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Recommended Prerequisites

The course requires Part A core complex analysis, and is devoted to extensions and appli-
cations of that material. A knowledge of the basic properties of the Fourier transform, as
found for example in Part A Integral Transforms, will be assumed. Part A Fluid Dynam-
ics and Waves is helpful but not absolutely essential: the necessary results from inviscid
two-dimensional hydrodynamics will be quoted as required, and for further details the reader
is referred to the Part A lecture notes. Part C Perturbation Methods is also helpful in the
analysis of certain contour integrals.

Synopsis

Review of core complex analysis, analytic continuation, multifunctions, contour integration,
conformal mapping and Fourier transforms. [3 lectures]

Riemann mapping theorem (in statement only). Schwarz–Christoffel formula. Solution of
Laplace’s equation by conformal mapping onto a canonical domain; applications including
inviscid hydrodynamics. [2 lectures]

Free streamline flows in the hodograph plane. Unsteady flow with free boundaries in porous
media. [3 lectures]

Applications of Cauchy integrals and Plemelj formulae. Solution of mixed boundary value
problems motivated by thin aerofoil theory and the theory of cracks in elastic solids. Riemann-
Hilbert problems. Cauchy singular integral equations. [3 lectures]

Complex Fourier transform. Contour integral solutions of ODEs. [2 lectures]
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1 Review of core complex analysis

1.1 Introduction

Here we summarise the important results and techniques of core complex analysis that are
assumed for the remainder of this course. This is by no means a complete account of complex
analysis. Many important details and most of the proofs will be omitted, but may be found
in basic textbooks (e.g. Priestley). First we introduce some basic notation that will be used
throughout this course.

Complex conjugation is denoted by an overbar: if x, y ∈ R and z = x+iy, then z = x− iy.
Conjugation commutes with all of the basic complex functions, that is, zk ≡ zk, ez ≡ ez,
sin z ≡ sin z, etc.

A region in the complex plane, usually denoted D, is an open, path-connected subset of C,
simply-connected unless stated otherwise. Its boundary is denoted ∂D.

A contour Γ is a simple, piecewise continuously differentiable path in C with the positive
(anti-clockwise) orientation (a Jordan contour), closed unless stated otherwise.

A disc in the complex plane is denoted by D(a;R) = {z ∈ C : |z − a| < R}, i.e. the open
disc centre a and radius R.

1.2 Holomorphic functions

A function f(z) of the complex variable z is said to be differentiable at the point z if
limh→0

(
f(z + h) − f(z)

)
/h exists, independent of how h → 0. When this is true, we de-

fine the derivative

f ′(z) = lim
h→0

f(z + h)− f(z)

h
. (1.1)

If f(z) is differentiable at each point in a region D, then f is said to be holomorphic in D.

Suppose we decompose a holomorphic function into its real and imaginary parts by writing

f(z) = u(x, y) + iv(x, y), (1.2)

where z = x + iy. Then, by taking h first real then imaginary in (1.1) and setting the two
resulting values of f ′(z) equal, we find that u and v must satisfy the Cauchy–Riemann
equations

∂u

∂x
=
∂v

∂y
,

∂u

∂y
= −∂v

∂x
. (1.3)
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The real and imaginary parts of any holomorphic function must satisfy (1.3). The reverse is
not exactly true. If u and v are differentiable as functions of (x, y) and satisfy the Cauchy–
Riemann equations (1.3), then f = u(x, y) + iv(x, y) is a holomorphic function of z = x+ iy.

By cross-differentiating the Cauchy–Riemann equations (1.3), we quickly find that both
u and v satisfy Laplace’s equation, i.e.

∇2u =
∂2u

∂x2
+
∂2u

∂y2
= 0, ∇2v = 0. (1.4)

The reverse is also true: if a function u(x, y) satisfies Laplace’s equation, then it is the real
part of some function f(z) that is holomorphic (at least locally). Therefore solving Laplace’s
equation in two dimensions is equivalent to finding a suitable holomorphic function of z.
Many of the applications covered in this course spring from this basic fact.

If one were to think of a general (not necessarily holomorphic) complex-valued function
G(x, y), it could equivalently be viewed as a function g(z, z) using the one-to-one correspon-
dence between (z, z) and (x, y). The chain rules relating partial derivatives with respect to
the two sets of coordinates are given by

∂

∂x
=

∂

∂z
+

∂

∂z
,

∂

∂y
= i

∂

∂z
− i

∂

∂z
, (1.5)

which can easily be inverted to

∂

∂z
=

1

2

(
∂

∂x
− i

∂

∂y

)
,

∂

∂z
=

1

2

(
∂

∂x
+ i

∂

∂y

)
. (1.6)

From these and the Cauchy–Riemann equations (1.3), it follows that if g is holomorphic, then

∂g

∂z
= 0. (1.7)

This result may be interpreted as saying that a holomorphic function is one that is independent
of z.

1.3 Path integrals and Cauchy’s Theorem

The integral of a complex valued function of z along a curve Γ (which may be open or
closed) in C, is defined as usual: if Γ is parameterised using a real-valued parameter t, i.e.
Γ = {z(t) : t ∈ (t0, t1)}, then

∫

Γ
f(z) dz :=

∫ t1

t0

f
(
z(t)

)
z′(t) dt. (1.8)

Such an integral can easily be bounded using

∣∣∣∣
∫

Γ
f(z) dz

∣∣∣∣ ≤ length(Γ)× sup
z∈Γ
|f(z)| . (1.9)
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Cauchy’s Theorem: If a function f(z) is holomorphic within a simple closed contour Γ,
and continuous on Γ, then ∫

Γ
f(z) dz = 0. (1.10)

At first glance, Cauchy’s theorem might not appear very mysterious. If we write f = u + iv
and then use Green’s Theorem, then Cauchy’s Theorem follows directly from the Cauchy–
Riemann equations (1.3). However, this “proof” assumes that u and v have continuous partial
derivatives on and inside Γ. A much more technical proof, due to Goursat, assumes only that
f ′(z) exists everywhere inside Γ. This is significant because, as we shall see, one can then
prove that f ′(z) is continuous, rather than assuming so.

It is an immediate consequence of Cauchy’s theorem that if Γ1 and Γ2 are two curves
joining the point z0 to another point z1, as illustrated in Figure 1.1, and if f(z) is holomorphic
in a region containing Γ1, Γ2 and the region between them, then

∫

Γ1

f(z) dz =

∫

Γ2

f(z) dz, (1.11)

so that the integral is path-independent. This is often stated as the deformation theorem:
if one contour Γ1 can be deformed smoothly into another one Γ2 while crossing only points at
which f(z) is holomorphic, then the integral of f(z) along Γ1 is equal to the integral along Γ2.
It also allows us to define an anti-derivative of f(z) by the prescription

F (z) =

∫ z

z0

f(t) dt, (1.12)

provided that we do so in a simply connected region within which f(z) is holomorphic, as the
contour of integration is immaterial.

Figure 1.1: Two paths from z0 to z1.

A partial inverse of Cauchy’s Theorem is:

Morera’s Theorem. If f(z) is continuous in D and
∮

Γ f(z)dz = 0 for all simple closed Γ
in D, then f(z) is holomorphic in D.

1.4 Cauchy’s integral formula

Take a simple closed contour Γ, and let f(z) be holomorphic on Γ and inside it. Then values
of f(z) on Γ determine its values at all points within Γ as well, via Cauchy’s integral
formula: for all z within Γ,

f(z) =
1

2πi

∮

Γ

f(ζ)

ζ − z dζ. (1.13)
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The proof is simple, by deforming the contour to a small circle surrounding z, as shown in
Figure 1.2, and adding and subtracting f(z):

∮

Γ

f(ζ)

ζ − z dζ =

∮

|ζ−z|=ε

f(ζ)

ζ − z dζ =

∮

|ζ−z|=ε

f(z)

ζ − z dζ +

∮

|ζ−z|=ε

f(ζ)− f(z)

ζ − z dζ; (1.14)

the first integral on the right is equal to 2πif(z) and the second vanishes as ε→ 0 by continuity
of f .

Figure 1.2: Deformation of Γ to Cε = {z : |ζ − z| = ε}.

With f(z) given by Cauchy’s integral formula (1.13), it is tempting to differentiate with
respect to z under the integral sign to find

f ′(z) =
1

2πi

∮

Γ

f(ζ)

(ζ − z)2
dζ, (1.15)

and indeed the formal justification of this step is not difficult. Thus the value of f ′(z) at
any point inside Γ may be expressed solely in terms of the values taken by f(z) on Γ. But
then, we can differentiate again (with essentially the same justification), to find an analogous
formula for f ′′(z), namely

f ′′(z) =
1

πi

∮

Γ

f(ζ)

(ζ − z)3
dζ. (1.16)

Recall we have assumed only that f(z) is holomorphic. Therefore we have established that,
given only that f ′(z) exists (not even that it is continuous), it follows that f ′′(z) also exists.
By iterating on this process, we obtain Cauchy’s formula for derivatives:

f (n)(z) =
n!

2πi

∮

Γ

f(ζ)

(ζ − z)n+1
dζ. (1.17)

Hence, a holomorphic function is infinitely differentiable, in marked contrast with real-valued
functions.

A function is called entire if it is holomorphic in the whole complex plane (e.g. z, ez).
Such a function must have a singularity at infinity, because of:

Liouville’s Theorem: Any bounded entire function f(z) is constant.

That is, if |f(z)| < M for some M and for all z, then f is a constant. Liouville’s Theorem
may be proved by looking at Cauchy’s integral formula (1.15) for f ′(z) and taking Γ to be a
large circle; letting the radius of the circle tend to infinity, we deduce that f ′(z) = 0.



C5.6 Applied Complex Variables 1–5

There are various generalisations of Liouville’s Theorem which apply when the modulus
of an entire function is bounded in some specified way (not just by a constant) as z → ∞.
The simplest generalisation is

Corollary: If f(z) is entire and f(z) = O(zn) as z → ∞ for n ∈ N, then f(z) is a
polynomial of degree n.

This result is easily proved by applying Liouville’s Theorem to f (n)(z).

1.5 Taylor’s Theorem and analytic continuation

Knowing that a holomorphic function has derivatives of all orders, we expect it to have power
series representation.

Taylor’s theorem. If f(z) is holomorphic in a disc D(a;R), then there is a series repre-
sentation

f(z) =
∞∑

n=0

cn(z − a)n, where cn =
f (n)(a)

n!
, (1.18)

and the series converges to f(z) for all 0 ≤ |z − a| < R.

The proof of Taylor’s Theorem involves expanding the integrand in Cauchy’s integral formula
(1.13) using the Binomial Theorem and then integrating term by term (which is justified by
uniform convergence).

Taylor’s Theorem tells us that a holomorphic function is analytic: it can be represented
by a convergent Taylor series. The radius of convergence of the series (1.18) is the largest
possible value of R such that the series converges, i.e. the largest value of R such that f(z) is
holomorphic in D(a;R). In other words, the radius of convergence is the distance from z = a
to the nearest singular point of f(z). The power series (1.18) diverges for |z − a| > R, while
on the circle of convergence |z − a| = R it may converge at some points, but must diverge at
at least one.

A simple example is the function 1/(1 − z), which is holomorphic except at the point
z = 1. Therefore it is holomorphic on the disc D(0; 1) and has a Taylor expansion about
z = 0, namely

f(z) =

∞∑

n=0

zn, (1.19)

which converges for |z| < 1. But if we define a function f(z) by the power series (1.19), then
the series diverges, so that f(z) does not even exist, for |z| > 1. The function f(z) defined by
the power series (1.19) can be analytically continued onto a set outside its disc of convergence
by defining a new function as follows:

f̃(z) =





∞∑

n=0

zn |z| < 1,

1

1− z |z| ≥ 1, z 6= 1.

(1.20)
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The resulting function f̃(z) is holomorphic on the extended set z ∈ C \ {1}. The Identity
Theorem below tells us that this continuation of f(z) outside its disc of convergence is
unique.

In the above example (1.20), we knew the precise location of the singularity in f̃(z) and
indeed had an exact formula for the analytic continution into |z| > 1. More generally, to get
outside the circle of convergence one has to form another series centred at a point near the
boundary of the original circle, and hope that the new series converges in a disc containing
points outside the original circle of convergence. The process is then repeated with a new
circle, and so on, as illustrated in Figure 1.3. By repeating this process we hope to analytically
continue the original function into an ever larger region of the complex plane.

−→

Figure 1.3: Analytic continuation of f(z) out of its original circle of convergence. The radius
of convergence is the distance from z = a to z = b, the nearest singular point of f(z).

However, it should not be thought that analytic continuation is automatically possible.
For example, the function

f(z) =
∞∑

n=0

zn! (1.21)

is holomorphic for |z| < 1, by comparison with the geometric series, but the sum diverges at
all points z = eiθ for which θ is a rational multiple of 2π. Thus the series has a dense set
of singularities on the unit circle, and the unit circle is said to be a natural boundary, across
which it is impossible to analytically continue the function (1.21).

The following theorem guarantees that, if an analytic continuation of a function can be
found, then it is unique, locally at least.

Identity theorem. Suppose f1(z) and f2(z) are both holomorphic in D. If there is a
sequence of points zn ∈ D, having an accumulation point which also lies in D, such that
f1(zn) = f2(zn), then f1(z) ≡ f2(z) in D.

An alternative version of the theorem is that if f1 and f2 agree on a dense set, then they
agree everywhere. Note that it is important that the accumulation point is also in D.

A consequence of the identity theorem is that the zeroes of a non-constant function f(z)
holomorphic in D are isolated, in that they cannot have an accumulation point in D; if they
did, then f(z) would be zero by the identity theorem.

The Identity Theorem implies that functions generated by analytic continuation are locally
unique. Globally, if we analytically continue a function out of an initial circle of convergence
using two different chains of circles, to arrive at the same exterior point by two different
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routes, the continued value is the same provided that the function is holomorphic in the region
between the two chains, a result called the Monodromy Theorem, illustrated in Figure 1.4. If
not, we may end up generating branches of a multi-function such as log z.

Figure 1.4: Monodromy Theorem: f(z) is single-valued at z = c provided f(z) is holomorphic
in the shaded area.

1.6 Laurent’s Theorem and isolated singularities

Laurent’s theorem. If f(z) is holomorphic in the annulus S < |z − a| < R, then in that
annulus it has a series representation

f(z) =

∞∑

n=−∞
cn(z − a)n, where cn =

1

2πi

∮

Γ

f(ζ)

(ζ − a)n+1
dζ. (1.22)

The integration contour Γ is any simple closed path that encloses z = a and lies entirely in
the annulus S < |z − a| < R.

�

Γ

�
�

Figure 1.5: The integration contour Γ in Laurent’s Theorem.

The integration contour Γ is illustrated in Figure 1.5. The part of the sum (1.22) contain-
ing negative powers of z, i.e.

∑−1
n=−∞ cn(z− a)n, is called the principal part of f(z) at z = a,
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and it is holomorphic for S < |z−a| <∞. The part
∑∞

n=0 cn(z−a)n containing non-negative
powers is holomorphic for 0 ≤ |z − a| < R. Therefore these two parts of the series are both
holomorphic on the overlap region S < |z − a| < R.

Classification of singularities

Suppose that S = 0 in Laurent’s theorem, so that f(z) is holomorphic on the punctured disc
D′(a;R) = {z ∈ C : 0 < |z − a| < R} (where it may happen that R = ∞). Then f(z) has
an isolated singularity at z = a. These singularities can be classified into three categories, as
follows.

1. If all the negative coefficients in the Laurent expansion vanish, cn = 0 for all n < 0,
then f(z) can be made holomorphic at z = a by setting f(a) = c0 = limz→a f(z). Such
a singularity is termed removable.

