
C8.4 Probabilistic Combinatorics
Paul Balister

These notes accompany the Oxford lectures in HT 2026 on Probabilistic Combinatorics.
They are based on Oliver Riordan’s notes from 2019 which in turn are based on Colin
McDiarmid’s notes from 2015. Please send any corrections to balister@maths.ox.ac.uk.

Recommended books: For much of the course The Probabilistic Method (third edition,
Wiley, 2008) by Alon and Spencer is the most accessible reference. Very good books con-
taining a lot of material, especially about random graphs, are Random Graphs by Bollobás,
and Random Graphs by Janson,  Luczak and Ruciński; but do not expect these books to be
as easy to read.

Prerequisites: Part B Graph Theory and Part A Probability are recommended.
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0 What is probabilistic combinatorics?

The first question is, what is combinatorics? This is hard to define exactly, but should
become clearer through examples, of which the main ones are from graph theory.

Roughly speaking, combinatorics is the study of ‘discrete structures’. Here ‘discrete’ means
either finite, or infinite but discrete in the sense that the integers are, as opposed to the
reals. Usually in combinatorics, there are some underlying objects whose internal structure
we ignore, and we study structures built on them: the most common example is graph theory,
where we do not care what the vertices are, but study the abstract structure of graphs on
a given set of vertices. Abstractly, a graph is just a set of unordered pairs of vertices, i.e.,
a symmetric irreflexive binary relation on its vertex set. More generally, we might study
collections of general subsets of a given (usually finite) vertex set, not just pairs.

Turning to probabilistic combinatorics, this is combinatorics with randomness involved. It
can mean two things:

(a) the use of randomness (e.g., random graphs) to solve deterministic combinatorial prob-
lems, or

(b) the study of random combinatorial objects for their own sake.

Historically, the main focus was initially on (a), but after a while, the same objects (e.g.,
random graphs) come up again and again, and one realizes that it is not only important,
but also interesting, to study these in themselves, as well as their applications. Random
graphs have also been intensively studied as mathematical models for disordered networks in
the real world. Probabilistic combinatorics has also led to new developments in probability
theory, and interacts strongly with theoretical computer science.

The course will mainly be organized around proof techniques. However, each technique will
be illustrated with examples, and one particular example (random graphs) will occur again
and again, so by the end of the course we will have covered aim (b) in this special case as
well as aim (a) above.

The first few examples will be mathematically very simple; nevertheless, they will show the
power of the method in general. Of course, modern applications are often not so simple.
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1 First moment method

Perhaps the most basic inequality in probability is the union bound : if A1 and A2 are two
events, then P(A1 ∪A2) ⩽ P(A1) +P(A2), where A1 ∪A2 denotes the union of the events A1

and A2, i.e., the event that A1 or A2 holds, or both. More generally,

P(A1 ∪ · · · ∪ An) ⩽
n∑

i=1

P(Ai).

This trivial fact is already useful.

Example (Ramsey numbers). For positive integers k and ℓ, the Ramsey number R(k, ℓ) is
the smallest n such that every colouring of the edges of the complete graph Kn with two
colours, say red and blue, contains either a completely red Kk or a completely blue Kℓ. It’s
not our focus here, but these numbers exist: it is not too hard to show by induction that
n =

(
k+ℓ−2
k−1

)
has the required property (and so does any larger n). We are interested in lower

bounds.

Theorem 1.1 (Erdős, 1947). If n, k ⩾ 1 are integers with
(
n
k

)
21−(k

2) < 1, then R(k, k) > n.

Proof. Colour the edges of Kn red/blue at random so that each edge is red with probability
1/2 and blue with probability 1/2, and the colours of the edges are independent.

There are
(
n
k

)
copies of Kk in Kn as each copy is determined uniquely by a subset of vertices

of size k. Let Ai be the event that the ith copy is monochromatic. Then, as Kk contains
(
k
2

)
edges,

P(Ai) = P(ith copy is all blue) + P(ith copy is all red) = 2
(1

2

)(k
2)

= 21−(k
2).

Thus

P(∃ monochromatic Kk) ⩽
∑
i

P(Ai) =

(
n

k

)
21−(k

2) < 1.

Thus, in the random colouring, the probability that there is no monochromatic Kk is greater
than 0. Hence it is possible that the random colouring is ‘good’ (contains no monochromatic
Kk), i.e., there exists a ‘good’ colouring.

Figure 1: Left: a red/blue colouring of K5 without a red or blue K3. Right: every red/blue
colouring of K6 contains either a red K3 or a blue K3, so R(3, 3) = 6.
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To deduce an explicit bound on R(k, k) involves a little calculation.

Corollary 1.2. R(k, k) ⩾ k
e
√
2
2k/2 for k ⩾ 1.

Proof. Set n = ⌊ k
e
√
2
2k/2⌋ = ⌊(k/e)2(k−1)/2⌋. Then(

n

k

)
21−(k

2) ⩽
nk

k!
21−(k

2) ⩽
(k/e)k

k!
2k(k−1)/2 · 21−(k

2) ⩽
2√
2πk

⩽ 1.

Here we have used Stirling’s formula k! ∼
√

2πk (k/e)k, which is in fact also an inequality
k! ⩾

√
2πk (k/e)k, true for all k ⩾ 1 (see Appendix B).

Remark. The result above is very simple, and may seem weak. But the best known lower
bound proved by non-random methods is roughly 2(log k)C with C constant, which grows
only slightly faster than polynomially. This is tiny compared with the exponential lower
bound given above. Note that the best known upper bound is of the form Ck with C just
slightly less than 3.8, so exponential is the right order1. However, there is still a very large
gap between the best known lower bound and the best known upper bound, with the upper
bound being nearly the fourth power of the lower bound!

Often, the ‘first-moment method’ simply refers to using the union bound as above. But it is
much more general than that. We recall another basic term from probability.

Definition. The first moment of a random variable X is simply its mean, or expectation,
written E[X].

Recall that expectation is linear. If X and Y are (real-valued) random variables and λ is
a (constant) real number, then E[X + Y ] = E[X] + E[Y ], and E[λX] = λE[X]. Crucially,
these always hold, irrespective of any relationship (or not) between X and Y , provided the
expectations of X and Y are defined (i.e., E[|X|],E[|Y |] < ∞).

If A is an event, then its indicator function 1A is the random variable which takes the value
1 when A holds and 0 when A does not hold. Note that E[1A] = P(A).

Let A1, . . . , An be events and set X =
∑n

i=1 1Ai
, so that X is the (random) number of the

events Ai that hold. Then

E[X] =
n∑

i=1

E[1Ai
] =

n∑
i=1

P(Ai).

We use the following observation about any random variable X with finite mean µ: it cannot
be true that X is always smaller than µ, or always larger: P(X ⩾ µ) > 0 and P(X ⩽ µ) > 0.

Example (Ramsey numbers again).

1While an upper bound of 4n follows easily by induction, an upper bound of the form (4−ε)n was proved
only recently in 2023.
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Theorem 1.3. Let n, k ⩾ 1 be integers. Then

R(k, k) > n−
(
n

k

)
21−(k

2).

Proof. Colour the edges of Kn randomly as before. Let X denote the (random) number of
monochromatic copies of Kk in the colouring. Then

µ := E[X] =

(
n

k

)
21−(k

2).

Since P(X ⩽ µ) > 0, there exists a colouring with at most µ monochromatic copies of Kk.
Pick one vertex from each of these monochromatic Kks (this may involve picking the same
vertex more than once). Delete all the selected vertices. Then we have deleted at most
µ vertices, and we are left with a ‘good’ colouring of Km for some m ⩾ n − µ. Thus
R(k, k) > m ⩾ n− µ.

The type of argument above is often called a ‘deletion argument’. Instead of trying to avoid
‘bad things’ in our random structure, we first ensure that there are not too many, and then
‘fix things’ (here by deleting) to get rid of those few.

Corollary 1.4. R(k, k) ⩾ (1 − o(1))k
e

2k/2.

Proof. Exercise: take n = ⌊k
e

2k/2⌋ and follow a similar calculation as in Corollary 1.2.

Here we are using standard asymptotic notation (see Appendix A). Explicitly, we mean
that for any ε > 0 there is a k0 such that for all k ⩾ k0 we have R(k, k) ⩾ (1 − ε)k

e
2k/2.

Theorem 1.1 does not quite yield this as one loses a factor of about
√

2. The advantage of
the deletion method is that we can increase n quite a bit above the point where the expected
number of monochromatic Kks is < 1 (which is what we needed in the original version of
the theorem) and still have rather few of them compared with n.

We now give a totally different example of the first-moment method.

Example (Sum-free sets).

Definition. A set S ⊆ R is sum-free if there do not exist a, b, c ∈ S such that a + b = c.

Note that {1, 2} is not sum-free, since 1 + 1 = 2. The set {2, 3, 7, 8, 12} is sum-free, for
example.

Theorem 1.5 (Erdős, 1965). Let S = {s1, s2, . . . , sn} be a set of n ⩾ 1 (distinct) non-zero
integers. There is some A ⊆ S such that A is sum-free and |A| > n/3.

Proof. We use a trick: we want a prime p such that all si are distinct and non-zero mod p.
For example we may take p > 2 max |si|. By Dirichlet’s Theorem on primes in an arithmetic
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progression, there are infinitely many such primes of the form 3k + 2, so we can choose p to
also be of this form. (A prime of the form 3k + 1 works nearly as well.)

Let I = {k + 1, . . . , 2k + 1}. Then I is sum-free modulo p: there do not exist a, b, c ∈ I such
that a + b ≡ c mod p. (For if a, b ∈ I then 2k + 2 ⩽ a + b ⩽ 4k + 2 = (3k + 2) + k.)

Pick r uniformly at random from 1, 2, . . . , p − 1, and set ti = rsi mod p. Thus each ti is a
random element of {1, 2, . . . , p− 1}.

For each fixed i, as r runs from 1 to p− 1, ti takes each possible value 1, 2, . . . , p− 1 exactly
once: to see this note that no value can be repeated, since if rsi ≡ r′si then p | (r − r′)si
and so p | r − r′ as p ∤ si. Hence

P(ti ∈ I) =
|I|

p− 1
=

k + 1

3k + 1
>

1

3
.

We use the first moment method: we have

E[#i such that ti ∈ I] =
n∑

i=1

P(ti ∈ I) > n/3.

It follows that there is some r such that, for this particular r, the number of i with ti ∈ I
is greater than n/3. For this r, let A = {si : ti ∈ I}, so A ⊆ S and |A| > n/3. If
we had si, sj, sk ∈ A with si + sj = sk then we would have rsi + rsj = rsk, and hence
ti + tj ≡ tk mod p, which contradicts the fact that I is sum-free modulo p.

The proof above is an example of an averaging argument. This particular example is not so
easy to dream up, but it is hopefully easy to follow.

Example (2-colouring hypergraphs). A hypergraph H is simply an ordered pair (V,E) where
V is a set of vertices and E is a set of edges (or hyperedges), where an edge is just a subset
of V (of any size). A hypergraph H is r-uniform if |e| = r for all e ∈ E, i.e., if every edge
consists of exactly r vertices. In particular, a 2-uniform hypergraph is simply a graph.

Note that E is a set, so each possible edge (subset of V ) is either present or not, just as each
possible edge of a graph is either present or not. If we wanted to allow multiple copies of
the same edge, we could define multi-hypergraphs in analogy with multigraphs.

Figure 2: The Fano plane
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An example of a 3-uniform hypergraph is the Fano plane shown in Figure 2. This has 7
vertices and 7 edges; in the drawing, the 6 straight lines and the circle each represent an edge,
with each edge containing exactly 3 vertices. (As usual, how they are drawn is irrelevant,
all that matters is which vertices each hyperedge contains.)

A (proper) 2-colouring of a hypergraph H is a red/blue colouring of the vertices such that
every edge contains vertices of both colours. If H is 2-uniform, this is the same as a (proper
vertex) 2-colouring of H as a graph. We say that H is 2-colourable if it has a 2-colouring.
(This was once called having property B.)

Let m(r) be the minimum m such that there exists a non-2-colourable r-uniform hypergraph
with m edges. It is easy to see that m(2) = 3 as K3 is clearly the smallest non-2-colourable
graph and has 3 edges. The Fano plane is not 2-colourable (exercise), and so m(3) ⩽ 7. In
fact m(3) = 7.

Theorem 1.6. For r ⩾ 2 we have m(r) ⩾ 2r−1.

Proof. Let H = (V,E) be any r-uniform hypergraph with m < 2r−1 edges. Colour the
vertices red and blue randomly: each red with probability 1/2 and blue with probability 1/2,
with different vertices coloured independently. For any e ∈ E, the probability that e is
monochromatic is 2(1/2)r = 1/2r−1. By the union bound, it follows that the probability
that there is at least one monochromatic edge is at most m/2r−1 < 1. Thus there exists a
‘good’ colouring.

We can also obtain a bound in the other direction; this is harder.

Theorem 1.7 (Erdős, 1964). If r is large enough then m(r) ⩽ 3r22r.

Proof. Fix r ⩾ 3. Let V be a set of n vertices, where n (which depends on r) will be chosen
later. Let m = 3r22r.

Let e1, . . . , em be chosen independently and uniformly at random from all
(
n
r

)
possible hy-

peredges on V . Although repetitions are possible, the hypergraph

H = (V, {e1, . . . , em})

certainly has at most m hyperedges.

Let c be any red/blue colouring of V (not a random one this time). Then c has either at
least n/2 red vertices, or at least n/2 blue ones. It follows that at least (crudely)

(⌈n/2⌉
r

)
of

all possible hyperedges are monochromatic with respect to c.

Let p denote the probability that e1 (a hyperedge chosen uniformly at random from all
possibilities) is monochromatic with respect to c. Then

p ⩾

(⌈n/2⌉
r

)(
n
r

) ⩾
n
2
(n
2
− 1) · · · (n

2
− r + 1)

n(n− 1) · · · (n− r + 1)
=

r−1∏
i=0

1

2

(
1 − i

n− i

)
⩾ 2−r

(
1 − r − 1

n− r

)r

.
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Set n = r2. Then p ⩾ 2−r(1− 1
r
)r. Since (1− 1

r
)r → e−1 as r → ∞, we see that p ⩾ p0 := 1

3·2r
if r is large enough, which we assume from now on.

