C t(Z(C)) be the subset of t(Z(C))
consisting of the homogenous elements of v(Z(C)). By the definition of the nilradical of an ideal, all the
elements of H vanish on C. On the other hand, v(Z(C)) is a homogenous ideal by Lemma 7.1 and so H
generates t(Z(C)). Hence t(Z(C)) C Z(C). Hence t(Z(C)) = Z(C).

The equality Z(Z(C)) = C is contained in Proposition 7.2. For the second equality, note first that the
inclusion J C Z(Z(J)) follows from the definitions. We thus only have to prove that J 2 Z(Z(J)). So let
Q@ be a non zero homogenous polynomial vanishing on Z(.J). We need to show that @ € J. Note that
deg(Q) > 0. Indeed, if deg(Q) = 0 then @ is a non zero constant polynomial and then Z(Q) = ), which
implies that Z(J) = (). This is not possible by assumption. Also, note that J does not contain any constant

polynomial, for otherwise Z(.J) = (). Now consider the map
q: k"TN\{0} — P"(k)

given by the formula ¢(v) := [v]. Note that ¢~ 1(Z(J)) is by construction the set of zeroes of J in k"*1\{0}.
Hence the set of zeroes of J in k™ is the set ¢~1(Z(J))U{0} (since every non constant homogenous polynomial

vanishes at the 0 vector). Now @ also vanishes on ¢~*(Z(J)) U {0} and so by the strong Nullstellensatz we
have Q e ¢(J)=J. O

Lemma 7.4. Let J C k[xo,...,%,] be a homogenous radical ideal. Then the subset Z(J) of P™(k) is empty
iff J =klzo,...,zn) or J = E[xo,. .., Tn]+.

Here k[zo,...,2n]+ is the homogenous ideal of k[xg,. .., x,] generated by all the non constant homogenous
polynomials.

Proof. We first prove the < direction of the equivalence. So let v = (vy,...,v,) € k"*1\{0}. Suppose
that v;, # 0 for some iy € {0,...,n}. The homogenous polynomial z;, € k[xo,...,~n]+ does not vanish at
[0]. Since ¥ € k"T1\{0} was arbitrary, we see that Z(J) is empty if J = k[zo, ..., z,]4 or J = k[zq, ..., 2n].

We now prove the = direction. So suppose that Z(J) = ). To avoid notational confusion, write Z,g(I) for
the set of common zeroes in k™! of the elements of a (not necessarily homogenous) ideal I C k[zo, ..., Z,].
By using the map ¢ : k"1\{0} — P"(k) described in the proof of Proposition 7.3, we see that

Zag(J) N0 (K"T\{0}) = 0.
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Now suppose first that J does not contain any non zero constant polynomials. Then 0 € Z,g(J) (because

J is generated by non constant homogenous polynomials) so that Z,g(J) = {0}. Using the correspondence

described after Proposition 2.3, we conclude that J is the radical ideal of k[zo,. .., x,] associated with the
point 0, which is k[xo,..., 2]+ . If J contains a non zero constant polynomial then J = k[xo, ..., 2]
(because J contains a unit). So we conclude that if Z(J) = @ then either J = k[xg,...,z,]4 or J =

klzo,...,xn]. O
We shall call the ideal k[xo, ..., z,]+ the irrelevant ideal of k[zo, ..., zy].

We conclude from Lemma 7.4 and Proposition 7.3 that there is a correspondence
z
{closed sets in P"*(k)} = {non irrelevant homogenous radical ideals in R, }

where the maps Z(-) and Z(+) are inverse to each other.
A projective variety is a variety isomorphic (as a variety) to a closed subvariety of P™(k) (for some n > 0).

A quasi-projective variety is a variety isomorphic to an open subvariety of a projective variety.

8 Dimension

Let T be a topological space. Then T is said to be noetherian if for any descending sequence
Ci 20, 2C32...

of closed subsets of T, there is an ip > 0 such that C;, = Cj,41 = .... In this situation, we say that
the sequence stabilises at ip. Note that any subset of a noetherian topological space is also noetherian (in
the induced topology) (why?). Finally, note that a noetherian topological space is quasi-compact (ie any

covering of the space has a finite subcovering). See exercises.
The topological space T is said to be irreducible if T' is not empty and any open subset of T is dense in 7.

Example. The Zariski topology on k™ is noetherian. Indeed any descending sequence
Ci20C;,2C32...
of closed subsets of k™ corresponds uniquely to a sequence
Z(Cy) CI(Ce) CI(Cs) C ...

(see the first section) and such a sequence stabilises for some index because k[z1,...,x,] is a noetherian
ring (by Hilbert’s basis theorem). Consequently, the topology of any algebraic set is noetherian. A closed
subspace Z of k™ is irreducible iff Z is irreducible as an algebraic set (why?).

Lemma 8.1. Let T be a non empty noetherian topological space. Then there is a unique finite collection
{T;} of irreducible closed subsets of T' such that

(1) T =UT;
(2) T; € ULy for alli.
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Note that a consequence of the lemma is that the T; are the irreducible closed subsets of T" which are

maximal for the relation of inclusion among all the irreducible closed subsets contained in T’ (why?).

Proof. See exercises. [

The closed subsets T; described in Lemma 8.1 are called the irreducible components of T. If T is an algebraic
set, the decomposition of T into irreducible components coincides with the decomposition given by Lemma
2.6 (why?).

Lemma 8.2. A variety is noetherian.

Proof. Let V be a variety. Let
Ci2C;, 2032 ...

be a descending sequence of closed subsets of V. Let {U;} be a finite covering of V' by open affine subvarieties.
Since the U; are noetherian (as topological spaces) by the remark above and since there are only finitely
many U;, there is an integer [ > 1 such that C;NU; = Cj41 NU; = ... for all i. Since the U; cover V, this
implies that C; = Cj4; =... O

Now consider again a non empty topological space T. The dimension dim(T') of T is
dim(T") := sup{t| there are irreducible closed subsets Cy,...,Cy C T such that Co C Cy C --- C Cy}.

Note that dim(7") might be infinite. Dimension is not defined for the empty topological space (note that

some authors define the dimension of the empty topological space to be —1).

Lemma 8.3. Let V C k™ be an algebraic set. Then dim(V') = dim(C(V)).

Here dim(C(V)) is the dimension of C(V') as a ring (see Def. 11.1 in CA). Recall that by definition we have
dim(R) :=sup{n |3 po,...,pn € Spec(R) : po 2 P12 -+ 2 Pu}

for any ring R.

Proof. We have already seen that irreducible closed subsets of V' correspond to prime ideals of C(V')
(see Lemma 2.5). Hence the definition of dim(C(V')) corresponds with the definition of dim(V') under the
correspondence between radical ideals of C(V') and closed subsets of V' described at the beginning of section
one. [J

Theorem 8.4. (1) The dimension of k™ is n.
(2) The dimension of P"(k) is n.

Proof. (1) We saw in CA that dim(k[z1,...,2,]) = n (see Cor. 11.27 in CA). Hence dim(k™) = n by
Lemma 8.3. (2) Apply question 2.7 to the open covering of P (k) by its standard coordinate charts and use
(1). O

Definition 8.5. Let T be a topological space. Let C C T be a closed irreducible subspace. The codimension,
or height of C is

cod(C, T) = ht(C,T) := sup{t | there are irreducible closed subsets C1,...,Cy C T such that C C C; € --- C Cy}
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We shall sometimes write cod(C) and ht(C) instead of cod(C,T) and ht(C,T), respectively, when the

ambient topological space T is clear from the context.

Note that from the definitions, we have

dim(T) = sup ht(C,T).

C closed irreducible subset of T'

Suppose that C,V C k™ are algebraic sets in k™ and that C' C V. Suppose that C' is irreducible. Then the
height of C' in V is the height of the prime ideal Z(C') (mod Z(V)) of C(V) (in the sense of section 11 of
CA). The proof is similar to the proof of Lemma 8.3 (we leave the details to the reader).

Proposition 8.6. Let V' be a variety. Let C C V be an irreducible closed subset. Then dim(V) and
cod(C, V) are finite.

Proof. See question 2.7 (4). O

Finally, we also have the following difficult result of commutative algebra, which justifies the use of the word

” codimension”.

Theorem 8.7. Let R be a finitely generated k-algebra. Suppose that R is an integral domain. Let p C R
be a prime ideal. Then we have
ht(p) + dim(R/p) = dim(R)

The proof of this theorem is given in the Appendix. The proof is in several steps and is structured as
an exercise with model solution. We suggest the reader go through the steps by themselves first without

looking at the model solution. Note that the proof of Theorem 8.7 is not examinable.

Corollary 8.8. Let V' be an irreducible variety. Let C C 'V be an irreducible closed subset. Then

cod(C, V) + dim(C) = dim(V)

Note first that from the definitions, we have
cod(C, V) + dim(C) < dim(V)

(why?). So we only have to to prove that cod(C, V) + dim(C) > dim(V).

Proof. Let {V;} be a finite open covering of V. We suppose that each V; is isomorphic to an affine variety
when viewed as an open subvariety of V. Note that since V is irreducible, each V; is irreducible as well

(why?). We use question 2.7 and we obtain

sup cod(C' NV, V;) =cod(C,V)
i,CNV; #0

and

sup dim(C NV;) =dim(C)
1,CNV; #0
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Let R; be the coordinate ring associated with V; (so that V; ~ Spm(R;) as a set). Then R; is integral by

question 2.5 (3). Hence we may apply Theorem 8.7 and we compute
cod(C NV, V;) +dim(C NV;) = dim(V;)

it CNV; # 0. Applying sup; oy, 2o(-) to both sides of this equality and using question 2.7 again, we see
that there is an index ig such that C' NV, # 0 and such that

cod(C NV, Vi) +dim(C NV;,) = dim(V)
and hence
cod(C, V) + dim(C) > cod(C NV;,, Vi, ) + dim(C NV;,) = dim(V).
which is what we wanted to prove. [J
Here is another fundamental result from the CA course, which is relevant to the theory of dimension.

Theorem 8.9. Let n > 0 and let V,W C k™ be algebraic sets. Suppose that V. C W. Suppose that
I Ck[zy,...,x,] is such that Z(I) = V.

Let 1 > 1 and suppose that the ideal I (mod Z(W)) C C(W) is generated by | elements.
Then every irreducible component of V' has codimension <1 in W.

Furthermore, if C is an irreducible component of V then there is an ideal J C I(C) C C(W) which is
generated by cod(C, W) elements and such that C is an irreducible component of Z(J) C W (in other words

Z(C) is a prime ideal, which is minimal among the prime ideals which contain J).

See Cor. 11.15 and Cor. 11.17 in CA for the proof. This is a consequence of Krull’s principal ideal theorem.

9 Rational maps

Let V,W be varieties. Consider the set H = Hy  whose elements are morphisms f : U — W, where U
is a non empty open subvariety of V. Let ~ = ~y - be the relation on H, such that f : U — W and
g : O — W are related by ~ iff there is a open subvariety UO of UNO, which is dense in V" and which is such
that fluo = gluo. The relation ~ is easily seen to be an equivalence relation. We shall write Rat(V, W)
for the set of equivalences classes of H under the relation ~. We call elements of Rat(V, W) rational maps
from V to W. Beware that rational maps are not actual maps but equivalence classes of maps. We will use
the notation f : V --» W to denote a rational map f from V to W.

Remark 9.1. If V is irreducible and W is quasi-projective, the condition f|yo = glvo is equivalent to the
stronger condition f|yno = gluno. This follows from the fact that W is separated if it is quasi-projective.
The term separated will be defined in section 12. See also the solution of Question 3.4.

Suppose now until further notice that V' is irreducible.

Note the following. Let f : U — W be a representative of a rational map from V to W. If f is dominant,
then any other representative of the same rational map is dominant as well. Indeed, let g : O — W be
another representative of the rational map defined by f. Then f|yo = g|vo for some non empty open subset

UO C UNO (which is automatically dense in V'). Suppose for contradiction that g is not dominant. Then

24



W\ g(O) contains a non empty open subset Wi. Since f : U — W is dominant, we know that f=(W7y) # 0.
Thus, since V is irreducible, we have f~1(W;)NUO = g1 (W1)NUO # 0. In particular g~ (W\g(O)) # 0
which is a contradiction. So g is also dominant.

i

We thus see from the discussion in the last paragraph that it makes sense to speak of a dominant rational
map from V to W: it is a rational map all of whose representative are dominant (or equivalently, it is
a rational map with one dominant representative). We shall write Ratgom (V, W) for the set of dominant
rational maps from V to W.

Remark 9.2. One can show that the image of a dominant morphism between two irreducible varieties

contains an open set of the target. A special case of this statement is proven in Question 4.6.

We shall write x(V) as a shorthand for Rat(V, k). If f: U — k and g : O — k are two elements of Hyy,
one may define a new element f+ g : UNO — k of Hyy, by declaring that (f + g)(u) = f(u) + g(u) for
all u € UN O (note that U N O is not empty because V' is irreducible). Note that f+¢g: UNO — kis a
morphism of varieties (use Proposition 4.5). Similarly, one may define an element fg=f-¢g: UNO — k
by declaring that (f - g)(u) = f(u) - g(u) for all w € UNO. Again, f-¢g: UNO — k is a morphism (same
reasoning as before). Finally, if f : U — k does not vanish on all of U, then we may define f~! : U\Z(f) — k
by the formula f~!(u) = 1/f(u). Here again, f=* : U\Z(f) — k is a morphism (reason as before and use
the remark after Proposition 4.5). It is again easily verified that these operations are compatible with ~y j
and we thus obtain a structure of field on (V). This field is called the function field of V. There is an
obvious injection k < x(V') which makes (V') into a k-algebra. Note finally that for any v € V, there
is a natural injection Oy, — x(V'), which sends any representative of an equivalence class in Oy, to its

equivalence class in £(V). So (V') naturally contains the local rings at all the points of V.