2. If there is an integer m > 0 such that c−m 6= 0 but cn = 0 for n < −m, then f(z) has a
pole of order m at z = a. In this case (z− a)mf(z) is holomorphic at z = a. A function
whose only singularities are poles is called meromorphic.

3. If neither of the above holds, then there are infinitely many nonzero negative Laurent
coefficients: the principal part goes on for ever. In this case f(z) has an isolated essential
singularity at z = a.

The prototypical example of the third case is the function e1/z, which has an essential
singularity at z = 0. The behaviour of f(z) near a pole of order m may be singular, but
the singularity is relatively tame because (z − a)mf(z) is locally holomorphic. However, the
behaviour near an isolated essential singularity is truly pathalogical, as demonstrated by:

Picard’s Theorem: Suppose f(z) has an isolated essential singularity at z = a and let Dε

be a small neighbourhood of z = a such that f(z) is holomorphic in Dε \ {a}. Then, for every
ζ ∈ C, with at most one exception (the so-called lacunary value), the equation f(z) = ζ has
infinitely many roots z in Dε.

That is, the image of Dε under f(z) covers the whole complex plane (except for at most one
point) infinitely often! For the particular example f(z) = e1/z, it is quite easy to see why this
is true, and that the lacunary value in this case is zero.

The behaviour of f(z) at infinity is classified according to the behaviour of f(1/z) near
z = 0; thus, for example, z has a pole of order 1 at infinity, while ez has an essential singularity
at infinity.
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1.7 Cauchy’s Residue Theorem

If f(z) has an isolated singularity at z = a and is otherwise holomorphic inside and on a
contour Γ enclosing a, then (by uniform convergence)

∮

Γ
f(z) dz =

∮

Γ

∞∑

n=−∞
cn(z − a)n dz

=
∞∑

n=−∞
cn

∮

Γ
(z − a)n dz

= 2πic−1, (1.23)

as all the other integrals vanish. The coefficient

c−1 = res[f(z); a] (1.24)

is the called residue of f(z) at z = a.
The result is easily generalised to the case when f(z) has several isolated singularities

inside Γ, and is known as:

Cauchy’s Residue Theorem: If f(z) is holomorphic inside and on Γ with the exception
of a finite number of isolated singularities at z = aj inside Γ, then

∮

Γ
f(z) dz = 2πi

∑

j

res[f(z); aj ]. (1.25)

Calculation of residues relies on a few variations on the theme of calculating local expan-
sions. Apart from functions such as e1/z for which we just calculate the power series, we may
often have functions with poles, in the form

f(z) =
g(z)

h(z)
(1.26)

where both g(z) and h(z) are holomorphic at z = a and h(a) = 0, g(a) 6= 0. The order of the
pole then depends on the order of the zero of h(z) at z = a. If h(z) = z−a the pole is a simple
one and the residue is g(a), and if h(z) = (z−a)n, the Taylor expansion of g(z) shows that the
residue is g(n−1)(a)/(n− 1)!. If h(a) = 0 but h′(a) 6= 0, expanding h(z) = (z − a)h′(a) + · · ·
shows that the residue is g(a)/h′(a); and so on.

1.8 Multifunctions

A function f(z) has a branch point at z = a if, on taking a circuit round a, the final value
of f(z) is not equal to the original one. It is possible for a branch point to be at infinity: we
say that f(z) has a branch point at infinity if f(1/z) has a branch point at the origin.

The most basic example is log z, defined as

log z = log |z|+ i arg z = log r + iθ, (1.27)
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where |z| = r and arg z = θ are the modulus and argument of z, defined such that

z = reiθ. (1.28)

It is clear that (1.28) only defines θ up to an arbitrary integer multiple of 2π, and it is this
ambiguity that leads to the multivaluedness of log z. If we perform a circuit of the origin
by setting z = εeit and then letting t increase from 0 to 2π, then the value of log z does not
return to its initial value log ε but increases by 2πi. Thus there is a branch point at z = 0.
There is also a branch point at infinity, since log(1/z) has a branch point at z = 0.

Re(z)

Im(z)

arg(z)

Figure 1.6: The Riemann surface for arg z.

There are two solutions to this difficulty. One is to construct a Riemann surface, consisting
of all possible values of the multifunction at each point of C. For example, given z 6= 0, the
argument θ of z takes a countably infinite set of values (all differing by integer multiples of
2π), resulting in the surface shown in Figure 1.6. Thus the Riemann surface for log z defined
in this way resembles a multi-storey carpark. At each point on this surface, apart from the
branch point z = 0 itself, log z defines a locally holomorphic function, but because of the
mutiple layers of the surface, the value of log z for a given value of z is ambiguous.

The second solution is to restrict the domain of definition of the function so that the
problematic circuits are forbidden. This is achieved by introducing branch cuts, joining the
branch points, across which contours may not pass. Then it is possible to define single-valued
branches of the multifunction. For example, we can define a single-valued branch of log z by
drawing a branch cut that connects the branch points z = 0 and z = ∞. Obviously there is
no unique way of doing so, but the most popular choice is to place the branch cut along the
negative real axis, as shown in Figure 1.7. Thus we define a countable set of branches of log z
corresponding to each integer k, with

log z = log r + iθ + 2πki, (1.29)

and θ now restricted to lie in the range −π < θ ≤ π (so that the cut cannot be crossed).
Each choice of k results in a single-valued function which is holomorphic on the cut plane.
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z

r

θ
Re(z)

Im(z)

Figure 1.7: The complex plane with a branch cut along the negative real axis.

The price we pay is that the resulting function is discontinuous across the branch cut. The
particular branch with k = 0 is often called the principal branch of log z, and denoted by
Log z; the corresponding principal branch of arg z = θ ∈ (−π, π] is denoted by Arg z.

One other instructive example is the multifunction
(
z2 − 1

)1/2
, which can be defined by

(
z2 − 1

)1/2
= (z − 1)1/2(z + 1)1/2

= (r1r2)1/2ei(θ1+θ2)/2, (1.30)

where

r1 = |z − 1|, r2 = |z + 1|, θ1 = arg(z − 1), θ2 = arg(z + 1). (1.31)

One can easily check that
(
z2 − 1

)1/2
has branch points at z = ±1. Choosing a particular

branch of the multifunction corresponds to uniquely defining the two angles θ1 and θ2, and
there are two canonical choices, the branch cuts for which are illustrated in Figure 1.8.

First suppose we define θ1 and θ2 such that

− π < θ1 ≤ π, − π < θ2 ≤ π. (1.32)

The corresponding function defined by (1.30) has a branch cut that connects z = −1 to z = 1
along the line segment [−1, 1] on the real axis. Just above the cut, we have θ1 = π, θ2 = 0

and therefore
(
z2 − 1

)1/2
= i
∣∣z2 − 1

∣∣1/2. Just below the cut, we have θ1 = −π, θ2 = 0 and

therefore
(
z2 − 1

)1/2
= −i

∣∣z2 − 1
∣∣1/2. Thus the function is discontinuous and changes sign

across the branch cut. Across the negative real axis with Re(z) < −1, both θ1 and θ2 jump

by 2π, so that the argument (θ1 +θ2)/2 jumps by 2π, returning the same value of
(
z2 − 1

)1/2
.

This explains why there is no discontinuity across the negative real axis where Re(z) < −1.
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(a) (b)

z

r1

θ1

r2

θ2
Re(z)

Im(z)

z

r1

θ1

r2

θ2
Re(z)

Im(z)

Figure 1.8: Two possible branch cuts for the multifunction
(
z2 − 1

)1/2
.

The second popular definition of
(
z2 − 1

)1/2
occurs when we choose θ1 and θ2 in the ranges

− π < θ1 ≤ π, 0 < θ2 ≤ 2π. (1.33)

In this case, the branch cut extends along the real axis on the intervals (−∞,−1] and [1,∞).
There is not a branch point at infinity, so we should not really think of there being two branch
cuts that extend to infinity, but of a single cut that connects −1 to 1 through infinity.

1.9 Evaluation of integrals

There is a collection of standard contours which are used to evaluate standard integrals.
Cauchy’s integral theorems apply to integration around closed contours. Often this involves
closing a contour on a suitable return path and then proving that the additional contribution
to the integral tends to zero as the return path tends to infinity.

Example 1

The substitution eiθ = z transforms integrals of rational functions of sin θ, cos θ to integrals
of rational functions of z. For example, for the integral

∫ 2π

0

dθ

a+ b sin θ
,

with 0 < b < a, the substitution eiθ = z results in an integral around the unit circle, namely
∫ 2π

0

dθ

a+ b sin θ
=

∮

|z|=1

2 dz

bz2 + 2iaz − b . (1.34)

The integrand has poles on the negative imaginary axis, only one of which is inside the
unit disc, as illustrated in Figure 1.9, and the result is easily found using Cauchy’s Residue
Theorem.
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Figure 1.9: The integrand of the integral (1.34) has two simple poles at z = z±.

Example 2

Consider the integral of a rational function of x, of the form

∫ ∞

−∞

P (x)

Q(x)
dx,

where P (x) and Q(x) are polynomials with deg(Q) ≥ deg(P ) + 2 and where Q has no real
roots. Here we first take the integral from x = −R to x = R and close with a large semicircle
in the upper half-plane, then let R→∞, as shown in Figure 1.10. Our assumption about the
degrees of P and Q ensures that the contribution from the semicircle tends to zero as R→∞.
Then we just need to apply Cauchy’s Residue Theorem and sum up the contributions from
all the residues in the upper half-plane. (Closing the contour in the lower half-plane would
give the same answer, but we would have to remember an extra minus sign because Γ is then
taken clockwise.)

Figure 1.10: Closing the contour in the upper half-plane.

Example 3

For integrals of the form

∫ ∞

−∞

P (x) cosx

Q(x)
dx or

∫ ∞

−∞

P (x) sinx

Q(x)
dx
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we integrate

eizP (z)

Q(z)

round a semicircular contour closed in the upper half-plane. We must use the upper half-plane
to ensure that there is no contribution from the semicircle, because

eiz = eix−y

decays as y → +∞ but blows up as y → −∞. In this case, the integral exists provided
deg(Q) ≥ deg(P ) + 1. For the limiting case where deg(Q) = deg(P ) + 1, the contribution
from the semicircle can be bounded by using Jordan’s result that

∫ π/2

0
e−R sin θ dθ → 0 as R→∞. (1.35)

Example 4

Sometimes it is possible to construct a contour Γ such that the integral along one segment of
Γ is a constant multiple of the integral along another (together with vanishing contributions
from the remaining segments). For example, to evaluate

∫ ∞

0

dx

1 + x2n
,

take Γ to run from 0 or R along the real axis, then via a circular arc to return along the ray
arg z = π/n (on which 1 + z2n is the same as on the real axis), picking up the residue from
the pole at z = eiπ/2n, as shown in Figure 1.11 (left).

Figure 1.11: Closed contours for f(z) = 1/(1 + z2n) (left) and f(z) = cos(z)/ cosh(z) (right).

Or, to evaluate ∫ ∞

−∞

cosx

coshx
dx,

integrate eiz/ cosh z round a rectangular contour with corners at ±R, ±R + iπ, as shown in
Figure 1.11 (right), enclosing the pole at z = iπ/2.
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Example 5

Integrals such as ∫ ∞

0

sinx

x
dx,

can be evaluated by integrating eiz/z round a contour consisting of the real axis with a small
semicircular indentation at the origin, above the real axis, plus a large semicircle, as shown
in Figure 1.12. The small indentation is necessary to avoid the singularity at z = 0, and
contributes −πi times the residue at the origin. The minus sign is because the semicircle is
taken clockwise, and the factor of πi instead of 2πi comes from having only half a circle, so
we only pick up half the residue.

Re(z)

Im(z)

�-� -ϵ ϵ

Figure 1.12: Integration contour for the integrand eiz/z.

Example 6

A ‘keyhole’ contour is necessary for integrals involving branch cuts, for example

I1 =

∫ ∞

0

log x dx

(x+ a)(x+ b)
(a, b > 0) or I2 =

∫ ∞

0

log2 x dx

1 + x2
. (1.36)

For I1, integrate (log z − πi)2/(z + a)(z + b) (with the branch cut chosen along the positive
real axis) round the contour shown in Figure 1.13 and exploit the different values of the
log on either side of the cut. The same contour also works for I2 but with the integrand
(log z − πi)3/(1 + z2).

1.10 Fourier and Laplace transforms

The Fourier transform of a real function f(x) is defined by

f̄(k) ≡ F [f ] =

∫ ∞

−∞
f(x)eikx dx, (1.37)

and the inverse is

f(x) ≡ F−1
[
f̄
]

=
1

2π

∫ ∞

−∞
f̄(k)e−ikx dk. (1.38)
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Figure 1.13: Closed contour for the integrals in Example 6. The branch cut is marked as a
grey line; note that log z − πi = log(x)∓ πi for z = x± 0i, x > 0.

Note that there are various different conventions in defining the Fourier transform, but this
is the version that will be used in this course. In practice, inversion is usually accomplished
by contour integration in the complex k-plane.

Integration by parts shows that

F
[

df

dx

]
= −ikf̂(k), (1.39)

so that the Fourier transform converts differential operators into algebraic operators. On the
other hand, differentiation under the integral sign leads to

F [xf(x)] = −i
df̄

dk
. (1.40)

The Laplace transform operates on functions defined on the positive real axis:

f̂(p) ≡ L[f ] =

∫ ∞

0
f(x)e−px dx. (1.41)

If f(x)e−γx is integrable (so that |f(x)| grows no faster than eγx as x→∞), then f̂(p) exists
for Re p ≥ γ and is holomorphic in p for Re p > γ. It can usually be analytically continued
into the rest of the complex p-plane, although singularities inevitably occur. The Laplace
inversion formula is

f(x) ≡ L−1
[
f̂
]

=
1

2πi

∫ γ+i∞

γ−i∞
f̂(p)epx dp. (1.42)

The contour is usually (but not always) completed in the left-hand half-plane and in many
problems the solution is given by a sum of residues from the interior of the completed contour.
If a branch cut is present in f̂(p) then some kind of keyhole contour is required.

1.11 Conformal mapping

We can view a holomorphic function f(z) as a mapping from a point z in the complex plane
to a new point ζ = f(z). We then ask the question: given a domain in the z-plane, what is
the image of that domain in the ζ-plane under the mapping z 7→ ζ = f(z)?
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Basic properties

Suppose that f(z) is holomorphic in a neighbourhood of z = a. Then, by Taylor’s theorem,
for z near a we have

ζ = f(z) = f(a) + f ′(a)(z − a) + · · · . (1.43)

If f ′(a) 6= 0, this shows that a small neighbourhood of z = a is translated, with z = a going to
the point ζ = f(a), and then rotated (by an angle arg f ′(a)) and scaled (by a factor |f ′(a)|),
as illustrated in Figure 1.14.

ζ=f(z)−−−−→

Figure 1.14: A small region of the z-plane is translated, rotated and scaled under the mapping
z 7→ ζ = f(z). (Here and henceforth, the z- and ζ-planes are just labelled “z” and “ζ”.)

If two curves meet at z = a and the angle between them is α, it follows from the local
linearity that the angle between their images is also α (and has the same sense), as shown
in Figure 1.15. Maps with this property are called conformal, and we have shown that a
holomorphic function is a conformal map at all points where its derivative does not vanish.

ζ=f(z)−−−−→

Figure 1.15: The angle (including sense) between two curves is preserved by the mapping
z 7→ ζ = f(z).