The probability that the given, fixed colouring c is a proper 2-colouring of our random
hypergraph H is simply the probability that none of e1, . . . , em is monochromatic with respect
to c. Since e1, . . . , em are independent, this probability is (1 − p)m ⩽ (1 − p0)

m.

By the union bound, the probability that H is 2-colourable is at most the sum over all
possible colourings c of the probability that c is a 2-colouring, which is at most 2n(1− p0)

m.
Using the standard inequality 1 − x ⩽ e−x, we have

2n(1 − p0)
m ⩽ 2ne−p0m ⩽ 2r2e−

3r22r

3·2r = 2r2e−r2 < 1.

Hence there exists an r-uniform hypergraph H with at most m edges and no 2-colouring.

Remark. Why does the first moment method work? Often, there is some complicated event
A whose probability we want to know or at least bound. For example, A might be the event
that the random colouring c is a 2-colouring of a fixed (complicated) hypergraph H. Often,
A is constructed by taking the union or intersection of simple events A1, . . . , Ak. In a few
special situations, P(A) is easy to calculate:

• If A1, . . . , Ak are independent, then

P(A1 ∩ · · · ∩ Ak) =
∏
i

P(Ai) and P(A1 ∪ · · · ∪ Ak) = 1 −
∏
i

(1 − P(Ai)).

• If A1, . . . , Ak are mutually exclusive, then

P(A1 ∪ · · · ∪ Ak) =
∑
i

P(Ak).

(For example, these give us the probability 2(1/2)|e| that a fixed hyperedge e is monochro-
matic in a random 2-colouring of the vertices.)

In general, the relationship between the Ai may be very complicated. However, if X is the
number of Ai that hold, then we always have E[X] =

∑
i P(Ai) and

P
(⋃

i

Ai

)
= P(X > 0) ⩽

∑
i

P(Ai).

The key point is that while the left-hand side is complicated, the right-hand side is simple:
we evaluate it by looking at one simple event at a time.

So far we have used the expectation only via the observations that P(X ⩽ E[X]) > 0 and
P(X ⩾ E[X]) > 0, together with the union bound. A slightly more sophisticated (but still
simple) way to use it is via Markov’s inequality.
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Lemma 1.8 (Markov’s inequality). If X is a random variable taking only non-negative
values and t > 0, then P(X ⩾ t) ⩽ E[X]/t.

Proof. The inequality t1{X⩾t} ⩽ X holds always. Take expectations.

We now start on one of our main themes, the study of the random graph G(n, p).

Definition. Given an integer n ⩾ 1 and a real number 0 ⩽ p ⩽ 1, the random graph G(n, p)
is the graph with vertex set [n] = {1, 2, . . . , n} in which each of the

(
n
2

)
possible edges is

present with probability p, independently of the others.

Thus, for any graph H on [n],

P(G(n, p) = H) = pe(H)(1 − p)(
n
2)−e(H),

where e(H) = |E(H)| is the number of edges in H. For example, if p = 1/2, then all 2(n
2)

graphs on [n] are equally likely.

Remark. It is important to remember that we work with ‘labelled’ graphs, i.e., the vertices
are considered distinguishable from one another. For example, the probability that G(3, p)
is a path with three vertices is 3p2(1 − p), since there are three distinct (but isomorphic)
graphs with vertex set {1, 2, 3} that are paths.

Sometimes the notation G(n, p) is used for the probability space of graphs on [n] with the
probabilities above. All of G ∈ G(n, p), G = G(n, p) and G ∼ G(n, p) mean exactly the same
thing, namely that G is a random graph with this distribution. The notation Gn,p is also
common.

This model of random graphs is often called the Erdős–Rényi model although in fact it was
first defined by Gilbert. Erdős and Rényi introduced an essentially equivalent model, and
were the real founders of the theory of random graphs, so associating the model with their
names is reasonable. Another common name for this model is the binomial model – the
number of edges has the binomial distribution Bin(

(
n
2

)
, p).

Example (High girth and chromatic number). Let us recall some definitions. The girth
g(G) of a graph G is the minimum length of a cycle in G, or ∞ if G contains no cycles.
The chromatic number χ(G) is the least k such that G has a proper k-colouring (i.e., a
colouring of the vertices with k colours in which adjacent vertices receive different colours).
The independence number α(G) is the maximum number of vertices in an independent set
in G, i.e., a set of vertices of G no two of which are joined by an edge.

A proper k-colouring partitions the vertex set into k independent sets, namely the sets of
vertices that are assigned a given colour. Hence |G| ⩽ k α(G), and so

χ(G) ⩾ |G|/α(G).
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Theorem 1.9 (Erdős, 1959). For any k and ℓ there exists a graph G with χ(G) ⩾ k and
g(G) ⩾ ℓ.

There are non-random proofs of this, but it is not so easy.

The idea of the proof is to consider G(n, p) for suitable n and p. We will show separately that
(a) very likely there are few short cycles, and (b) very likely there is no large independent
set. Then it is likely that the properties in (a) and (b) both hold, and after deleting a few
vertices (to kill the short cycles), we obtain the graph we need.

Proof. Fix k, ℓ ⩾ 3. For r ⩾ 3, there are

n(n− 1) · · · (n− r + 1)

2r

possible cycles of length r in G(n, p): the numerator counts sequences of r distinct vertices,
and the denominator accounts for the fact that each cycle corresponds to 2r sequences,
depending on the choice of starting point and direction of the sequence around the cycle.

Let Xr be the number of r-cycles in G(n, p). Then

E[Xr] =
n(n− 1) · · · (n− r + 1)

2r
pr ⩽ (np)r.

Set p = p(n) = n−1+1/ℓ, and let X be the number of ‘short’ cycles, i.e., cycles with length
less than ℓ. Then X = X3 + X4 + · · · + Xℓ−1, so

E[X] =
ℓ−1∑
r=3

E[Xr] ⩽
ℓ−1∑
r=3

(np)r =
ℓ−1∑
r=3

nr/ℓ = O
(
n

ℓ−1
ℓ

)
= o(n).

(ℓ is fixed and n can be taken as large as we like, so n1/ℓ can also be assumed large.) By
Markov’s inequality it follows that

P(X ⩾ n/2) ⩽
E[X]

n/2
→ 0 as n → ∞.

Set m = m(n) = ⌊n1−1/(2ℓ)⌋. Let Y be the number of independent sets in G(n, p) of
size (exactly) m. Then, using the standard bounds

(
n
m

)
⩽ ( en

m
)m and 1 − p ⩽ e−p (See

Appendix B),

E[Y ] =

(
n

m

)
(1 − p)(

m
2 ) ⩽

(en
m

)m

e−p(m
2 ) =

(en
m

e−pm−1
2

)m

.

Now

p
m− 1

2
∼ pm

2
∼ n−1+ 1

ℓn1− 1
2ℓ

2
=

n
1
2ℓ

2
.
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Thus p(m− 1)/2 ⩾ 2 log n if n is large enough, which we may assume. But then

E[Y ] ⩽
(en
m

n−2
)m

→ 0 as n → ∞,

and so by the first moment method, P(Y ⩾ 1) ⩽ E[Y ] → 0, i.e., P(α(G) ⩾ m) → 0.

Combining the two results above, by the union bound we have P(X ⩾ n/2 or α(G) ⩾ m) →
0. Hence, if n is large enough, there exists some graph G with n vertices, with fewer than
n/2 short cycles, and with α(G) < m.

Construct G∗ by deleting one vertex from each short cycle of G. Then g(G∗) ⩾ ℓ, and
|G∗| ⩾ n− n/2 = n/2. Also, α(G∗) ⩽ α(G) < m. Thus

χ(G∗) ⩾
|G∗|
α(G∗)

⩾
n/2

m
⩾

n/2

n1− 1
2ℓ

=
1

2
n

1
2ℓ ,

which is larger than k if n is large enough.

2 Second moment method

Definition. A counting random variable is a random variable taking non-negative integer
values.

Suppose (Xn) is a sequence of counting random variables. By Markov’s inequality, if E[Xn] →
0 as n → ∞, then we have P(Xn > 0) = P(Xn ⩾ 1) ⩽ E[Xn] → 0. Under what conditions
can we show that P(Xn > 0) → 1? Simply E[Xn] → ∞ is not enough: it is easy to find
examples where E[Xn] → ∞, but P(Xn = 0) → 1. We want some control on the difference
between Xn and E[Xn].

Definition. The variance Var[X] of a random variable X is defined by

Var[X] = E
[
(X − EX)2

]
= E[X2] − E[X]2.

(We assume that E[X] and E[X2] are finite.) We recall a basic fact from probability.

Lemma 2.1 (Chebyshev’s Inequality). Let X be a random variable and let t > 0. Then

P
(
|X − EX| ⩾ t

)
⩽

Var[X]

t2
.

Proof. By Markov’s inequality applied to Y = (X − EX)2 we have

P
(
|X − EX| ⩾ t

)
= P

(
Y ⩾ t2

)
⩽

E[Y ]

t2
=

Var[X]

t2
.

Definition. Let (Xn) be a sequence random variables and a is a constant. Then Xn converges

to a in probability, written Xn
p→ a, if for all (fixed) ε > 0 we have P(|Xn − a| < ε) → 1 as

n → ∞.
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In practice, we usually use Chebyshev’s inequality as follows.

Corollary 2.2. Let (Xn) be a sequence of random variables with E[Xn] = µn > 0 and

Var[Xn] = o(µ2
n). Then P(Xn > 0) → 1. Indeed, Xn/µn

p→ 1.

Proof.

P(Xn = 0) ⩽ P
(
|Xn − µn| ⩾ µn

)
⩽

Var[Xn]

µ2
n

→ 0.

Or more generally, for any ε > 0,

P
(
|Xn/µn − 1| ⩾ ε

)
= P

(
|Xn − µn| ⩾ εµn

)
⩽

Var[Xn]

ε2µ2
n

→ 0.

Remark. The mean µ = E[X] is usually easy to calculate. Since Var[X] = E[X2] − µ2,
this means that knowing the variance is equivalent to knowing the second moment E[X2].
In particular, with µn = E[Xn], the condition Var[Xn] = o(µ2

n) is equivalent to E[X2
n] =

(1 + o(1))µ2
n, i.e., E[X2

n] ∼ µ2
n:

Var[Xn] = o(µ2
n) ⇐⇒ E[X2

n] ∼ µ2
n.

Sometimes the second moment is more convenient to calculate than the variance.

Suppose that X = 11 + · · · + 1k, where each 1i is the indicator function of some event Ai.
We have seen that E[X] is easy to calculate; E[X2] is not too much harder:

E[X2] = E
[∑

i

1i

∑
j

1j

]
= E

[∑
i

∑
j

1i1j

]
=

∑
i

∑
j

E[1i1j] =
k∑

i=1

k∑
j=1

P(Ai ∩ Aj).

Example (K4s in G(n, p)).

Theorem 2.3. Let p = p(n) be a function of n.

(a) If n2/3p → 0 as n → ∞, then P(G(n, p) contains a K4) → 0.

(b) If n2/3p → ∞ as n → ∞, then P(G(n, p) contains a K4) → 1.

Proof. Let X (really Xn, as the distribution depends on n) denote the number of K4s in
G(n, p). For each set S of 4 vertices from [n], let AS be the event that S induces a K4 in
G(n, p). Then

µ = E[X] =
∑
S

P(AS) =

(
n

4

)
p6 =

n(n− 1)(n− 2)(n− 3)

4!
p6 ∼ n4p6

24
=

(n2/3p)6

24
.

In case (a) it follows that E[X] → 0, so P(X > 0) → 0, as required.

12



For the second part of the result, we have E[X2] =
∑

S

∑
T P(AS ∩ AT ). The contributions

from all terms where S and T meet in a given number of vertices are as follows:

|S ∩ T | contribution

0
(
n
4

)(
n−4
4

)
p12 ∼ n4

24
n4

24
p12 ∼ µ2

1
(
n
4

)
4
(
n−4
3

)
p12 = Θ(n7p12)

2
(
n
4

)(
4
2

)(
n−4
2

)
p11 = Θ(n6p11)

3
(
n
4

)(
4
3

)(
n−4
1

)
p9 = Θ(n5p9)

4
(
n
4

)
p6 = µ

Recall that by assumption n2/3p → ∞, so µ = Θ((n2/3p)6) → ∞ and the last contribution µ
is o(µ2). How do the other contributions compare to µ2? Now n2/3p → ∞ implies np → ∞
and so

n7p12

n8p12
=

1

n
= o(1),

n6p11

n8p12
=

1

n2p
= o(1), and

n5p9

n8p12
=

1

(np)3
= o(1).

As µ2 = Θ(n8p12), this implies E[X2] = µ2 + o(µ2). Thus Var[X] = o(µ2), and by Corol-
lary 2.2 we have P(X > 0) → 1.

Definition. Let P be a property of graphs (e.g., ‘contains a K4’). A function p∗(n) is called
a threshold function for P in the model G(n, p) if

• p(n)/p∗(n) → 0 implies that P(G(n, p(n)) has P) → 0, and

• p(n)/p∗(n) → ∞ implies that P(G(n, p(n)) has P) → 1.

Theorem 2.3 says that n−2/3 is a threshold function for G(n, p) to contain a K4. Note that
threshold functions are not quite uniquely defined (e.g., 2n−2/3 is also one), and may not
always exist. However, it is true that any increasing property has some threshold function,
where a property is called increasing if whenever G = (V,E) has the property then so does
each graph G′ = (V,E ′) with E ⊆ E ′.

We can generalize Theorem 2.3 to other properties of the form ‘contains a copy of H’, where
H is a fixed graph. However, let’s first streamline the proof a bit.