Now suppose that we are given a dominant morphism of irreducible varieties a : V' — W. Then we may
define a map Hyw,, — Hy, by the recipe

(f:O—=k) = (foalj-10): FTH(O) = k)

where O is a non empty open subvariety of W and f : O — k is an element of Hyy ;. This definition makes
sense because f~1(0) # () as f is dominant. One checks (we skip te details) that this map is compatible
with the relations ~y x and ~y x and also with the operations +, (-)~! and -. One thus obtains a map of
rings

a*" g(W) — k(V).

Note that since x(W) is a field, the map a*'®' is injective. Also, if @ : V' — W is the inclusion of an
open subvariety of V into W, it follows from the definitions that the map a*'' is a bijection (check!).
Finally, the construction of a*'*' is clearly compatible with compositions of dominant morphisms (ie if
b: W — Wj is another dominant morphism of irreducible varieties, then (bo a)**t = g*at o p*13t) We
conclude from all this that the homomorphism a**" only depends on the element of Rat(V, W) defined by
a. In turn, any dominant representative g : O — W of an element of Rat(V, W) defines a map of k-algebras
g=t k(W) — k(V) ~ k(0) and again it follows from the definitions that this map only depends on the
class of g in Rat(V, W). So all in all, any dominant rational map p € Ratgom(V, W) gives rise to an injection
of fields p**2t : k(W) — s(V).

Lemma 9.3. Let X be an irreducible affine variety. Let V- C k™ be an algebraic set giving rise to X. Then
there is a canonical isomorphism of k-algebras k(X) — Frac(C(V)). This isomorphism is compatible with

dominant regular maps between irreducible algebraic sets and the corresponding morphisms of varieties.

25



Note that by question 2.5, the fact that V irreducible implies that the ring C(V') is an integral domain. So
it makes sense to talk about the fraction field Frac(C(V')) of C(V).

Proof. Define a map
7:C(V) = k(X)

by sending an element of C(V) to the equivalence class of the corresponding morphism X — k. By construc-
tion, this is a map of k-algebras. Now suppose that f: V — k is a regular map and suppose that 7(f) = 0.
Then by definition f vanishes on an open subset of V. However the vanishing set of f is equal to Z(f) and
so is closed. Hence Z(f) contains the closure in V' of an open subset of V' and thus Z(f) =V (because V is
irreducible). Hence f is the map with constant value 0 and thus 7(f) = 0. We thus see that h is injective.
Hence 7 extends to a (necessarily injective) map of fields Frac(C(V)) — x(X) by the universal property of
localisation (see Lemma-Definition 5.1 in CA). We have to show that this last map is surjective. To see
this, let O be an open subset of V and let g : O — k be a representative of an element of £(X). By Lemma
4.1, we may assume without restriction of generality that O = V\Z(f), where f € C(V). By Corollary 4.4,
we know that g = g—;|o, where g1,92 € C(V). Hence 7(g1/g2) = g. Since g was arbitrary, we have shown
that the map Frac(C(V)) — s(X) is surjective, and thus an isomorphism.

The fact that this isomorphism is compatible with dominant regular maps between irreducible algebraic

sets follows directly from the definition of 7. [

Proposition 9.4. Let V' be an irreducible variety. Then k(V') is finitely generated over k as a field and the

dimension of V' is equal to the transcendence degree of k(V') over k.

Recall that the transcendence degree of (V') over k is the largest integer n > 0 such that there exists an
injection of k-algebras
k1, ..., 2n] = &(V)

See section 11.1 of CA for details.

Proof. (of Proposition 9.4) Let {V;} be a finite open covering of V' and suppose that each V; is an affine
variety. By a remark at the beginning of this section, the function field of V; is isomorphic to the function
field of V' as a k-algebra. On the other hand, we have dim(V) = sup, dim(V;)) by question 2.7. Hence it
is sufficient to show that the transcendence degree of x(V;) over k is equal to dim(V;) for all i. So we may
suppose without restriction of generality that V' is affine. In that case, the statement is a consequence of
Lemma 8.3, Lemma 9.3 and Cor. 11.28 in CA (which follows from the computation of the dimension of

polynomial rings and the Noether normalisation lemma). [

Proposition 9.5. Let a : V — W be a dominant morphism of irreducible subvarieties. Then a*** :
k(W) = k(V) is an isomorphism iff there exist open subvarieties Vo CV and Wy C W such that a(Vy) C Wy

and such that the induced morphism aly, : Vo — Wy is an isomorphism.

Proof. The < direction of the equivalence is clear (why?) so we only have to establish the = direction.
Let Woo C W be an open affine subvariety and let Vo be an open affine subvariety of a=!(W;) (this exists
by Proposition 5.1). We claim that the map Voo — Wy induced by a is also dominant. To prove this claim,
suppose for contradiction that the map Voo — Wyp is not dominant. Then there is a non empty subset O
of Wy such that O € Wyo\a(Voo). Hence a=(0) N Voo = 0. Now a=1(0O) # 0 since a is dominant, so this
contradicts the irreducibility of V. We have thus established the claim. Since the inclusions Voo — V and
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Woo — W induce isomorphisms of function fields, we may thus assume without restriction of generality that
V and W are affine to begin with. In view of Lemma 9.3 and question 2.5 (3), it is thus sufficient to prove

the following statement of commutative algebra.

Let ¢ : A — B be a homomorphism of finitely generated integral k-algebras. Suppose that Spm(¢)(Spm(B))
is dense in Spm(A) and suppose that the induced map Frac(¢) : Frac(4) — Frac(B) is an isomorphism.
Then there is an element f € A such that the induced map A[f~!] — B[¢(f)~!] is an isomorphism.

To prove this assertion, note that by question 1.5 we already know that under the given assumptions, ¢
must be injective. Note also that since we have a commutative diagram

Frac
Frac(A) 4@5}) Frac(B)

L.

all whose maps are injective, the induced map A[f~1] — B[¢(f)~!] is injective for any choice of f € A\{0}
(remember that A and B are integral domains). Thus we only have to show that there is f € A\{0} such
that the induced map A[f~1] — B[¢(f) 1] is surjective. Now let by, ..., b; be generators of B as a k-algebra.
Let ay/cq,...,a;/¢; € Frac(A) such that

bi/1 = ¢(a:)/p(ci) =: Frac(¢)(ai/c:)
foralli e {1,...,1}. Let f:=]], ¢;. Then b;/1 = Frac(¢)(a;(][,; ¢;)/f). Hence the image of

Alf71 = Blo(H) ™

contains b; /1 for all i € {1,...,1} and also contains 1/¢(f) = Frac(¢)(1/f). Since B[¢(f)~!] is generated as
a k-algebra by 1/¢(f) and by the elements b;/1 (use Lemma 5.3 in CA), we see that A[f~!] — Blo(f) ]

is surjective. [J

If V and W are irreducible varieties, and Vo C V and Wy C W are open subvarieties such that Vo >~ Wy,

we shall say that V' and W are birational, or birationally isomorphic.

A birational map from V to W is a rational map from V' to W which has a representative f : O — W, such
that f(O) is open and such that the induced map O — f(O) is an isomorphism (where f(O) is endowed
with its structure of open subvariety of W). A birational morphism from V to W is a morphism V' — W

which induces a birational map.
Proposition 9.5 implies that a dominant rational map p € Rataom(V, W) is birational iff a*** : k(W) — k(V)
is bijective.

Proposition 9.6. Let V,W be irreducible varieties. Let c(W) — k(V') be a field extension compatible with
the k-algebra structures. Then there is an open subvariety Vo of V and a dominant morphism a : Vo — W
such that the extension a*"™' : k(W) — k(Vp) is isomorphic to k(W) < k(V) as a k(W )-extension.

A different wording of the conclusion of the proposition is that there is an isomorphism of rings between
k(V) and k(Vy) compatible with the given x(W)-algebra structures.

Proof. We may suppose without restriction of generality that V' and W are affine varieties (why?). Let B
(resp. A) be the coordinate ring of V' (resp. W). Let ¢ : Frac(A) ~ k(W) — k(V) ~ Frac(B) be the given

field extension.
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We claim that there is an g € B\{0} such that ¢(A) C B[g~!] C Frac(B) (where A is identified with its
image in Frac(A)). To prove this, let ay,...,a; be generators of A as a k-algebra. For all i € {1,... 1}
let b;,c; € B be such that b;/c; = 1(a;/1). Let g := [],ci. We then have (a;/1) € Blg~'] and thus
t(A) C Blg~1], proving the claim.

Now let Vg be the open affine subvariety associated with B[g~!]. Let o : A — B[g~!] be the map induced
by ¢ and the natural map from A to Frac(A4). Since the map t¢ is injective, it induces a dominant map
Vo — W by question 1.5. Hence V and the map Vj — W satisfy the requirements of the proposition. [

Finally, note the following. Let V and W be irreducible varieties. Consider the map
Ratqom (V, W) — homomorphisms of k-algebras x(W) — x(V) (x)

which sends a € Ratgom (V, W) to a**2* : s(W) — (V). Proposition 9.6 implies that this map is surjective.

On the other hand we have
Lemma 9.7. The map (x) is injective.

t *,rat

Proof. Let a1,as € Ratqom(V, W) and suppose that a*f’ra =ay . We have to show that a; = as.

Now there is a by construction an open subset O C V and morphisms a;, as : O — W which represent a;
and as, respectively. Replacing W by one of its open affine subvarieties O’ and replacing V' by an open affine
subvariety of a; *(0’), we may assume that both V and W are affine and that a; (resp. ag) is represented
by a morphism. Recycling notation, call oy : V. — W (resp. ag : V — W) a morphism representing a;
(resp. as).

Now let B (resp. A) be the coordinate ring of V' (resp. W).

Let ¢ : Frac(A) ~ k(W) < r(V) ~ Frac(B) be the field extension given by a}™" = a}**". We have by
construction a commutative diagram

Frac(A) —t Frac(B)

I

[

A— B

for i € {1,2}. Since the vertical maps are injective we thus have af = o5. O

In view of the last lemma and the comment preceding it, we thus see that the map (*) is bijective. In
particular, there is a one-to-one correspondence between dominant rational maps from V to W and x(W)-
algebra structures on the field x(V).

We shall from now on often write a* for a*"* when V and W are irreducible varieties and a € Ratgom (V, W).
This is justified by the proof of Lemma 9.7.

10 Products

We wish to endow the cartesian product of two varieties with the structure of a variety. We shall do this

for quasi-projective varieties.
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Definition 10.1. Let V' and W be varieties. A product of V. and W is a triple (V [[W, v, 7w ), where
VIIW is a variety and wy : VI[W — V and 7w : V[[W — W are morphisms of varieties. This triple
is required to have the following property (PROD).

(PROD) If X is a variety and a : X —V and b: X — W are morphisms of varieties, then there is a unique
morphism of varieties a[[b: X — V[[W such that my o (a]]b) = a and 7w o (a[]b) = b.

Note that property (PROD) in Definition 10.1 characterises the triple (V [[ W,y , 7w ) uniquely up to
unique isomorphism of triples (an isomorphism of triples is an isomorphism of the underlying varieties
which is compatible with the morphisms in play). This is an example of categorical product. Note that if
V and W are varieties, it is not clear a priori that they have a product. However, if the product of V' and
W exists, it is uniquely defined. Abusing language, we shall often say that V' ][] W is the product of V' and

W without writing the associated morphisms 7y and wy. We first show

Theorem 10.2. Let m,n > 0. The product P™ (k) [[P"(k) exists.

Before starting with the proof, we make a construction. We shall consider the projective space P m+n,
The space P47 ig by definition the set of lines through the origin in the vector space k™ mtnt1=(m+1)(n+1)

and we shall index its standard basis using double indices.

Let by, ..., bmntmint1 be the standard basis of k™" +n+1 “indexed in the usual manner. If i € {0,...,m}
and j € {0,...,n}, we shall write b;; for the element b;(,;,4-1)4i+1. With this convention, each b; corresponds
to precisely one b;;. Since we shall exclusively work with double indices, this formula for b;; is actually not

important. One only needs to know that the b;; form a basis of k™ +m+n+l,

Let o : P (k) x P*(k) — Pmntm+n he the map given by the formula
o(([(Xo, ..., X, [Yo,... Ya])) = [(XZYJ)U]

where (-);; means that we put (-) in the coordinate ¢j (corresponding to b;;). We will write Z,; for a quantity
in the coordinate ij and we shall write z;; for the homogenous variables of P+ m+m,

Lemma 10.3. The map o is injective and its image is closed in PmHm+n,

Proof. (of Lemma 10.3). For each [Z;;] € o(P™ (k) x P™(k)) let i0jo = i0([Zi;])jo([Z:;]) be a pair of indices
such that Z, ;, # 0. The map 7 : o(P™(k) x P"(k)) — P™(k) x P"(k) sending [Z;;] to

([Z0jos Zrjos - -+ s Zmjols [ Zigos Zigts - - - Zign))

has the property that 7 o 0 = Idpm ()xpr(x) (Why?). Hence o is injective. To show that o(P™ (k) x P"(k))
is closed, consider the subvariety of P™"*T™+" described by the homogenous equations ZiiZys — ZisZyj (for
all 4,7 € {0,...,m} and j,s € {0,...,n}. We clearly have

XiX; X, X, = X, XX, X,

and so Z((Z;jZys — ZisZrj)) 2 o(P™ (k) x P"(k)). On the other hand, if we let [Z;;] € Z((Z;j Zys — ZisZrj))
and Z;,;, # 0 (say) then

(([Zojo» Z1jos - - s Zmijols [ Zin0s Zio1s - - - Zignl)) = [(Zijo Ziog)ig) = (Zij Zigjo)is) = [ Zij]

so we also have Z((Z;jZys — ZisZrj)) C o(P™ (k) x P*(k)). O
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We record one output of the proof of the last lemma: the image of the map o is the zero set of the set of
quadratic equations z;;2,s = 2is2rj. The map o is called the Segre embedding. Its image is called the Segre

variety (which is a closed subvariety of Pmntm+n),

Proof. (of Theorem 10.2). Endow P™(k) x P™(k) with the variety structure inherited from the Segre
variety via the Segre embedding. We will show that P (k) x P™(k) has the properties listed in Definition
10.1. We first show that the projections m : P™(k) x P"(k) — P™(k) and mp : P™ (k) x P"(k) — P™(k)
are morphisms of varieties. For any ig € {0,...,m} and any jo € {0,...,n}, let U, C P™" ™+ be the
open subset of the elements [Z;;] such that Z;,;, # 0 (this is a standard coordinate chart of P™"+™*") Let
Tigjo.1 * Uigjo — P (k) be given by the formula

Tiojo,1 ([Zi5]) = [Z0jos Z1jos - - -+ Zmio)

By question 2.3, this defines a morphism from U, ;, to P™(k). Now suppose that

0Jo
o(([(Xos -+ s Xm], [Yo, .- Yal)) = [(Xa¥5)i5) € Ui
In other words, X;,,Y;, # 0. Then

Tiojo,1 ( (([X07 s Xm }7 [YOv Y, ]))) = Wiojo,l([(Xin)ij]) = [XOYJleyjow : "Xijo]
= [Xo,Xl,..‘, m] —71'1(([)(0,...7 },[Yvo,yn]))

Hence m; is a morphism on the open subset o =1 (U;,j,) of P (k) x P"(k). Now if we vary the indices iy and
Jo, the open subsets o~ !(U;,j,) cover all of P™(k) x P"(k) and hence 7 is a morphism (by Definition 4.7
and the fact that functions on open subsets of varieties are regular iff there are regular locally (see Definition

4.6]). Similarly 72 is a morphism.