A conformal map is locally one-to-one, being a small perturbation of a linear map, but
this is only a local statement. When we look at the image of a domain D under f(z), the map
may not be globally one-to-one, even if f ′(z) does not vanish in D. Figure 1.16 illustrates the
kind of problem that may arise.

ζ=f(z)−−−−→

Figure 1.16: A conformal map need not be globally one-to-one.

The composition of two conformal maps is itself conformal. We can use this in building
up complicated maps from simple ones.
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Behaviour near a critical point

We have shown that the mapping z 7→ ζ = f(z) is conformal provided f ′(z) 6= 0. However,
many useful mapping functions have isolated critical points where f ′ is zero. Consider a point
a such that f ′(a) = 0 and f ′′(a) 6= 0. If we write z = a+ reiθ, then

f(z) = f(a) +
1

2
f ′′(a)(z − a)2 +O

(
(z − a)3

)

= f(a) +
1

2
f ′′(a)r2e2iθ +O(r3). (1.44)

The image of a small neighbourhood of z = a now covers a small neighbourhood of f(a) twice,
as shown in Figure 1.17, and the angle between two curves meeting at a is doubled.

ζ=f(z)−−−−→

Figure 1.17: If f ′(0) = 0 and f ′′(a) 6= 0 then angles are locally doubled.

We see that if a map f(z) has a critical point at a point z = a in a region D, it is neither
conformal at that point, nor locally one-to-one near it. The only hope of constructing a one-
to-one map using f(z) is if a lies on the boundary of D. A very simple example is f(z) = z2

acting on the right-hand half-plane Re z > 0. The image of an interior point z = reiθ, where
−π/2 < θ < π/2, is ζ = r2e2iθ, and we see that −π < arg ζ < π, so the map is one-to-one (as
predicted by the doubling of the angles). The image of the half-plane Re z > 0 is the entire
ζ-plane, minus a slit along the negative real axis, as shown in Figure 1.18.

ζ=z2−−−→

Figure 1.18: The mapping z 7→ ζ = z2 maps the half-plane Re z > 0 to the entire ζ-plane,
minus a slit along the negative real axis

The Riemann mapping theorem

It is natural to ask what domains we can map to what. The answer is that virtually any
simply-connected region of the complex plane can be mapped to virtually any other such
region, because of:

The Riemann Mapping Theorem. Any simply connected domain D, with the sole ex-
ception of C itself, can be mapped conformally onto the unit disc |ζ| < 1. There are three free
real parameters in the map.
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We omit the proof, which is very technical and not constructive, and instead just make
some comments on the theorem.

1. The reason that there is no map from C itself to the unit disc is that if there were
one, the mapping function would be entire and its modulus would be bounded by 1; by
Liouville’s theorem, the function would have to be constant (and hence not conformal).

2. The three real degrees of freedom might look mysterious. As we shall see, they arise
because there is precisely a three-parameter family of maps from the unit disc to itself.

3. If D is bounded by a simple closed curve (which may pass through the point at infinity),
we may use the three degrees of freedom to specify the images of three boundary points,
and the map is then uniquely determined. Alternatively, we may specify the image of
one interior point of D, and the image of a direction at that point.

4. It is conventional to map to the unit disc. However, any other ‘canonical domain’ would
do, since we can map the disc onto it and then use the composition of maps. The upper
half-plane is also often used as a canonical domain, and then the three boundary points
in Riemann’s theorem are usually taken to be 0, 1 and ∞.

5. The theorem says that the map is conformal in the interior of D (so its inverse is
conformal in |ζ| < 1), but it might not be conformal on the boundary of D, where
singularities are needed to smooth out corners and cusps.

6. Because conformal maps preserve angles, including their orientation, if we go round ∂D
in a particular sense (say, anticlockwise), then the image of ∂D is traversed in the same
sense, as illustrated in Figure 1.19.

ζ=f(z)−−−−→

Figure 1.19: The orientation of the boundary is preserved by a conformal mapping, so that
the images of the points A, B, C occur in the same order.

Standard maps

Let us look at some standard maps. In the accompanying examples, we see how to construct
complicated maps from these building blocks.

Bilinear (Möbius) maps

The Möbius transformation is

ζ = f(z) =
az + b

cz + d
, a, b, c, d ∈ C, (1.45)
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ζ= 1
z−i−−−→

Figure 1.20: The effect of the Möbius mapping z 7→ ζ = 1/(z − i) on a half-plane with a
semi-circle removed.

where ad−bc 6= 0 (otherwise, the map is constant) and, to avoid trivial translations, rotations
and scalings, c 6= 0. The Möbius transformation is conformal at all points except the location
of its pole, and is a one-to-one map from the extended complex plane C̃ = C ∪ {∞} to itself.

It is a well known fact that Möbius transformations take circles and straight lines into
circles and straight lines. (The jargon “circlines” is sometimes used for circles and straight
lines; a straight line can be viewed as a circle with its centre at infinity.) It is not usually
necessary to do detailed calculations when using Möbius maps on a domain bounded by
straight lines and circles; it is enough to know that the boundary maps to a combination
of straight lines and circles, and to know the angles where they meet, since these are also
preserved by the map.

Example. The domain D consists of the upper half-plane y > 0 with its intersection with
the closed unit disc removed (thus, it has a semicircular indentation centred on the origin).
Find the image of the domain under the map ζ = 1/(z− i), indicating the images of significant
boundary points.

Solution. The image boundary is made up of straight lines and circles. The points z = ±1
map to ζ = 1/(±1 − i) = (±1 + i)/2, respectively, z = ∞ maps to ζ = 0, and z = i maps to
ζ =∞. Therefore, the unit circle is mapped to the line η = 1/2 and the x-axis is mapped to
the circle |ζ − i/2| = 1/2.

The image of the upper half-plane with the closed unit disc removed is then the lower
half-plane η < 1/2 with the closed disc |ζ − i/2| ≤ 1 removed, as shown in Figure 1.20. Note
the order of the points marked A, B, C, D is preserved by the mapping, and that the shaded
region remains on the left-hand side as we follow the boundary in the order A→ B → C → D.

Example. Find a map from the domain of the previous example to the quarter plane ξ > 0,
η > 0.

Solution. Start by looking at the angles. We have two right angles at z = ±1, which will
be preserved by a Möbius transformation. We shift one right-angle to ζ = 0 and the other to
ζ =∞ with the mapping

ζ =
z − 1

z + 1
. (1.46)

Then z = 1 is mapped to ζ = 0, z = ∞ is mapped to ζ = 1, z = −1 is mapped to ζ = ∞,
and z = i is mapped to ζ = i. This is enough information to deduce that the boundary gets
mapped to the coordinate axes, as shown in Figure 1.21.
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ζ= z−1
z+1−−−−→

Figure 1.21: Mapping from a half-plane with a semi-circle removed to a quarter-plane.

Example. Map the upper half-plane y > 0 to the unit disc |ζ| < 1.

Solution. The upper half-plane is described by the inequality

∣∣∣∣
z − i

z + i

∣∣∣∣ < 1, (1.47)

i.e. the set of points closer to i than to −i. This is exactly what we need: if

ζ =
z − i

z + i
, (1.48)

then the upper half-plane is mapped to |ζ| < 1.

Example. If |w| < 1 and θ ∈ R, show that the map

ζ = eiθ z − w
1− wz (1.49)

maps the unit disc one-to-one to itself.

Solution. The map (1.49) is a Möbius transformation, with its pole at z = 1/w outside the
unit disc, so is automatically one-to-one. A direct calculation reveals that

1− |ζ|2 ≡
[

1− |w|2
|1− wz|2

] (
1− |z|2

)
. (1.50)

Since |w| < 1, the term in square brackets is strictly positive, and it follows that |ζ|2 < 1 if
and only if |z|2 < 1.

It can be shown that Möbius maps of the form (1.49) are the only one-to-one maps of the
unit disc to itself. The two real parameters needed to define w, and the single real angle of
rotation θ, are the three free parameters in the Riemann mapping theorem: having mapped
a domain onto the unit disc, we can subsequently apply any map of the form (1.49) while
preserving the image as the unit disc.

Example. Map the upper half plane to itself, permuting the points 0, 1 and ∞.
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Solution. Because the map preserves the orientation of the interior of the domain vis a
vis its boundary, only the even permutations, in which (0, 1,∞) are mapped to (1,∞, 0) or
(∞, 0, 1) are possible. We need a Möbius map with real coefficients, so that the real axis maps
to itself. First take (0, 1,∞) to (1,∞, 0). This means that the map has its pole at z = 1, so
the denominator is z−1 (or a multiple thereof); infinity maps to zero, so the numerator must
be a constant (so the map looks like constant/z at infinity; finally, the remaining constant is
fixed by the requirement that 0 maps to 1, and we have

ζ =
1

1− z . (1.51)

The map taking (0, 1,∞) to (∞, 0, 1) is likewise found to be

ζ =
z − 1

z
; (1.52)

it sends z = 0 to infinity, z = 1 to 0, and is asymptotic to 1 at infinity, as required.

Powers of z

The powers of z are of most interest when the boundary of D contains a corner at the origin.
If D is a sector 0 < arg z < α, then the image of this wedge under the map ζ = zn is the sector
0 < arg ζ < nα, as shown in Figure 1.22, provided nα < 2π so that the map is conformal.
This multiplying of angles by n is often useful in getting rid of corners in ∂D, as the next two
examples show. Note that there is no need for n to be an integer; if we want to multiply an
angle by 3/2 we choose n = 3/2, and if we want to halve an angle we choose n = 1/2, and so
on.

ζ=zn−−−→

Figure 1.22: The action of the mapping ζ = zn on a sector.

Example. The domain D consists of the sector −π/6 < arg z < π/6 of the unit disc (a slice
of pizza). Map it to a semicircle of radius 2.

Solution. We need to get rid of the angle of π/3 at the origin. The map ζ1 = z3 does
exactly this; however it takes the unit circle to the unit circle. Hence the required map is
ζ = 2ζ1 = 2z3, as shown in Figure 1.23.
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ζ=2z3−−−→

Figure 1.23: Mapping a slice of pizza to a semi-circle of radius 2.

Example. The domain D consists of the unit disc with the sector 5π
6 < arg z < 7π

6 removed,
so it looks like a partly eaten pizza. Find a map from D to the upper half-plane.

Solution. The boundary of D has three corners, with angle 5π/3 at the origin, and two
angles of π/2 on the unit circle. We need to get rid of all of these. We do the mapping in 3
stages.

1. First put

ζ1 = z3/5. (1.53a)

This gets us to a semicircle −π/2 < arg ζ1 < π/2, 0 < |ζ1| < 1.

2. Map the semi-circle in the ζ1-plane to a quarter plane in the ζ2-plane using a Möbius
transformation. We have two right angles at ζ1 = ±i. We choose the mapping such
that ζ1 = −i is mapped to ζ2 = 0 and ζ1 = i is mapped to ζ2 = ∞, so ζ2 is a multiple
of (ζ1 + i)/(ζ1 − i). If we also specify that the image of ζ1 = 0 is ζ2 = 1 we find

ζ2 = −ζ1 + i

ζ1 − i
. (1.53b)

which maps the semi-circle to the fourth quadrant in the ζ2-plane.

3. The map

ζ = −ζ2
2 (1.53c)

will map the quarter plane −π/2 < arg ζ2 < 0 to the upper half-plane η > 0.

The combined map is

ζ = −ζ2
2 = −

(
−ζ1 + i

ζ1 − i

)2

= −
(
z3/5 + i

z3/5 − i

)2

, (1.54)

and the sequence of transformations is depicted in Figure 1.24.

Example. Map the semicircle |z| < 1, 0 < arg z < π, to the upper half-plane.
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ζ1=z3/5−−−−→

ζ2=− ζ1+i
ζ1−i−−−−−−→

ζ=−ζ22−−−−→

Figure 1.24: The sequence of maps from a pacman shape to the upper half-plane.

Solution. First we get rid of the semicircle by setting

ζ1 =
1

z + 1
. (1.55)

This inversion with respect to the left-hand corner point takes the semicircle to the quarter
plane ξ1 > 1/2, η1 < 0. The quarter plane is mapped to the upper half plane by the
transformation

ζ = −(2ζ1 − 1)2 = −
(
z − 1

z + 1

)2

. (1.56)

The succession of maps is depicted in Figure 1.25. Note that we could have made this a bit
slicker by starting with the map

ζ1 =
z − 1

z + 1
, (1.57)

which sends the corners of the semicircle to 0 and ∞, making the subsequent squaring easier.

Exponential and logarithm

Now consider the exponential function and its inverse, the logarithm. As ez+2πi ≡ ez, the
image of any horizontal strip of width 2π is repeated infinitely often, once for each of the
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ζ2= 1
z+1−−−−→

ζ=−(2ζ1−1)2−−−−−−−→

Figure 1.25: Mapping a semicircle to the upper half-plane.

strips obtained by shifting the original one vertically by 2π. Furthermore, as

ζ = ez = exeiy (1.58)

when z = x + iy, the image of the ‘baseline’ strip −π < y < π, −∞ < x < ∞ is the whole
plane with the negative real (ξ) axis removed. If we include the image of the line y = −π as
well, then the image of the strip −π ≤ y < π is C\{0}; thus the image of the whole complex
plane is the whole plane (minus the origin) covered infinitely often. This is an example of
Picard’s theorem in action: the function ez has an essential singularity at infinity, and its
lacunary value is 0.

Horizontal lines y = constant map onto rays arg ζ = y, while vertical line segments
x = constant, −π ≤ y < π map to circles of radius ex. In particular, the imaginary axis is
mapped to the unit circle. Thus the exponential map generates plane polar coordinates from
a rectangular Cartesian grid.

The inverse map, the logarithm, is defined on the whole plane minus a cut from infinity
to the origin. It takes the cut plane to a strip parallel to the ξ axis and of width 2π; if the
cut is along arg z = α, then the strip is α− 2π < η < α, −∞ < ξ <∞. Since

ζ = ξ + iη = log z = log |z|+ i arg z, (1.59)

circles |z| = constant map to lines ξ = constant, and rays arg z = constant map to lines
η = constant.

The effects of the exponential and logarithmic maps are illustrated in Figure 1.26. The
exponential map is useful to open out a strip or half strip, and the log does the reverse. Note
that neither exp nor log has a vanishing derivative.

Example. Map the half-strip −π/2 < y < π/2, 0 < x <∞ onto the interior of a semicircle,
with the point at infinity mapping to the origin and the short side of the strip to the semicircle.

Solution. If we try to use the exponential function directly, we shall send the point at
infinity to infinity. Instead, put ζ = e−z; the result is illustrated in Figure 1.27.
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ζ=log z−−−−→←−−−−
z=eζ

Figure 1.26: The effects of the exponential and logarithmic maps.

ζ=e−z−−−−→

Figure 1.27: Mapping a half-strip to a semi-circle.

Example. The domain D consists of the upper half-plane with the upper half of the closed
unit disc removed, as shown in the left-hand diagram in Figure 1.20. Map it to a half-strip.

Solution. We’ll use the logarithmic map ζ = log z. The boundary of D consists of segments
of rays and a segment of a circle centred at the origin. The rays map to horizontal lines and
the semicircle to a segment of the imaginary axis. The image of D under ζ = log z is thus
the half-strip 0 < ξ <∞, 0 < η < π, as shown in Figure 1.28.

ζ=log z−−−−→

Figure 1.28: The logarithmic map transforms a half-plane with a semi-circle removed to a
half-strip.

Trigonometric maps

Like the exponential, the sine and cosine functions are periodic and have essential singularities.
Unlike the exponential, they have derivatives that vanish. Hence these functions can combine
the properties of opening out (doubling) angles on the boundary of D with the useful strip-
mapping properties of the exponential. Their inverses have similar uses to the logarithm.