Suppose as usual that X = 11+· · ·+1k, with 1i the indicator function of Ai. When applying
the second moment method, our aim is to estimate the variance, showing that it is small
compared to the square of the mean, so Corollary 2.2 applies. So far we first calculated
E[X2], due to the simplicity of the formula

∑
i

∑
j P(Ai ∩ Aj). However, this involves some

‘unnecessary’ work when many of the events are independent. We can avoid this by directly

13



calculating the variance.

Var[X] = E[X2] − (E[X])2

=
∑
i

∑
j

P(Ai ∩ Aj) −
(∑

i

P(Ai)
)(∑

j

P(Aj)
)

=
∑
i

∑
j

(
P(Ai ∩ Aj) − P(Ai)P(Aj)

)
.

Write i ∼ j if i ̸= j and Ai and Aj are dependent. (More precisely, we ensure that if i ̸= j
and i ̸∼ j then Ai and Aj must be independent.) The contribution from terms where Ai and
Aj are independent is zero by definition, so

Var[X] =
∑
i

(
P(Ai) − P(Ai)

2
)

+
∑
i

∑
j∼i

(
P(Ai ∩ Aj) − P(Ai)P(Aj)

)
⩽ E[X] +

∑
i

∑
j∼i

P(Ai ∩ Aj).

Note that the first line is an exact formula for the variance; the second line is just an upper
bound, but this upper bound is often good enough.

The bound above gives another standard way of applying the 2nd moment method. We
suppress the dependence on n in the notation here.

Corollary 2.4. Suppose µ := E[X] → ∞ and ∆ :=
∑

i

∑
j∼i P(Ai ∩ Aj) = o(µ2). Then

P(X > 0) → 1. Indeed, X/µ
p→ 1.

Proof. Follows from Corollary 2.2 as Var[X] ⩽ µ + ∆ = o(µ2).

Definition. An isomorphism from a graph G to a graph H is a bijection ϕ : V (G) →
V (H) such that ij ∈ E(G) if and only if ϕ(i)ϕ(j) ∈ E(H). An automorphism of H is an
isomorphism from H to itself. We write aut(H) for the number of automorphisms of H.

For example, if n ⩾ 3, a path Pn with n vertices has aut(Pn) = 2, a cycle has aut(Cn) = 2n,
and the complete graph has aut(Kn) = n!. Note that if G and H are isomorphic, then there
are exactly aut(G) = aut(H) isomorphisms from G to H.

Example (Appearance of H in G(n, p)). Fix a graph H with v vertices and e edges. What
is the threshold for copies of H to appear in G = G(n, p)?

Let X be the number of copies of H in G = G(n, p), i.e., the number of pairs (W,F ) where
W ⊆ V (G), F ⊆ E(G), and the graph (W,F ) is isomorphic to H.

In general, there are n(n − 1) · · · (n − v + 1) injective maps ϕ : V (H) → [n]. Suppose that
for i = 1, 2 we have a map ϕi : V (H) → W that is an isomorphism between H and (W,Fi).
Then F1 = F2 iff ϕ−1

1 ◦ ϕ2 is an automorphism γ of H; that is, if and only if ϕ2 = ϕ1 ◦ γ.

14



H many Hs

Figure 3: The appearance of one K4 in G(n, p) usually results in many copies of H.

Thus if γ1, . . . , γk are the automorphisms of H, then the maps that give the same copy of H
as ϕ1 are ϕ1 ◦ γ1, . . . , ϕ1 ◦ γk. Thus there are

n(n− 1) · · · (n− v + 1)

aut(H)

possible copies of H in Kn. It follows that

E[X] =
n(n− 1) · · · (n− v + 1)

aut(H)
pe ∼ nvpe

aut(H)
= Θ(nvpe).

This suggests that a possible threshold function should be p = n−v/e.

This worked for K4 but can it be right in general? Consider, for example, H to be a K4 with
an extra edge hanging off, so v = 5 and e = 7. Our proposed threshold is p = n−5/7, which
is much smaller than p = n−2/3. Consider the range in between, where p/n−5/7 → ∞ but
p/n−2/3 → 0. Then E[X] → ∞, but the probability that G(n, p) contains a K4 tends to 0,
so the probability that G(n, p) contains a copy of H also tends to 0.

The problem is that H contains a subgraph K4 which is hard to find, because its e/v ratio
is larger than that of H, but if this K4 does appear in G(n, p) there are usually many ways
to extend it to a copy of H in G(n, p) (as the degree of each vertex is typically large). Thus
the expected number of copies of H can be large even when it is very unlikely to contain a
single copy.

Definition. The edge density d(H) of a graph H is e(H)/|H| = |E(H)|/|V (H)|.

(Note that d(H) is half the average degree of a vertex in H as
∑

v∈V (H) d(v) = 2|E(H)|.)

Definition. H is balanced if each subgraph H ′ of H has d(H ′) ⩽ d(H), and strictly balanced
if each subgraph H ′ ̸= H has d(H ′) < d(H).

Examples of strictly balanced graphs include complete graphs, trees, and connected regular
graphs.

For balanced graphs, p = n−v/e does turn out to be the threshold.

Theorem 2.5. Let H be a balanced graph with |V (H)| = v and |E(H)| = e. Then p∗(n) =
n−v/e is a threshold function for the property of containing a copy of H in G(n, p).
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Proof. Let X denote the number of copies of H in G(n, p), and set µ := E[X], so µ = Θ(nvpe).
If p/n−v/e → 0 then µ → 0, so P(X ⩾ 1) → 0.

Suppose that p/n−v/e → ∞, i.e., that nvpe → ∞. Then µ → ∞. Let H1, . . . , HN list all
possible copies of H with vertices in [n], and let Ai denote the event that the ith copy Hi is
present in G = G(n, p). Let Hi∩Hj denote the graph with vertex set V (Hi)∩V (Hj) and edge
set E(Hi) ∩ E(Hj). Observe that Ai and Aj are dependent if and only if |E(Hi ∩Hj)| > 0.
As before, write i ∼ j if i ̸= j and Ai and Aj are dependent, and let

∆ :=
∑
i

∑
j∼i

P(Ai ∩ Aj) =
∑
i

∑
j∼i

P(Hi ∪Hj ⊆ G).

We split the sum by the number r of possible vertices of Hi ∩Hj and the number s of edges
of Hi ∩ Hj. As we are only interested in the case s ⩾ 1, we may assume r ⩾ 2. Note that
Hi ∩Hj is a subgraph of Hi, which is isomorphic to the balanced graph H. We thus have

s

r
= d(Hi ∩Hj) ⩽ d(H) =

e

v
.

Since Hi ∪Hj has 2v − r vertices and 2e− s edges, the contribution to ∆ from terms with
given r and s is

Θ
(
n2v−rp2e−s

)
= Θ

(
µ2/(nrps)

)
.

Now
nrps = (nps/r)r ⩾ (npe/v)r = (nvpe)r/v = Θ(µr/v).

Since µ → ∞ and r/v > 0, it follows that nrps → ∞, so the contribution from this pair
(r, s) is o(µ2).

Since there are only a fixed number of pairs to consider, it follows that ∆ = o(µ2). Hence,
by Corollary 2.4, P(X > 0) → 1.

Remark. In general, a threshold is n−1/d(H′), where H ′ is a densest subgraph of H.

Remark. If H is strictly balanced and p = cn−v/e, then µ tends to a constant and the rth
factorial moment Er[X] := E[X(X − 1) · · · (X − r + 1)] satisfies Er[X] ∼ µr, from which
one can show that the number of copies of H has asymptotically a Poisson distribution. We
shall not do this.
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3 Lovász Local Lemma

Suppose that we have some ‘bad’ events A1, . . . , An, and we want to show that it’s possible
that no Ai holds, no matter how unlikely. If

∑
i P(Ai) < 1 then the union bound gives what

we want. But what if the sum is large? In general, of course, it might be that
⋃

i Ai always
holds. One trivial case where we can rule this out is when the Ai are independent. Then

P
(⋂

i

Ac
i

)
=

∏
i

P(Ac
i ) =

n∏
i=1

(1 − P(Ai)) > 0,

provided each Ai has probability less than 1.

What if each Ai depends only on a few others?

Recall that A1, . . . , An (or A1, A2, . . . ) are independent if for any finite2 S,

P
(⋂
i∈S

Ai

)
=

∏
i∈S

P(Ai).

This is not the same as each pair of events being independent (see below).

Definition. An event A is independent of a family {B1, . . . , Bn} of events if for all S ⊆ [n]
we have

P
(
A

∣∣∣ ⋂
i∈S

Bi

)
= P(A),

From this it easily follows that if S, T ⊆ [n] are disjoint then

P
(
A

∣∣∣ ⋂
i∈S

Bi ∩
⋂
i∈T

Bc
i

)
= P(A),

i.e., knowing that certain Bi hold and certain others do not does not affect the probability
that A holds. (If S = ∅ then

⋂
i∈S Ai is the whole probability space Ω, and P(

⋂
i∈S Ai) = 1.)

For example, suppose that each of the following four sequences of coin tosses happens with
probability 1/4: TTT, THH, HTH and HHT. Let Ai be the event that the ith toss is H. Then
one can check that any two events Ai are independent, but {A1, A2, A3} is not a family of
independent events. Similarly, A1 is not independent of {A2, A3}, since P(A1 | A2∩A3) = 0.

Remark. If we want to avoid division by zero above, we can rewrite the condition P(A |
E) = P(A) as P(A ∩ E) = P(A)P(E). More generally, the defining property of P(A | E) is
that P(A ∩ E) = P(A | E)P(E). In the case where P(E) = 0 (and so P(A ∩ E) = 0) this
holds automatically. Taking this view, a statement such as P(A | E) ⩾ x is really short for
P(A ∩ E) ⩾ xP(E), so if P(E) = 0 it holds automatically.

2This implies the same result for countably infinite S by continuity of probability: P(∩∞
i=1Ai) =

limn→∞ P(∩n
i=1Ai) = limn→∞

∏n
i=1 P(Ai) =

∏∞
i=1 P(Ai).
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Recall that a digraph on a vertex set V is a set of ordered pairs of distinct elements of V ,
i.e., a ‘graph’ in which each edge has an orientation, there are no loops, and there is at most
one edge from a given i to a given j, but we may have edges in both directions between i
and j. We write i → j if there is an edge from i to j.

Definition. A digraph D on [n] is called a dependency digraph for the events A1, . . . , An if,
for each i, the event Ai is independent of the family of events {Aj : j ̸= i, i ̸→ j}.

Roughly speaking, Ai is ‘allowed to depend on Aj when i → j’. More precisely, Ai must be
independent of the remaining Aj as a family, not just individually.

Theorem 3.1 (Local Lemma, general form). Let D be a dependency digraph for the events
A1, . . . , An. Suppose that there are real numbers 0 ⩽ xi < 1 such that

P(Ai) ⩽ xi

∏
j : i→j

(1 − xj)

for each i. Then

P
( n⋂
i=1

Ac
i

)
⩾

n∏
i=1

(1 − xi) > 0.

Proof. For ease of notation write, for any S ⊆ [n], Ac
S :=

⋂
i∈S A

c
i . We show by induction on

|S| that for any proper subset S of [n] and any i /∈ S we have

P(Ai | Ac
S) ⩽ xi, (1)

or equivalently, P(Ac
i | Ac

S) ⩾ 1 − xi.

For the base case |S| = 0 we have

P
(
Ai | Ac

S

)
= P(Ai) ⩽ xi

∏
j : i→j

(1 − xj) ⩽ xi,

as required.

Now suppose (1) holds whenever |S| < r. We show for any pair of disjoint sets S, T ⊆ [n]
with |T | + |S| ⩽ r we have

P
(
Ac

T | Ac
S

)
⩾

∏
i∈T

(1 − xi). (2)

Indeed, writing T = {t1, . . . , tk}, we have

P
(
Ac

T | Ac
S

)
=

P
(
Ac

T∪S
)

P
(
Ac

S

) =
k∏

i=1

P
(
Ac

{t1,...,ti−1,ti}∪S
)

P
(
Ac

{t1,...,ti−1}∪S
) =

k∏
i=1

P
(
Ac

ti
| Ac

{t1,...,ti−1}∪S
)
⩾

k∏
i=1

(1 − xti),

where the last inequality follows by induction from (1) as |{t1, . . . , ti−1} ∪ S| < r.
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Now consider S with |S| = r, and i /∈ S. Let D = {j ∈ S : i → j} and I = {j ∈ S : i ̸→ j}.
In proving (1) we may (as noted above) assume that P(Ac

S) > 0. Then

P(Ai | Ac
S) =

P(Ai ∩ Ac
D ∩ Ac

I)

P(Ac
D ∩ Ac

I)
=

P(Ai ∩ Ac
D ∩ Ac

I)

P(Ac
I)

P(Ac
I)

P(Ac
D ∩ Ac

I)
=

P(Ai ∩ Ac
D | Ac

I)

P(Ac
D | Ac

I)
. (3)

To bound the numerator, note that Ai is independent of Ac
I , so

P(Ai ∩ Ac
D | Ac

I) ⩽ P(Ai | Ac
I) = P(Ai) ⩽ xi

∏
j : i→j

(1 − xj),

by assumption. For the denominator in (3), we have |D| + |I| = |S| = r, so by (2)

P(Ac
D | Ac

I) ⩾
∏
i∈D

(1 − xi) =
∏

j : i→j

(1 − xj).

Together with (3) this gives P(Ai | Ac
S) ⩽ xi as required. This completes the proof by

induction. The conclusion of the theorem now follows by taking T = [n], S = ∅ in (2).

Dependency digraphs are slightly slippery. First recall that given the events A1, . . . , An,
we cannot construct D simply by taking i → j if Ai and Aj are dependent. Considering
three events such that each pair is independent but {A1, A2, A3} is not, a legal dependency
digraph must have at least one edge from vertex 1 (since A1 is not independent of the
family {A2, A3}), and similarly from each other vertex. The same example shows that (even
minimal) dependency digraphs are not unique: in this case there are 8 minimal dependency
digraphs.