Choosing 7pm () := m1 and 7pn(y) := 2, we shall now verify (PROD) in Definition 10.1. So let X be a
variety and a : X — P™(k) and b : X — P"(k) be morphisms of varieties. We have to show that there
is a unique morphism of varieties ¢ : X — P™(k) x P™(k) such that 7 o ¢ = a and 73 o ¢ = b. Now note
that the set P™ (k) x P"(k) is the cartesian product of the sets P (k) and P"(k). Hence, if the morphism
¢ exists, it must be given by the formula ¢(z) = (a(x),b(z)) for all z € X. Hence we only have to verify
that ¢ is a morphism of varieties. Since by the definition of a Topskf, a morphism is a morphism iff it is
every locally a morphism, we may assume that X is affine and that a(X) C Upm (1),i, and b(X) C Upn (1), 4o

for some indices ig and jo. Here Upm (i) i, is the ip-th standard coordinate chart of P (k) (resp. Upn () j, is

,%0
the jo-th standard coordinate chart of P™(k)). So let us suppose that X is associated with an algebraic set
V C k. The map a is then the restriction to V of a map k¢ — Upm ()i, Of the form

v €kt = [Py(D),...,Py_1(0),1, Py 1(0), ... Pp(v)]

where the P}, are polynomials in the entries vq, ..., v; of the vector v. Similarly, the map b is the restriction

to V of a map k' — Upn (), of the form

vek [QO(’D)7 ceey QJO*l(@)ﬂ L, Qj0+1(77)7 s Qn(’[))]

where the P, are polynomials in the entries vy, ..., v; of the vector . We now compute

o (c(v)) = [(Pi(0)Q;(v))s;]
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and since P;,(0)Q;,(0)) = 1, we see that o o ¢ factors through a morphism V' — U,,;, and in particular is

0Jjo
a morphism from V to P™?+™m+7  We conclude from Lemma 5.3 that the morphism c is a morphism of

varieties. [

In the proof above, we have shown that P™ (k) [[P™(k) can be realised as the Cartesian product P™ (k) x
P"(k) endowed with a certain variety structure. Furthermore, the projections mpm () and 7pm ) are then
simply the ordinary projections on the two factors. We shall thus often write P (k) x P™(k) instead of

P (k) [P (k).
We shall now use Theorem 10.2 to prove that any two quasi-projective varieties have a product.

We start with the

Lemma 10.4. Let C; C P™(k) and Cy C P"(k) be closed subsets. Let Vi CP™(k) and Vo C P"(k) be open
subsets. Then the Cartesian product Cy x Cy is closed in P™ (k) [[P"(k) and the Cartesian product Vi x Vs
is open in P™ (k) [[P"(k).

Proof. Note that the second statement is a consequence of the first, because the complement of V; x V5 is
(P (k)\V7) x P*(k) UP™(k) x (P™(k)\V2), which is closed according to the first statement.

For the proof of the first statement, suppose that Cy (resp. C2) is defined by homogenous polynomials
Pi(zoy .- y@m)y .o, Pa(Zoy ...y 2m) (resp. Q1(Yo,---sYn),---»Qb(Yo,---,Yn)). Then we have

o(Cy x Cy) = o(P™ (k) x P"(k)) ()
mi:O,..A,m §=0,....,n Z (P1(20j7 N ,ij), ey Pa(z()j7 ey ij), Ql(zio, ey Zin)a ey Qb(zi(), ey Zln)))
and thus Cy x Cy is closed in P (k) [[P"(k). O

Corollary 10.5. Let V and W be two quasi-projective varieties. Then the product V[ W exists.

Proof. By assumption, there are integers m,n > 0 and open subvarieties O; C P™(k) and Oy C P™(k)
such that V is isomorphic to a closed subvariety of O; and W is isomorphic to a closed subvariety of Os.
We may thus assume that V is a closed subvariety of O; and that W is a closed subvariety of Oz, where
O; and O, are as above. Let C; C P™(k) and Cy C P™(k) be closed subsets such that C; N O; = V and
CyN Oy =W. We then have V x W = (C; x C3) N (01 X O3) and hence V x W is closed in the open
set 01 X Oy by Lemma 10.4. We endow the set V' x W with the structure of variety which comes from its
inclusion into O; X Oy as a closed subset. We now claim that V' x W is a product of V and W. To see this,
let X be a variety and let a : X — V', b: X — W be two morphisms of varieties. Since the set V' x W is the
Cartesian product of V and W, we see as before that if the morphism a [] b exists, it must be given by the
unique map a X b : X = V x W sending = € X to (a(z),b(z)). So we only have to verify that this map is
a morphism. To see this, let a’ : X — O be the map obtained by composing a with the inclusion V' — O
(resp. b’ : X — O; be the map obtained by composing b with the inclusion W — O3). Let o’ : X — P™(k)
be the map obtained by composing a’ with the inclusion O; — P™(k) (resp. b’ : X — P"(k) be the map
obtained by composing b’ with the inclusion Oy — P™(k)). We know that a” x b is a morphism by Theorem
10.2. Next, we know that a’ x b" is a morphism because (a’ x b')(X) C O; x Oy and because O1 x Oz is
open in P (k) x P"(k) by Lemma 10.4. Finally, by Lemma 5.3, we know that a x b is a morphism, as
(axb)(X) CV xW,and V x W is closed in O; x Oz by the above reasoning. So we have verified that

a X b is a morphism. This completes the proof. [
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An outcome of the proof of Corollary 10.5 is the following. Let m,n > 0 and let O; C P™(k) and Oy C P"(k)
be open subvarieties. Suppose that V is a closed subvariety of O; and that W is a closed subvariety of
Os. Then O7 x O is open in P™(k) x P"(k), the Cartesian product V x W is closed in O x Oy and the
product of V and W is the set V x W endowed with the variety structure it inherits from O; x Os as a

closed subvariety. The projections my and 7y are then the ordinary projections on the two factors.
Again, this justifies simply writing V' x W instead of V [[W.

Corollary 10.6. Let V1, V5 be quasi-projective varieties. Let Cy C Vi and Co C Va be closed subsets. Let
Uy C Vi and Uy C Vy be open subsets. Then the set theoretic product Cy x Cy (resp. the set theoretic product
Uy x Us) is closed (resp. open) in VxW =V [[W. If Cy x Cy (resp. Uy x Us) is endowed with its structure
of closed (resp. open) subvariety of Vi [[Va and with the natural projection maps on the two factors, then
Cy x Cy (resp. Uy x Uy) is a product of C1 and Cy (resp. Uy and Us).

Proof. Left to the reader. The proof is completely similar to the proof of Corollary 10.5. [
The next lemma is needed for the following proposition.

Lemma 10.7. Let I C k[zy,...,x,] (resp. J C kly1,...,y:]) be an ideal. Let I (resp. J) be the ideal
generated by I (resp. J) in k[x1,...,2n,91,...,y:]. If I and J are radical (resp. prime) then I + J is

radical (resp. prime).

Proof. Suppose first that I and J are prime. Let P,Q € k[z1,...,%n,Y1,---,Y:). Suppose that P-Q € [+.J.
Suppose for contradiction that P ¢ I +.J and Q € I +J. Note that we may without restriction of generality
replace P (resp. Q) by P + Py, where P, € I + J (resp. by Q + Q1, where Q; € I + J) without affecting
the conclusion. Write

P = ZAi(:vl, v ,xn)Bz-(yl, e ,yt)

and

Q= ZCj(:E1,...,:cn)Dj(yl,...7yt)
J

where both sums are finite. We may assume the elements B; (mod J) (resp. the elements D; (mod J)) are
linearly independent over k. Indeed, if B;; = R+ )", Zio A;B; where R € J and \; € k, then we have

P= Z A;B; + Aio (R + Z )\sz) = Z(Az + )\iAio)Bi + AioR
i#io i#io i#io
where A; R € J. By the preceding remark, we may thus replace P by > Zio (A; + XA, )B; and thus assume

that B;, = 0. We can now repeat this process until all the elements B; (mod .J) are linearly independent

over k. The same construction applies to the elements D; (mod J).

Further, note that we may suppose that for some A;, we have A; & I, otherwise P € I and there is nothing
to prove. Similarly, we may suppose that for some C;, we have C; ¢ I. So choose indices 41,71 such that
Ay, Cj € 1.

Now let mg C k[x1,...,2,]/] be a maximal ideal such that A;, (modI) ¢ m and Cj, (mod ) ¢ m.

Such a maximal ideal exists. Indeed, suppose there is no such ideal. Then every maximal ideal of
klz1,...,n]/T contains (A;, (modI) - (Cj, (modI)) and hence (A;, (modI) - (Cj, (modI)) is contained in

the Jacobson radical of k[z1,...,n|/I. But k[z1,...,n]/I is Jacobson since it is finitely generated over k.
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Since k[z1,...,n]/I is a domain we thus conclude that (A4;, (modI) - (Cj, (modI)) = 0. This implies that
that either A;, (modI) =0 or Cj, (mod ) = 0, which is a contradiction.

Now let m € Spm(k[x1,...,2,]) be the maximal ideal corresponding to my. By the weak Nullstellentsatz,
we have an isomorphism of k-algebras k[xi,...,x,]/m ~ k and thus we obtain a map of k-algebras
¢ k[xy,...,x,] = k whose kernel is m. Let @ : k[z1,...,%n,¥1,-.-,9] — k[y1,...,y:) be the induced
map. The map ® sends any polynomial in the y variable on itself and any polynomial H in the x variable
on ¢(H) € k. In particular, we have ®(J) C J and ®(4;,) = ¢(4;,) # 0 and ®(Cj,) = ¢(C;,) # 0.
Note also that the kernel of ® contains m := m - k[xq,...,%n,y1,...,%] and that m 2 I. Thus we have
O(PQ) € J.

Now we compute
— ®(PQ) (mod J) (Z¢ (@) By, i) (mod 1)) (3 6(C (@, ) (D wn- - 90) (mod ).

Since the elements B;(y1, ..., y:) (mod J) are linearly independent over k and ¢(A;,) # 0 we see that

qu d(@1, o)) Bilyns - ye) & .

Similarly
qu (1, 0D (Y1, yt) &

This is a contradiction, since J is prime.

The proof that I 4 J is radical if I and J are radical is completely similar and is left to the reader. [

Proposition 10.8. Let V and W be irreducible quasi-projective varieties. Then V. x W =V [[W is also

irreducible.

Proof. We first prove the result in the situation where V and W are affine. So suppose that V' C k™ and
W C kt are algebraic sets in k™ and k', respectively. By question 3.4, we know that the subset V x W of
k™ x kt = k" is an algebraic subset in k"t and is a product of V and W. So we have to show that V x W
is irreducible, when endowed with the topology induced from k"*t. Write k[xy,...,z,] for the coordinate

ring of k™ and k[y1,...,y:] for the coordinate ring of kt. Let
IV)=Z(V) - klx1, .., TnyY1s---, Yt

and
IW)=T(W) - k[z1, .oy Ty Y1y - Yt

By construction we have Z(Z(V) + Z(W)) = V x W. Furthermore, by Lemma 10.7 the ideal Z(V) + Z(W)
is prime. Hence Z(V x W) = Z(V) + Z(W) and thus V x W is irreducible.

Now suppose that V' and W are quasi-projective. Suppose for contradiction that V' x W is not irreducible.
Let T1,...,T; be the irreducible components of V' x W. By assumption, we have | > 2. Let (v, w1) € Ty
and (vg,wz) € Ty. Let U,, be an open affine neighbourhood of v, in V' and let U,, be an open affine
neighbourhood of w; in W. Define U,, and U,, similarly. Then we have (vi,w;) € U,, x U,, and
(ve,ws) € Uy, X Uy,. Now from the first part and Lemma 10.6, we know that U,, x U,, and U,, X U,
are open irreducible subsets of V' x W. Hence U,, x U, € T1 and U,, X Uy, C T (why?). Also, we
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have Uy, x Uy, NU,, X Uy, = 0, for otherwise T1\(71 N T») is not dense in T;. However, since V and
W are irreducible there is a point 2z, € U,, NU,, and a point z, € Uy, N U,,. We have (z,,2y,) €
Uy, X Uy, NU,, X Uy,, which is a contradiction. So V' x W is irreducible. [

In the next proposition, we shall need Noether’s normalisation lemma. This says the following: if R
is a non zero finitely generated algebra over a field L, then there exists an injective map of L-algebras
L{zy,...,2;] = R for some [ > 0, such that R is finite as a L[x1,...,2;]-module. See Theor. 9.1 in CA.