Example. Investigate the effect of the mapping ζ = cos z on the half-strip 0 < y < ∞,
0 < x < π. Calculate the image of the lines y = constant.
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Solution. The critical points where the derivative vamishes are at z = 0, π. Hence the
internal angles of ∂D are doubled there. Note that

cos z = cosx cosh y − i sinx sinh y. (1.60)

When z is real, cos z runs from 1 at z = 0 to −1 at z = π. Thus the line segment z ∈ (0, 1)
maps to the interval −1 < ξ < 1 of the ξ axis, and the image of D is below this line. The
line x = 0, y > 0 maps to ζ = cos iy = cosh y, which traces the ξ axis from 1 to +∞ The line
x = π, y > 0 maps to the segment −∞ < ξ = − cosh y < −1 of the ξ axis. Thus ζ = cos z
maps the half-strip to the lower half-plane, with the two critical points mapping to ζ = ±1.

A line y = constant, maps to the curve given parametrically by

ξ = cosx cosh y, η = − sinx sinh y, x ∈ (0, π), (1.61)

namely the lower half of the ellipse

ξ2

cosh2 y
+

η2

sinh2 y
= 1. (1.62)

Similarly, the lines x = constant map to the hyperbolae

ξ2

cos2 x
− η2

sin2 x
= 1, (1.63)

which are orthogonal to the ellipses (1.62), as shown in Figure 1.29.

ζ=cos z−−−−→

Figure 1.29: The map ζ = cos z maps lines x = constant and y = constant are to orthogonal
families of hyperbolae and ellipses.

Example: the tangent function. Show that the mapping ζ = tan z maps the strip
−π/4 < x < π/4, −∞ < y <∞ to the unit disc.

Solution. It would be a mistake to think of tan z as the ratio sin z/ cos z: the product of
two conformal mappings has no natural geometric meaning. However, by writing

tan z =
sin z

cos z
= −i

e2iz − 1

e2iz + 1
, (1.64)

we can view the tangent map as a composition between exponential and Möbius transforma-
tions, via the sequence

ζ1 = e2iz, ζ = −i
ζ1 − 1

ζ1 + 1
, (1.65)

as illustrated in Figure 1.30.
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ζ1=e2iz−−−−→ ζ=−i
ζ1−1
ζ1+1−−−−−−→

Figure 1.30: The tangent mapping viewed as the composition of an exponential with a Möbius
transformation.

The Joukowski map

Our final example is the map called the Joukowski map,

ζ =
1

2

(
z +

1

z

)
. (1.66)

The Joukowski map has derivative equal to zero at two critical points z = ±1. The image
of the unit circle |z| = 1 is the slit −1 < ξ < 1 of the real axis, as when z = eiθ, ζ = cos θ.
The exterior of the unit circle is mapped to the whole plane exterior to this slit (which is
a branch cut for the inverse mapping). Similarly the interior of the unit circle is mapped
to the whole plane exterior to the same slit. A circle |z| = ρ > 1 is mapped to an ellipse,
and a ray arg z = constant to a member of the orthogonal family of hyperbolae, as shown in
Figure 1.31.

ζ= 1
2(z+

1
z )−−−−−−→

Figure 1.31: The effects of the Joukowski mapping on the region outside the unit circle.
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2 Further conformal mapping

2.1 Introduction

Here we extend the ideas on conformal mapping introduced in the previous section. The
Riemann Mapping Theorem guarantees that any simply connected domain D can be mapped
onto the unit disc (for example). However, there is no general method to construct the
required map for any given domain. One exception occurs if D is a polygon. The Schwarz–
Christoffel formula in principle gives the conformal map from the upper half-plane to any
given polygonal region. We will also show how conformal mapping can be used in practice in
the solution of Laplace’s equation.

2.2 Schwarz–Christoffel mapping

A (rare) constructive method for finding conformal maps (as opposed to cataloguing them)
is the Schwarz–Christoffel formula. This lets us map a half-plane to a polygon (and there is
an extension to circular polygons), and hence the inverse maps a polygon to a half-plane.

Lecture 4

Schwarz-Christoffel

A (rare) constructive method for finding conformal maps (as opposed to cataloguing them) is the
Schwarz-Christoffel formula. This lets us map a half-plane to a polygon (and there is an extension
to circular polygons), and hence the inverse maps a polygon to a half-plane.

Our target domain is a polygon with interior angles α1π, α2π, . . . , αnπ, at the vertices ζ = ζ1,
ζ2, . . . , ζn.

x1 x2 · · · xn

f

xn−1
β1π

x3

β2π

ζ2

ζ1

α1π

D

α2π

ζ

z

Define
βjπ = π − αjπ,

so that βjπ is the exterior angle (βj < 0 for reentrant corners). Then

n∑

j=1

βj = 2, −2 ≤ βj ≤ 2.

Now we map y > 0 onto D with the real axis mapping to ∂D and x1, x2, . . . , xn mapping to the
vertices ζ1, ζ2, . . . , ζn by ζ = f(z). The tangent to ∂D has direction argf ′(z)

f(z)

f(z) + f ′(z)dz

(as dz = dx is real on ∂D) and this is constant on each side of ∂D. At xj, the preimage of vertex
j, we have

[
argf ′

j(z)
]x+

j

x−
j

= βjπ.

If we can find a function fj(z) such that

argf ′
j(x) =

{
0 x > xj,
−βjπ x < xj,

1

Figure 2.1: We seek a conformal map z 7→ ζ = f(z) from the upper half-plane to a polygon
with interior angles αnπ and corresponding exterior angles βnπ.

Our target domain is a polygon D with interior angles α1π ,α2π, . . . , αnπ, at the vertices
ζ = ζ1, ζ2, . . . , ζn, as shown in Figure 2.1. These vertices are ordered so that increasing n
means travelling round the polygon in the anticlockwise sense. We define

βjπ = π − αjπ, (2.1)

so that βjπ is the exterior angle. Generally, βj > 0 at a corner where we turn left and βj < 0
at a corner where we turn right. Then the conditions

n∑

j=1

βj = 2, −2 ≤ βj ≤ 2 (2.2)
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are necessary for the polygon to close. Now our aim is to find a mapping ζ = f(z) which
maps the upper half-plane y > 0 onto D with the real axis mapping to ∂D and x1, x2, . . . ,
xn mapping to the vertices ζ1, ζ2, . . . , ζn.

Lecture 4

Schwarz-Christoffel

A (rare) constructive method for finding conformal maps (as opposed to cataloguing them) is the
Schwarz-Christoffel formula. This lets us map a half-plane to a polygon (and there is an extension
to circular polygons), and hence the inverse maps a polygon to a half-plane.

Our target domain is a polygon with interior angles α1π, α2π, . . . , αnπ, at the vertices ζ = ζ1,
ζ2, . . . , ζn.

x1 x2 · · · xn

f

xn−1
β1π

x3

β2π

ζ2

ζ1

α1π

D

α2π

ζ

z

Define
βjπ = π − αjπ,

so that βjπ is the exterior angle (βj < 0 for reentrant corners). Then

n∑

j=1

βj = 2, −2 ≤ βj ≤ 2.

Now we map y > 0 onto D with the real axis mapping to ∂D and x1, x2, . . . , xn mapping to the
vertices ζ1, ζ2, . . . , ζn by ζ = f(z). The tangent to ∂D has direction argf ′(z)

f(z)

f(z) + f ′(z)dz

(as dz = dx is real on ∂D) and this is constant on each side of ∂D. At xj, the preimage of vertex
j, we have

[
argf ′

j(z)
]x+

j

x−
j

= βjπ.

If we can find a function fj(z) such that

argf ′
j(x) =

{
0 x > xj,
−βjπ x < xj,

1

Figure 2.2: The direction of the tangent to ∂D is given by arg f ′(z).

As shown schematically in Figure 2.2, the tangent to ∂D has direction angle arg f ′(z),
since dz = dx is real on ∂D. This angle is supposed to be constant on each edge of the polygon
∂D. At xj , the preimage of vertex j, the tangent angle increases by βjπ and therefore we
must have [

arg f ′(x)
]x+j
x−j

= βjπ. (2.3)

First consider the case of a single vertex, with pre-image at z = xj . A function fj(z) such
that

f ′j(z) = (z − xj)−βj (2.4)

(with a suitable branch defined) has the properties that

arg f ′j(x) =

{
0 x > xj ,

−βjπ x < xj ,
(2.5)

and therefore satisfies the jump condition (2.3). In addition, f ′j(z) 6= 0 for z 6= xj , and
therefore the resulting map is conformal away from the vertex.

When there are several vertices, the jump condition (2.3) is satisfied at each vertex by a
product of functions of the form (2.4). If we try

f ′(z) = C
n∏

j=1

f ′j(z), (2.6)

where C is some constant, then

arg f ′(z) = argC +
∑

j

arg f ′j(z) (2.7)

has exactly the right properties. Therefore a map from the upper-half plane to D is ζ = f(z),
where

df

dz
= C

n∏

j=1

(z − xj)−βj . (2.8)

Hence

ζ = f(z) = A+ C

∫ z n∏

j=1

(t− xj)−βj dt, (2.9)

where A and C fix the location and rotation/scaling of the polygon.
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Notes

1. It can be shown that (2.9) is a one-to-one map from Im z > 0 to D.

2. We are allowed by the Riemann Mapping Theorem to fix the pre-images of 3 boundary
points, i.e. 3 of the xj . Any more have to be found as part of the solution (by solving
f(xj) = ζj).

3. We can choose one of the xj to be at infinity. If (without loss of generality) xn = ∞,
then

f(z) = A+ C

∫ z n−1∏

j=1

(t− xj)−βj dt. (2.10)

4. The definition of a polygon is elastic: it includes those with vertices at ∞ and those
with interior angles of 2π. Some examples are shown in Figure 2.3.

5. Most tractable examples are degenerate (e.g. they have a vertex at∞) and use symmetry
to simplify the integration.

11

1

(a) n = 1, α1 = −1, β1 = 2

1

1 2

2

(b) n = 2, α1 = α2 = 0,
β1 = β2 = 1

1 2

3 3

(c) n = 3,
α1 = α2 = 1/2, α3 = 0,
β1 = β2 = 1/2, β3 = 1

1 1

1

2 4

3

(d) n = 4,
α1 = −1, α2 = α4 = 1/2, α3 = 2,
β1 = 2, β2 = β4 = 1/2, β3 = −1

1 1

1
2

3

33

(e) n = 3,
α1 = α3 = −1/2, α2 = 2,
β1 = β3 = 3/2, β2 = −1

3

Figure 2.3: Examples of polygonal regions and the corresponding values of the normalised
interior angles αj and exterior angles βj . Note that in each case the exterior angles βj sum
to 2.

Example. Map a half-plane to a strip with the vertices corresponding to z = 0 and z =∞.
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2 We can choose 3 pre-vertices freely. The best choice depends on the problem (e.g. using
symmetry). Sometimes we take xn = ∞ and then

f(z) = A + C

∫ z n−1∏

j=1

(t − xj)
−βj dt.

3 There is also a formula for the map from a disc: see the problem sheets.

Most tractable examples are degenerate (e.g. they have a vertex at ∞.)

Example: Map a half-plane to a strip with the vertices corresponding to z = 0 and z = ∞.

z
ζ

Solution Here ζ1 and ζ2 are both at ∞, with β1 = β2 = 1. Thus

ζ = A + C

∫ z dt

t
= A + C log z.

If we want to map z = x1 and z = x2 to the ends of the strip we have

ζ = A + C

∫ z dt

(t − x1)(t − x2)
= A + C̃ log

(
z − x1

z − x2

)
.

Example: Map a half-plane to a half-strip

z

1

β = 1/2

β = 1

ζ

-1 β = 1/2

Here n = 3, β1 = β2 = 1/2, β3 = 1. It is convenient to take x1 = −1, x2 = 1, x3 = ∞, to give

ζ = A + C

∫ z dt√
t2 − 1

= A + C cosh−1 z.

Example:

Map UHP to the slit domain

4

Solution. Here ζ1 and ζ2 are both at ∞, with β1 = β2 = 1. We choose x1 = 0 and x2 =∞
and thus the Schwarz–Christoffel formula (2.10) gives

ζ = A+ C

∫ z dt

t
= A+ C log z. (2.11)

If instead we wanted to map general points z = x1 and z = x2 on the real axis to the ends
of the strip we would have

ζ = A+ C

∫ z dt

(t− x1)(t− x2)
= A+ C̃ log

(
z − x1

z − x2

)
. (2.12)

The values of A and C set the location, orientation, and width of the strip.

Example. Map a half-plane to a half-strip.

2 We can choose 3 pre-vertices freely. The best choice depends on the problem (e.g. using
symmetry). Sometimes we take xn = ∞ and then

f(z) = A + C

∫ z n−1∏

j=1

(t − xj)
−βj dt.

3 There is also a formula for the map from a disc: see the problem sheets.

Most tractable examples are degenerate (e.g. they have a vertex at ∞.)

Example: Map a half-plane to a strip with the vertices corresponding to z = 0 and z = ∞.

z
ζ

Solution Here ζ1 and ζ2 are both at ∞, with β1 = β2 = 1. Thus

ζ = A + C

∫ z dt

t
= A + C log z.

If we want to map z = x1 and z = x2 to the ends of the strip we have

ζ = A + C

∫ z dt

(t − x1)(t − x2)
= A + C̃ log

(
z − x1

z − x2

)
.

Example: Map a half-plane to a half-strip

z

1

β = 1/2

β = 1

ζ

-1 β = 1/2

Here n = 3, β1 = β2 = 1/2, β3 = 1. It is convenient to take x1 = −1, x2 = 1, x3 = ∞, to give

ζ = A + C

∫ z dt√
t2 − 1

= A + C cosh−1 z.

Example:

Map UHP to the slit domain

4

Solution. Here n = 3, β1 = β2 = 1/2, β3 = 1. It is convenient to take x1 = −1, x2 = 1,
x3 =∞, to give

ζ = A+ C

∫ z dt√
t2 − 1

= A+ C cosh−1 z. (2.13)

Example. Map the upper half-plane to the slit domain shown.

ζ4 = ∞ζ1 = ζ3 = 0

ζ2 = i

ζ4 = ∞

Here take x1 = −1, x2 = 0, x3 = 1, x4 = ∞. We have β1 = 1/2, β2 = −1, β3 = 1/2, β4 = 2.
Thus

ζ = A + C

∫ z t√
t2 − 1

dt = A + C
√

z2 − 1.

ζ1 = ζ3 = 0 ⇒ ζ = 0 when z = ±1 ⇒ A = 0.

ζ2 = i ⇒ ζ = i when z = 0 ⇒ C = 1.

Thus
ζ =

√
z2 − 1.

Although this example has 4 vertices, symmetry gives an exact solution. In general, if the image is
a quadrilateral we can only fix 3 vertices.

5
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Solution. Here we have four vertices, with β1 = 1/2, β2 = −1, β3 = 1/2, β4 = 2. In general
we can only choose three locations for the xj , but here symmetry allows us to take x1 = −1,
x2 = 0, x3 = 1, x4 =∞. Thus

ζ = A+ C

∫ z t√
t2 − 1

dt = A+ C
√
z2 − 1. (2.14)

To fix the values of the constants A and C, we must ensure that the vertices end up in the
right places:

ζ1 = ζ3 = 0 ⇒ ζ = 0 when z = ±1 ⇒ A = 0, (2.15a)

ζ2 = i ⇒ ζ = i when z = 0 ⇒ C = 1. (2.15b)

Thus the required map is

ζ =
√
z2 − 1. (2.16)

Although this example has 4 vertices, symmetry gives an exact solution.