There is an important special case where dependency digraphs are easy to construct; we
state it as a simple lemma.

Lemma 3.2. Suppose that (Xα)α∈F is a family of independent random variables, and that
A1, . . . , An are events where Ai is determined by {Xα : α ∈ Fi} for some Fi ⊆ F . Then the
(di)graph in which, for distinct i and j, i → j (and so also j → i) if and only if Fi ∩Fj ̸= ∅
is a dependency digraph for A1, . . . , An.

Proof. For each i, the events {Aj : j ̸= i, i ̸→ j} are (jointly) determined by the variables
{Xα : α ∈ F \ Fi}, and Ai is independent of this family of variables.

We now turn to a more user-friendly version of the local lemma. The out-degree of a vertex
i in a digraph D is simply the number of vertices j such that i → j.

Theorem 3.3 (Local Lemma, Symmetric version). Let A1, . . . , An be events having a de-
pendency digraph D with all out-degrees at most d. If P(Ai) ⩽ 1

e(d+1)
for all i, then

P(
⋂

i A
c
i ) > 0.
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Proof. Set xi = 1
d+1

for all i and apply Theorem 3.1. We have |{j : i → j}| ⩽ d, and

(1 + 1/d)d ⩽ e, so

xi

∏
j : i→j

(1 − xj) ⩾
1

d + 1

( d

d + 1

)d

⩾
1

e(d + 1)
⩾ P(Ai),

and Theorem 3.1 applies.

Remark. Considering d + 1 disjoint events each with probability 1/(d + 1) shows that the
constant (here e) must be > 1. In fact, the constant e is best possible for large d. Un-
fortunately, one can’t replace d by the individual out degrees of vertices corresponding to
the events Ai. Hence this symmetric version tends to be useful only when we have some
symmetry between the events Ai.

Example (Hypergraph colouring).

Theorem 3.4. Let H be an r-uniform hypergraph in which each edge meets at most d other
edges. If d + 1 ⩽ 2r−1/e then H has a 2-colouring.

Proof. Colour the vertices randomly in the usual way, each red/blue with probability 1/2,
independently of the others. Let Ai be the event that the ith edge ei is monochromatic, so
P(Ai) = 21−r.

By Lemma 3.2 we may form a dependency digraph for the Ai by joining i to j (both ways) if
ei and ej share one or more vertices. The maximum out-degree is at most d by assumption,
and

1

e(d + 1)
⩾

1

2r−1
= P(Ai).

Now Theorem 3.3 gives P(
⋂

i A
c
i ) > 0, so there exists a good colouring.

Example (Ramsey numbers again).

Theorem 3.5. If k ⩾ 3 and e21−(k
2)
(
k
2

)(
n

k−2

)
⩽ 1 then R(k, k) > n.

Proof. Colour the edges of Kn as usual, each red/blue with probability 1/2, independently
of the others. For each S ⊆ [n] with |S| = k, let AS be the event that the complete graph

on S is monochromatic, so p := P(AS) = 21−(k
2).

For the dependency digraph, by Lemma 3.2 we may join S and T if they share an edge, i.e.,
if |S ∩ T | ⩾ 2. The maximum degree d is

d = |{T : |S ∩ T | ⩾ 2, T ̸= S}| <
(
k

2

)(
n

k − 2

)
.

(Pick 2 elements from S, then any k−2 elements to form T . This is clearly an overcount since
it allows us to pick T = S, or some elements from S twice, . . . ) By assumption ep(d+1) ⩽ 1,
so Theorem 3.3 applies, giving the result.
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Corollary 3.6. R(k, k) ⩾ (1 − o(1))k
√
2

e
2k/2.

Proof. Straightforward(ish) calculation.

Note: this improves the bound from the first moment method by another factor of
√

2. This
is not much, but this is the best lower bound known.

Example (R(3, k)). In the previous example, the local lemma didn’t make so much differ-
ence, because each event depended on very many others. If we consider off-diagonal Ramsey
numbers the situation changes, but we can’t use the symmetric form. The point here is to
understand how to apply the lemma when we have two ‘types’ of events; the details of the
calculation are not important.

Colour the edges of Kn red with probability p and blue with probability 1−p, independently
of each other, where p = p(n) → 0.

For each S ⊆ [n] with |S| = 3 let AS be the event that S spans a red triangle, and for each
T ⊆ [n] with |T | = k let BT be the event that T spans a blue Kk. Note that

P(AS) = p3 and P(BT ) = (1 − p)(
k
2).

As usual, we can form the dependency digraph by joining two events if they involve one or
more common edges. Each A event is joined to

• at most 3n other A events, and

• at most
(
n
k

)
⩽ nk B events (as there are only

(
n
k

)
B events in total).

Also, each B event is joined to

• at most
(
k
2

)
n A events, and

• at most nk B events.

Our aim is to apply Theorem 3.1 with xi = x for all A events and xi = y for all B events,
to conclude that the probability that none of the AS or BT holds is positive, which gives
R(3, k) > n. The conditions are satisfied provided we have

p3 ⩽ x(1 − x)3n(1 − y)n
k

(4)

and
(1 − p)(

k
2) ⩽ y(1 − x)(

k
2)n(1 − y)n

k

. (5)

It turns out that

p =
1

6
√
n

x =
1

12n3/2
k ∼ 30

√
n log n y = n−k

satisfies (4) and (5) if n is large enough. This gives the following result.
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Theorem 3.7. There exists a constant c > 0 such that R(3, k) ⩾ ck2/(log k)2 if k is large
enough.

Proof. The argument above shows that, for sufficiently large n, we have R(3, k) > n if
k ∼ 30

√
n log n, that is, if n ∼ k2

(60 log k)2
.

Remark. This bound is best possible apart from one factor of log k. Removing this factor
was not easy, and was a major achievement of J.H. Kim. We now (as of 2025) know that

(1
2

+ o(1))
k2

log k
⩽ R(3, k) ⩽ (1 + o(1))

k2

log k
.

4 Chernoff bounds

Often we are interested in showing that no ‘bad events’ occur, even when there are very
many of them. In these cases it is often important to show that each individual bad event
is extremely unlikely.

For example, let G = G(n, p) and consider its maximum degree ∆(G). For any d we have
P(∆(G) ⩾ d) ⩽ nP(dv ⩾ d), where dv is the degree of a given vertex v. In turn this is at
most nP(X ⩾ d) where X ∼ Bin(n, p). To show that P(∆(G) ⩾ d) → 0 for some d = d(n)
we would need a bound of the form

P(X ⩾ d) = o(1/n). (6)

Recall that if X ∼ Bin(n, p) then µ := E[X] = np and σ2 := Var[X] = np(1 − p). For
example, if p = 1/2 then µ = n/2 and σ =

√
n/2. Chebyshev’s inequality gives P(X ⩾

µ + λσ) ⩽ λ−2; to use this for (6) we need λ = ω(
√
n) (that is, λ/

√
n → ∞ as n → ∞). If

p = 1/2 this gives λσ = ω(n), which is useless.

On the other hand, the central limit theorem suggests that as n → ∞

P(X ⩾ µ + λσ) = P
(
X−µ
σ

⩾ λ
)
→ P(N(0, 1) ⩾ λ) ≈ e−λ2/2

where N(0, 1) is the standard normal distribution. But the → here is valid only for con-
stant λ, so again it is no use for (6) (and the final ≈ should really be ∼ 1√

2π λ
e−λ2/2 as

λ → ∞).

For a completely general distribution, one can’t do better than Chebyshev. However, if
we have a situation where a random variable is a sum of many small independent random
variables, we would expect something closer to what the central limit theorem suggests
should be true, even very far from the mean.

We use the following strategy: for any random variable X, and any λ > 0, X ⩾ t holds if
and only if eλX ⩾ eλt, so applying Markov’s inequality we get

P(X ⩾ t) = P(eλX ⩾ eλt) ⩽ E[eλX ]/eλt.
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We now minimize the RHS over choices of λ. The result is called the Chernoff bound for X.
For some standard distributions we can do this minimization exactly.

Theorem 4.1 (Chernoff Bound for the Binomial distribution). Suppose that n ⩾ 1 and
p, x ∈ (0, 1). Let X ∼ Bin(n, p). Then

P(X ⩾ nx) ⩽

[(p
x

)x(1 − p

1 − x

)1−x
]n

if x ⩾ p,

P(X ⩽ nx) ⩽

[(p
x

)x(1 − p

1 − x

)1−x
]n

if x ⩽ p,

Remark. Note that the exact expression is in some sense not so important; what matters
is (a) the proof technique, and (b) that it is exponential in n if x and p are fixed. Indeed,
Theorem 4.1 gives the best possible bound among bounds of the form P(X ⩾ nx) ⩽ g(x, p)n

where g(x, p) is some function of x and p.

Proof. Consider X as a sum X1 + · · ·+Xn where the Xi are independent Bernoulli random
variables with P(Xi = 1) = p and P(Xi = 0) = 1 − p. Then

E
[
eλX

]
= E

[
eλX1eλX2 · · · eλXn

]
= E

[
eλX1

]
· · ·E

[
eλXn

]
=

(
peλ + (1 − p)e0

)n
,

where we used independence for the second equality. Now for λ > 0

P(X ⩾ nx) = P(eλX ⩾ eλnx) ⩽ E[eλX ]/eλnx =
[
(peλ + 1 − p)e−λx

]n
. (7)

To get the best bound we minimize f(λ) := (peλ + 1 − p)e−λx over λ (by differentiating
and equating to zero): for x > p, f ′(λ) = (peλ − x(peλ + 1 − p))e−λx = 0 occurs when
eλ(p− xp) = x(1 − p), i.e.,

eλ =
x

p
· 1 − p

1 − x
> 1,

so λ > 0 and we can use this value: we obtain

P(X ⩾ nx) ⩽

[(
x

1 − p

1 − x
+ 1 − p

)(p
x

)x(1 − x

1 − p

)x
]n

=

[(p
x

)x(1 − p

1 − x

)1−x
]n
,

proving the first part of the theorem. (The case x = p is trivial since the bound is 1.)

For the second part, let Y = n−X, so Y ∼ Bin(n, 1−p). Then P(X ⩽ nx) = P(Y ⩾ n(1−x)),
and apply the first part.

Remark. In fact the above bounds work also when X is a sum of independent, but not
necessarily identically distributed, Bernoulli random variables Xi ∼ Bernoulli(pi), where we
define p := 1

n

∑n
i=1 pi to be the average of the pi. To see this, note that we get, in place

of (7),

P(X ⩾ nx) ⩽
n∏

i=1

(pie
λ + 1 − pi)e

−λx.

However, this product is at most ((peλ + 1 − p)e−λx)n by the AM-GM inequality.
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The bound one gets in Theorem 4.1 is rather cumbersome. Thus we typically use slightly
weaker, but simpler bounds.

Corollary 4.2. Let X ∼ Bin(n, p) and write µ := E[X] = np. Then for t ⩾ 0

P(X ⩾ µ + t),P(X ⩽ µ− t) ⩽ exp
(
−2t2

n

)
. (8)

For p small, one can use the following better bounds.

P(x ⩽ µ− t) ⩽ exp
(
− t2

2µ

)
, (9)

and

P(X ⩾ µ + t) ⩽ exp
(
− t2

2(µ + t/3)

)
. (10)

Proof. Theorem 4.1 implies that P(X ⩾ nx) or P(X ⩽ nx) is at most e−nf(x), where

f(x) := −x log p
x
− (1 − x) log 1−p

1−x
.

We note that f ′(x) = − log p(1−x)
x(1−p)

, so that f(p) = f ′(p) = 0, and f ′′(x) = 1
x(1−x)

.

The idea is simply to bound f(p + ε) ⩾ g(ε), say, for some simple function g(ε) to deduce
that the probability P(X ⩾ µ + t) = P(X ⩾ n(p + t/n)) is at most e−ng(t/n). Thus it is
enough to choose g(ε) so that g(0) = g′(0) = 0 and g′′(ε) ⩽ f ′′(p+ ε) as then this will imply
g(ε) ⩽ f(p + ε) for all ε.

Now x(1 − x) ⩽ 1
4
, so we have a simple bound of f ′′(x) ⩾ 4. Thus f(p + ε) ⩾ g(ε) := 2ε2

works, giving P(X ⩾ µ + t) ⩽ exp(−ng(n/t)) = exp(−2t2/n).

Similarly, for (9), as for x < p, f ′′(x) ⩾ 1
x
⩾ 1

p
, so we can take g(ε) := ε2

2p
and (9) follows.

For (10) we take g(ε) := ε2

2(p+ε/3)
. Then g(0) = g′(0) = 0 and g′′(ε) = p2

(p+ε/3)3
⩽ p2

p3+εp2
=

1
p+ε

= 1
x
⩽ f ′′(x).

Remark. We could have used the variance σ2 := npq in place of µ in the denominators of
the exponentials in (9) and (10), making it more similar to the e−t2/2σ2

bound expected by
comparison with the central limit theorem. However, as we are assuming p is small here,
it makes little difference (and (9) would then need the restriction that p ⩽ 1/2 to still be
correct).

Remark. The forms given are still valid when X is a sum of independent Bernoulli random
variables with different pis, since they were derived from Theorem 4.1 which also holds in
this greater generality. (But note that npq would no longer be the variance of X in general.)

The forms of (8) and particularly (10) were chosen as they follow from the following more
general bounds (see problem sheet 4).
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Theorem 4.3 (Hoeffding’s Inequality). Suppose X :=
∑n

i=1 Xi where Xi are independent
bounded random variables with Xi ∈ [ai, bi]. Let µ := E[X]. Then for any t ⩾ 0

P(X ⩾ µ + t),P(X ⩽ µ− t) ⩽ exp

(
− 2t2∑

(bi − ai)2

)
.

Theorem 4.4 (Bernstein’s Inequality). Suppose X1, . . . , Xn are independent random vari-
ables for which Xi ⩽ EXi + 1 always holds, and let X :=

∑n
i=1Xi. Then, for any t ⩾ 0,

P
(
X ⩾ E[X] + t

)
⩽ exp

(
− t2

2(Var[X] + t/3)

)
.