Proposition 10.9. Let V and W be irreducible quasi-projective varieties. Then

dim(V x W) = dim(V') + dim(W).

Proof. First suppose that V' and W are affine. So we may suppose that V' (resp. W) is an algebraic set
in k" (resp. k'). Let I :==Z(V) C k[z1,...,z,] (vesp. J :=Z(W) C k[y1,...,y:]). We saw in the proof of
Proposition 10.8 that the product of V and W can be realised as the closed subset V x W of k"t and that
the ideal of V. x W in k[z1,...,%pn, Y1, ..,y is I + J, where

I=Z(V) - k[z1, - s Tn Y15 - - - Y]
and
J=T(W) klx1,. ., Tn, Y1, Y]
Now use Noether’s normalisation lemma to obtain an injective map of k-algebras
ov  k[X1,..., X, = C(V) =k[z1,...,z,)/1

making C(V) into a finite k[ X1, ..., X, ]-module. This corresponding map of algebraic sets Spm(¢y ) : V — k™,
is then surjective. This follows from Theorem 8.8 and Cor. 8.10 in CA. Incidentally, Proposition 8.12 in
CA also implies that the map Spm(¢y ) has finite fibres. Similarly let

ow kY1, ..., Yo] = C(W) = Eklyr, ...yl /.
be an injective map of k-algebras making C(W) into a finite k[Y7, ..., Y, ]-module.

Now let

¢VW : k[le”'avaYla"'va] — k[xla"'axnvyla"'ayt]/(1+ J)
be the map of k-algebras sending X; to ¢v (X;) and Y; to ¢w (Yj).

We claim that the map @y is injective. To see this, notice that by unrolling the definitions, we have that
Pyw = (Spm(¢y) x Spm(¢w))*, where

Spm(¢y) x Spm(pw) : V x W — k" x k' = k"
is the map given by the formula (Spm(¢y ) x Spm(¢pw))(a x b) = Spm(¢y )(a) x Spm(¢w ) (b). In particular,
the map Spm(®y ) is surjective. Thus @y is injective by question 1.5 (1).

We also claim that ®yy makes k[z1, ..., Zn, Y1, - -, y:]/(I+J) into a finite k[ X1, ..., X,, Y7, ..., Y, ]-module.

To see this, note that by definition, each z; is integral over k[X1, ..., X,] via ¢y (see section 8 in CA). This

means that there are polynomials Py ;(X1,...,Xy), PLi(X1,..., Xy), ..., Ps@y—1,i(X1,. .., X,) such that
5(i)—1

)+ Y dy(Pag)zs =0

s=0
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in k[x1,...,2,]/I. In particular, we have

5(i)—1
24+ > pyw Pz =0
s=0

in klzy,...,20,y1,.--,y:]/(I +J). So x; is also integral over k[X,..., X,,Y1,...Y,] via ¢yw. The same
reasoning applies to each y;. Since the x; and the y; generate k[z1,...,2n,y1,...,y]/(I+J) as a k—algebra
and hence as a k[X1,..., X,, Y1,..., Yy]-algebra, we deduce that k[z1,..., 20, y1,...,y/(I + J) is finitely
generated as a k[X71,...,X,,Y1,...,Y,]-module (about this see the discussion after Corollary 8.5 in CA).

Appealing to Lemma 11.29 in CA, we deduce that
dim(k[z1, ..., Zn, Y1y ye] /(L 4+ ) = dim(V x W) = dim(k[X3,..., X,, Y1,...,Ya]) =v+w
On the other hand, by Lemma 11.29 again, we have
v =dim(C(V)) = dim(V)
and
w = dim(C(W)) = dim(W).
Hence dim(V x W) = dim(V) + dim(W).

Now we turn to the general case. Let V; (resp. Wi) be an open affine subvariety of V' (resp. W). The set
Vi x Wy is open in V x W and is a product of Vi and W7 when considered as an open subvariety of V' x W
(by Lemma 10.6). Also, V3 x W7 and V x W are irreducible by Proposition 10.8. Now we apply Proposition
9.4 and the above to obtain

dim(V x W) = tr. deg. of k(V x W) over k = tr. deg. of x(V} x W7) over k
dim(Vy x Wp) = dim(Vy) + dim(Wy) = (tr. deg. of k(V4) over k) + (tr. deg. of k(V1) over k)
(tr. deg. of k(V') over k) + (tr. deg. of kK(V) over k) = dim(V) + dim(W).

O

We end with the following important remark. One can show that for any varieties V., W the product V. [[ W
exists. The proof uses different methods. It proceeds roughly as follows. One covers V and W with open
affine varieties V; and W, respectively. It can be shown using commutative algebra that the products
Vi [1 W; exist (see question 3.5). One then constructs the product V [[ W by glueing the varieties V; [ W;.
The advantage of the above construction of the product of quasi-projective varieties is that it bypasses the

need for such a glueing procedure, which is combinatorially cumbersome.

11 Intersections in affine and projective space

Proposition 11.1 (affine dimension theorem). Let n > 0 and let V,W C k™ be irreducible algebraic sets.
Then every irreducible component of VNW has dimension > dim(V') + dim(W) — n.

Proof. Note that the Cartesian product V x W C k2" is closed and is a product of V and W (see question
3.4). Let
A:={(ay,...,an,a1,...,an)|a1,...,a, € k}
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be the diagonal of k2. Note that we have

A:Z(xl_yth_y27"'axn_yn)

where we write C(k®") = k[x1,...,Zn,¥1,---,Yn]. We have a k-algebra map

¢:k[xlv"'7xnay17"'7yn}/(x17y17x27y2a"'7xn7yn) 4)]6[2’1,...,2’”]

such that ¢(x;) = ¢(y;) = z; for all i € {1,...,n}. The map ¢ has an inverse given by the map sending z;
to x; (mod (x1 — y1,%2 — Y2, .., Tn — Ypn)). In particular Spm(¢) : k™ — A is an isomorphism of algebraic
sets. By construction, we have

Spm(¢) "NV x WNA)=VNW.

Thus we only have to prove that every irreducible component of V' x WNA has dimension > dim (V') 4+ dim(W) — n.
Now by construction we have
VxWNA=Z(x1 —y1)NZ(xz2 —y2) N NZ(xp —yn) NV x W.
Applying Theorem 8.9, we see that for any irreducible component C' of V' x W N A we have
cod(C,V xW)<n
and by Corollary 8.8, Proposition 10.8 and Proposition 10.9, this translates as
dim(V x W) — dim(C) = dim(V) + dim(W) — dim(C) < n
which is equivalent to the conclusion of the proposition. [

Proposition 11.2 (projective dimension theorem). Let n > 0 and let V,W C P*(k) be closed irreducible
subvarieties. Then every irreducible component of VW has dimension > dim(V) +dim(W) —n. Further-
more, we have VW # 0 if dim(V) + dim(W) —n > 0.

Proof. We first prove the first assertion. Let C be an irreducible component of VN W. Let U; be a
standard coordinate chart of P™(k) such that C N U; # 0.

We claim that C' N U; is an irreducible component of (V N W) NU;. To see this, note that since C N U; is
irreducible (because CNU; is non empty and open in C'), there is an irreducible component T of (VNW)NU;,
which contains C' N U;. Write T for the closure of T in V N W. Then T is also irreducible by question 2.5
(1) and hence T C C. On the other hand, by construction, we also have T' 2 C so that C = T. Hence
T=TnNU; =CNU;sothat C NU; is an irreducible component of VN W.

Now by Proposition 11.1, we have
dim(C' NU;) > dim(V NU;) +dim(WNU;) —n

and by Proposition 9.4, we have dim(V NU;) = dim(V), dim(WNU;) = dim(W) and dim(CNU;) = dim(C).
This proves the first assertion.

For the second assertion, consider again the map ¢ : k"*1\{0} — P"(k) such that ¢(v) = [v] for all
v k"N\{0}. Let Vo S V1 -+ C Viim(vy = V be an ascending sequence of irreducible closed subsets of
V, which is of maximal length. The closed subvarieties ¢~*(V;) of k"T1\{0} are all irreducible by question
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3.6 (2). Write ¢—1(V;) for the closure of ¢~ 1(V;) in k"*1. The closed subsets ¢—1(V;) of k"*! are then all
irreducible by question 3.6 (2) and question 2.5 (1). We thus get an ascending sequence

Vo) ¢t (V1) € - € ¢ (Viaimvy) = ¢ H(V)

of closed irreducible subsets of k"T1. Now note that by maximality the variety V; is a point (otherwise one
could extend the sequence Vo C Vi C -+ C Vyim(v) one step further). We thus have

g~ (Vo) = {Muo | A € k} N (K"F1\{0})
for some ¥y € k"T1\{0}.

We claim that the closure of {\vg | A € k}N (k" F1\{0}) in k" +1 is {\vg | A € k}. To see this, let P(zq, ..., z,)
be some (not assumed to be homogenous) polynomial such that P(Avg) = 0 for all A € k\{0}. We then
have

P(Avg) = ZPm(/\@o) = Z)\ipm (o) =0

for all A # 0. Considering deg(P) + 1 different values of A we obtain a system of linear equations with the
unique solution 0 (arising from a Vandermonde matrix). In other words, we have Py;j(vo) = 0 for all 4 and in
particular P = P(0) = 0. Now note that for all i € {1,...,deg(P)}, the polynomial P; is a non constant
homogenous polynomial and hence vanishes at 0. We conclude that P also vanishes at 0. In particular, the
closure of {\vy | A € k} N (K"T1\{0}) in k™ contains 0 and is thus equal to {\vy |\ € k}.

We thus obtain an ascending sequence of irreducible closet subsets

{0y S {Avp | A€k} =q71 (Vo) St (Vi) © - © ¢ (Vaimvy) = ¢ H(V)

and we thus see that ¢—1(V) has dimension > dim(V) + 1. Similarly, ¢=1(W) is irreducible in k"*! and
has dimension > dim(W) 4+ 1. We conclude from Proposition 11.1 that every irreducible component of

g~ 1(V)Ng=1(W) has dimension larger or equal to

dim(g=3(V)) + dim(¢~'(W)) — (n+ 1) > dim(V) + dim(W) + 2 — (n + 1) = dim(V) + dim(W) —n + 1.

Hence, if dim(V') + dim(W) — n > 0 then every irreducible component of ¢=1(V) N ¢=1(W) has dimension
> 1. On the other hand, both ¢=1(V') and ¢~ (W) contain the point 0, so ¢=1(V)Ng~ (W) is not empty. We
conclude that ¢=1(V) Ng=1(W) contains points other than 0, or in other words that ¢=1(V)Ng= (W) # 0.
This implies that VN W #£ 0. O

Corollary 11.3. Letn > 0 and let V C P™(k) be a closed irreducible subset. Let H be a closed irreducible
subset such that cod(H,P"(k)) = 1. If dim(V) > 1 then HNC # (.

Proof. Left to the reader. O

12 Separatedness and completeness

Separatedness is an algebraic analogue of the Hausdorff property in topology. Completeness is an algebraic

analogue of the notion of compactness in topology.

If X is a quasi-projective variety. Write dx : X — X ][X for the map Idx [[Idx. We shall write
Ax C X][]X for the image of 6x. We call it the diagonalin X [[ X.
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Definition 12.1. Let X be a quasi-projective variety. We say that X is separated if the diagonal in X [[ X
is closed.

Note that if Ax is closed in X [] X then dx induces an isomorphism between X and Ax, where Ax is seen
as a closed subvariety of X [ X. Indeed, the map dx induces a morphism X — Ax by Lemma 5.3 and this

map has an inverse, given by the projection on the first factor.

To understand this definition, note that if 7" is a topological space and T x T is endowed with the product
topology, then T' is Hausdorff iff the diagonal Ap C T x T is closed. Indeed, let a,b € T and a # b. Then
(a,b) & Ap. If Ar is closed then there are open subsets U,V C T such that U x V N Ar = () and such that
(a,b) € U x V. In particular, a € U, b € V and UNV = (. So a and b have disjoint neighbourhoods. On
the other hand, if @ and b have disjoint neighbourhoods U and V, respectively, then U x V N Ar = () and
(a,b) € U x V. So (T x T)\Ar is open, ie A is closed.

Note that in the definition of separatedness given above, the variety X [[ X does not in general carry the
product topology induced by its natural identification with the Cartesian product X x X so that the algebraic
definition differs significantly from the topological one (but serves the same purpose from a structural point

of view).

Remark 12.2. As remarked at the end of section 10, any two varieties have a product. It is therefore
possible to extend to definition of separatedness to all varieties. We shall see below that all quasi-projective

are separated, but it is possible to give examples of non quasi-projective varieties, which are not separated.

Lemma 12.3. Let X be a separated quasi-projective variety. Let V be a closed (resp. open) subvariety of
X. Then V is separated.

Proof. Suppose that V is a closed subvariety of X. The Cartesian product V x V C X x X is closed
and represents the product of V' with itself as a closed subvariety of X x X (by Corollary 10.6). On the
other hand, we have Ay = Ax NV x V so Ay is closed in V' x V since Ay is closed. In other words, V is

separated. The proof in the situation where V' is an open subvariety of X is similar. [

Lemma 12.4. Affine varieties are separated.

Proof. We first prove that the varieties k? are separated for t > 0. Recall that by question 3.5, k* [] k% ~ k2t
Write C(k?!) = k[z1,...,%¢, Y1, - -, y:]. Now note that

Agt = Z(r1 — Y1, T2 — Y2, -, Tt — Yt)-
Hence Ay: is closed. The general case now follows from Lemma 12.3. O

Lemma 12.5. Let X be a quasi-projective variety. Suppose that for any two points a,b € X there exists
an open affine subvariety U C X such that a,b € U. Then X is separated.

Proof. Let (a,b) € X x X\Ax (ie a,b € X and a # b). Let U, be an open affine subvariety of X such
that a,b € U,p. Then (a,b) € Uyp X U, p. Furthermore, Ay, , = Ax N (Uyp X Uap) and the Cartesian
product U, x Uy is a product of U, with itself as an open subvariety of X x X (by Corollary 10.6).
Hence Ay, , is closed as a subset of U, X Uqp by Lemma 12.4. In particular, (a,b) is contained in an open
subset of X x X, which is disjoint from (a,b). Since (a,b) € X x X\Ax was arbitrary, we conclude that
X x X\Ax is open, ie Ax is closed. O
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Proposition 12.6. Any quasi-projective variety is separated.