2.3 Solving Laplace’s equation by conformal maps

Models leading to Laplace’s equation

Laplace’s equation crops up in a wide variety of practically motivated models. Here are three
examples.

Example 1: Steady heat flow

Fourier’s law of heat conduction states that the heat flux in a homogeneous isotropic medium
D of constant thermal conductivity k is

q = −k∇u, (2.17)

where u is the temperature. When the temperature is time-independent, conservation of
energy implies that ∇ · q = 0, and hence u satisfies Laplace’s equation:

∇2u = 0 in D. (2.18)

At a boundary typically either the temperature u or the heat flux q ·n is known. The former
case leads to a Dirichlet boundary condition, where u is specified on the boundary. The
latter case corresponds to the Neumann boundary condition, where ∂u/∂n is specified on the
boundary. In particular, ∂u/∂n = 0 at an insulated boundary.

Example 2: Electrostatics

In a steady state, the electric field E satisfies ∇ × E = 0, and may therefore be written in
terms of an electric potential φ such that

E = −∇φ. (2.19)
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Moreover, in the absence of any space charge, Gauss’s Law implies that ∇ · E = 0, and
therefore φ satisfies Laplace’s equation

∇2φ = 0. (2.20)

The potential φ is the usual voltage we talk about in the context of batteries, mains electricity,
lightning etc.

A common and useful boundary condition for φ is that it is constant on a good conductor
like a metal. Thus a canonical problem is to determine the potential between two perfect
conductors each of which is held at a given constant potential (for example in a capacitor).

Example 3: Inviscid fluid flow

The simplest model for a fluid is that it is inviscid, incompressible and irrotational. Fortu-
nately this is a remarkably accurate model in many circumstances. In an incompressible fluid,
the velocity field u satisfies ∇ · u = 0, while an irrotational flow satisfies ∇× u = 0. In two
dimensions, with u =

(
u(x, y), v(x, y)

)
, the velocity components u and v satisfy the equations

∂u

∂x
+
∂v

∂y
= 0,

∂u

∂y
− ∂v

∂x
= 0, (2.21)

in an incompressible, irrotational flow. Finally, the pressure p may be found using Bernoulli’s
Theorem, which states that

p+
1

2
ρ|u|2 = constant (2.22)

in a steady incompressible, irrotational flow, where ρ is the density of the fluid.
From equation (2.21a), we deduce the existence of a potential function ψ(x, y), called the

streamfunction, such that

u =
∂ψ

∂y
, v = −∂ψ

∂x
. (2.23)

Similarly, equation (2.21b) implies the existence of a velocity potential φ(x, y), such that

u =
∂φ

∂x
, v =

∂φ

∂y
. (2.24)

Thus ∇φ is everywhere tangent to the flow, while ∇ψ is everyhere normal to the velocity.
It follows that the contours of ψ are streamlines for the flow, i.e. curves everywhere parallel
to the velocity. Moreover, the change in the value of ψ on two neighbouring streamlines is
equal to the flux of fluid between them. To see this, calculate the net flow across a curve C
connecting two streamlines, as shown in Figure 2.4:

flux =

∫

C
u · nds

=

∫

c

(
∂ψ

∂y
,−∂ψ

∂x

)
· (dy,−dx)

=

∫

c

(
∂ψ

∂x
dx+

∂ψ

∂y
dy

)

= [ψ]C = ψ2 − ψ1, (2.25)
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n

x

y

u

C

ψ2

ψ1

Figure 2.4: Schematic of a curve C joining two streamlines on which ψ = ψ1 and ψ = ψ2.

where ψ1 and ψ2 are the constant values of ψ on the two streamlines.
Elimination between (2.23) and (2.24) shows that both φ and ψ satisfy Laplace’s equation.

Alternatively, by combining (2.23) and (2.24), we see that φ and ψ satisfy the Cauchy–
Riemann equations

∂φ

∂x
=
∂ψ

∂y
,

∂φ

∂y
= −∂ψ

∂x
. (2.26)

Therefore φ+ iψ is a holomorphic function of z = x+ iy:

φ+ iψ = w(z), (2.27)

where w is called the complex potential. The velocity components can be recovered from w
using

dw

dz
= u− iv. (2.28)

At a fixed impenetrable boundary, the normal component of u must be zero. In terms of
the velocity potential and streamfunction, this is equivalent to

∂φ

∂n
= 0, ψ = constant, (2.29)

and therefore, in terms of the complex potential,

Imw(z) = constant at a fixed impenetrable boundary. (2.30)

Solution by conformal mapping

In all the above examples, we end up having to find a harmonic function u (or φ or ψ) in
some region D subject to given boundary conditions on ∂D. The general idea is to write u as
the real or imaginary part of a holomorphic function w(z) = u(x, y) + iv(x, y) and then map
D onto a simpler domain f(D) by a conformal map

ζ = f(z), (2.31)

in the hope that we can more easily find the corresponding function in the ζ-plane, i.e.

W (ζ) = U(ξ, η) + iV (ξ, η). (2.32)
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Because a composition of holomorphic functions is holomorphic, W (ζ) is holomorphic, and
its real and imaginary parts satisfy Laplace’s equation in f(D). We then recover the solution
in the original domain D by reversing the conformal mapping:

w(z) = W
(
f(z)

)
. (2.33)

Example. Find the temperature u in a domain D exterior to the circles |z−i| = 1, |z+i| = 1
with u = ±1 on |z ∓ i| = 1 and u→ 0 at ∞, as depicted in Figure 2.5.

A second example is steady heat flow with temperature u in a medium:

u = 0

∇2u = 0

u = 1

u → 0 at ∞

The idea is to write u (or φ or ψ) as the real or imaginary part of a holomorphic function
w(z) = u + iv and then map D onto a simpler domain f(D) by a conformal map

ζ = f(z),

in the hope that we can find
W (ζ) = U + iV = w(z(ζ))

easily. Because a composition of holomorphic functions is holomorphic, W (ζ) is holomorphic (and
its real and imaginary parts satisfy Laplace’s equation in f(D)).

Example: Find the temperature u in a domain D exterior to the circles |z − i| = 1, |z + i| = 1

with u = ±1 on |z ∓ i| = 1 and u → 0 at ∞.

u → 0 at ∞

∇2u = 0

u = 1

u = −1

6

Figure 2.5: Steady heat flow in the region outside two touching circles.

Solution The map ζ = 1/z takes D onto the strip

− 1

2i
< Im(ζ) <

1

2i

and so we have

1
2

Uξξ + Uηη = 0

U = −1

U = 1−1
2

with solution
U = −2η = 2Re(iζ) = 2Re(i/z).

Hence

u = 2Re(i/z) =
2y

x2 + y2
.

[Note that this is bounded in all of D.]

Example:

Calculate the complex potential for flow past the unit circle with constant velocity (U∞, 0) at
∞.

Solution The complex potential is w = φ + iψ and we can take ψ = 0 on the x-axis and unit
circle. Also w ∼ U∞z at ∞. Under the Jowkowski map

ζ =
1

2

(
z +

1

z

)

the exterior of the unit circle maps to the ζ-plane cut from −1 to 1:

We need a function W (ζ) which is real on the ξ axis and at ∞ looks like U∞z ∼ 2U∞ζ. The
solution is just

W (ζ) = 2U∞ζ = U∞

(
z +

1

z

)
.

7

Figure 2.6: The image of the problem from Figure 2.5 under the mapping ζ = 1/z.

Solution. The map ζ = 1/z takes D onto the strip −1/2 < Im ζ < 1/2, so the corresponding
problem in the ζ-plane is as shown in Figure 2.6. By inspection, the solution is

U = −2η = 2 Re(iζ), (2.34)

and hence

u = 2 Re(i/z) =
2y

x2 + y2
. (2.35)

Note that u is bounded in all of D, since |y| . x2/2 as (x, y)→ (0, 0).

Example. Calculate the complex potential for flow past the unit circle with uniform velocity
(U∞, 0) at ∞.
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Solution. The complex potential is w = φ + iψ and we can take ψ = 0 on the x-axis and
unit circle. Also w ∼ U∞z at ∞. Under the Jowkowski map

ζ =
1

2

(
z +

1

z

)
(2.36)

the exterior of the unit circle maps to the ζ-plane cut from −1 to 1, as shown in Figure 2.7.

Solution The map ζ = 1/z takes D onto the strip

− 1

2i
< Im(ζ) <

1

2i

and so we have

1
2

Uξξ + Uηη = 0

U = −1

U = 1−1
2

with solution
U = −2η = 2Re(iζ) = 2Re(i/z).

Hence

u = 2Re(i/z) =
2y

x2 + y2
.

[Note that this is bounded in all of D.]

Example:

Calculate the complex potential for flow past the unit circle with constant velocity (U∞, 0) at
∞.

Solution The complex potential is w = φ + iψ and we can take ψ = 0 on the x-axis and unit
circle. Also w ∼ U∞z at ∞. Under the Jowkowski map

ζ =
1

2

(
z +

1

z

)

the exterior of the unit circle maps to the ζ-plane cut from −1 to 1:

We need a function W (ζ) which is real on the ξ axis and at ∞ looks like U∞z ∼ 2U∞ζ. The
solution is just

W (ζ) = 2U∞ζ = U∞

(
z +

1

z

)
.

7

Figure 2.7: Uniform flow past a circle transformed by the Joukowski map.

In the ζ-plane we need a function W (ζ) which is real on the ξ axis and at ∞ looks like
U∞z ∼ 2U∞ζ. The solution is just

W (ζ) = 2U∞ζ ⇒ w(z) = U∞

(
z +

1

z

)
. (2.37)

Example. Find the complex potential for flow over a step of height 1, from y = 1, x < 0
to y = 0, x > 0, with velocity (U∞, 0) at ∞.

NB we can now do Jowkowski by mapping to a slit via a circle.

Example:

Find the complex potential for flow over a step of height 1, from y = 1, x < 0 to y = 0, x > 0,
with velocity (U∞, 0) at ∞.

A

AC

B

Solution We map the half-plane Im(Z) > 0 onto D by Schwarz-Christoffel (using Z not ζ because
the roles are reversed). We have

αA = −1, βA = 2, αB =
3

2
, βB = −1

2
, αC =

1

2
, βB =

1

2
.

Let us map
Z = −1 to B, Z = +1 to C, Z = ∞ to A.

Then
dz

dZ
= C

(
Z + 1

Z − 1

)1/2

from which

z = A + C

∫ Z (
t + 1

t − 1

)1/2

dt = A + C

∫ Z t + 1

(t2 − 1)1/2
dt = A + C

(
(Z2 − 1)1/2 + cosh−1 Z

)
.

When Z = 1 we want z = 0 so A = 0. When Z = −1 we want z = i so i = C cosh−1(−1), i.e.
C = 1/π. Hence

z =
1

π

(
(Z2 − 1)1/2 + cosh−1 Z

)
.

At infinity z ∼ Z/π. Thus

w(z) ∼ U∞z at ∞ ⇒ W (Z) = w(z(Z)) ∼ U∞Z

π
at ∞.

Thus the flow in the Z plane is given by

W (Z) =
U∞Z

π
,

so that w(z) is given implicitly by

z =
1

π

((
π2w2

U2∞
− 1

)1/2

+ cosh−1 πw

U∞

)
.

8

Figure 2.8: Flow over a step.

Solution. The flow is depicted in Figure 2.8. We map the half-plane ImZ > 0 onto D by
Schwarz–Christoffel (using Z not ζ because the roles are reversed). The exterior angles at
the marked vertices are given by

βA = 2, βB = −1

2
, βB =

1

2
. (2.38)

Since there are just three vertices, we can choose to map

Z = −1 to B, Z = +1 to C, Z =∞ to A. (2.39)

Then the Schwarz–Christoffel formula (2.10) gives

z = A+ C

∫ Z ( t+ 1

t− 1

)1/2

dt = A+ C
(

(Z2 − 1)1/2 + cosh−1 Z
)
. (2.40)
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From the conditions (2.39) we find A = 0 and C = 1/π, so the required mapping function is
given by

z =
1

π

(
(Z2 − 1)1/2 + cosh−1 Z

)
. (2.41)

At infinity z ∼ Z/π, so the specified uniform flow at infinity implies that

w(z) ∼ U∞z at ∞ ⇒ W (Z) = w(z(Z)) ∼ U∞Z
π

at ∞. (2.42)

Thus the flow in the Z plane is given by

W (Z) =
U∞Z
π

, (2.43)

so that w(z) is given implicitly by

z =
1

π

((
π2w2

U2∞
− 1

)1/2

+ cosh−1 πw

U∞

)
. (2.44)

Note that the velocity components may be found using

u− iv =
dw

dz

=
dW/dZ

dz/dZ

= U∞

(
Z − 1

Z + 1

)1/2

. (2.45)

Therefore the velocity is zero at C (Z = 1) and infinite at B (Z = −1). In general, at a
corner with interior angle γ, the complex potential locally is of the form w ∼ constant× zπ/γ
and therefore u− iv ∼ constant× zπ/γ−1, which implies that:

The velocity is zero at a corner with interior angle < π

and infinite at a corner with interior angle > π. (2.46)

Example. A lightning conductor is modelled by the boundary-value problem illustrated in
Figure 2.9. The potential u is equal to zero at x = 0 and satisfies Laplace’s equation in the
half-space x > 0, except on the line y = 0, x > 1, where u = 1. We also require u to be
bounded at infinity.

Solution. The domain D is the image of the strip 0 < X < π/2, −∞ < Y < ∞ under
the map z = sinZ. In the Z-plane we have ∇2U = 0 with U = 0 at X = 0 and U = 1 at
X = π/2, as shown in Figure 2.10. The solution in the Z-plane is U = ReW = Re(2Z/π),
and therefore

u =
2

π
Re
(
sin−1 z

)
. (2.47)

Note that
d

dz

(
2

π
sin−1 z

)
=

2

π

1√
1− z2

, (2.48)
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∇2u = 0

u = 0

u = 1

1
O

C

A

B C

A

Figure 2.9: A model for a lightning conductor.

Example:

Solve the BVP (∼ lightning conductor):

∇2u = 0

u = 0

u = 1

1
O

Solution The domain D is the image of the strip 0 < X < π/2, −∞ < Y < ∞ under the map
z = sin Z (see previous examples). In the Z-plane we have

O
π/2

X

Y

U = 0 U = 1

∇2U = 0

so that U = Re(W ) = Re(2Z/π). Thus

u = Re

(
2 sin−1 z

π

)
.

Note that |∇u| → ∞ at the tip of the spike.
Alternative solution using Schwarz-Christoffel:

αA = −1

2
, βA =

3

2
, αB = 2, βB = −1, αC = −1

2
, βC =

3

2
.

Map
Z = −1 to A, Z = 0 to B, Z = 1 to C.

9

Figure 2.10: The problem from Figure 2.9 transformed by the map Z = sin−1 z.

and it follows that |∇u| → ∞ as z → 1, i.e. at the tip of the spike.
This example could also have been solved by using a Schwarz–Christoffel mapping to map

the upper half Z-plane to D. The vertices marked A, B, C in Figure 2.9 have the exterior
angles

βA =
3

2
, βB = −1, βC =

3

2
. (2.49)

We can choose to map

Z = −1 to A, Z = 0 to B, Z = 1 to C, (2.50)

and, because of symmetry, we are also free to map Z = ∞ to z = 0. Then the Schwarz–
Christoffel formula gives

z =
1√

1− Z2
. (2.51)

The problem in the Z plane is shown in Figure 2.11. The solution bounded at Z = ±1 is
simply

U = − 1

π

(
arg(Z + 1)− arg(Z − 1)

)
= Im

[
1

π
log

(
Z − 1

Z + 1

)]
, (2.52)
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∇2u = 0

u = 0

u = 1

1
O

C

A

C

AB

Because of symmetry we are also free to map Z = ∞ to z = 0. Then

dz

dZ
=

CZ

(1 − Z2)3/2
.