Example (The maximum degree of G(n, p)).

Theorem 4.5. Let p = p(n) satisfy np ⩾ 3 log n, and let ∆ be the maximum degree of
G(n, p). Then

P
(
∆ ⩾ np +

√
3np log n

)
→ 0

as n → ∞.

Proof. Let d = np +
√

3np log n. As noted at the start of the section,

P(∆ ⩾ d) ⩽ nP(dv ⩾ d) ⩽ nP(X ⩾ d)

where dv ∼ Bin(n− 1, p) is the degree of a given vertex, and X ∼ Bin(n, p). Applying (10)
with t =

√
3np log n, and noting that for np ⩾ 3 log n we have t ⩽ np,

nP(X ⩾ d) ⩽ ne−t2/2(np+t/3) = ne−(3np logn)/((8/3)np) = nn−9/8 = n−1/8 → 0,

giving the result.

Note that for large n there will be some vertices with degrees any given number of standard
deviations above the average. The result says however that all degrees will be at most
C
√

log n standard deviations above. This is best possible, apart from the constant.

As a final remark, in all these inequalities, the fact that we can write X =
∑

Xi with Xi

independent bounded random variables is vital. If the Xi are not independent then we can
say far less in general (although later we shall prove Janson’s inequalities, where some limited
dependence is allowed). One important case where we can relax the independence restriction
is when just the mean E[Xi | X1, . . . , Xi−1] is independent of the values of X1, . . . , Xi−1 (i.e.,
the distribution of Xi conditioned on the previous Xj can vary, as long as the average value
does not). Normally in this case we subtract off the (deterministic) mean so as to assume
E[Xi | X1, . . . , Xi−1] = 0. Then the sequence (Xi) is called a Martingale. Both Hoeffding’s
and Bernstein’s inequalities still hold in this more general setting.

25



X0 = 1

X1 = 2

X2 = 4

X3 = 2

Figure 4: Example of a branching process.

5 Branching processes

We aim to study the random graph G(n, p) in the case when p is small, so that the average
degree is bounded, i.e., p = O(1/n). In this case there is an interesting phenomenon of a
phase transition that occurs around p ≈ 1/n. Below this value of p, G(n, p) typically has
only small components, while above this value of p, G(n, p) typically has one large ‘giant’
component, and all other components (if they exist) are small.

To understand G(n, p) in the case when the average degree is bounded, it helps to consider
the neighbourhood of a vertex as given roughly by a branching process. Each vertex v has
Bin(n − 1, p) neighbours, and then each of these has Bin(n − 1 − d(v), p) ≈ Bin(n − 1, p)
new neighbours, etc., with vertices usually not repeating in different neighbourhoods. Thus,
before we embark on this study of G(n, p), we will review some properties of branching
processes. Note that this section is mostly a review of material covered in the prelims
Probability course.

Let Z be a probability distribution on the non-negative integers. The Galton–Watson branch-
ing process with offspring distribution Z is defined as follows:

• Generation 0 consists of a single individual.

• Each individual in generation t has a (possibly empty) set of children. These sets are
disjoint and between them make up generation t + 1.

• The number of children of each individual has distribution Z, and is independent
of everything else, i.e., of the history so far, and of other individuals in the same
generation.

We write Xt for the number of individuals in generation t, and X = (X0, X1, . . . ) for the
random sequence of generation sizes. Note that X0 = 1, and given the values of X0, . . . , Xt,
the conditional distribution of Xt+1 is the sum of Xt independent copies of Z. The branching
process survives if Xt > 0 for all t, and dies out or goes extinct if Xt = 0 for some t.
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Let µ := E[Z]. Then E[X0] = 1 and E[Xt+1 | Xt = k] = kµ. Thus

E[Xt+1] =
∑
k

P(Xt = k)E[Xt+1 | Xt = k] =
∑
k

P(Xt = k)kµ = µE[Xt].

Hence E[Xt] = µt for all t.

If µ < 1, then for any t we have

P(X survives) ⩽ P(Xt > 0) ⩽ E[Xt] = µt.

Letting t → ∞ shows that P(X survives) = 0.

What if µ > 1? Note that any branching process with P(Z = 0) > 0 may die out – the
question is, can it survive?

We recall some basic properties of probability generating functions.

Definition. If Z is a random variable taking non-negative integer values, the probability
generating function of Z is the function GZ : [0, 1] → R defined by

GZ(s) := E[sZ ] =
∞∑
k=0

P(Z = k)sk.

The following facts are easy to check:

• GZ(0) = P(Z = 0) and GZ(1) = 1.

• GZ is continuous on [0, 1].

• GZ is increasing.

• G′
Z(1) = E[Z] (if E[Z] < ∞).

• If P(Z ⩾ 2) > 0, then G′
Z is strictly increasing.

For the last three observations, note that for 0 < s ⩽ 1 we have

G′
Z(s) =

∞∑
k=1

kP(Z = k)sk−1 ⩾ 0,

and
G′′

Z(s) =
∑
k⩾2

k(k − 1)P(Z = k)sk−2 ⩾ 0,

with strict inequality if P(Z ⩾ 2) > 0.

Let ηt := P(Xt = 0) be the probability that the process is extinct at time t. Then η0 = 0
and

ηt+1 =
∑
k

P(X1 = k)P(Xt+1 = 0 | X1 = k) =
∑
k

P(Z = k)ηkt = GZ(ηt),
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η0 η1 η2 η3η4 η=1

Case µ < 1.

η0 η1 η2η3 η 1

Case µ > 1.

Figure 5: Extinction probabilities for µ < 1 and µ > 1.

since, given the number of individuals in the first generation, the descendants of each of
them form an independent copy of the branching process, and the only way Xt+1 = 0 is if
all of these processes die out by time t.

Let XZ denote the Galton–Watson branching process with offspring distribution Z. Let
η = η(Z) denote the extinction probability of XZ , i.e., the probability that the process dies
out.

Theorem 5.1. For any probability distribution Z on the non-negative integers, η(Z) is equal
to the smallest solution s ∈ [0, 1] to GZ(s) = s.

Note that GZ(1) = 1, so there is always at least one solution.

Proof. As above, let ηt = P(Xt = 0), so 0 = η0 ⩽ η1 ⩽ η2 · · · . Since the events {Xt = 0} are
nested and their union is the event that the process dies out, we have ηt → η as t → ∞.3

As shown above, ηt+1 = GZ(ηt). Since GZ is continuous, taking the limit of both sides gives
η = GZ(η), so η ∈ [0, 1] is a solution to GZ(s) = s.

Let s0 be any solution in [0, 1] to GZ(s) = s. Then 0 = η0 ⩽ s0. Since GZ is increasing,

η1 = GZ(η0) ⩽ GZ(s0) = s0.

Similarly, by induction we obtain ηt ⩽ s0 for all t, so taking the limit, η ⩽ s0. As this holds
for any solution s0, η must be the smallest solution to GZ(s) = s.

Corollary 5.2. If E[Z] > 1 then η(Z) < 1, i.e., the probability that XZ survives is positive.
If E[Z] < 1, or if E[Z] = 1 and P(Z = 1) < 1, then η(Z) = 1.

3This is a continuity of probability: if A1 ⊆ A2 ⊆ A3 · · · , then
⋃

i⩾1 Ai is the disjoint union of A1, A2\A1,
A3 \A2, . . . , and one can use countable additivity to see that P(An) → P(

⋃
i⩾1 Ai) as n → ∞.
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Proof. The question is simply whether the curves GZ(s) and s meet anywhere in [0, 1] other
than at s = 1.

For the first statement, suppose for convenience4 that E[Z] < ∞. Then G′
Z(1) > 1, so there

exists ε > 0 such that GZ(1− ε) < 1− ε. Since GZ(0) ⩾ 0, applying the Intermediate Value
Theorem to GZ(s) − s, there must be some s ∈ [0, 1 − ε] for which GZ(s) = s. But then
η ⩽ s < 1.

We have already proved the second statement, so let us focus on the third, with E[Z] = 1
and P(Z = 1) ̸= 1. Note that P(Z ⩾ 2) > 0, so GZ(x) has strictly increasing derivative.
Since G′

Z(1) = 1, it follows that G′
Z(s) < 1 for 0 < x < 1. Since GZ(1) = 1, it follows by the

Mean Value Theorem that GZ(s) > s for all s ∈ [0, 1).

Note that when E[Z] > 1, there is a unique solution to GZ(s) = s in [0, 1); this follows from
the strict convexity of GZ .

Definition. For c > 0, a random variable Z has the Poisson distribution with mean c,
written Z ∼ Po(c), if

P(Z = k) = e−c c
k

k!

for k = 0, 1, 2, . . . .

Lemma 5.3. Suppose n → ∞ and p → 0 with np → c, where c > 0 is constant. Let Zn have
the binomial distribution Bin(n, p), and let Z ∼ Po(c). Then Zn converges in distribution5

to Z, i.e., for each fixed k, P(Zn = k) → P(Z = k) as n → ∞.

Proof. For k fixed,

P(Zn = k) =

(
n

k

)
pk(1 − p)n−k ∼ nk

k!
pk(1 − p)n =

(np)k

k!
e−np+O(np2) → ck

k!
e−c,

since np → c and np2 → 0.

As we shall see shortly, there is a very close connection between components in G(n, c/n)
and the Galton–Watson branching process XPo(c) where the offspring distribution is Poisson
with mean c. The extinction probability of this process will be especially important.

Theorem 5.4. Let c > 0. Then the extinction probability η = η(c) of the branching process
XPo(c) satisfies the equation

η = e−c(1−η).

Furthermore, η < 1 if and only if c > 1.

4If E[Z] = ∞ then G′
Z(s) → ∞ as s → 1−. The Mean value Theorem then implies G(1− ε) < 1− ε for

sufficiently small ε > 0.
5This is not the general definition of convergence in distribution given, say, in the Part A Probability

course, but it is easy to see it is equivalent for integer-valued random variables.
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Proof. The probability generating function of the Poisson distribution with mean c is given
by

GPo(c)(s) =
∞∑
k=0

e−c c
k

k!
sk = e−cecs = e−c(1−s).

The result now follows from Theorem 5.1 and Corollary 5.2.

6 Component exploration in G(n, p)

In the light of Lemma 5.3, we may hope that the Poisson branching process gives a good
‘local’ approximation to the neighbourhood of a vertex of G(n, c/n). To make this precise,
we shall ‘explore’ the component of a vertex in a certain way. First we describe the (simpler)
exploration for the branching process.

Exploration process for branching process.

Start with Y bp
0 = 1, meaning one live individual (the root). In step t, select a live individual

if there is one (otherwise nothing happens); this individual has Zt children and then dies.
Let Y bp

t be the number of individuals alive after t steps. Then

Y bp
t =

{
Y bp
t−1 + Zt − 1, if Y bp

t−1 > 0;

0, if Y bp
t−1 = 0.

The process dies out if and only if Y bp
m = 0 for some m; in this case the total number of

individuals is min{m : Y bp
m = 0}.

Until it hits zero, the sequence (Y bp
t ) is a random walk with i.i.d. increments Z1 − 1, Z2 − 1,

. . . , taking values in {−1, 0, 1, 2, . . . }. Each increment has expectation E[Z − 1] = c − 1.
Thus c < 1 implies negative drift and we can expect that with probability 1 the walk will
hit 0, i.e., the process will die. (We have proved this by a different method already.) If c > 1
then the drift is positive, and with positive probability the walk never hits 0, i.e., the process
survives.

Component exploration in G(n, p).

Let v be a fixed vertex of a graph G of order n. At each stage, each vertex u of G will be
‘live’, ‘unreached’, or ‘processed’. Yt will be the number of live vertices after t steps; there
will be exactly t processed vertices, and Ut = n− t− Yt unreached vertices.

At t = 0, mark v as live and all other vertices as unreached, so Y0 = 1 and U0 = n− 1.

At each step t, pick a live vertex w, if there is one. For each unreached w′, check whether
ww′ ∈ E(G); if so, make w′ live. After completing these checks, set w to be processed.

Let Rt be the number of w′ which become live during step t. (Think of this as the number
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of new vertices reached in step t.) Then

Yt =

{
Yt−1 + Rt − 1, if Yt−1 > 0;

0, if Yt−1 = 0.

The process stops at the first m for which Ym = 0. At this point we have reached all vertices
in the component Cv of G containing v, since each vertex of Cv must have become live at
some step, and then been processed. In particular, |Cv| = m.

So far, G could be any graph. Now suppose that G = G(n, p). Then each edge is present with
probability p independently of the others. No edge is tested twice (we only check edges from
live to unreached vertices, and then one end becomes processed). It follows that conditional
on the event Y0 = y0, . . . , Yt−1 = yt−1, the number Rt of vertices reached in step t has the
distribution

Rt ∼ Bin(ut−1, p) where ut−1 = n− (t− 1) − yt−1. (11)

Vertices in small components.

Let ρk(c) denote the probability that |XPo(c)| = k, where |X| =
∑

t⩾0Xt ⩽ ∞ denotes the
total number of individuals in all generations of the branching process X.

Lemma 6.1. Suppose that p = p(n) satisfies np → c where c > 0 is constant. Let v be a
given vertex of G(n, p). For each constant k we have

P(|Cv| = k) → ρk(c) as n → ∞.

Proof. The idea is simply to show that the random walks (Yt) and (Y bp
t ) have almost the

same probability of first hitting zero at t = k. We do this by comparing the probabilities of
individual trajectories.

Define (Yt) and (Rt) as in the graph exploration above. Then |Cv| = k if and only if
Yk = 0 and Yt > 0 for all t < k. Let Sk be the set of all possible corresponding sequences
y = (y0, . . . , yk) of values for Y = (Y0, . . . , Yk), i.e., all sequences such that y0 = 1, yk = 0,
yt > 0 for t < k, and each yt is an integer with yt ⩾ yt−1 − 1. Then

P(|Cv| = k) =
∑
y∈Sk

P(Y = y).