Proof. Suppose first that X = P*(k) for some n > 0. Then X is separated by Lemma 12.5 and question

2.8. The general case follows from this and Lemma 12.3. O

Proposition-Definition 12.7 (The graph of a morphism). Let X and Y be quasi-projective varieties. Let
v: X =Y be a morphism. Let
Iy ={(z,v(z))|ze X} CX xY

be the graph of v. Then I'y is closed in X x Y.

Proof. Let ¥: X xY — Y x Y be the morphism such that 5(z,y) := (y(z),y) for all (z,y) € X x Y (this
is a morphism by the definition of products). We have

I, =5"(Ay)
and so I is closed since Ay is closed by Proposition 12.6. [

Definition 12.8. Let X be a quasi-projective variety. We say that X is complete if for any quasi-projective
variety B and any closed subset C C X x B, the set mg(C) is closed.

Here 7 : X x B — B is the projection on the second factor.
Lemma 12.9. Let X be a complete quasi-projective variety. Then any closed subvariety of X is also

complete.

Proof. Left to the reader. Unroll the definitions and use Corollary 10.6. [

Theorem 12.10. Projective varieties are complete.

Proof. By Lemma 12.9, we only need to prove this for X = P"(k).

So let B be a quasi-projective variety and let {B;} be an open affine covering of B. Let C C P*(k) x B be
a closed subset. By Corollary 10.6, the Cartesian product P?(k) x B; is open in P’(k) x B and if P*(k) x B;
is viewed as an open subvariety of P®(k) x B it is a product of P"(k) and B;. Now 7g(C) is closed iff
m5(C)NB; is closed in B; for all ¢ and we have 75 (C)NB; = wp, (CN(P*(k) x B;)). Hence we may suppose
from the start that B is affine. In that case B is a closed subvariety of k! for some ¢ > 0. By Corollary 10.6
again, the subset P"(k) x B C P"(k) x k' is closed and is a product of P"*(k) and B if P*(k) x B is viewed
as a closed subvariety of P"(k) x k*. Furthermore, 75(C) is closed in B iff it is closed in k. Some we might

suppose that B = kf.

Now let i € {0,...,n} and let U; C P"*(k) be the well-known coordinate chart. Recall that there is an

isomorphism u; : k™ — U; given by the formula
wi(Xoy -y Xy oo, X)) = [Xoy oo Xio, 1, Xop1s o, X ] € PP(R).
By question 3.5, the variety U; x k' is affine and we have
Ck™ x k') = k[0, -+ Tty ooy Ty Y1, - - - Y

where the z; are the coordinates of k™ and the y; are the coordinates of k'.
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Write
i klxo, .o Tn, Y1, U] = R0y Ty Ty YTy e Yt
for the map of k-algebras such that ¢(x;) = «; for all j # 4, ¢(x;) =1 and ¢(y;) = y; for all j.
Let I; := Z((u; x Idge)7H(CO)) C k[xo, -y Ty ey Ty Y1y - - -5 Yi-
Note the following. Suppose that H € k[zg,...Zn,¥1,. ..,y and that H is homogenous in the z-variables.
Then H € ¢; (L) iff H(Xo,...,Xn,Y1,...,Y;) =0 for all [Xo,...,X,]x (Y,...,Y;) € CN(U; x k). This

follows directly from the definitions.

In particular a polynomial H € k[zg,...Zn,Y1,...,Yy:] which is homogenous in the z-variables lies in
ﬂl¢;1(12) iffH(Xo,...7Xn,Y1,...,th) =0 for all [Xo,...,Xn] X <Y1,...,Y;g> e C.

For any N > 0, write Sy C k[zo,...%n,Y1,.-.,y:] for the polynomials, which are homogenous in the
a-variable and which are of degree N in the z-variable. This gives k[zo,...Zn,y1,...,y:] the struc-
ture of a graded ring with So = Kk[y1,...,¥]. In particular Sy is a So = k[y1,...,ys]-submodule of
ko, ... Tn,Y1,-..,Yy:]. We also write Ay = Sy N (ﬂi¢;1(li)). It follows from the definitions that @;>0A4; is
then a graded ideal in (= graded sub-k[zq, ... Ty, y1,. .., y:]-module of) k[xo, ... xn, Y1, ..., y¢]. In particular,
Ap is a Sy = k[y1, . .., y¢]-submodule of Sy.

Now let @ = (W1y,...W;) € k' and suppose that w & 75(C). Let m = (y1 —W1,...,ys — Wy) C kly1, ..., yi]

be the maximal ideal associated with w. Let ¢ € {0,...,n}. By assumption, we have
Ii+m'k[x07"'afiu"'7xn7yla”'7yt] :k[‘r(h-~-7l\{ia"-7xn7y17"'7yt]
(since the zero set of m - k[zo,..., T, ..., Tn,Y1,..., 4] is k™ X {w} and by assumption ui_l(C’) = Z(1;),

which does not meet k™ x {w}). In particular, there is a polynomial P; € I; and polynomials M;; € m and
Gu € klxo, ..., T5y .o, Tny Y1, - - -, Yt] such that

1=P+> My-Gy
!

Hence, for any N > 0 we have

—d i st ; -
x'fv = x'fv egm(PL)(xiegm(Pl)Pi((EO/xi? sy Ly e e 7xn/xi7y1> BRI ayt))

+ ZMil(ylv'”,yt)[xi & z)(xieg ( l)Gil(xO/xia"'7xi7"'7mn/xi7y1a"'ayt))}
l

degI(Pi)P'(

Now note that the polynomial z, 0/ Xy ooy Ty ey Tn/Tis Y1, ..., Yt) is by construction homogenous

in the z-variable and of z-degree deg, (P;); the same polynomial also lies in ¢; '(I;) since
deg, (P; .
¢y (235 I Py (o fxiy o Ty T, 0)) = P

Furthermore, by definition, the polynomial

deg,, (P; ~
Iiegt( )+1Pi($0/xi7'"71'ia-"axn/xiaylv""yt)

vanishes when evaluated on (Xo,..., X,,Y1,...,Y:) whenever [Xy,...,X,] x (Y1,...,Y;) € C (remember
that x; vanishes on (P"(k)\U;) x k'). Hence

deg, (P;)+1 <
Z; Pi(wo/wiy o, @iy oy T [Tis Y1, -5 Yt) € Adegz(Pi)+1
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by the above discussion.
Similarly, the polynomial x?eg’(G“)Gil(aﬁo/xi, ces iy Tn/Tiy Y1, ..., y) is also homogenous in the z-
variable and is of z-degree deg,(Gy).
So if N is larger than deg, (P;) + 1 and also larger than deg,(G;;) for all I, we have an equality
o) =Ti+ ) MyHy
!

where T; € Ay and H;; € Sy. Since there is only a finite number of indices 4, there is thus a natural number
Ny such that
N € Ay +mSy

for all N > Ny and all ¢ € {0,...,n}.

Now note that if NV; is sufficiently large, any monomial of degree > N in the x; becomes divisible by xévo

for some z;. So if IV; is sufficiently large then for all N > N; we have
SN C (Bs2055)(An, + mSn,)
Since @s>04s is a graded ideal, we then have
Sn € Sn-nN (AN, + mSn,) € Ay +mSy.

In particular, we have (Sy/Anx) = m(Sy/An) where the quotient Sy/Ayn is quotient of kly1,...,y:)-
modules.

We conclude from the generalised form of Nakayama’s lemma (see Q4 in Sheet 1 of CA) that there is
Q € 1 +m such that Q- (Sy/Ax) = 0. In particular Q -z € Ay for all i € {0,...,n}. In other words, for
any ¢ we have

XNQ(Xo, .oy Xn, Y1, V) = XN Q(Y, ..., V) =0

for all [Xo,...,X,] x (Y1,...,Y;) € C (see the discussion above). In particular, whenever Q(Y1,...,Y:) #0

the set CN(U; x{(Y1,...,Y:)}) is empty. Since this holds for all i € {0,...,n}, theset C N (P*(k) x {(Y1,...,Y)})
is empty whenever Q(Y1,...,Y:) # 0. Said differently, if (Y1,...,Y;) € k'\Z(Q) then (Y1,...,Y:) € m5(C).
Finally, we have Q(w) # 0 since Q € 1 +m, so k*\Z(Q) is a neighbourhood of @w. Since w € k'\r5(C) was
arbitrary, we conclude that k*\mp(C) is open, ie 75(C) is closed. [

Remark 12.11. Let n,t > 0 and consider the variety P"(k) x k'.

Suppose given polynomials Hi, ..., H; € klzo,...,Zn,y1,...,Y:]. Suppose that the H; are homogenous in

the variable z. Let
C:={[Xo,...,Xn] x (Y1,...,Y;) € P"(k) x k" |Vj € {1,...,1} : Hj(Xo,..., Xp,Y1,...,Ys) = 0}.
It can be shown that C' is a closed subset of P"(k) x k' (prove this!). By Theorem 12.10, the set
e (C) = {(V1,....Y3) € k" |I[Xo,..., X, € P"(k) : Vi € {1,...,1} : Hi(Xo,..., Xn,Y1,...,Y;) =0}
is then closed. In other words, there are polynomials Q1,...,Q, € k[y1, ..., y:] such that

Q1(Y1,... . Yy = Q(V1,... . Yy) = =Qa(Y1,...,Y}) =0
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iff there is Xo,..., X, € k"T1\{0} such that

Hi(Xo,..., X, Y1,...,Y) = Hy(Xg, ..., X, Y1,...,Y) =+ = H(Xo, ..., Xpn, Y1,...,Y;) =0.
Writing R = k[yi, ..., yt], one can rephrase this result in terms of commutative algebra:
Theorem. Let Hy, ..., H; € R[xg,...,x,] be homogenous polynomials. Then there are elements Q1,...,Q, € R

with the following property. If ¢ : R — L is a ring homomorphism from R to an algebraically closed field
L, then the equations

d(H1)(Xo, ..., Xn) = ¢(H2)(Xo, ..., Xpn) == ¢(H)(Xoy..., X)) =0

have a non vanishing solution in L iff Qq,...,Q, € ker(¢). The radical of the ideal (Q1,...,Q,) depends
only on the polynomials Hy, ..., H;.

This theorem is called the main theorem of elimination theory. If t = 1, the unique monic generator of
t((Q1,...,Q4))) is called the resultant of the polynomials Hy, ..., H;.

One can show that the theorem holds for any noetherian commutative ring R. Theorem 12.10 proves this
when R = k[y1,...,y:] (and more generally if R is any finitely generated reduced k-algebra). The scheme-
theoretic generalisation of Theorem 12.10 implies the general form of the main theorem of elimination

theory.

Corollary 12.12 (of Theorem 12.10). Let X,Y be quasi-projective varieties and suppose that X is complete.
Let ¢ : X =Y is a morphism. Then ¢(X) is closed.

Proof. The image of ¢(X) is the projection of the graph I'y;, C X x Y by the projection to Y. Hence
Proposition-Definition 12.7 implies the result. [

Proposition 12.13. A complete quasi-projective variety is projective.

Proof. Let X be a quasi-projective complete variety. By definition, we may suppose that there is an open
subvariety U of P"(k) such that X is a closed subvariety of U. By Corollary 12.12, X is closed in P"(k).
Hence, from the definition of subvarieties, X is a closed subvariety of P (k). Hence X is projective. [

Lemma 12.14. Let X be an affine complete variety. Then X consists of a finite number of points.

Proof. By question 3.3, C(X) is a finite dimensional k vector space. In particular, C(X) is finite over k.
We deduce from Prop. 8.12 in CA that C(X) has only finitely maximal ideals. Hence X has only finitely
many points by the discussion before Lemma 2.8. Alternatively, we can reason as follows. We see from
Lemma 12.9 that all the irreducible components of X are complete. Let V' be an irreducible component of
X. Then C(V) is an integral domain by Lemma 2.5 and it is finite over k& by question 3.3. Hence C(V) is a
field by the (elementary) Lemma 8.9 in CA. Hence V is a point. Since X has only finitely many irreducible

components, we conclude again that X only has a finite number of points. [

13 Smoothness

A variety is smooth if it has "no kinks”. For a curve C in the plane given by one equation f(z,y) = 0, this
can analysed by looking at its gradient grad(f) = (- f, 8% f). The curve will be smooth if grad(f) does not

T
vanish for any point of C. The general definition has a similar flavour.
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Definition 13.1. Let V' C k™ be an algebraic set. Suppose that Z(V) = (Pi,...,P:) C k[zy,...,xy,]. Let
v € V. We say that V is nonsingular at v if the matric [(%Pi)(@)]ij has rank n — cod({v},V). If V is
irreducible then cod({v}, V) = dim(V) so that in that case V is nonsingular at v iff the matriz [(32-P;)(0)];
has rank n — dim(V). ’

Note that when C is a curve in the plane, we recover the definition given above. To make sense of this
definition, we need to show that it does not depend on the polynomials P;. In fact, we will show that the

definition only depends on the coordinate ring C(V').

On the way to this result, we first make another definition.

Definition 13.2. Let R be a noetherian local ring with mazimal ideal m and residue field ko := R/m. We
say that R is a regular local ring if dim(R) = dimg, m/m?.

A few comments are in order. Note that with the notation of the last definition, we have dim(R) = ht(m)
(this follows from the definition of dimension and the fact that R is local). On the other hand, by Nakayama’s
lemma (see Cor. 3.6 in CA), the ideal m can be generated by dimj, m/m? elements. Hence by a corollary
of Krull’s theorem (see CA Cor. 11.15), we have

dim(R) = ht(m) < dimy, m/m?.
The local ring R is regular iff this last inequality is an equality.

