

C8.4 Probabilistic Combinatorics

Sheet 0 — HT26

Not for classes

This is a preliminary problem sheet, to get the ball rolling. There is a ‘bonus’ problem for MFoCS students overleaf. Solutions will be put on the website near the end of week 1. Problem sheet 1 (based on the first two weeks’ lectures) will be for the first class.

Estimates and asymptotics, union bound and first-moment method

1. Prove the following inequalities:

- (a) $1 + x \leq e^x$ for all real x .
- (b) $e^{nx/(1+x)} \leq (1+x)^n \leq e^{nx}$ for $x > -1$, $n \geq 0$.
- (c) $k! \geq (k/e)^k$ for $k \geq 1$.
- (d) $\left(\frac{n}{k}\right)^k \leq \binom{n}{k} \leq \frac{n^k}{k!} \leq \left(\frac{en}{k}\right)^k$ for $1 \leq k \leq n$.

2. For the following functions $f(n)$ and $g(n)$, decide whether $f = o(g)$ or $g = o(f)$ or $f = \Theta(g)$ as $n \rightarrow \infty$:

- (a) $f(n) = \binom{n}{k}$, $g(n) = n^k$, first for k fixed and then for the case where $k = k(n) \rightarrow \infty$ as $n \rightarrow \infty$;
- (b) $f(n) = (\log n)^{1000}$, $g(n) = n^{1/1000}$.

3. Find the simplest function $f(n)$ you can such that $(n-2)^{n+2}/n^n \sim f(n)$ as $n \rightarrow \infty$.

4. Show that if $n, k, \ell \geq 1$ are integers and $0 < p < 1$, then

$$R(k, \ell) > n - \binom{n}{k} p^{\binom{k}{2}} - \binom{n}{\ell} (1-p)^{\binom{\ell}{2}}.$$

5. Let H be an r -uniform hypergraph with fewer than $\frac{3^{r-1}}{2^r}$ edges. Prove that the vertices of H can be coloured using three colours in such a way that in each edge, all three colours are represented.

6. Let F be a collection of binary strings (“codewords”) of finite length, where the i th codeword has length c_i . Suppose that no member of F is an initial segment of another member (so you can decode any string made up by concatenating codewords as you go along, without looking ahead). Show that $\sum_i 2^{-c_i} \leq 1$ (the *Kraft inequality* for prefix-free codes).

Bonus question (for MFoCS students, optional for others):

A (finite, or infinite and convergent) sum $S = \sum_{i \geq 0} a_i$ is said to *satisfy the alternating inequalities* if the partial sum $\sum_{i=0}^t a_i$ is at least S for all even t and at most S for all odd t ; that is, the partial sums alternately over- and under-estimate the final result.

7. Let $\mathbb{1}_1, \dots, \mathbb{1}_n$ be the indicator functions of n events E_1, \dots, E_n . For $0 \leq r \leq n$ let $S_r = \sum_{A \subseteq [n], |A|=r} \prod_{i \in A} \mathbb{1}_i$, where $[n] = \{1, 2, \dots, n\}$. Show that

$$\prod_{i=1}^n (1 - \mathbb{1}_i) = \sum_{r=0}^n (-1)^r S_r, \quad (1)$$

and that the sum satisfies the alternating inequalities. [Both sides are random; the statement is that the relevant inequalities *always* hold. You may want to consider different cases according to how many of the events E_i hold.] Deduce that

$$\mathbb{P}(\text{no } E_i \text{ holds}) = \sum_{r=0}^n (-1)^r \sum_{A \subseteq [n], |A|=r} \mathbb{P}\left(\bigcap_{i \in A} E_i\right), \quad (2)$$

and that the sum satisfies the alternating inequalities. [This is a form of the inclusion–exclusion formula.]