Similarly,

ρk(c) = P
(
|XPo(c)| = k

)
=

∑
y∈Sk

P(Ybp = y).

Fix any sequence y ∈ Sk. For each t let rt = yt−yt−1 +1, so (rt) is the sequence of Rt values
corresponding to Y = y. From (11) we have

P(Y = y) =
k∏

t=1

P
(
Bin(n− (t− 1) − yt−1, p) = rt

)
.

31



In each factor, t− 1, yt−1 and rt are constants. As n → ∞ we have n− (t− 1)− yt−1 ∼ n, so
(n− (t− 1)− yt−1)p → c. Applying Lemma 5.3 to each factor in the product, it follows that

P(Y = y) →
k∏

t=1

P
(
Po(c) = rt

)
.

But this is just P(Ybp = y), from the exploration for the branching process. Summing over
the finite number of possible sequences y ∈ Sk gives the result.

We write Nk(G) for the number of vertices of a graph G in components with k vertices. (So
Nk(G) is k times the number of k-vertex components of G.)

Corollary 6.2. Suppose that np → c where c > 0 is constant. For each fixed k we have
E[Nk(G(n, p))] ∼ nρk(c) as n → ∞.

Proof. The expectation is simply
∑

v P(|Cv| = k) = nP(|Cv| = k) ∼ nρk(c).

Lemma 6.1 tells us that the branching process ‘predicts’ the expected number of vertices in
components of each fixed size k. It is not hard to use the second moment method to show
that in fact this number is concentrated around its mean.

Lemma 6.3. Suppose that E[Xn] → a and E[X2
n] → a2. Then Xn

p→ a.

Proof. Var[Xn] = E[X2
n] − E[Xn]2 → a2 − a2 = 0. Now apply Chebyshev’s inequality.

Lemma 6.4. Let c > 0 and k ⩾ 1 be constant, and let Nk = Nk(G(n, c/n)). Then

Nk/n
p→ ρk(c).

Proof. We have already shown that E[Nk/n] → ρk(c).

Let Iv be the indicator function of the event that |Cv| = k, so Nk =
∑

v Iv and

N2
k =

∑
v

∑
w

IvIw = A + B,

where
A =

∑
v

∑
w

IvIw1{Cv=Cw}

is the part of the sum from vertices in the same component, and

B =
∑
v

∑
w

IvIw1{Cv ̸=Cw}

is the part from vertices in different components. [Note that we can split the sum even
though it’s random whether a particular pair of vertices are in the same component or not.]
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If Iv = 1, then |Cv| = k, so
∑

w Iw1{Cv=Cw} = k. Hence A = kNk ⩽ kn, and E[A] = o(n2).

Since all vertices v are equivalent, we can rewrite E[B] as

nP(|Cv| = k)E
[∑

w

Iw1{Cv ̸=Cw}

∣∣∣ |Cv| = k
]

where v is any fixed vertex. Now
∑

w Iw1{Cv ̸=Cw} is just Nk(G−Cv), the number of vertices
of G−Cv in components of size k. Exploring Cv as before, given that |Cv| = k we have not
examined any of the edges among the n−k vertices not in Cv, so G−Cv has the distribution
of G(n− k, c/n). Hence

E[B] = nP(|Cv| = k)E[Nk(G(n− k, c/n))].

Since n− k ∼ n, Lemma 6.1 gives

E[B] ∼ nP(|Cv| = k)(n− k)ρk(c) ∼ (nρk(c))2.

Hence, E[N2
k ] = E[A] + E[B] ∼ (nρk(c))2, i.e., E[(Nk/n)2] → ρk(c)2. Lemma 6.3 now gives

the result.

Let N⩽K(G) denote the number of vertices v of G with |Cv| ⩽ K, and let ρ⩽K(c) =
P(|XPo(c)| ⩽ K).

With G = G(n, c/n), we have seen that for k fixed, Nk(G)/n
p→ ρk(c). Summing over

k = 1, . . . , K, it follows that if K is fixed, then

N⩽K(G)

n

p→ ρ⩽K(c). (12)

What if we want to consider components of sizes growing with n? Then we must be more
careful.

Recall that η(c) denotes the extinction probability of the branching process XPo(c), so∑∞
k=1 ρk(c) = η(c). In other words,

ρ⩽K(c) =
K∑
k=1

ρk(c) → η(c) as K → ∞.

If c > 1, then N⩽n(G)/n = 1, while ρ⩽n(c) → η(c) < 1, so we cannot extend the formula (12)
to arbitrary K = K(n). But we can allow K to grow at some rate.

Lemma 6.5. Let c > 0 be constant, and suppose that k− = k−(n) satisfies k− → ∞ and
k− ⩽ n1/4. Then the number N⩽k− of vertices of G(n, c/n) in components with at most k−

vertices satisfies N⩽k−/n
p→ η(c).
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Proof. [Sketch; non-examinable] The key point is that since k− → ∞, we have ρ⩽k−(c) →
η(c).

To complete the proof, simply redo the calculations above (i.e., repeat the proofs of Lem-
mas 6.1 and 6.4 with the following changes. Firstly, consider the set S of all possible tra-
jectories y that first hit zero at or before step k−. (Rather than ones hitting 0 at a specific
time.)

Secondly, to deal with the problem that our trajectories now have length growing with n,
we need to be more careful in the calculations. For example, use the fact that P(Bin(n −
m, c/n) = r) and P(Po(c) = r) agree within a factor 1 ± O((r + m + 1)2/n) when r,m ⩽
n/4, say, (see problem sheet 3) to show that all trajectories in S have essentially the same
probability in the graph and branching process explorations.

For each fixed k, we know almost exactly how many vertices are in components of size k.
Does this mean that we know the whole component structure? Not quite: if c > 1, so
η = η(c) < 1, then Lemma 6.5 tells us that there are whp around (1 − η)n vertices in
components of size at least n1/4, say. But are these components really of around that size,
or much larger? Also, for c ⩽ 1, whp there are o(n) vertices in components of size at least
n1/4, say. But are there any such vertices? How large is the largest component?

To answer these questions, we return to the exploration process.

7 The phase transition in G(n, p)

We say that a sequence of events En holds with high probability or whp if P(En) → 1 as
n → ∞.

Theorem 7.1. Let 0 < c < 1 be constant. Then there is a constant A > 0 (which depends
on c) such that whp every component of G(n, c/n) has size at most A log n.

Proof. Recall that our exploration of the component Cv of G(n, c/n) containing a given vertex
v leads to a random walk (Yt)

m
t=0 with Y0 = 1, Ym = 0, and at each step Yt = Yt−1 + Rt − 1

where, conditional on the process so far, Rt has the binomial distribution Bin(ut−1, c/n), and
ut−1 = n− (t− 1) − yt−1 depends on the value yt−1 of Yt−1. Here m = |Cv| is the (random,
of course) first time the random walk hits 0.

Since ut−1 ⩽ n, the conditional distribution of Rt is always dominated by a Bin(n, c/n)
distribution. More precisely, we can define independent variables R+

t ∼ Bin(n, c/n) so that
Rt ⩽ R+

t holds for all t for which Rt is defined. To see this, construct the random variables
step-by-step. At step t, we want (the conditional distribution of) Rt to be Bin(x, c/n) for
some x ⩽ n that depends what has happened so far. Toss x biased coins to determine Rt,
and then n − x further coins, taking the total number of heads to be R+

t ; each coin has
probability p of landing heads.
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Let (Y +
t ) be the walk with Y +

0 = 1 and increments R+
t − 1, so Yt ⩽ Y +

t for all t until our
exploration in G(n, c/n) stops. Then for any k we have

P(|Cv| > k) = P(Y0, . . . , Yk > 0) ⩽ P(Y +
0 , . . . , Y +

k > 0) ⩽ P(Y +
k > 0).

But Y +
k has an extremely simple distribution:

Y +
k + k − 1 =

k∑
t=1

R+
t ∼ Bin(nk, c/n),

so

P(Y +
k > 0) = P(Y +

k + k − 1 ⩾ k) = P
(
Bin(nk, c/n) ⩾ k

)
= P

(
Bin(nk, c/n) ⩾ ck + (1 − c)k

)
.

Corollary 4.2 gives that this final probability is at most e−(1−c)2k2/2(ck+(1−c)k/3) ⩽ e−(1−c)2k/2.
If we set k = A log n (ignoring the rounding to integers) with A = 4/(1 − c)2, then we have
P(|Cv| > k) ⩽ e−2 logn = 1/n2.

By the union bound, the probability that there is any vertex in a component of size > k is
at most nP(|Cv| > k) ⩽ 1/n = o(1), so whp there are no such vertices, i.e., no components
with more than k vertices.

We now turn to the supercritical case where c > 1. Given a graph G, let Li(G) denote
the number of vertices in the ith largest component. Note that which component is the ith
largest may be ambiguous, if there are ties, but the value of Li(G) is unambiguous.

Theorem 7.2. Let c > 1 be constant, and let G = G(n, c/n). Then L1(G)/n
p→ 1 − η(c).

Also, there is a constant A = A(c) such that L2(G) ⩽ A log n holds whp.

Proof. Since c > 1 our random walk has positive drift, at least to start with. Once the
number n− t− Yt of unreached vertices becomes smaller than n/c, this is no longer true.

Fix any δ > 0, and let k+ = (1 − 1/c − δ)n. Now let R−
t be independent random variables

with the distribution Bin(n/c+δn, c/n), defined so that R−
t ⩽ Rt whenever ut−1 ⩾ n−k+ =

n/c + δn, i.e., whenever we have ‘reached’ at most k+ vertices. It is possible to construct
such R−

t step-by-step as before. Let (Y −
t ) be the random walk starting with Y −

0 = 1 and
with increments R−

t − 1. For any k ⩽ k+ we have

P(|Cv| = k) ⩽ P(Y1, . . . , Yk−1 > 0, Yk = 0) ⩽ P(Y −
k ⩽ 0).

Once again, Y −
k has a simple distribution: it is Bin(nk(c−1 + δ), c/n) − k + 1. Hence

P(Y −
k ⩽ 0) ⩽ P(Y −

k ⩽ 1) = P
(
Bin(nk(c−1 + δ), c/n) ⩽ k

)
.

The binomial has mean µ = k + δck, so by Corollary 4.2 the probability above is thus at
most e−((δc)2/2(1+δc/3))k.
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Let k− = A log n where A = (6 + 2δc)/(δc)2. Then for k− ⩽ k ⩽ k+ we have

P(|Cv| = k) ⩽ e−3 logn = 1/n3.

Applying the union bound over k− ⩽ k ⩽ k+ and over all n vertices v, it follows that whp
there are no vertices at all in components of size between k− and k+. In other words, whp
all components are either small, i.e., of size at most k− = O(log n), or large, i.e., of size at
least k+ = (1 − 1/c− δ)n.

From Lemma 6.5, we know that whp there almost exactly ηn vertices in small components;
hence there are almost exactly (1 − η)n vertices in large components. To finish the proof,
all we need to do is to show that whp there is just one large component.

The simplest way to show this is just to choose δ > 0 so that (1−1/c− δ) > (1−η)/2. Then
whp there are < 2(1 − 1/c − δ)n = 2k+ vertices in large components, so we simply don’t
have enough vertices in large components to have two or more large components. But is this
possible? Such a δ exists if and only if (1 − 1/c) > (1 − η)/2, i.e., if and only if η > 2/c− 1.

Recall that η = η(c) is the smallest solution to η = e−c(1−η). Furthermore (drawing the
graphs), for x < η we have x < e−c(1−x) and for η < x < 1 we have x > e−c(1−x). So what we
have to show is that x = 2/c− 1 falls into the first case, i.e., that 2/c− 1 < e−c(1−(2/c−1)) =
e2−2c.

Multiplying by c, let f(c) = ce2−2c + c − 2, so our task is to show that f(c) > 0 for c > 1.
This is easy by calculus: we have f(1) = 0, f ′(1) = 0 and f ′′(c) = 4(c − 1)e2−2c > 0 for
c > 1.

8 Harris’s Lemma

In this section we turn to the following simple question and its generalizations. Does con-
ditioning on G = G(n, p) containing a triangle make G more or less likely to be connected?
Note that if we condition on a fixed set E of edges being present, then this is the same as sim-
ply adding E to G(n, p), which does increase the chance of connectedness. But conditioning
on at least one triangle being present is not so simple.

Let X be any finite set, the ground set. For 0 ⩽ p ⩽ 1 let Xp be a random subset of
X obtained by selecting each element independently with probability p. (One can easily
generalise the results in this section to the case where each element i ∈ X is selected with a
probability pi, which may depend on i, just as long as the elements are chosen independently
for each i ∈ X.) A property of subsets of X is just some collection A ⊆ P(X) of subsets
of X. For example, the property ‘contains element 1 or element 3’ may be identified with
the set A of all subsets A of X with 1 ∈ A or 3 ∈ A.

We write PX
p (A) (or more simply just Pp(A)) for

P(Xp ∈ A) =
∑
A∈A

p|A|(1 − p)|X|−|A|.
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For example, when |X| = n and p = 1
2

we have Pp(A) = |A|/2n.

We say that A ⊆ P(X) is an up-set, or increasing property, if A ∈ A and A ⊆ B ⊆ X
implies B ∈ A. Similarly, A is a down-set or decreasing property if A ∈ A and B ⊆ A
implies B ∈ A. Note that A is an up-set if and only if Ac = P(X) \ A is a down-set.

To illustrate the definitions, consider the (for us) most common special case. Here X consists
of all

(
n
2

)
edges of Kn, and Xp is then simply the edge-set of G(n, p). Then a property of

subsets of X is just a set of graphs on [n], e.g., all connected graphs on [n]. A property
is increasing if it is preserved by adding edges, and decreasing if it is preserved by deleting
edges. For example, connectedness is an increasing property, whereas the property of being
k-colourable is decreasing.

Lemma 8.1 (Harris’s Lemma). If A,B ⊆ P(X) are up-sets and 0 ⩽ p ⩽ 1 then

Pp(A ∩ B) ⩾ Pp(A)Pp(B).