Thus

z = A − C

(1 − Z2)1/2
.

Z = ∞ when z = 0 ⇒ A = 0.

Z = 0 when z = 1 ⇒ C = −1.

Thus

z =
1√

1 − Z2
.

The solution in the Z plane is

CA B

∇2U = 0

U = 0 U = 1 U = 1 U = 0

u = Im

(
1

π
log

(
Z − 1

Z + 1

))
.

Thus

u =
1

π
Im log

(√
z2 − 1 − z√
z2 − 1 + z

)
,

10

Figure 2.11: The problem from Figure 2.9 transformed by the map z = 1/
√

1− Z2.

and by inverting the conformal map we find

u =
1

π
Im

[
log

(√
z2 − 1− z√
z2 − 1 + z

)]
, (2.53)

which is equivalent to (2.47).
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3 Free surface flows

3.1 Introduction

We now move on to discuss potential flow with free surfaces. With only fixed (and known)
boundaries we can find the potential whenever we can find the relevant conformal map.
However, if there are free surfaces, these are unknown and we have to find them as part of
the solution. We will discuss two scenarios where complex analysis and conformal mapping
allows us to find analytic solutions.

3.2 Steady inviscid free surface flow

We now show how conformal mapping allows us to obtain steady, inviscid, incompressible,
irrotational flows bounded by a combination of rigid walls and free surfaces. We recall that
such flows may be described by a complex potential

w(z) = φ+ iψ, (3.1)

where φ and ψ are the velocity potential and streamfunction, and the velocity components
are then given by

u− iv =
dw

dz
. (3.2)

Any given fixed walls must be streamlines for the flow, so that ψ = Imw = constant there,
and the velocity must be tangential to any such boundaries.

Any steady free surface must likewise be a streamline for the flow (this is the kinematic
boundary condition). However, this is not enough information, because the location of the
free surface is not known in advance. The additional condition to be imposed (the dynamic
boundary condition) is that the external atmospheric pressure is assumed to be a known con-
stant. (This condition must be generalised if surface tension is significant.) From Bernoulli’s
Theorem for a steady flow we have

p+
1

2
ρ|u|2 = p+

1

2
ρ

∣∣∣∣
dw

dz

∣∣∣∣
2

= constant (3.3)

and therefore, if p is constant, it follows that |dw/dz| is constant, and this provides the
additional information to locate the free surface.

The general solution technique will be demonstrated via an example.

Example: Teapot flow. A fluid layer of thickness h flows horizontally at speed U∞ over
a thin plate lying along the negative x-axis, before turning the corner at x = 0 and flowing
back along the underside of the plate, as shown in Figure 3.1.



3–2 OCIAM Mathematical Institute University of Oxford

Figure 3.1: A model for flow round the spout of a teapot.

Solution. The plate ACB and the free surface A′B′ are both streamlines. The net flux is
U∞h so without loss of generality we set

ψ = 0 on ACB, ψ = U∞h on A′B′. (3.4)

On the free surface we also have by Bernoulli’s Theorem

|u| = constant = U∞ on A′B′. (3.5)

It is helpful to nondimensionalise by scaling z with h and w with U∞h. The resulting
normalised problem is sketched in Figure 3.2, where we have also marked the “nose” N of
the fluid.

'| |

Figure 3.2: A normalised model for flow round the spout of a teapot.

Now we can view the complex potential as a conformal map z 7→ w(z) from the physical
plane to the potential plane, and our first step is to examine what the image of the shaded
fluid domain is in the w-plane. Recall that w = φ + iψ. The fluid domain is bounded by
curves on which ψ = 0 and ψ = 1, which are horizontal straight lines in the potential plane.
At AA′ we have w ∼ z and hence φ ∼ x → −∞. Similarly, at BB′ we have w ∼ −z and
hence φ ∼ −x→ +∞. Finally, without loss of generality we can choose the origin for φ such
that w = 0 at C. Then, since by symmetry u = 0 on CN , it follows that φ is constant on CN
and therefore φ = 0 at N . Therefore the fluid domain in the potential plane is as sketched in
Figure 3.3, where w = i is the image of N .

Next we do the same for the hodograph plane, which is the image of the fluid domain
under the mapping

z 7→ w′(z) =
dw

dz
= u− iv. (3.6)
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Figure 3.3: The potential plane for the teapot flow.

On the plate, the normal velocity must be zero, i.e. v = 0 on y = 0, so the streamline ACB is
mapped to the u-axis. At C, the fluid turns through an angle 2π > π, so the velocity will be
infinite at the corner. Therefore u increases from 1 at A to +∞ at C, then on the underside
of the plate increases from −∞ at C to −1 at B. Since |w′| = 1 on the free surface, the
curve A′B′ is mapped to a portion of the unit circle in the hodograph plane. We infer from
Figure 3.2 that v < 0 everywhere, with v → 0 at A and A′, while v = −1 and u = 0 at the
nose N . Therefore the flow in the hodograph plane is as shown in Figure 3.4.

Figure 3.4: The hodograph plane for the teapot flow.

Now we map both the potential and the hodograph planes to the same region in an
auxillary ζ plane. Note that

ζ = eπw (3.7)

maps the strip 0 < Imw < 1 to the upper half ζ-plane, while A 7→ 0, B 7→ ∞, C 7→ 1 and
N 7→ −1, as shown in Figure 3.5.

-

Figure 3.5: The potential plane for the teapot flow is mapped to the upper half-plane by the
mapping ζ = eπw.

Now, the mapping

ζ =

(
w′ − 1

w′ + 1

)2

(3.8)
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maps the hodograph plane onto the upper half ζ-plane, and maps the points A, B, C, N
to the same points on the real ζ-axis. Once the locations of three points on the boundary
have been fixed, the conformal map from any domain onto the upper half-plane is unique.
Therefore, the complex potential and its derivative must satisfy the relation

eπw = ζ =

(
w′ − 1

w′ + 1

)2

, (3.9)

i.e. we get a differential equation for w(z)!
By rearranging (3.9) we get a separable differential equation

w′ =
1 + eπw/2

1− eπw/2 = − coth
(πw

4

)
, (3.10)

and integration leads to
4

π
log cosh

(πw
4

)
= −z, (3.11)

where we have applied the boundary condition w = 0 when z = 0. Thus the complex potential
w(z) is given by

cosh
(πw

4

)
= e−πz/4, (3.12)

or (by squaring both sides)

1 + cosh
(πw

2

)
= 2e−πz/2. (3.13)

The free streamline is given by ψ = 1, i.e w = φ+ i with φ ∈ (−∞,∞), so that

2e−πz/2 = 1 + cosh

(
πφ

2
+

iπ

2

)
= 1 + i sinh

(
πφ

2

)
. (3.14)

By taking the real part of both sides, we deduce that the position of the free surface is given
by the equation

e−πx/2 cos
(πy

2

)
=

1

2
. (3.15)

In particular, the film thickness at the nose y = 0 is given by x = (2 log 2)/π ≈ 0.441: this is
known as the thinning factor.

Example: Flow out of a slot. Fluid occupies the upper half-plane y > 0 above a wall at
y = 0. There is a gap in the wall in the interval x ∈ (−a, a), through which the fluid flows into
y < 0 as a jet between two free surfaces. The free surfaces detach tangentially from the edges
x = ±a of the slot (this Kutta condition ensures that the velocity is finite at these points).
The jet thickness far downstream is 2Qa, where the contraction ratio Q is to be found. The
set-up is sketched in Figure 3.6.

If p→ p∞ and u→ 0 as y →∞, then by Bernoulli’s equation we have

p+
1

2
ρ|u|2 = p∞. (3.16)

On the other hand, on the free surfaces BC and DC ′ we have p = patm, the atmospheric
pressure. Therefore on the free surface we have |u| = U∞, where U∞ is the speed of the
uniform flow at CC ′ and is given by

1

2
ρU2
∞ = p∞ − patm. (3.17)
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Figure 3.6: Flow out of a slot.

'| |

=

Figure 3.7: Normalised problem for flow out of a slot.

We nondimensionalise the problem by scaling z with a and w with U∞a; the resulting
normalised problem is sketched in Figure 3.7. By symmetry, the y-axis is a streamline, which
we choose to be ψ = 0. Then, given that the net flux in the jet is 2Q, we have ψ = Q on the
streamline A′DC ′ and ψ = −Q on ABC. At infinity in the upper half-plane ψ ∼ Q− 2Qθ/π,
where θ = arg z, which corresponds to

w(z) ∼ −2Q

π
log z + iQ as z →∞ with Im z > 0. (3.18)

This is the complex potential due to a point sink of strength 4Q, and implies that φ→ −∞
as z → ∞ in the upper half-plane. At CC ′ we have φ ∼ −U∞y and therefore φ → ∞ there.
The potential plane is therefore as shown in Figure 3.8.

For the hodograph plane, note that the velocity tends to zero at infinity in the upper
half-plane, so w′ → 0 at AA′. The free surfaces BC and DC ′ are mapped to arcs of the unit
circle, with {u = 1, v = 0} at B, {u = 0, v = −1} at CC ′ and {u = −1, v = 0} at D. The
walls AB and A′D are mapped to the straight lines v = 0, with u→ 0 at A and A′, u = 1 at
B and u = −1 at D. Therefore the hodograph plane is as shown in Figure 3.9.

The map

ζ = −
(

1− w′
1 + w′

)2

(3.19)

takes the hodograph plane to the upper half-plane shown in Figure 3.10.
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Figure 3.8: The potential plane for flow out of a slot.

Figure 3.9: Hodograph plane for flow out of a slot.

The map
ζ1 = i eπw/2Q (3.20)

maps the potential plane to the upper half-plane shown in Figure 3.11, but the points along
the real axis are in the wrong order! We can rearrange the points and thus map the ζ1-plane
onto the ζ-plane with the Möbius mapping

ζ =
ζ1 − 1

ζ1 + 1
(3.21)

to give (
1− w′
1 + w′

)2

=
1− i eπw/2Q

1 + i eπw/2Q
. (3.22)

This is possible, but complicated, to solve.
If we just want the free surface shape there is a short cut to a parametric form. On the

free surface we know that |w′| = 1 and therefore we can write

w′ = e−iθ, (3.23)

where θ is the angle the surface makes with the x-axis; −θ is the polar angle in the (u,−v)
hodograph plane. On BC we have −π/2 < θ < 0, while on C ′D we have −π < θ < −π/2, as
can be seen in Figure 3.9.

Substituting (3.23) into (3.22), we find

1− i eπw/2Q

1 + i eπw/2Q
=

(
1− e−iθ

1 + e−iθ

)2

= − tan2 (θ/2) , (3.24)

which we invert to get

i eπw/2Q =
1 + tan2(θ/2)

1− tan2(θ/2)
= sec θ. (3.25)
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Figure 3.10: The hodograph plane for flow out of a slot is mapped to this upper half-plane
by the mapping (3.19).

Figure 3.11: The potential plane for flow out of a slot is mapped to this upper half-plane by
the mapping ζ1 = i eπw/2Q.

Now differentiate both sides with respect to θ,

iπ

2Q
eπw/2Q

dw

dz

dz

dθ
= sec θ tan θ, (3.26)

and substitute w′ and eπw/2Q from (3.23) and (3.25) to find that

dz

dθ
=

2Q

π
eiθ tan θ. (3.27)

Integration of this ODE gives a parametric equation z(θ) for the position of the free surface.
Taking real and imaginary parts, we get

dx

dθ
=

2Q

π
sin θ,

dy

dθ
=

2Q

π
sin θ tan θ, (3.28)

and integration with respect to θ gives

x = const− 2Q

π
cos θ, y = const +

2Q

π

(
log | sec θ + tan θ| − sin θ

)
. (3.29)

Considering the free surface BC, for example, we fix the constants by setting x = −1 and
y = 0 at θ = 0, resulting in

x = −1 +
2Q

π

(
1− cos θ

)
, y =

2Q

π

(
log | sec θ + tan θ| − sin θ

)
. (3.30)

At C we have θ → −π/2, which gives y → −∞ and

x→ −1 +
2Q

π
= −Q. (3.31)

Hence we can solve for the contraction ratio:

Q =
π

π + 2
≈ 0.611, (3.32)

which agrees with experiments. The resulting jet shape is plotted in Figure 3.12.
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Figure 3.12: The jet shape given parametrically by (3.30) and (3.32).

3.3 Flow in porous media

Background

Darcy’s Law was formulated by nineteenth-century French hydraulic engineer Henry Darcy
to describe the flow of a viscous liquid through a porous medium, e.g. the flow of groundwater
through rock or the flow of air through a filter. Darcy’s Law relates the fluid velocity u to
the pressure p through the relation

u = −k
µ
∇p, (3.33)

where µ is the viscosity of the fluid and k is the permeability of the porous matrix. If the fluid
is incompressible, then we also have ∇ ·u = 0 and thus, provided the medium is uniform (so
that µ and k are constant), the pressure satisfies Laplace’s equation

∇2p = 0. (3.34)

The same equations also arise in Hele-Shaw flow, in which a viscous fluid is forced between two
parallel plates, as shown in Figure 3.13. In this case, the permeability is given by k = h2/12,
where h is the thicknesss of the gap between the two plates.

Figure 3.13: Hele-Shaw flow between two parallel plates; the right-hand diagram shows the
cross-section.
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Hele-Shaw flow (or two-dimensional porous medium flow) therefore provides an analogue
of two-dimensional inviscid irrotational flow. However, if there are any free boundaries, then
the boundary conditions there are different: a constant pressure is equivalent to φ = constant
(where φ is the velocity potential) which is not at all similar to the Bernoulli condition relevant
to inviscid flow.

We henceforth take k/µ = 1 (via nondimensionalisation) and focus on two-dimensional
flow, so that

u = (u, v) = −∇p = ∇φ (3.35)

in the fluid, where φ = patm−p is the velocity potential. At any free surface we have p = patm,
the external atmospheric pressure, and hence

φ = 0 at free boundary. (3.36)

We also have the kinematic boundary condition that the normal velocity u ·n of the fluid
must equal the normal velocity vn of the boundary, i.e.

∂φ

∂n
= −∂p

∂n
= vn at free boundary. (3.37)

A convenient way to write this is to note that p(x, y, t) = 0 on the interface, and hence by
differentiating with respect to t:

dp

dt
=
∂p

∂t
+ u ·∇p =

∂p

∂t
−∇p ·∇p = 0. (3.38)

Thus the free boundary conditions are

φ = 0,
∂φ

∂t
+ |∇φ|2 = 0 at free boundary. (3.39)

Again we note that these are quite different from the conditions at a free boundary in inviscid
potential flow.

Canonical injection problem

A canonical problem is injection or suction from a point source/sink into a two-dimensional
porous medium or Hele-Shaw cell, as shown in Figure 3.14. Given the strength Q of the

or sink

Figure 3.14: Schematic of injection into a Hele-Shaw cell.

source/sink and the initial shape D(0) of the fluid domain at time t = 0, our aim is to
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determine how the fluid domain D(t) evolves as t increases. Without loss of generality, we
can assume that the source/sink is at the origin. Then the required singularity is

φ ∼ Q

2π
log |z| as z → 0, (3.40)

where Q > 0 is a source and Q < 0 is a sink. The conditions on the free boundary are given
by equation (3.39), and the whole problem for φ is sketched in Figure 3.15.