Proposition 13.3. Let V C k™ be an algebraic set. Then V is nonsingular at v € V' (for some and hence
any choice of generators P; of (V) ) iff the local ring Ov,, ~ C(V')z((zy) is regular.

For the proof, we shall need the

Lemma 13.4. Let R be a ring and let m C R be a maximal ideal. Let ¢ : R — Ry be the natural
map of rings. Let n > 0. Then the unique mazimal ideal m of Ry is the ideal of Ry generated by ¢(m).
Furthermore, we have ¢~*(m™) = m"™ and the map of R-modules induced by ¢

n+1 n+1

m”/m - m"/m

is an isomorphism.

Note that the lemma is obviously false if m is not maximal (look eg at the case n = 0).

Proof. (of Lemma 13.4) The first assertion is contained in Lemma 5.6 in CA (standard properties of
localisations - you can also prove this directly). This also implies that m™ is the ideal generated by ¢(m™).
In particular, any element of m™ can be written in the form r/u, where r € m"™ and u € R\m (prove this
directly or refer to Lemma 5.6 in CA).

We now prove that ¢~(m") = m™. To see this, note that by the definition of localisation, the ideal ¢~*(m")
is the set of elements r € R, such that for some ¢t € m™ and for some u,v € R\m, we have v(ur —t) = 0 (use
the definition of localisation). Hence if r € R and there is u € R\m such that ur € m” then r € ¢~ (m").
On the other hand, if € R and for some ¢t € m" and u,v € R\m we have vur = vt, then (vu)r € m”. Thus

o '(m") ={reR|Juc R\m:urcm"}.

43



Now suppose that » € R and that « € R\m is such that ur € m™. Recall that m™ is m-primary (see Lemma
6.4 in CA). Since u ¢ m™, we deduce that either »r € m™ or both u (modm™) and r (mod m™) are nilpotent
in R/m™. The second possibility cannot occur because all the powers of u lie in R\m (since m is prime).

Hence we must have 7 € m™. In other words we have ¢~ (m") = m".

We now show that the natural map m”/m"*! — m"/m"*! is an isomorphism. Since ¢~ !(m"™1) = m"*1,
we see that the map is injective. To prove surjectivity, let r/u € m™, where r € m™ and v € R\m. Let
v € R\m be such that uv = 1 (modm) (such a v exists because R/m is a field). Then there is an @ € m such
that

rv/1=ruv/u = (r +ra)/u=r/u+ (a/1)(r/u) = r/u(mod m"*!)

and thus 7/u (modm"*1) is in the image of m" in m"/m"+1. O

Proof. (of Proposition 13.3) Let v = (vy,...,v,) € V C k™. Suppose that Z(V) = (P1,..., P;). Let
m:=Z({0})=(x1 —v1,...,Zn — Up)

be the maximal ideal of k[z1,...,x,] associated with ¥. Let n = m (modZ(V)) C C(V) be the maximal
ideal of C(V') associated with ©. Define a map of k-vector spaces ¢ : m — k™ by the formula

0

_ 0 _
52, Q@) (5-Q)(®))-

#(Q) = (( i

Since m? is generated by the elements (z; —v;)(x; — v;), we see that ¢(m?) = 0 (apply the Leibniz rule). We
thus obtain a k-linear map m/m? — k™. This map is surjective because ¢(z; —v;) is the i-the element of the
standard basis of k”. On the other hand, m/m? is generated by n elements as a R/m = k-vector space and
so is of dimension < n. Hence the map m/m? — k™ is an isomorphism of k-vector spaces. Now the image
(Z(V) +m?)/m? of Z(V) C m in m/m? is generated by P; (modm?),..., P, (modm?) as a R/m = k-vector
space. Hence

s PO o (GEP)@
. T -2 P)) (v

A ((E(V) + ) ) = dis 6@V =i | P70 BRI rkl (e P @)
(g2 P) (@) (52 P)(0)

On the other hand, we have by construction a complex of R/m = k-vector spaces
0— (Z(V) +m?)/m? - m/m? - n/n* =0

We claim that this complex is exact. The second arrow from the left is injective by definition and likewise
it follows from the definitions that the third arrow from the left is surjective. So we only have to show
that the complex is exact at m/m2. To see this, suppose that P € m and that P (modZ(V)) € n%. Since
n? = (m2 + Z(V))/Z(V), there is Q € m? + Z(V) such that P (modZ(V)) = Q (modZ(V)). We then have
(P —Q) (modZ(V)) =0, or in other words P — () € Z(V'). Hence P is the sum of an element of Z(V') and

an element of m?. This shows that the complex is exact at m/m? and is thus an exact complex.

We conclude that 9

rk[(ﬁj

P;)(0))i; + dimyg (n/n?) = n. (2)
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Now we have cod(V, {v}) = ht(n) = dim(C(V)z({s})) (follows from the definition of dimension - see Lemma
11.2 in CA). Using Lemma 13.4, we see that the local ring C(V')z(;5}) is regular iff

O p)(®))sy = — cod(V, {5}).

J

This proves the proposition. [

Remark 13.5. (1) Keep the notation of the proof of Proposition 13.3. From the remark preceding the

proposition, we have dimy(n/n?) > cod(V,{#}) and so we always have

rk[(aijP,-)(T))]ij =n — dimy(n/n?) < n — cod(V, {v})

even if V is singular at .

(2) Note that equation (2) gives an effective way to compute dimg(n/n?).

We also record the following lemma, which will be useful in calculations.

Lemma 13.6. Keep the assumptions and notation of Proposition 13.3. Let Q1,...Qs € Z(V). Suppose
that [(%Qi)(@)]ij has rank n — cod(V,{v}). Then V is nonsingular at 0.
z;

This lemma will allow us to check nonsingularity in situations where it is difficult to find generators of Z(V).

Proof. We use the notation of the proof of Proposition 13.3. Let J C Z(V) be the ideal generated by
Q1,-..,Qs. It was shown in the proof of Proposition 13.3 that

0

rk[(a—xj

Qi)(0)]i; = dimy (¢(J))

and in particular that rk[(a%jpi)(f))]ij = dimg(¢(Z(V))). On the other hand, we have dimg(p(Z(V))) >
dimy (¢(J)) since J C Z(V'). Hence by the remark preceding the lemma, we have

rk[(aicznw)m < rk[(aij_mw)]u < n—cod(V, {3}).

The assumptions of the lemma now imply that the two last inequalities are equalities, hence the conclusion. [

Let now X be any variety. We shall write Sing(X) for the set of points z € X such that the local ring Ox ,

is not a regular local ring. This clearly specialises to Definition 13.1 when X is an affine variety.

A variety X is nonsingular or smooth if Sing(X) = 0.

Proposition 13.7. Let X be a non empty irreducible variety. Then the set Sing(X) is closed and Sing(X) # X.

For the proof, we shall need the following definition and the subsequent proposition. Let R be a UFD with
fraction field K. If
Q(z) = 2™ + ry_1a™ "+ + 1o € Rla],

we define the content cont(Q) to be the ged of the coefficients of @ (note that the ged is only well-defined up
to multiplication by a unit of R). If Q(x) € K[z], we define the content of Q(z) to be cont(d - Q)/d, where
d € R is such that d- Q(x) € R[z]. One can show that this last definition does not depend on the choice of
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d. Moreover, one can show that cont(Q; - Q2) = cont(Q1) - cont(Q2) for any two Q1, Q2 € K[x]. Note that
if Q(z) € K[z] and cont(Q) is a unit, then Q(z) € R[zr] (why?). The all-important result concerning the

content function is the

Lemma (generalisation of Gauss’s lemma). The irreducible elements of R[x] are the irreducible elements
of R and the polynomials P(z) € R[x], whose content is a unit and which are irreducible (and hence non

constant) in K|x].

The proofs of all these statements are similar to the ones considered in the Rings and Modules course in
the situation where R = Z (but they are not examinable). See IV, §2 in S. Lang’s book Algebra (Springer)
for more details.

Proposition 13.8. Let X be a non empty irreducible variety. Then X is birational to an algebraic set
V C k"™ such that Z(V) C k[z1,..., 2] is prime and principal.

Proof. (of Proposition 13.8) We shall only prove this in the situation where char(k) = 0 (but the result
holds without this assumption). So suppose that char(k) = 0. Restricting to an open affine subset of X, we
may assume wlog that X is an irreducible affine variety. Let K := Frac(C(X)) be the function field of X.

Since the k-algebra C(X) is finitely generated over k, the field K is finitely generated as a field over k. Let
b1,...,b € K be a transcendence basis for K over k. By definition, this means that the b; are algebraically
independent over k (ie the map of k-algebras k[yi,...,y:] — K sending y; to b; is injective) and that the
field extension K|k(by,...,b:) is algebraic. A transcendence basis always exists. See Prop. 11.3 in CA for
this. Since char(k) = 0, the extension K|k(bi,...,b:) is a separable extension. This extension is also a
finite extension because K is finitely generated as a field over k(by, ..., b:) (since K is finitely generated as a
field over k). Hence the extension K|k(b1,...,b;) is a simple extension by the ”primitive element theorem”
(see the course on Galois theory) and so there is an element b € K, such that K = k(by,...,b)(b) and an
irreducible polynomial Q(z) € k(by,...,b)[z] such that Q(b) = 0.

Now note that every element of k(by,...,b;:) can be written as quotient ¢/d, where ¢,d € k[by,...,b:] (here

kb1, ...,b] is the k-subalgebra of K generated by the b;). Write

%;lxm—1+...+i$+7

Q) ="+ = ot

where ¢;,d; € k[b1,...,b]. Let d =[], d;. Consider the polynomial d@Q € kb1, ..., b][z] and let
P :=dQ/cont(dQ) € k[by, ..., b][x],

where (abusing language) cont(dQ@) € k[b1,...,b] is an arbitrary representative of the content of d@. By
construction, the polynomial P(x) is irreducible in k(by,...,b:)[z] (since it is a constant multiple of a
minimal polynomial) and its content is a unit. By the generalised Gauss lemma (see the discussion above),
P(x) is thus irreducible in k[by, ..., b][x].

Now let
¢ : k‘[bl,,bt][.]?] — K

be the homomorphism of k-algebras sending the b; to themselves and = to b.

The kernel ker(¢) is then a prime ideal (since the image of ¢ is a domain) and by construction we
have P(z) € ker(¢). Now the ideal (P) C k[b1,...,b][z] is also prime, since P is irreducible. Hence

46



cod((P), k[by,...,b][z]) = 1 by Krull’s principal ideal theorem (see Th. 11.13 in CA). On the other hand,
the fraction field of

Im(¢) = kb1, ..., be, 0] ~ kb, ..., b][z] /ker(¢)
is the field K and K has transcendence degree t by assumption. Thus

dim(k[bn, ..., bl ] ker(9)) = ¢
by Corollary 11.28 in CA. Using Theorem 8.7, we deduce that

cod(ker(¢), kb, ..., b][x]) = dim(k[b1,...,b][z]) —t =t +1—-t=1.
Hence we must have ker(¢) = (P), for otherwise we would have cod(P, k[by, ..., b][z]) > 2.

So we conclude that k[by,...,b][z]/(P) =~ k[b1,..., b, b].

Now the b; are algebraically independent and thus the k-algebra k[by,. .., b:][x] can be viewed as the coor-
dinate ring of k**1. The ring k[by, ..., b][x]/(P) is thus isomorphic to the coordinate ring of an irreducible
algebraic set V in k'*! whose (prime) radical ideal is generated by a single irreducible polynomial. Since
the function field of V' is isomorphic to K as a K-algebra, it satisfies the conclusion of the proposition (by
Proposition 9.5). O

Proof. (of Proposition 13.7) We first show that Sing(X) is closed. Let {U;} be an open affine covering
of X. By Proposition 13.3, a point = € U; is nonsingular in X iff it is nonsingular in U;, ie we have
Sing(X) N U; = Sing(U;). On the other hand, the set Sing(X) is closed iff Sing(X) N U; is closed for all ¢
(why?). Hence we may assume that X is isomorphic to an algebraic set V' C k™ for some n.

Let Py,..., P; be generators of Z(V) C k[xy,...,2,]. From the remark following the proof of Proposition
13.3, we have

Sing(V)={ve€ V| rk[(aijPi)(v)]ij <n—dim(V)}.

Now recall that
0 0
rk[(aTPi)(@)]ij = max{h € N|there exists a h x h-submatrix M in [(87P1)(17)]” such that det(M) # 0}
J J

and hence
Sing(V)) = {v € V| det(M) = 0 for all the (n — dim(V)) x (n — dim(V'))-submatrices M in [(G%PZ)(T})]”}
J

and hence Sing(V') is the zero set of a set of polynomials and is thus closed.

We now prove that Sing(X) # X. Again, we only show this when char(k) = 0 (but the statement holds
without that assumption). We may replace wlog X by any of its open subsets and so thanks to Proposition
13.8 we may suppose that X is an algebraic set V' C k™ such that Z(V) = (P), where P € k[zy,...,x,] is

an irreducible polynomial. In this situation, we have to show that

Sing(V) = {7 € V| (5 P)(0) = (5= P)0) =+ = (50— P)(@) =0} £ V.

Suppose for contradiction that Sing(V') = V. Then P |%P for all ¢ since P is irreducible. Now let 7y be such

that P has a monomial divisible by z;,. This exists since P is irreducible and in particular not constant.

In that case 52— P # 0 (note that we use the fact that char(k) = 0 here) and deg,, (2-P) < deg,, (P).
i i T4, i

In particular, B%P is not divisible by P. This is a contradiction, so Sing(V) # V. O
i
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14 Blowing up

The blow-up construction is a geometric construction, which replaces the ambient variety of a closed subva-
riety by a new variety, which lies over it and such that the inverse image of the closed subvariety is locally
defined by one equation. This new variety often has better properties than the old one - eg the blow-up of
a variety at a singular point tends to be ”less” singular than the original variety. This construction is best
understood in the language of schemes. In this section, we explain in the language of varieties how to blow

up an affine variety at a point. We can only establish few properties of such blow-ups in our setting.