In other words, P(Xp ∈ A and Xp ∈ B) ⩾ P(Xp ∈ A)P(Xp ∈ B). Equivalently P(Xp ∈ A |
Xp ∈ B) ⩾ P(Xp ∈ A), i.e., ‘increasing properties are positively correlated’.

Proof. We use induction on n = |X|. The base case n = 0 makes perfect sense and holds
trivially, though you can start from n = 1 if you prefer.

Now suppose that |X| = n ⩾ 1 and that the result holds for smaller sets X. Without loss of
generality, let X = [n] = {1, 2, . . . , n}.

For any C ⊆ P(X) let
C0 = {C ∈ C : n /∈ C} ⊆ P([n− 1])

and
C1 = {C \ {n} : C ∈ C, n ∈ C} ⊆ P([n− 1]).

Thus C0 and C1 correspond to the subsets of C not containing and containing n respectively,
except that for C1 we delete n from every set to obtain a collection of subsets of [n− 1].

Note that
Pp(C) = (1 − p)Pp(C0) + pPp(C1). (13)

More precisely,
P[n]
p (C) = (1 − p)P[n−1]

p (C0) + pP[n−1]
p (C1).

Suppose now that A and B ⊆ P([n]) are up-sets. Then A0, A1, B0 and B1 are all up-sets
in P([n − 1]). Also, A0 ⊆ A1 and B0 ⊆ B1. Let a0 = Pp(A0) etc, so certainly a0 ⩽ a1 and
b0 ⩽ b1.

Since (A ∩ B)i = Ai ∩ Bi, by (13) and the induction hypothesis we have

Pp(A ∩ B) = (1 − p)Pp((A ∩ B)0) + pPp((A ∩ B)1)

= (1 − p)Pp(A0 ∩ B0) + pPp(A1 ∩ B1)

⩾ (1 − p)a0b0 + pa1b1,
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so

Pp(A ∩ B) − Pp(A)Pp(B)

⩾
(
(1 − p)a0b0 + pa1b1

)
−
(
(1 − p)a0 + pa1

)(
(1 − p)b0 + pb1

)
=

(
(1 − p) − (1 − p)2

)
a0b0 − p(1 − p)a0b1 − p(1 − p)a1b0 +

(
p− p2

)
a1b1

= p(1 − p)(a1 − a0)(b1 − b0) ⩾ 0,

recalling that a0 ⩽ a1 and b0 ⩽ b1.

Harris’s Lemma has an immediate corollary concerning two down-sets, or one up- and one
down-set.

Corollary 8.2. If U is an up-set and D1 and D2 are down-sets, then

Pp(U ∩ D1) ⩽ Pp(U)Pp(D1),

and
Pp(D1 ∩ D2) ⩾ Pp(D1)Pp(D2).

Proof. Exercise, using the fact that Dc
i is an up-set.

9 Janson’s inequalities

We have shown (e.g., from the Chernoff bounds) that, roughly speaking, if we have many
independent events and the expected number that hold is large, then the probability that
none holds is very small. What if our events are not quite independent, but each ‘depends
on’ only a few others?

As in the last section, let X be a finite set, let 0 ⩽ p ⩽ 1, and consider the random subset
Xp of X. Let E1, . . . , Ek be subsets of X, and let Ai be the event that Xp ⊇ Ei. Note that
each Ai is an up-set; up-sets of this particular type are called principal up-sets. Let Z be
the number of Ai that hold.

For example, we could take X as the set of all
(
n
2

)
possible edges of G(n, p). Then Xp is the

actual set of edges in G(n, p). If the Ei list all
(
n
3

)
possible edge sets of triangles, then Z is

the number of triangles in G(n, p).

As usual, let µ := E[Z] =
∑

i P(Ai). As in Section 2, write i ∼ j if i ̸= j and Ai and Aj are
dependent, i.e., if i ̸= j and Ei ∩ Ej ̸= ∅, and let

∆ :=
∑
i

∑
j∼i

P(Ai ∩ Aj).

Theorem 9.1 (First Janson inequality). In the setting above, we have P(Z = 0) ⩽ e−µ+∆/2.
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Before turning to the proof, note that

P(Z = 0) = P(Ac
1 ∩ · · · ∩ Ac

k)

= P(Ac
1)P(Ac

2 | Ac
1) · · ·P(Ac

k | Ac
1 ∩ · · · ∩ Ac

k−1)

⩾
k∏

i=1

P(Ac
i ) =

k∏
i=1

(1 − P(Ai)),

where we used Harris’s Lemma and the fact that the intersection of two or more down-sets
is again a down-set. In the (typical) case that all P(Ai) are small, the final bound is roughly
e−

∑
P(Ai) = e−µ, so (if ∆ is small), Theorem 9.1 is saying that the probability that Z = 0 is

not much larger than the minimum it could possibly be.

Proof. Let ri = P(Ai | Ac
1 ∩ · · · ∩ Ac

i−1). Note that

P(Z = 0) = P(Ac
1 ∩ · · · ∩ Ac

k) =
k∏

i=1

(1 − ri) ⩽
k∏

i=1

e−ri = exp
(
−

k∑
i=1

ri

)
. (14)

Our aim is to show that ri is not much smaller than P(Ai).

Fix i, and let D be the intersection of those Ac
j where j < i and j ∼ i. Let I be the

intersection of those Ac
j where j < i and j ̸∼ i. Then I depends only on the presence

of elements in
⋃

j ̸∼iEj, which is disjoint from Ei, and it follows that P(Ai | I) = P(Ai).
Therefore

ri = P(Ai | I ∩D) =
P(Ai ∩ I ∩D)

P(I ∩D)

⩾
P(Ai ∩ I ∩D)

P(I)
= P(Ai ∩D | I)

= P(Ai | I) − P(Ai ∩Dc | I)

= P(Ai) − P(Ai ∩Dc | I).

Next we want an upper bound for P(Ai ∩ Dc | I). Since D is a down-set, Dc and Ai ∩ Dc

are up-sets. But now, since I is a down-set, Corollary 8.2 gives

P(Ai ∩Dc | I) ⩽ P(Ai ∩Dc
1) = P

(
Ai ∩

⋃
j<i, j∼i

Aj

)
= P

( ⋃
j<i, j∼i

(Ai ∩ Aj)
)
⩽

∑
j<i, j∼i

P(Ai ∩ Aj).

Putting this result together with the previous one gives

ri ⩾ P(Ai) −
∑

j<i, j∼i

P(Ai ∩ Aj).
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By (14) we thus have

P(Z = 0) ⩽ exp

(
−

k∑
i=1

P(Ai) +
∑
i

∑
j∼i, j<i

P(Ai ∩ Aj)

)
= exp

(
−µ + ∆/2

)
.

When ∆ is much larger than µ, Theorem 9.1 is not very useful. But there is a trick to deduce
something from it in this case, and also extend it to bound the probability that Z is just
small rather than zero.

Theorem 9.2 (Second Janson inequality). Under the assumptions of Theorem 9.1, if ∆ ⩾ µ

then P(Z = 0) ⩽ e−
µ2

2∆ .

Proof. The idea is to apply Theorem 9.1 to a subset of the events A1, . . . , Ak. Let S ⊆ [k] and
write ZS for the number of Ai with i ∈ S that occur. The corresponding values of µ and ∆ are
then µS :=

∑
i∈S P(Ai) and ∆S :=

∑
i∼j, i,j∈S P(Ai∩Aj). Now suppose we choose S randomly,

including each i ∈ S independently with probability q. Then E[µS] =
∑

qP(Ai) = qµ and
E[∆S] =

∑
i∼j q

2P(Ai ∩ Aj) = q2∆, so that E[−µS + ∆S/2] = −qµ + q2∆/2. Hence, for

any q ∈ [0, 1], there is some choice of S such that −µS + ∆S/2 ⩽ −qµ + q2∆/2, and hence
P(Z = 0) ⩽ P(ZS = 0) ⩽ e−qµ+q2∆/2. We now optimise this over q. For ∆ < µ we just get
q = 1, S = [k], and the original Janson inequality, but for ∆ ⩾ µ we can take q = µ/∆ ∈ [0, 1]
to give P(Z = 0) ⩽ P(ZS = 0) ⩽ e−µ2/2∆.

Theorem 9.3 (Third Janson inequality). Under the assumptions of Theorem 9.1, we have

P(Z ⩽ µ− t) ⩽ e−
t2

2(µ+∆) .

Proof. We use a similar idea to that of the previous theorem, but strengthen the argument a
bit. Again, let S be a random subset of [k] with each element included with probability q. We
can view ZS as counting events A′

i where A′
i is Ai with probability q and ‘false’ otherwise. The

key idea is that we can apply Janson’s first inequality to the A′
i. Indeed, we can extend the

underlying set X by k new elements Y = {y1, . . . , yk} that are included in our random subset
independently with probability q. Then, instead of the principal up-sets Ai = {Ei ⊆ Xp},
we use the principal up-sets A′

i = {Ei ∪ {yi} ⊆ Xp ∪ Yq}. Clearly A′
i and A′

j are dependent
iff Ai and Aj were, and the µ and ∆ corresponding to the A′

i are just µ′ = E[µS] = qµ and
∆′ = E[∆S] = q2∆.

Now we note that P(ZS = 0 | Z) = (1 − q)Z , so that

P(ZS = 0) = E
[
(1 − q)Z

]
.
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Setting q = 1 − e−λ and following a Chernoff argument, we have

P(Z ⩽ µ− t) = P
(
e−λZ ⩾ e−λ(µ−t)

)
⩽ E[e−λZ ]/e−λ(µ−t) = E[(1 − q)Z ]/e−λ(µ−t)

⩽ P(ZS = 0)/e−λ(µ−t)

⩽ exp
(
−qµ + q2∆/2 + λ(µ− t)

)
⩽ exp

(
−(λ− λ2/2)µ + λ2∆/2 + λ(µ− t)

)
⩽ exp

(
−λt + (µ + ∆)λ2/2

)
,

where in the second to last line we have used the inequalities λ − λ2

2
⩽ q = 1 − e−λ ⩽ λ,

which are valid for all λ ⩾ 0. Setting λ = t/(µ + ∆) gives the result.

The following form is slightly weaker than Theorem 9.1 plus Theorem 9.2, but usually just
as effective.

Corollary 9.4. Under the assumptions of Theorem 9.1,

P(Z = 0) ⩽ exp
(
− µ2

2(µ + ∆)

)
.

Proof. Set t = µ in Theorem 9.3.

Remark. The proof of Janson’s inequalities above is based on that given by Boppana and
Spencer, but with a modification suggested by Lutz Warnke. With a little more work the
modified proof gives a more general result: A1, . . . , Ak can be arbitrary up-sets, not just
ones of the special form assumed above (principal up-sets). We take i ∼ j if Ai and Aj

are dependent. The extra work needed is to check that this rule gives a valid dependency
digraph; this is not true for general events, but is true for up-sets (see problem sheet 4).

Remark. Notice that the proof of Janson’s third inequality only works for lower tails. There
is no correspondingly good bounds for P(Z ⩾ µ + t). For example, consider the number of
triangles in G(n, p). We have µ =

(
n
3

)
p3 = Θ(n3p3) and ∆ =

(
n
3

)
(n− 3)p5 = Θ(n4p5). Thus

if p ⩾ n1/2 we have µ = O(∆) and so µ2/(µ + ∆) = Θ(n2p). From Corollary 9.4 we deduce
that P(Z = 0) ⩽ e−Θ(n2p). However, the appearance of a clique of order 2np, say, generates(
2np
3

)
> 2µ triangles, and the probability that this occurs is at least

p(2np
2 ) = exp

(
−Θ(n2p2 log(1/p)

)
.

Thus P(Z ⩾ 2µ) is much larger that our bound on P(Z = 0) when p = o(1).

How do the second moment method and Janson’s inequalities compare? Corollary 2.4 says
that if µ → ∞ and ∆ = o(µ2) (i.e., µ2/∆ → ∞), then P(Z = 0) → 0. More concretely, if
µ ⩾ L and µ2/∆ ⩾ L, then the proof of Corollary 2.4 gives

P(Z = 0) ⩽ 2/L.
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Janson’s inequality has more restrictive assumptions: the events Ai have to be events of a
specific type. When this holds, the ∆ there is the same ∆ as before. When µ ⩾ L and
µ2/∆ ⩾ L, the conclusion is that

P(Z = 0) ⩽ e−L/4.

Both bounds imply that P(Z = 0) → 0 when µ and µ2/∆ both tend to infinity, but when
Janson’s inequalities apply, the concrete bound they give is exponentially stronger than that
from the second moment method.

10 Clique and chromatic number of G(n, p)

We shall illustrate the power of Janson’s inequalities by using them to study the chromatic
number of G(n, p). The ideas are more important than the details of the calculations. We
start by looking at something much simpler: the clique number.

Throughout this section p is constant with 0 < p < 1.

Recall that the clique number ω(G) of a graph G is the maximum k such that G contains a
copy of Kk. For k = k(n) let Xk be the number of copies of Kk in G = G(n, p), and

µk := E[Xk] =

(
n

k

)
p(k

2).

Note that
µk+1

µk

=

(
n

k + 1

)(
n

k

)−1

p(k+1
2 )−(k

2) =
n− k

k + 1
pk, (15)

which is a decreasing function of k. It follows that the ratio is at least 1 up to some point
and then at most 1, so µk first increases from µ0 = 1, µ1 = n, . . . , and then decreases.

We define
k0 = k0(n, p) = min{k : µk < 1}.

Lemma 10.1. With 0 < p < 1 fixed we have k0 ∼ 2 log1/p n = 2 logn
log(1/p)

as n → ∞.

Proof. Using standard bounds on the binomial coefficient
(
n
k

)
,(n

k

)k

pk(k−1)/2 ⩽ µk ⩽
(en
k

)k

pk(k−1)/2.

Taking the kth root it follows that

µ
1/k
k = Θ

(n
k
p(k−1)/2

)
= Θ

(n
k
pk/2

)
.