∇2φ = 0 in D(t)

φ ∼ Q
2π log |z|

as z → 0O

φ = 0, φt + |∇φ|2 = 0 on ∂D(t)

Figure 3.15: Canonical injection/suction free boundary problem.

As φ is a velocity potential we have a complex potential w(z, t) = φ + iψ, which is a
holomorphic function of z inside D(t) except for a singularity at z = 0, with

w(z, t) ∼ Q

2π
log z as z → 0. (3.41)

Clearly there is a branch point at z = 0, which reflects the fact that the streamfunction ψ
increases by Q on a circuit of O. The velocity, given by u− iv = ∂w/∂z has a pole at z = 0
but is single-valued. The boundary conditions (3.39 imply that

Rew = 0, Re

[
∂w

∂t

]
+

∣∣∣∣
dw

dz

∣∣∣∣
2

= 0 on ∂D(t). (3.42)

Now suppose that D(t) is the image of the unit disc |ζ| < 1 under a time-dependent
conformal map ζ 7→ z = F (ζ, t), as shown schematically in Figure 3.16. By the Riemann
Mapping Theorem, there are three real degrees of freedom in the resulting map, so we can
choose also to map the origin to itself, so that F (0, t) ≡ 0.

We write the complex potential in the ζ-plane as

W (ζ, t) = w
(
F (ζ, t), t

)
. (3.43)

In the ζ-plane W (ζ, t) is a holomorphic function whose real part vanishes on |ζ| = 1 and with
a logarithmic singularity at ζ = 0. We see that the appropriate function is

W (ζ, t) =
Q

2π
log ζ. (3.44)
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z=F (ζ,t)−−−−−→

Figure 3.16: The fluid region D(t) is the image of the unit disc |ζ| < 1 under a time-dependent
conformal map z = F (ζ, t).

It remains to impose the boundary condition (3.42). By differentiating (3.43) with respect
to ζ and t we have

∂W

∂ζ
=
∂w

∂z

∂F

∂ζ
,

∂W

∂t
=
∂w

∂t
+
∂w

∂z

∂F

∂t
, (3.45)

and hence
∂w

∂t
=
∂W

∂t
− ∂W

∂ζ

∂F

∂t

/
∂F

∂ζ
(3.46)

Therefore the boundary condition (3.42) is equivalent to

Re

[
∂W

∂t
− ∂W

∂ζ

∂F

∂t

/
∂F

∂ζ

]
+

∣∣∣∣
∂W

∂ζ

∣∣∣∣
2
/∣∣∣∣

∂F

∂ζ

∣∣∣∣
2

. (3.47)

Now we just substitute forW (ζ, t) from (3.44), assuming thatQ is constant, so that ∂W/∂t = 0:

Re

[
− Q

2πζ

∂F

∂t

/
∂F

∂ζ

]
+

Q2

4π2|ζ|2

/∣∣∣∣
∂F

∂ζ

∣∣∣∣
2

= 0. (3.48)

On the free boundary |ζ| = 1 this tidies up to

Re

[
ζ
∂F

∂ζ

∂F

∂t

]
=

Q

2π
, (3.49)

which is known as the Polubarinova—Galin equation.

The initial shape of the fluid domain D(0) in principle determines F (ζ, 0). If we can solve
equation (3.49) for F (ζ, t), then the shape of the fluid domain D(t) for t > 0 is given by
the image of the unit disc under the map z = F (ζ, t). There is no general method to solve
equation (3.49), but a large number of exact solutions do exist, as the following Theorem
(proved on the problem sheet) shows.

Theorem. Suppose F (ζ, 0) is a polynomial of degree n, conformal and one-to-one for |ζ| <
1, then F (ζ, t) remains a polynomial of degree n for t > 0; moreover the (time-dependent)
coefficients of this polynomial satisfy a set of n ODEs (since we fixed F (ζ, 0) = 0 wlog).
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x = a10 cos θ + a20 cos 2θ,
y = a10 sin θ + a20 sin 2θ.

Figure 3.17: A limaçon.

Example. Suppose F (ζ, 0) = a10ζ + a20ζ
2, where a10, a20 are real and positive, and

a10 > 2a20 (so that F ′ 6= 0 on the unit disc). Find the evolution under a source/sink at
the origin.

Solution. The initial shape is called a limaçon, as illustrated in Figure 3.17.
We try

F (ζ, t) = a1(t)ζ + a2(t)ζ2, (3.50)

where a1, a2 are real. Then substitution into the evolution equation (3.49) leads to

Re
[
ζ(a1 + 2a2ζ)(ȧ1ζ + ȧ2(t)ζ

2
)
]

=
Q

2π
on |ζ| = 1. (3.51)

Since ζζ = 1 this is equivalent to

Re
[
a1ȧ1 + 2a2ȧ2 + 2a2ȧ1ζ + a1ȧ2ζ

]
=

Q

2π
, (3.52)

which must be true for all |ζ| = 1, and hence we obtain two ODEs for the coefficients a1

and a2:

a1ȧ1 + 2a2ȧ2 =
Q

2π
, 2a2ȧ1 + a1ȧ2 = 0. (3.53)

The first equation (3.53a) is an exact differential which we can integrate directly to give

1

2

(
a2

1 + 2a2
2

)
=
Qt

2π
+

1

2

(
a2

10 + 2a2
20

)
, (3.54)

which represents net mass conservation. Multiplying (3.53b) by a1 turns that into an exact
differential, which we can integrate to give

a2
1a2 = a2

10a20. (3.55)

Equations (3.54) and (3.55) determine a1(t) and a2(t) for t > 0. To get explicit formulae
involves messy solution of a cubic. However, we can deduce the qualitative behaviour by
eliminating ȧ2 from (3.53) to get

a1ȧ1

(
1− 4a2

2

a2
1

)
=

Q

2π
. (3.56)
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First consider the case of injection, with Q > 0. Since we assumed that a1 > 2a2 initially,
ȧ1 > 0 initially. But (3.55) implies that, if a1 increases, then a2 decreases so that a1 > 2a2

always. Thus when Q > 0, a1 increases with t while a2 decreases, and D(t) approaches a
large circle. However, if Q < 0 (suction), then a1 decreases and a2 increases, until we get to
a time when a1 = 2a2 and the map ceases to be conformal at ζ = −1. At this point there
is a cusp on the boundary (which is then a cardioid), and the solution ceases to exist. The
evolution for positive and negative values of Q is shown in Figure 3.18.

� > �

� < �

����
�

�

Figure 3.18: A limaçon evolving under Hele-Shaw flow due to a source/sink at the origin.

This example shows that for the case of suction, with Q < 0, the free surface may develop
a cusp in finite time. In fact the situation is much worse than this. The suction problem is ill
posed, in that an arbitrarily small perturbation to the initial boundary ∂D(0) may lead to an
arbitrarily large change in the boundary ∂D(t) after an arbitrarily small time t. In reality,
such pathalogical behaviour is prevented by physical effects not included in our model, for
example surface tension.
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4 Plemelj formulae and
applications

4.1 Introduction

The problem of determining a holomorphic function w(z) in terms of its values on a curve Γ
is equivalent to solving a Cauchy problem for Laplace’s equation and therefore ill-posed : the
solution may not exist or may not be unique or it may not depend continuously on the
boundary values.

Example. If w(z) is holomorphic in y > 0 and

w(x) =
δ2ε

δ2 + x2
for y = 0, −∞ < x <∞, (4.1)

then a solution is given by

w(z) =
δ2ε

δ2 + z2
. (4.2)

Thus |w| ≤ ε on y = 0, and w → ∞ as z → iδ. Since ε and δ may be arbitrarily small, we
see that, however small w is on y = 0, it may become arbitrarily large an arbitrarily small
distance from y = 0.

This example illustrates that trying to specify w(z) on a given curve is ill posed. However,
well-posed problems may be formulated in which, for example, Rew or Imw are specified on Γ
or the jump in w across Γ is prescribed. We will show how a wide class of such problems may
be tackled using the so-called Plemelj formulae.

4.2 Plemelj formulae

Recall that if w is holomorphic inside and on the closed contour Γ and z is a point inside Γ,
then Cauchy’s integral formula states that

w(z) =
1

2πi

∮

Γ

w(ζ) dζ

ζ − z . (4.3)

This relates the values of w inside the contour to the values of w on the contour.

Let us consider more generally the Cauchy integral

w(z) =
1

2πi

∫

Γ

f(ζ) dζ

ζ − z , (4.4)
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where f is a given function on the contour Γ, which may now be closed or open. If Γ is open,
it is convenient in the subsequent analysis to adopt the convention that it does not contain
its endpoints, a, b ∈ C say. Thus, an open contour may be parametrized by

Γ = {γ(t) ∈ C : t0 < t < t1}, (4.5)

where a = γ(t0) 6= γ(t1) = b and t0 < t1 are real constants. We then define

Γ = {γ(t) ∈ C : t0 ≤ t ≤ t1} (4.6)

to be the (topological) closure of Γ, i.e. Γ is the union of Γ and its endpoints. (If Γ is a closed
contour, then Γ = Γ because Γ is (topologically) closed.)

If f is sufficiently smooth (e.g. continuous) on Γ, then the function w(z) defined by the
Cauchy integral (4.4) is holomorphic on C \Γ (its derivatives may be found by differentiating
under the integral sign). Now we pose the question: what is the limiting value of w(z) as z
approaches Γ? It turns out that the answer depends on which side of Γ is approached by z.

Suppose t ∈ Γ is any point at which Γ is smooth and that f is holomorphic in a neigh-
bourhood of t and continuous on Γ. Let us label the left-hand side of Γ (as Γ is traversed
in the direction of integration) as “+”, and the right-hand side as “−”. Let z approach
t ∈ Γ from the positive side as illustrated in Figure 4.1(a). We deform Γ near t by replacing

(a) Original contour (b) Deformed contour

Figure 4.1: Deformed integration contour for w+(z).

γε = Γ ∩ D(t; ε) ⊂ Γ with a small semi-circle Cε as illustrated in Figure 4.1(b), where ε is
sufficiently small that f is holomorphic in the disc D(t; 2ε) = {z : |z − t| < 2ε} say. By the
deformation theorem,

w+(t) = lim
z→t

1

2πi

(∫

Γ\γε
+

∫

Cε

)
f(ζ)

ζ − z dζ =
1

2πi

(∫

Γ\γε
+

∫

Cε

)
f(ζ)

ζ − t dζ. (4.7)

As ε→ 0, the semi-circle gives a residue contribution

1

2
× 2πi× f(t)

2πi
=

1

2
f(t),

where the factor of 1/2 arises because we are only integrating over a semi-circle. Hence,

w+(t) = lim
ε→0

1

2πi

(∫

Γ\γε
+

∫

Cε

)
f(ζ)

ζ − t dζ =
1

2πi
−
∫

Γ

f(ζ)

ζ − t dζ +
1

2
f(t), (4.8)

where we define the Principal Value integral as

−
∫

Γ

f(ζ)

ζ − t dζ = lim
ε→0

∫

Γ\γε

f(ζ)

ζ − t dζ. (4.9)
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(a) Original contour (b) Deformed contour

Figure 4.2: Deformed integration contour for w−(z).

This limit always exists because the log singularities from the endpoints cancel as ε→ 0 when
f is continuous on Γ.

If we let z → t ∈ Γ from the minus side as illustrated in Figure 4.2(a), then we must deform
Γ near ζ = t by replacing γε ⊂ Γ with a small semi-circle C ′ε as illustrated in Figure 4.2(b).
Again by the deformation theorem

w−(t) = lim
ε→0

1

2πi

(∫

Γ\γε
+

∫

C′ε

)
f(ζ)

ζ − t dζ =
1

2πi
−
∫

Γ

f(ζ)

ζ − t dζ − 1

2
f(t). (4.10)

In this case we are integrating in the opposite direction around the semi-circle, so that the
residue contribution is −f(t)/2.

Equations (4.8) and (4.10) are known as the Plemelj formulae. In deriving them, we
have assumed that Γ is a smooth contour, that f is continuous on Γ and that f is holomorphic
in a neighbourhood of the point t on Γ that is not an endpoint. The conditions on f can
be weakened and the formulae generalized to corners (see e.g. Ablowitz & Fokas). We shall
use them to construct solutions to Laplace’s equation with a jump in value across Γ (to solve
fundamental problems in e.g. aerofoil and fracture theory). This will require knowledge of
the behaviour of the Cauchy Integral (4.3) away from Γ, near an endpoint of Γ and at infinity
via the following quotable results (see e.g. Ablowitz & Fokas).

(1) If f is continuous on Γ, then w is holomorphic on C\Γ and w(z) = O(1/z) as |z| → ∞.

(2) Behaviour at an endpoint te of Γ:

(a) If f(t)→ 0 as t→ te, then w(z) = O(1) as z → te with z ∈ C\Γ;

(b) If f(t) = O(1) as t→ te, then w(z) = O(log(z − te)) as z → te with z ∈ C\Γ;

(c) If f(t) = O((t− te)−α) as t→ te for some α ∈ (0, 1), then w(z) = O((z− te)−α) as
z → te with z ∈ C\Γ.

4.3 Solving problems with the Plemelj formulae

Problem 1

Find a function w(z) holomorphic on C \Γ such that the limiting values of w(z) as z → t ∈ Γ
from either side satisfy

w+(t)− w−(t) = G(t), (4.11)

where G is continuous on Γ.
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Solution. We seek a particular solution for w(z) in the form of the Cauchy integral

w(z) =
1

2πi

∫

Γ

f(ζ) dζ

ζ − z , (4.12)

where our aim is to use the jump condition (4.11) to determine the density function f . By
subtracting the Plemelj formulae (4.10) and (4.8) we find that

w+(t)− w−(t) = f(t) (4.13)

on Γ. Hence, we read off f = G, and a solution is given by

w(z) =
1

2πi

∫

Γ

G(ζ) dζ

ζ − z . (4.14)

This shows that the Plemelj formulae allow us easily to find a solution w(z) that is
holomorphic on C \ Γ and satisfies the jump condition (4.11). However, the solution (4.14)
is not unique. The homogeneous problem with G = 0 consists of finding a function that is
holomorphic on C\Γ and continuous across Γ, which is satisfied by any function w(z) = h(z)
that is holomorphic on C\{a, b}. Morera’s Theorem may be used to prove that all solutions of
the homogeneous problem must be of this form. Therefore the general solution of Problem 1
is

w(z) =
1

2πi

∫

Γ

G(ζ) dζ

ζ − z + h(z), (4.15)

where h(z) is an arbitrary function of z that is holomorphic on C\{a, b}.
To pin down h, it is necessary to prescribe the behaviour of w at a, b and∞. For example,

suppose we impose the additional conditions:

(I) w is finite or has a logarithmic singularity at each of the endpoints of Γ;

(II) there exists n ∈ N such that w(z) = O(zn) as |z| → ∞.

Then, (I), the quotable results (??) and Laurent’s Theorem imply that h can only have
removable singularities at a and b, so that h is in fact entire. Hence, by (II) and the corollary
to Liouville’s theorem, h(z) = pn(z), an arbitrary polynomial of degree n.

Problem 2

Consider the particular case where Γ is a line segment on the real axis: Γ = {x : 0 < x < c}
for some c > 0. Suppose we are given Imw±(x) = g±(x) on Γ, with w holomorphic on C \ Γ.
Find w when (1) g+(x) = −g−(x) = g(x) and (2) g+(x) = g−(x) = g(x), where g(x) is
continuous on Γ.