Let n > 1. Let x1,...,x, be variables for ¥” and let y1,...,¥, be homogenous variables for P"~!(k). Note
that contrary to what is customary, the index of the homogenous variables runs between 1 and n here (not
0 and n — 1). Let Z be the subset of k" x P"~1(k) defined by the equations {z;y; — z;y; = 0}ije{1,...n}
(note that this makes sense because the polynomials are homogenous in the y-variables). The subset Z of
k™ x P"~1(k) is called the blow-up of k™ at the origin of k. Let ¢ : Z — k™ the map obtained by restricting
the projection k™ x P"~1(k) — k™ to Z.

Proposition 14.1. (1) The set Z is a closed subvariety of k™ x P*~1(k).

(2) The closed subvariety $~({0}) of Z is canonically isomorphic to P"~*(k). The points of $~1(0) are in
one-to-one correspondence with the lines going through the origin of k™.

(3) The restriction of ¢ to the open subvariety ¢~ 1(k™\{0}) of Z induces an isomorphism ¢~(k™\{0}) ~

Proof. (1) On the open affine subset k™ x U;(L;l, Z is given by the equations

{xz‘yj —xjy; = 0,2 — x5,y = O}ie{l,...,n},je{L...,jofl,j0+1,‘..7n}-

The set Z N k™ X U;-z*l is thus closed in k™ x U;(Lfl. Since the k™ x Uﬁfl cover k™ x P"~1(k), we see that
Z is closed.

(2) It follows from the definitions that ¢~1({0}) = {0} x P"~1(k).

(3) Suppose that (X7,...,X,) # 0. Then there is an iy such that X;, # 0. The equations for Z then give
Y; = X,(Y;,/X;,) for all j. Up to multiplication of all the ¥; by a non zero scalar factor, the only solution
to this set of equations is (X7,...,X,). In particular, we have

(X1, X)) = (X, X)) Y < {[ X, X )

This shows that the morphism ¢—1(k™\{0}) — £™\{0} is a bijection. To show that it is an isomorphism,
we shall provide an inverse morphism. For this, consider the morphism ¢ : £*\{0} — P"~1(k) introduced
in question 3.7. We define a map £"\{0} — Z by the formula g := Idyn\ (0} [] ¢- By construction, this gives
an inverse of the morphism ¢~ (k"\{0}) — k"\{0}. O

Let now X C k™ be a closed subvariety (ie an algebraic set). Let © := (v1,...,v,) € X and suppose that
{o} is not an irreducible component of X. Let 75 : k™ — k™ be the map such that

To({(wWi,y .. we)) = (w1 + 01, ..., Wy + Uy)

for all @ = (wy,...,w,) € k™ (note that this is an automorphism of the variety k™). Let Y := 7_5(X). Note
that by construction we have 0 € Y.
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We define the blow-up BI(X,v) of X at ¥ to be the closure of ¢~1(Y\{0}) in Z. Let b : BI(X,?) — X be

the morphism 75 o ¢|gi(x,7)-
Proposition 14.2. (1) We have ¢(Bl(X,0)) =Y. In particular, b is surjective.

(2) Suppose that X is irreducible. Then BI(X, ) is an irreducible component of ¢~ 1(Y) C k™ x P"~L(k). The
morphism b is birational. If X # k™, the irreducible components of ¢~*(Y) are BI(X,9) and {0} x P*~1(k).

The closed set b=1({v}) = BI(X,9) N ({0} x P"~1(k)) is called the exceptional divisor of BI(X,v).

Proof. (1) Note first that o lies in the closure of X\{o}. To see this, let C' be the irreducible component
of X containing o. Then C\{¢} is non-empty (by assumption) and it is open in C (since {7} is closed).
Furthermore, C\{%} is not closed in C, for otherwise C' would be disconnected and hence reducible. Thus
o lies in the closure of C\{0} in C' (which must be C') and hence @ lies in the closure of X\{v} in X.

Now since P"~1(k) is complete (see Theorem 12.10), we know that ¢(BI(X, %)) is closed. By (3) of Propo-
sition 14.1, we know that ¢(Bl(X,v))\{0} = Y\{0} and thus by the reasoning in the last paragraph, we see
that 0 € ¢(Bl(X,0)). In particular, ¢(Bl(X,7)) =Y.

(2) From (3) of Proposition 14.1 we know that the natural morphism ¢=(Y\{0}) — Y\{0} is an isomor-
phism. Now if X is irreducible, so is Y and so is Y'\{0}. Hence Bl(X, ?) is irreducible by question 2.5 (1).
On the other hand, BI(X, ) C ¢~ 1(Y) since ¢~1(Y) is closed in Z. Since BI(X,¥) contains the non empty
open subset ¢~ 1(Y'\{0}) of ¢=1(Y), we see that BI(X,) is an irreducible component of ¢~*(Y). Since
¢~ 1(Y\{0}) — Y'\{0} is an isomorphism, the morphism b is birational.

On the other hand, we have by construction ¢~*(Y) = BI(X,v) U ({0} x P*~1(k)). Now suppose that
X # k™. We then have {0} x P"~1(k) € BI(X,v) because

dim({0} x P""(k)) = n — 1 > dim(BI(X, 7)) = dim(X) <n —1

(use Proposition 9.4, question 2.7 and Theorem 8.7). Since {0} x P"~1(k) is irreducible (since it is isomorphic
to P"~1(k)) we see that the irreducible components of ¢~1(Y) are BI(X, ) and {0} x P»~1(k). O

Example. Let C be the curve y? = 23 in k2. Let b: BI(C,0) — C of C be the blow-up of C at the origin.
(1) We have B1(C,0) ~ k.
(2) The map b is a homeomorphism but is not an isomorphism.

Use the terminology of the last two propositions, letting n = 2 and X = Z(2% — 23) = Y (note that

the point to blow-up is the origin, so we do not have to translate X). We first compute ¢~ 1(X). Let
7 k™ x PL(k) — k™ be the natural projection. By definition

¢~ (X) =7 N(X)NZ = ZL(x1y2 — x2y1, 45 — 27)
Let Uy := {[1,Y3]| Y2 € k} C PL(k). In k% x Uy, we have
¢ HX) N (K* x Uy) = Z(z1ys — 22, 5 — 23) = Z(z1y2 — 22, 27Y5 — 27)
= Z(z1y2 — x2,21) UZ(21Y2 — $2»yg —z1) = ({0} x Ur) UZ(z1y2 — 5524/5 — 1)

The closed set Z(x1y2 — z2,y3 — 1) does not contain {0} x Uy. Also ¢~ 1(X) N (k? x Uy) has at most two

irreducible components by Proposition 14.2 (2) so we conclude that

Z(x1y2 — 2, y5 — x1) = BI(X,0) N (k* x Uy).
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On the other hand, Z(z1y2 — z2,y3 — x1) N ({0} x U) = {0} x {[1,0]}.
We now repeat the above reasoning for Uy := {[Y1,1] | Y1 € k} C P1(k) instead of U;. We have
¢~ HX) N (k? x Uy) = Z(x1 — woy1, 25 — 23) = Z(x1 — 2oy1, T3 — T5Y3)
= Z(z1 — may1, m2) UZ(21 — wayn, 1 — m293) = ({0} x Ua) UZ(z1 — wayn, 1 — w293)
As before, we have Z(z1 — z2y1,1 — x2y3) N (k% x Uz) = BI(X,0) N (k% x Us). On the other hand, a simple
calculation shows that Z(z1 — xay1, 1 — x2y3) N ({0} x Us) = 0.

So we conclude that the exceptional divisor of BI(X,0) consists of the one point {0} x {[1,0]}. In particular,
the map b : BI(X,0) — X is bijective. Since P!(k) is complete, the morphism b sends closed sets to closed
sets (see Theorem 12.10 and Corollary 12.12) and thus (since b is bijective), b sends open sets to open
sets. Hence b is a homeomorphism. Taking into account (1), which we will establish below, we see that
b is not an isomorphism because k is smooth whereas X has a singularity at 0. Indeed, X is irreducible

and of dimension 1 (use Theorem 8.4, Corollary 8.8 and Theorem 8.9) and the gradient (—3x2,2z2) of the

polynomial 23 — 23 vanishes at (0,0) € X. This establishes (2).

We now turn to (1). We have
¢~ H(X) N (K x (PT\U1)) = Z(x1y2 — @21, 25 — 23, 51) = Z(21, 91, 22) = {0} x {[0, 1]}
and this set is not in BI(X,0) by the above. Hence
BI(X,0) = Z(v1y2 — 22,92 — x1) Ck? x Uy C k3

We claim that the map A(t) = (t2,¢3,t) gives an isomorphism between k and Z(x1y2 — 72, y3 — x1). Indeed
this map has an inverse, which is the restriction to Z(x1y2 — 2,y3 — x1) of the map B : k* — k given by
the formula B(X71, X2, Ys) = Ys. To verify this, note first that we clearly have A(t) € Z(z1y2 — 2, y3 — 1)
and B(A(t)) = t. Secondly, for (X1, Xs,Ys) € Z(z1y2 — x2,y3 — x1) we have

A(B(le X27Y2)) = (}/227)/23’ 1/2)

and we have Y = X1, Y5 = X;Ys = X5. We conclude that BI(X,0) ~ k. This establishes (1).

15 Appendix. Proof of Theorem 8.7.

The material in this appendix is not examinable.

Let R be a ring and let p be a prime ideal of R. From the definition of dimension and height, we have the
inequality
dim(R/p) + ht(p) < dim(R).

This inequality is not an equality in general. However, it is an equality if R is a finitely generated domain

over a field.

If R is a finite-dimensional noetherian ring and n > 0, we shall say that R satisfies DE(n) if
dim(R/p) + ht(p) = dim(R)

for all prime ideals p of R such that ht(p) = n.
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Theorem A(=Theorem 8.7). Let R be a finitely generated domain over k. Then R satisfies DE(n) for all
n > 0.

The assumption that k is algebraically closed will not be used in the proof, so the result holds without that

assumption.
Proceed as follows.

(1) Show that to prove Theorem A, it is sufficient to show that any finitely generated domain over a field
satisfies DE(1). [Hint: induction on n.]

Solution. Suppose that any finitely generated domain over k satisfies DE(1). Let R be a finitely generated
domain over k. We prove that

dim(R/p) + ht(p) = dim(R)
by induction on ht(p). The case ht(p) = 0 is clear, since in that case p = (0) (since R is a domain) so we

may suppose that ht(p) > 1. Let p be a prime ideal and let

p=po2P2---2Ps

be a descending chain of prime ideals of length d := ht(p). We suppose that any finitely generated domain
over k satisfies DE(0), DE(1),...,DE(d — 1). Since pg is minimal over p;, we have ht(p/p;) = 1. We thus
have

ht(p/p1) + dim(R/p) = dim(R/p1)

Also, we have ht(p;) = — 1 > 1 by construction. So we have
dim(R/p1) + ht(p1) = dim(R)
We conclude that
1+ dim(R/p) = dim(R) — (6 — 1)

or in other words that

ht(p) + dim(R/p) = dim(R)
as required.

(2) Show that to prove that any finitely generated domain over a field satisfies DE(1), it is sufficient to
prove that any polynomial ring k[z1,...,z4] (d > 0) satisfies DE(1). [Hint: apply Noether’s normalisation
lemma and the Going-up theorem.]

Solution. Suppose that any polynomial ring over k satisfies DE(1). Let R be a finitely generated domain
over k. By Noether’s normalisation lemma, there is an injection k[z1,...,24] < R (d > 0) making R into
a finite k[xq,...,z4)-algebra. Let P := k[z1,...,24]. Let p be a prime ideal of height one in R. By the
Going-up theorem and Q1 of Sheet 3 in CA, the height of p and the height of p N P is the same. Hence

1+ dim(P/p N P) = dim(P).

By Lemma 11.28 in CA, we have dim(P) = dim(R). Also R/p is an integral extension of P/p N P and thus
dim(R/p) = dim(P/p N P) by the same lemma. We conclude that 1 + dim(R/p) = dim(R), as required.

(3) Prove that the height of a maximal ideal in k[x1,...,x4] is d for any d > 1. [Hint: use the method of
Sheet 3, Q6 in CA.]
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Solution. Let m be a maximal ideal of k[z1,...,24] =@ P. In Sheet 3, Q6 of CA it is shown that m is
generated by polynomials Py (z1), Pa(z1,z2), P3(x1,22,23), ..., Pg(x1,...,24). In the course of the proof

(this can be seen in the solution, which is available), it is also shown that the ideals
a; ;= (Pl(xl), PQ(.Tl,fEQ), Pg(ﬂ?l, LL‘Q,SCg), ey Pi(lﬂl, ‘e ,Il))

are maximal in k[zy,...,2;] for all i = 1,...,d. It was shown at the beginning of section 11.4 of CA that
we have a; P = a;[x;41,...,2q]. This implies that a; P # a;41P for otherwise

ai[wiﬂ} = CliP n k:[xl, R ,xi_,_l] = Cli+1P N k‘[l‘l, A ;xi+1] = 041
This is not possible because a; 7 is maximal in k[xy,...,2;11] and a;[x;41] is not, because
klzy, .. zipa]/ailzipa] = (Ko, .o il /ag) [@i44],

which is a domain but not a field.

Hence we obtain a chain of prime ideals
m 9_ ad_1P 2 Cld_zp 2 2 Cl1P 2 (0)

and thus ht(m) > d. Since we also have ht(m) < d = dim(P) (by Corollary 11.26 in CA), we thus have
ht(m) = d.

(4) Prove that the height of a maximal ideal in a finitely generated domain R over k is dim(R). [Hint: apply
Noether’s normalisation lemma and (3). When & is algebraically closed, this is done in [1], Theorem 11.25.]
Solution. Let m be a maximal ideal of R. By Noether’s normalisation lemma, there is an injection
klz1,...,24) < R (d > 0) making R into a finite k[z1,...,z4]-algebra. Let P := k[x1,...,z4]. Let p be a
prime ideal of P, which lies over R (this exists by Th. 8.8). By the Going-down theorem (Q1 of Sheet 4 in
CA) and question 3.2, the height of p and the height of p N P is the same and by Corollary 8.20 of CA, p is
also a maximal ideal of P. By Lemma 11.28 in CA, we have dim(P) = dim(R) and thus the height of p is
dim(R) by (3).