Let ε > 0 be given.

42



If k ⩽ (1 − ε)2 log1/p n then (1/p)k/2 ⩽ n1−ε, i.e., pk/2 ⩾ n−1+ε. Thus µ
1/k
k is at least a

positive constant times nε/ log n, so µ
1/k
k > 1 if n is large. Hence µk > 1, so k0 > k.

Similarly, if k ⩾ (1 + ε)2 log1/p n then pk/2 ⩽ n−1−ε and if n is large enough it follows that
µk < 1, so k0 ⩽ k. So for any fixed ε we have

(1 − ε)2 log1/p n ⩽ k0 ⩽ ⌈(1 + ε)2 log1/p n⌉

if n is large enough, so k0 ∼ 2 log1/p n.

Note for later that if k ∼ k0 then (1

p

)k

= n2+o(1) (16)

so from (15) we have
µk+1

µk

=
n−O(log n)

Θ(log n)
n−2+o(1) = n−1+o(1). (17)

Lemma 10.2. With 0 < p < 1 fixed we have P
(
ω(G(n, p)) > k0

)
→ 0 as n → ∞.

Proof. We have ω(G(n, p)) > k0 if and only if Xk0+1 > 0, which has probability at most
E[Xk0+1] = µk0+1. Now µk0 < 1 by definition, so by (17) we have µk0+1 ⩽ n−1+o(1), so
µk0+1 → 0.

Let ∆k be the expected number of ordered pairs of distinct k-cliques sharing at least one
edge. This is exactly the quantity ∆ appearing in Corollaries 2.4 and 9.4 when we are
counting the k-cliques.

Lemma 10.3. Suppose that k ∼ k0. Then

∆k

µ2
k

⩽ max

{
n−2+o(1),

n−1+o(1)

µk

}
.

In particular, if µk → ∞ then ∆k = o(µ2
k).

Proof. We have

∆k =

(
n

k

) k−1∑
s=2

(
k

s

)(
n− k

k − s

)
p2(

k
2)−(s

2),

so
∆k

µ2
k

=
k−1∑
s=2

αs,

where

αs =

(
k
s

)(
n−k
k−s

)(
n
k

) p−(s
2).
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We will show that the αs first decrease then increase as s goes from 2 to k − 1. Let

βs =
αs+1

αs

=
k − s

s + 1

k − s

n− 2k + s + 1
p−s,

so, as k = O(log n),

βs = n−1+o(1)
(1

p

)s

. (18)

In particular, using (16) we have βs < 1 for s ⩽ k/4, say, and βs > 1 for s ⩾ 3k/4. In
between we have βs+1/βs ∼ 1/p, so βs+1/βs ⩾ 1, and βs is increasing when s runs from k/4
to 3k/4.

It follows that there is some s0 ∈ [k/4, 3k/4] such that βs ⩽ 1 for s ⩽ s0 and βs > 1 for
s > s0. In other words, the sequence αs decreases and then increases.

Hence, max{αs : 2 ⩽ s ⩽ k − 1} = max{α2, αk−1}, so

∆k

µ2
k

=
k−1∑
s=2

αs ⩽ k max{α2, αk−1} = no(1) max{α2, αk−1}.

Either calculating directly, or using α0 ⩽ 1, α2 = α0β0β1, and the approximate formula for
βs in (18), one can check that α2 ⩽ n−2+o(1). Similarly, αk = 1/µk and αk−1 = αk/βk−1 =
n−1+o(1)/µk, using (18) and (16).

Theorem 10.4. Let 0 < p < 1 be fixed. Define k0 = k0(n, p) as above, and let G = G(n, p).
Then

P
(
k0 − 2 ⩽ ω(G) ⩽ k0

)
→ 1

Proof. The upper bound is Lemma 10.2. For the lower bound, let k = k0 − 2. Note that
µk0−1 ⩾ 1 by the definition of k0, so by (17) we have µk ⩾ n1−o(1), and in particular
µk → ∞. Then by Lemma 10.3 we have ∆k = o(µ2

k). Hence by the second moment method
(Corollary 2.4) we have P(ω(G) < k) = P(Xk = 0) → 0.

Note that we have ‘pinned down’ the clique number to one of three values; with only a very
little more care, we can pin it down to at most two values. Indeed, typically we can specify
a single value (when µk0−1 is much larger than one, µk0 much smaller than one).

Using Janson’s inequality, we can get a very tight bound on the probability that the clique
number is significantly smaller than expected.

Theorem 10.5. Under the assumptions of Theorem 10.4 we have

P
(
ω(G) < k0 − 3

)
⩽ e−n2−o(1)

.

Note that this is a truly tiny probability: the probability that G(n, p) contains no edges at

all is (1 − p)(
n
2) = e−Θ(n2).
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Proof. Let k = k0 − 3. Then arguing as above we have µk ⩾ n2−o(1). Hence by Lemma 10.3
we have ∆k/µ

2
k ⩽ n−2+o(1), so µ2

k/(µk + ∆k) ⩾ n2−o(1). Thus by Janson’s inequality (Corol-

lary 9.4) we have P(Xk = 0) ⩽ e−n2−o(1)
.

Why is such a good error bound useful? Because it allows us to study the chromatic number,
by showing that with high probability every subgraph of a decent size contains a fairly large
independent set.

Theorem 10.6 (Bollobás). Let 0 < p < 1 be constant and let G = G(n, p). Then for any
fixed ε > 0, whp

(1 − ε)
n

2 logb n
⩽ χ(G) ⩽ (1 + ε)

n

2 logb n

where b = 1/(1 − p).

Proof. Apply Theorem 10.4 to the complement Gc of G, noting that Gc ∼ G(n, 1 − p).
Writing α(G) for the independence number of G, we find that whp α(G) = ω(Gc) ⩽ k0(n, 1−
p) ∼ 2 logb n. Since χ(G) ⩾ n/α(G), this gives the lower bound.

For the upper bound, let m = ⌊n/(log n)2⌋, say. For each subset W of V (G) with |W | = m,
let EW be the event that G[W ] contains an independent set of size at least k = k0(m, 1−p)−3.
Note that

k ∼ 2 logb m ∼ 2 logb n.

For each (fixed) W , applying Theorem 10.5 to the complement of G[W ], which has the
distribution of G(m, 1 − p), we have

P(Ec
W ) ⩽ e−m2−o(1)

= e−n2−o(1)

.

Let E =
⋂

|W |=mEW . Considering the
(
n
m

)
⩽ 2n possible sets W separately, the union bound

gives

P(Ec) = P
(⋃

W

Ec
W

)
⩽ 2ne−n2−o(1) → 0.

It follows that E holds whp. But when E holds one can colour by greedily choosing indepen-
dent sets of size at least k for the colour classes, until at most m vertices remain, and then
simply using one colour for each vertex. Since we use at most n/k sets of size at least k, this
shows that, when E holds,

χ(G(n, p)) ⩽
n

k
+ m = (1 + o(1))

n

2 logb n
+ m ∼ n

2 logb n
,

completing the proof.

Remark. The chromatic number of G(n, p) has been extensively studied for various ranges
p = p(n). For p constant, as here, the tightest bounds currently known are due to Annika
Heckel (when she was a DPhil student here in Oxford), who has given bounds of the form
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n/(f(n, p)+o(1)) for a certain function f(n, p). The proof is based on an (extremely compli-
cated) application of the second moment method, with the number of ‘balanced’ colourings
as the random variable.

11 Postscript: other models

(These concluding remarks are non-examinable.) There are several standard models of ran-
dom graphs on the vertex set [n] = {1, 2, . . . , n}. We have focused on G(n, p), where each
possible edge is included independently with probability p.

The model originally studied by the founders of the theory of random graphs, Erdős and
Rényi, is slightly different. Fix n ⩾ 1 and 0 ⩽ m ⩽ N =

(
n
2

)
. The random graph G(n,m) is

the graph with vertex set [n] obtained by choosing exactly m edges randomly, with all
(
N
m

)
possible sets of m edges equally likely.

For most natural questions (but not, for example, ‘is the number of edges even?’), G(n, p) and
G(n,m) behave very similarly, provided we choose the density parameters in a corresponding
way, i.e., we take p ∼ m/N .

Often, we consider random graphs of different densities simultaneously. In G(n,m), there
is a natural way to do this, called the random graph process. This is the random sequence
(Gm)m=0,1,...,N of graphs on [n] obtained by starting with no edges, and adding edges one-by-
one in a random order, with all N ! orders equally likely. Note that each individual Gm has the
distribution of G(n,m): we take the first m edges in a random order, so all possibilities are
equally likely. The key point is that in the sequence (Gm), we define all the Gm together, in
such a way that if m1 < m2, then Gm1 ⊂ Gm2 . (This is called a ‘coupling’ of the distributions
G(n,m) for different m.)

There is a similar coupling in the G(n, p) setting, the continuous time random graph process.
This is the random ‘sequence’ (Gt)t∈[0,1] defined as follows: for each possible edge, let Ue

be a random variable with the uniform distribution on the interval [0, 1], with the different
Ue independent. Let the edge set of Gt be {e : Ue ⩽ t}. (Formally this defines a random
function t 7→ Gt from [0, 1] to the set of graphs on [n].) One can think of Ue as giving the
‘time’ at which the edge e is born; Gt consists of all edges born by time t. For any p, Gp has
the distribution of G(n, p), but again these distributions are coupled in the natural way: if
p1 < p2 then Gp1 ⊆ Gp2 .

Of course, there are many other random graph models not touched on in this course (as
well as many more results about G(n, p)). These include other classical models, such as the
‘configuration model’ for random regular graphs, random geometric graphs, and also new
‘inhomogeneous’ models introduced as more realistic models for networks in the real world.
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A Asymptotic notation

In this course we use the (fairly) standard Landau notation below to compare the sizes of
two functions of a (usually integer) variable n ⩾ 1.

Notation Formal Definition Equivalently

f = O(g) ∃C > 0: ∃n0 : ∀n ⩾ n0 : |f(n)| ⩽ C|g(n)| lim sup
n→∞

|f(n)
g(n)

| < ∞

f = o(g) ∀ε > 0: ∃n0 : ∀n ⩾ n0 : |f(n)| ⩽ ε|g(n)| lim
n→∞

f(n)
g(n)

= 0

f ∼ g ∀ε > 0: ∃n0 : ∀n ⩾ n0 : |f(n)/g(n) − 1| < ε lim
n→∞

f(n)
g(n)

= 1

f = Θ(g) ∃A,B > 0: ∃n0 : ∀n ⩾ n0 : A|g(n)| ⩽ |f(n)| ⩽ B|g(n)| f = O(g) and g = O(f)

Less standard, but still common:

f = Ω(g) means that g = O(f), i.e., for some c > 0, eventually |f(n)| ⩾ c|g(n)|.

f = ω(g) means that g = o(f), i.e., |f(n)/g(n)| → ∞

More generally, we may compare a function of n with a formula involving O(·) or o(·)
notation; then each occurrence refers to a function with the corresponding property. For
example,

f = n3 + O(n2)

means there is a function g(n) with g = O(n2) such that f(n) = n3 + g(n). In other words,
there exists a constant C such that, for sufficiently large n,

n3 − Cn2 ⩽ f(n) ⩽ n3 + Cn2.

Similarly,
f ⩾ (2 − o(1))n2

means there is a function g(n) with g(n) → 0 such that f(n) ⩾ (2 − g(n))n2 for all n, In
other words,

∀ε > 0: ∃n0 : ∀n ⩾ n0 : f(n) ⩾ (2 − ε)n2.

Note that, in notation such as f = O(g), while it is usually assumed that g is positive (for
sufficiently large n), f is not assumed positive. Thus formally 1 + o(1) and 1 − o(1) mean
the same thing.

Warning: some people use f ≪ g to mean f = o(g); others use it to mean f = O(g). While
generally f = ω(g) means g = o(f), the notation ω(n) is often used in a different way, as
the default notation for a function of n that tends to infinity. Occasionally (rarely) people
use f = Ω(g) to mean f ̸= o(g), which is different! I will therefore try to avoid these.
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B Some useful bounds

Products. We often need to bound products of the form
∏

i ai where the ai are typically
close to 1 (or have simple factors that we can take out so that the remaining terms are close
to 1). A standard approach for an upper bound is to use the inequality ex ⩾ 1 + x (valid for
all real x) to deduce that∏

(1 + xi) ⩽ e
∑

xi or
∏

(1 − xi) ⩽ e−
∑

xi ,

valid when all terms 1 ± xi in the products are positive. Note that∏
(1 + xi) = e

∑
log(1+xi) = e

∑
(xi+O(x2

i )) = e(
∑

xi)+O(
∑

x2
i ),

so these bounds are good if
∑

x2
i is small. For lower bounds, one can upper bound the

products of 1/(1 ± xi) = 1 ± xi/(1 ± xi) to get, for example,∏
(1 + xi) ⩾ e

∑
xi/(1+xi), (xi > −1).

Alternatively, if all xi have the same signs, then we can also use the (much weaker) Bernoulli-
like inequalities∏

(1 + xi) ⩾ 1 +
∑

xi (xi ⩾ 0) or
∏

(1 − xi) ⩾ 1 −
∑

xi (0 ⩽ xi ⩽ 1).

These however are only good when
∑

xi is small.

Factorials. Stirling’s formula is normally quoted in the asymptotic form n! ∼
√

2πn(n/e)n,
but can be refined to the following actual bounds that hold for all6 n ⩾ 1:

√
2πn

(n
e

)n

⩽ n! ⩽
√

2πn
(n
e

)n

e1/12n. (19)

Often the following much cruder bounds are sufficient.(n
e

)n

⩽ n! ⩽ nn. (20)

Binomials. If k is very small compared with n then the following bounds are often good
enough. (See problem sheet 0.)(n

k

)k

⩽

(
n

k

)
⩽

nk

k!
⩽

(en
k

)k

. (21)

6These also hold for all real n > 0 if you interpret n! as the gamma function Γ(n+ 1).
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