(5) Let R be a local noetherian ring with maximal ideal m. Let f € m. Prove that dim(R/(f)) > dim(R)—1.
[Hint: this is a consequence of Krull’s principal ideal theorem; you may follow the proof given in [3], Th.
2.5.15, p. 72.]

Solution. In this case, it is only a matter of reproducing [3], Th. 2.5.15, p. 72.

(6) Show that if R is noetherian and a UFD, then any prime ideal of height 1 is principal. [Hint: this is a
classical statement, which can be deduced from Krull’s principal ideal theorem; you may follow the proof
given in Cor. 10.6, [2], p. 236.]

Solution. The argument is given in the proof of Cor. 10.6, [2], p. 236.

(7) Deduce that any polynomial ring k[z1, ..., z4] (d > 0) satisfies DE(1). [Hint: localise at a maximal ideal
and apply (4), (5), (6).]

Solution. Let P := k[z1,...,z4] and let p € Spec(P) be a prime ideal of height 1. Let m be a maximal
ideal of P, which contains p. The equality

dim(P) = 1+ dim(P/p)

52



is equivalent to the equality
dim(Py) = 14+ dim((P/p)m/p)

by (4). Note also that we have (P/p)wm/p = Pm/pPn by Lemma 5.5. in CA.
On the other hand, by (6) and the fact that P is a UFD, we have p = (f) for some f € p and so
P /pPn = Pn/(f). By (5) and (4), we thus have
dim (P /pPn) = dim(Py) — 1 = dim(P) — 1.
Hence
1+ dim(P/p) > dim(P)

Since we have 1+dim(P/p) < dim(P) by the definition of dimension and height, we thus have 1+dim(P/p) =
dim(P), as required.

(8) Prove the theorem.

Solution: (7), (2), (1).
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Exercise sheet 1. Chapters 1-4.

Part A

Question 1.1. (1) Describe the Zariski topology of k.

(2) Show that the Zariski topology of k2 is not the product topology of k x k = k2.

Question 1.2. Let V C k™ be an algebraic set. Show that V is the disjoint union of two non empty algebraic
sets in k™ iff there are two non-zero finitely generated reduced k-algebras 77 and T, and an isomorphism of
k-algebras Th & Ty ~ C(V).

Part B
Question 1.3. Let V C k3 be the set

Vo= {(t,t*t*) |t € k}.
Show that V' is an algebraic set and that it is isomorphic to k£ as an algebraic set. Provide generators for
V).
Question 1.4. (1) Let V C k2 be the set of solutions of the equation y = x2. Show that V is isomorphic
to k as an algebraic set.

(2) Let V' C k? be the set of solutions of the equation zy = 1. Show that V is not isomorphic to k as an
algebraic set.

(3) [difficult] (optional) Let P(x,%y) € k[z,y] be an irreducible quadratic polynomial and let V' C k2 be the
set of zeroes of P(z,y). Show that V is isomorphic to one of the algebraic sets defined in (1) and (2).

Question 1.5. Let V C k™ and W C k* be two algebraic sets. Let ¢ : V — W be a regular map.
(1) Show that ¥ (V) is dense in W iff the map of rings ¥* : C(W) — C(V) is injective.

(2) Show that ¢* is surjective iff ¢(V') is closed and the induced map V' — (V) is an isomorphism of
algebraic sets.

Question 1.6. Let V C k3 be the algebraic set described by the ideal (2 — yz, 22 — x). Show that V has
three irreducible components. Find generators for the radical (actually prime) ideals associated with these

components.

Question 1.7. Let V C k™ and W C k! be algebraic subsets. Let Vo C V and Wy C W be open subsets.
View Vo and Wy as open subvarieties of V' and W respectively. For i € {1,...,t} let m; : k* — k be the
projection on the i-coordinate. Let 1 : Vj — Wy be a map. Show that ) is a morphism of varieties iff 7; ot
is a regular function on Vp for all i € {1,...,t}.

Part C

Question 1.8. Show that the open subvariety k2\{0} of k2 is not affine.
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Exercise sheet 2. Chapters 1-8.

Part A

Question 2.1. Give an example of a noetherian topological space of infinite dimension.

Question 2.2. (1) Let P(xzo,...,2,) be a homogenous polynomial. Show that all the irreducible factors of
P are also homogenous.

(2) Let D C P"(k) be a closed subvariety. Suppose that D is irreducible and that cod(D,P"(k)) = 1. Show
that there is a homogenous irreducible polynomial P € k[xo,...,x,] such that D = Z(P).

Part B

Question 2.3. Let V (resp. W) be a closed subvariety of P"(k) (resp. Pt(k)). Let Vo CV (resp. Wy C W)
be an open subset of V' (resp. and open subset of W). View V, (resp. Wp) as an open subvariety of V
(resp. W). Let Qo,...,Q¢ € k[xo,...,x,] be homogenous polynomials of the same degree. Suppose that
Vo NZ((Qo,--.,Q1)) = 0. Let f: Vo — P(k) be the map given by the formula f(v) := [Qo(?),. .., Q:(D)].
Suppose finally that f(Vy) € Wy. Show that the induced map Vy — Wy is a morphism of varieties.

Question 2.4. Prove Lemma 7.1.

Question 2.5. Let T be a topological space.
(1) Let S C T be a subset. Suppose that S is irreducible. Show that the closure of S in T is also irreducible.
(2) Suppose that T is noetherian. Show that T' is Hausdorff iff T is finite and discrete.

(3) Let V be a variety. Show that V is irreducible iff the ring Oy (U) is an integral domain for all open
subsets U C V.

(4) Suppose T is noetherian. Show that T is quasi-compact.
Question 2.6. Prove Lemma 8.1.

Question 2.7. Let T be a topological space. Let {V;} be an open covering of T. Let C' C T be an irreducible

closed subset (hence non empty).

(1) Show that C'N'V; is irreducible if C'NV; # () and that sup; oy, .9 cod(C N V;, V;) = cod(C,T) and
sup,; dim(V;) = dim(T).

(2) Prove Proposition 8.6.

Question 2.8. (1) Show that any element of GL,11(k) (= group of (n+ 1) x (n+ 1)-matrices with entries

in k and with non zero determinant) defines an automorphism of P (k).

(2) Show that if V' is a projective variety, then for any two points vi,ve € V, there is an open affine
subvariety Vo C V such that v1,vs € Vj.

Part C

Question 2.9. Let ¢ € {0,...,n} and let u; : ¥ — P"(k) be the standard map (with image the co-
ordinate chart U;). Let C C k™ be a closed subvariety of k™ (ie an algebraic set in k™). For any
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P e /{3[1‘0,...,xi_l,]\,‘/i,l‘i+1,...,l‘7l} let

deg(P) 15, L0 Ti1 T; Tig1 x
Bi(P) = g0 P p(Z0 Tl TETEL T kwo, . @)

(1) Let C be the closure of u;(C) in P"(k). Show that (3;(Z(C))) = Z(C) (where (5;(Z(C))) is the ideal of
klxo, ..., 2zn] generated by all the elements of 5;,(Z(Z2))).

(2) Suppose that Z(C) = (J) (ie Z(C) is a principal ideal with generator J). Show that (8;(J)) = Z(C).

(3) Suppose that n = 3 and that C' is the variety considered in question 1.3. Describe the closure of u(C')
in P3(k). Find homogenous polynomials (Hy,..., Hy) such that Z(Hi, ..., Hy) is the closure of ug(C) in
P3(k).
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Exercise sheet 3. Chapters 1-12.

Part A

Question 3.1. Show that k2 is not homeomorphic to P?(k).

Part B

Question 3.2. Let Vy = Z(wozz — 23) C P3(k) and V; = Z(z123 — 23) C P3(k). Let C := Vo NV C P3(k).
Let U := P3\Z(x0, 21, 22) and endow U with its structure of open subvariety of P3(k). Let g : U — P2(k) be
the morphism such that g([Xo, X1, X2, X3]) = [Xo, X1, X2] for all [Xg, X, X2, X3] € U (see question 2.3).

(1) Show that the morphism g|cny : C NU — P?(k) extends to a morphism f : C' — P2(k).
(2) Show that f(C) is closed and that f(C) = Z(z923 — 23).
(3) Show that the induced map f: C' — f(C) is an isomorphism.

Question 3.3. (1) Let f: X — Y be a surjective morphism of quasi-projective varieties. Suppose that X
is complete. Show that Y is also complete.

(2) Show that a noetherian topological space only has finitely many connected components.

(3) Let (V,Oy) be a projective variety. Show that the k-vector space Oy (V) is finite-dimensional.

Question 3.4. Let V and W be quasi-projective varieties. Suppose that V is irreducible. Let Mor(V, W)
be the set of morphisms from V' to W and let p : Mor(V, W) — Rat(V, W) be the natural map (ie p sends
a morphism to the rational map it represents). Show that p is injective.

Question 3.5. (1) Show that for any m,n > 0, k™[] k"™ ~ k"™,

(2) Let V C k™ and W C k™ be algebraic sets. Show that V' x W C E™t™ is an algebraic set and describe
Z(V x W). Show that the affine variety associated with the algebraic set V x W C k"™ is a product of

the affines varieties associated with V' and W.

Question 3.6. Let a : X — Y be a rational map between two quasi-projective varieties. Suppose that Y
is quasi-projective. Show that there is a unique representative f : O C X of a (where O C X is an open
subvariety of X) such that if f: U — Y is a representative of a then U C O. The open set O is called the

open set of definition of a.

Question 3.7. Let n > 0 and let ¢ : k" T1\{0} — P"(k) be the map such that ¢(v) = [v] for all ¥ € k"T1\{0}.
Let V C P"(k) be a closed subset. Endow k"*1\{0} with the structure of variety it inherits from k"1 as

an open subset.

(1) Show that ¢ is a morphism of varieties.

(2) Show that Z(V') is prime iff V' is irreducible.

(3) Show that ¢=1(V) is irreducible iff V is irreducible.

Part C

Question 3.8. (1) Let U C P!(k) be an open subset (for the Zariski topology). Let f : U — P(k) be a
morphism of varieties. Show that there exists a morphism of varieties g : P!(k) — P! (k) such g|y = f.
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(2) Show that every automorphism of P!(k) is of the form described in question 2.8.

(3) Show that k is not isomorphic to any of its proper open subvarieties (an open subvariety is proper if it

is not equal to k).

58



Exercise sheet 4. All lectures.

Part A.

Question 4.1. Let f : X — Y be a regular map between varieties. Suppose that X is quasi-projective.
Let 0 : Y — X be a regular map such that f oo = Idy (such a map is called a section of f). Show that
o(Y) is closed in X.

Part B.

Question 4.2. Suppose in this exercise that char(k) = 0. Find the singularities of the following curves C
in k2. For each singular point P € C compute the dimension of mp/m% as a k-vector space. Here mp is
the maximal ideal of O¢c p.

(1) Z(2® +y° — 2y)

(2) Z(y* + 2t + y* — %)

3

You may assume that the polynomials 2% + % — zy and y? + 2 + y* — 23 are irreducible.

Question 4.3. Let C be the plane curve considered in (1) of question 4.2. Consider the blow-up B of C
at each of its singular points in turn. How many irreducible components does the exceptional divisor of B
have? Is B nonsingular?

Question 4.4. Let V C k? be the algebraic set defined by the equation x122 = 0. Show that BI(V,0) has
two disjoint irreducible components and that each of these components is isomorphic to k.

Question 4.5. Let C C k? be defined by the equation P(xy,75) = 0, where P(x1, ) is an irreducible
polynomial. Suppose that C' goes through the origin 0 of k? and is non singular there. Show that the natural
morphism BI(C,0) — C is an isomorphism. [Hint: construct an inverse map directly, without looking at

coordinate charts]

Part C.

Question 4.6. (1) Let f : X — Y be a dominant morphism of varieties. Suppose that Y is irreducible.
Show that dim(X) > dim(Y).

(2) Let f : X — Y be a dominant morphism of irreducible varieties. Suppose that the field extension
K(X)|k(Y) is algebraic. Show that there are affine open subvarieties U C X and W C Y such that
f(U) =W and such that the map of rings Ox (U) — Oy (V) is injective and finite.

(3) Let f: X — Y be a dominant morphism of irreducible quasi-projective varieties. Show that there is
ay € Y such that we have dim(f~*({y})) = dim(X) — dim(Y). [Hint. Reduce to the situation where Y
is affine and apply Noether’s normalisation lemma to show that you may assume wlog that Y = k™ for
some n. Now use the existence of transcendence bases and (2) to show that there is an open subvariety
U C X and an open subvariety W of k3(X)=dim(Y) s pn sych that f|y factors as a finite and surjective
morphism U — W, followed by the projection to k™. Now deduce the result from (1) and a computation of
the dimension of the fibres of the projection kIm™(X)=dim(Y) 5y pn _ n )

(4) Deduce that in the situation of (3), the set of y € Y such that we have dim(f~*({y})) > dim(X)—dim(Y")
is dense in Y.



Question 4.7. (1) Show that all the morphisms from P?(k) to P1(k) are constant. [Hint: Use question 4.6

and the projective dimension theorem.]

(2) Using (1) or using another method, show that the morphisms from P"(k) to P!(k) are constant.

60



	Introduction
	Hilbert's Nullstellensatz and algebraic sets
	Regular maps between algebraic sets
	Varieties
	Open and closed subvarieties
	Projective space
	Projective varieties
	Dimension
	Rational maps
	Products
	Intersections in affine and projective space
	Separatedness and completeness
	Smoothness
	Blowing up
	Appendix. Proof of Theorem 8.7.
	Exercise sheet 1. Chapters 1-4.
	Exercise sheet 2. Chapters 1-8.
	Exercise sheet 3. Chapters 1-12.
	Exercise sheet 4. All lectures.