Remark. If w(z) = u(x, y) + iv(x, y), then this problem is equivalent to the problem of
finding v such that ∇2v = 0 away from Γ, and v±(x) = g±(x) on Γ.
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Solution. Seek a solution for w as a Cauchy integral of the form

w(z) =
1

2πi

∫ c

0

f(ξ) dξ

ξ − z , (4.16)

which is holomorphic on C \ Γ, assuming f is sufficiently regular. The Plemelj formulae
(4.8)–(4.10) become

w±(x) = u±(x) + ig±(x) = ±1

2
f(x) + I(x) on Γ, (4.17)

where we define

I(x) =
1

2πi
−
∫ c

0

f(ξ)

ξ − xdξ. (4.18)

Problem 2.1: If g+(x) = −g−(x) = g(x), then (4.17) implies that

w+(x) + w−(x) = u+(x) + u−(x) = 2I(x) on Γ, (4.19a)

w+(x)− w−(x) = u+(x)− u−(x) + 2ig(x) = f(x) on Γ. (4.19b)

By (4.19a), I(x) must be real on Γ, so by (4.18) we seek a particular solution for f that is
pure imaginary on Γ in which case u+(x) − u−(x) = 0 and f(x) = 2ig(x) on Γ according to
(4.19b). It follows that a solution for w is given by

w(z) =
1

π

∫ c

0

g(ξ) dξ

ξ − z + h(z), (4.20)

where h(z) is an arbitrary function of z that is holomorphic on C \ Γ and real on Γ, so that
it is a solution of the homogeneous problem in which g = 0.

Problem 2.2: If g+(x) = g−(x) = g(x), then (4.19a)–(4.19b) become

w+(x) + w−(x) = u+(x) + u−(x) + 2ig(x) = 2I(x) on Γ, (4.21a)

w+(x)− w+(x) = u+(x)− u−(x) = f(x) on Γ. (4.21b)

By (4.21b), f(x) on Γ must be real, so I(x) must be pure imaginary on Γ by (4.18); thus, by
(4.21a), we have u+(x) + u−(x) = 0 and I(x) = ig(x) on Γ. It follows that

w(z) =
1

2πi

∫ c

0

f(ξ) dξ

ξ − z (4.22)

is a solution provided f satisfies the Cauchy singular integral equation

1

π
−
∫ c

0

f(ξ) dξ

ξ − x = −2g(x) (0 < x < c), (4.23)

which we need to invert to find f .

Remark: In Problem 2.1 the data gives w+−w− and hence f directly. In Problem 2.2 the
data gives w+ + w− leading to a Cauchy singular integral equation for f .
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Solution. Suppose we can find an auxillary function w̃(z) such that:

• w̃(z) is holomorphic and non-zero on C \ Γ; (4.24a)

• w̃(z) satisfies w̃+(x) = −w̃−(x) 6= 0 on Γ, (4.24b)

i.e. w̃ is a solution of the homogeneous problem (in which g = 0) that is non-zero on C\{0, c}.
Now we define

W (z) =
w(z)

w̃(z)
, (4.25)

so that

W+(x)−W−(x) =
w+(x)

w̃+(x)
− w−(x)

w̃−(x)

=
w+(x)

w̃+(x)
− w−(x)

−w̃+(x)

=
w+(x) + w−(x)

w̃+(x)

=
2ig(x)

w̃+(x)
on Γ. (4.26)

If w̃+ is known, then W+ −W− is known (because g is known). Therefore we have turned
Problem 2.2 (in which w+ + w− is given) into a version of Problem 1 (in which W+ −W− is
given). By Problem 1, equation (4.14), a solution for W is given by

W (z) =
1

2πi

∫ c

0

F (ξ) dξ

ξ − z +H(z), (4.27)

where

F (x) =
2ig(x)

w̃+(x)
on Γ, (4.28)

and H(z) is an arbitrary function holomorphic on C \ {0, c}, which is the general solution
of the homogeneous problem for W . We have not specified enough information about the
behaviour of w as z → 0, c and ∞ to be able to pin down H any further at this stage — we
shall illustrate a method to do so in two practical examples in §4.4 and §4.5. Thus, a solution
of Problem 2.2 takes the form

w(z) = w̃(z)

(
1

π

∫ c

0

g(ξ) dξ

w̃+(ξ)(ξ − z) +H(z)

)
. (4.29)

With W given by (4.27), the Plemelj formulae give

W±(x) = ±1

2
F (x) +

1

2πi

∫ c

0

F (ξ) dξ

ξ − x +H(x) (0 < x < c), (4.30)

so that

F (x) = W+(x)−W−(x) =
2ig(x)

w̃+(x)
on Γ, (4.31)
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as required. Moreover,

1

πi
−
∫ c

0

F (ξ) dξ

ξ − x + 2H(x) = W+(x) +W−(x)

=
w+(x)

w̃+(x)
+
w−(x)

w̃−(x)

=
w+(x)− w−(x)

w̃+(x)

=
f(x)

w̃+(x)
on Γ, (4.32)

and, with F given by (4.28), we deduce that

f(x) = w̃+(x)
(
W+(x) +W−(x)

)
= 2w̃+(x)

(
1

π
−
∫ c

0

g(ξ) dξ

w̃+(ξ)(ξ − x)
+H(x)

)
(4.33)

satisfies the Cauchy singular integral equation (4.23).

Finding w̃

We have shown that the decomposition (4.25) allows us to transform Problem 2.2 into a
version of Problem 1, and then solve it using the Plemelj formulae. As a bonus, (4.33) gives
the solution f(x) of the singular integral equation (4.23). It just remains to find an auxillary
function w̃(z) satisfying the properties (4.24), where Γ = {x + iy : 0 < x < c, y = 0} and
Γ = {x+ iy : 0 ≤ x ≤ c, y = 0}. We need to find a function whose value as Γ is approached
from above is minus that as Γ is approached from below, as shown schematically in Figure 4.3.

� + = -� -

� -

�
��(�)

��(�)

Figure 4.3: The jump conditions satisfied by the auxiliary function across Γ.

Example 1. When c =∞, we can use w̃(z) = z1/2, provided we take the branch cut along
the positive real axis, i.e. z1/2 = r1/2eiθ/2 for z = reiθ, with r > 0 and 0 < θ ≤ 2π. Then we
will have w̃±(x) = ±x1/2 6= 0 for x > 0, as required. We can obtain another valid solution by
multiplying w̃(z) by any function of z that is holomorphic and non-zero on C \ {0}.
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Example 2. When 0 < c <∞, we can use w̃(z) = z1/2(c− z)1/2, where we take the branch
cut along Γ and then w̃±(x) = ±x1/2(c − x)1/2 6= 0 for 0 < x < c. In this case, we can
obtain another valid solution by multiplying w̃(z) by any function of z that is holomorphic
and non-zero on C \ {0, c}.

In the above two examples, the auxiliary function w̃(z) could plausibly have been found
by inspection. However, we might wonder whether the functions so obtained are unique, and
also how one could find w̃ more generally. We have w̃+/w̃− = −1 on Γ, so

log w̃+ − log w̃− = log(−1) = (2m+ 1)πi on Γ, (4.34)

where m ∈ Z, corresponding to the infinite number of branches of the logarithm. Equation
(4.34) is a version of Problem 1, and we read off from equations (4.11) and (4.15) the solution

log w̃(z) =
1

2πi

∫ c

0

(2m+ 1)πi

ξ − z dξ + h̃(z)

=

(
m+

1

2

)[
log(c− z)− log z

]
+ h̃(z), (4.35)

where h̃(z) is an arbitrary function holomorphic on C \ {0, c}. Therefore the general form for
w̃(z) is

w̃(z) = h∗(z)
(
c− z
z

)m+1/2

, (4.36)

where h∗(z) = eh̃(z) is again an arbitrary function of z holomorphic and nonzero on C\{0, c}.
The general solution (4.36) includes the particular form for w̃ found in Example 2 above, with
m = 0 and h∗(z) = z.

Evidently the solution of Problem 2.2 is far from unique. There is a lot of freedom in the
general form (4.36) for w̃, and also the arbitrary function H(z) in (4.29) must be determined.
We will now work through two concrete examples to show how a unique solution may be
selected by prescribing the allowed behaviour of w(z) at z = 0, z = c and as z →∞.

4.4 Example: Fracture in solid mechanics

A famous problem in elasticity is to calculate the displacement field
(
0, 0,Φ(x, y)

)
in antiplane

strain around a crack at y = 0, 0 < x < c, as illustrated in Figure 4.4(a). The displacement
Φ is such that:

• ∇2Φ = 0 except on the crack;

• limy↓↑0 ∂Φ/∂y = 0 for 0 < x < c (zero traction on the crack surface);

• |∇Φ| has an inverse square-root singularity at (0, 0) and at (c, 0) (so that the displace-
ment Φ is finite at the crack tips);

• ∂Φ/∂y = T +O
(
r−2
)

as r2 = x2 + y2 →∞ (uniform shearing at large distances).

Setting Φ = Ty − φ(x, y) and φy = Imw(z), we find that the corresponding properties of w
are:
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for some n, m ∈ Z.
As |z| → ∞, w = O(w̃/z). Since we want |∇φ| → 0 at infinity we therefore don’t want w̃ to

grow as fast as z as |z| → ∞. This gives n + m ≤ 0.
Also w has branch points where w̃ has, i.e. at the leading and trailing edge of the aerofoil, z = 0

and z = c. But in a wind tunnel it is observed that the velocity w is bounded at the trailing edge
z = c. Thus w̃ must have a positive power of z − c, so that n ≥ 0. But a power of z − c greater
than one would make 1/w̃+ non-integrable. Therefore n = 0. Thus we have

w̃ = (z − c)1/2zm−1/2,

where m ≤ 0. The velocity at the trailing edge is infinite due to the negative power if z. The
solution which is least singular is that corresponding to m = 0.

Example: Fracture in solids

Let Φ(x, y) be the vertical displacement and let Φ = Ty + φ. Then

T = ∂Φ
∂y

∂Φ
∂y

= 0

T = ∂Φ
∂y

∇2Φ = 0

∇2φ = 0

∂φ
∂y

= T

This is again a difficult problem requiring w̃. Since there is no difference between the left and
right crack tips, symmetry requires that we have the same power of z we have of z − c. Thus

w̃ = zn+1/2(z − c)n+1/2

for some n ∈ Z. For W to be bounded at infinity we require n ≤ −1. The solution which is least
singular is n = −1. Then

w =
T

πz1/2(c − z)1/2

∫ c

0

ξ1/2(c − ξ)1/2 dξ

(ξ − z)
.

Amazingly, this integral can be evaluated explicitly. First note that

∫ c

0

ξ1/2(c − ξ)1/2 dξ

(ξ − z)
=

1

2

∫

Γ

ζ1/2(c − ζ)1/2 dζ

(ζ − z)

since the square root changes sign on the bottom integral, while the direction of integration is
reversed.
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(a) (b)

Figure 4.4: (a) Antiplane strain around a crack. (b) The two-dimensional problem for φ(x, y).

• w(z) is holomorphic on C \ Γ;

• Imw±(x) = T on Γ = {x+ iy : 0 < x < c, y = 0};

• w(z) = O
(
z−1/2

)
as z → 0 and w(z) = O

(
(z − c)−1/2

)
as z → c;

• w(z) = O(z−2) as z →∞.

This is equivalent to Problem 2.2, with g(x) = T = constant, so a solution is given by
equation (4.29), namely

w(z) = w̃(z)

(
1

π

∫ c

0

g(ξ) dξ

w̃+(ξ)(ξ − z) +H(z)

)
, (4.37)

where H(z) is an arbitrary function of z holomorphic on C\{0, c}. We now make a specific
choice for w̃, namely

w̃(z) = z−1/2(c− z)−1/2, (4.38)

with the branch cut along Γ, so that w̃±(x) = ±x−1/2(c− x)−1/2 for 0 < x < c, and equation
(4.37) becomes

w(z) =
1

z1/2(c− z)1/2

(
1

π

∫ c

0

ξ1/2(c− ξ)1/2g(ξ)

(ξ − z) dξ +H(z)

)
. (4.39)

Now we will use the prescribed properties of w(z) to argue that H(z) must in fact be zero.

• At the endpoints z = 0 and z = c of Γ, the integral in (4.39) is finite (because of the
choice we made for w̃(z)).

• Since H(z) is holomorphic on C\{0, c}, it can only have isolated singularities at the
end points.

• Since w = O
(
z−1/2

)
as z → 0 and w = O

(
(c− z)−1/2

)
as z → c, it follows that H(z)

can only have removable singularities at z = 0 and z = c, and therefore H(z) is entire.
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• Finally, w = O
(
z−2
)

as z →∞ if and only if H(z) = O
(
z−1
)

as z →∞, and therefore
H(z) ≡ 0 by Liouville’s theorem.

Hence, the unique solution for w(z) is given by

w(z) =
T

πz1/2(c− z)1/2

∫ c

0

ξ1/2(c− ξ)1/2 dξ

(ξ − z) . (4.40)

The integral in equation (4.40) can be evaluated explicitly as follows. First note that

∫ c

0

ξ1/2(c− ξ)1/2 dξ

(ξ − z) =
1

2

∮

C

ζ1/2(c− ζ)1/2 dζ

(ζ − z) , (4.41)

where C is a small clockwise contour that encloses Γ, as shown in Figure 4.5(a). Now deform

��(�)

��(�) ��(�)

��(�)

�

�

(a) (b)

Figure 4.5: Integration contours for the integral (4.40).

the contour C to infinity, as shown in Figure 4.5(b). There is a residue contribution from the
pole at ζ = z of πiz1/2(c − z)1/2. To evaluate the contribution from a large circle at infinity
expand the integrand as

ζ1/2(c− ζ)1/2

(ζ − z) ∼ −i

(
1− c

ζ

)1/2(
1− z

ζ

)−1

∼ −i

(
1 +

2z − c
2ζ

+ · · ·
)

(4.42)

which integrates to −π(z − c/2). Thus the explicit solution for w(z) is

w =
T

πz1/2(c− z)1/2

(
πiz1/2(c− z)1/2 − π

(
z − c

2

))
= T i− T (z − c/2)

z1/2(c− z)1/2
. (4.43)

We can easily verify that the solution (4.43) for w(z) has all of the required properties.
In principle we would have obtained exactly the same solution if we made a different choice
of the auxiliary function w̃(z): it would just have made the job of determining H(z) slightly
more difficult. In general, a judicious choice of w̃(z) will make the whole solution procedure
as straightforward as possible.
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Lecture 12

Example: Aerodynamics

Here the physical model is a thin wing y = εg±(x), ε ! 1. The model is inviscid, irrotational
(⇒ u = ∇Φ), incompressible (⇒ ∇ · u = 0), flow, giving

∇2Φ = 0.

The boundary conditions are a uniform stream at infinity (u → (1, 0) as x2 + y2 → ∞), and no
flow through the wing (u · n = 0). Expanding

u = (1, 0) + ε∇φ

gives
∇2φ = 0,

with φ → 0 at infinity. Since the normal to the wing is (−εg′, 1) the boundary condition on the
wing gives

0 = u · n = (1, 0) · (−εg′, 1) + ε(φx(x, εg), φy(x, εg)) · (−εg′, 1) = −εg′ + εφy(x, 0) + O(ε2).

At leading order,
φy(x,±0) = g′

±(x).

∇2Φ = 0

Φ → x as x2 + y2 → ∞.

y = εg+(x)

y = εg−(x)

∂Φ
∂n

= 0

∇2φ = 0

φ → 0 as x2 + y2 → ∞.

∂φ
∂y

= g′
+(x)

∂φ
∂y

= g′
−(x)

Thus at leading order the wing is replaced by boundary conditions on y = ±0, 0 < x < c. A
symmetric aerofoil has g+ = −g− (easy problem). A zero-thickness aerofoil has g+ = g− (difficult,
requiring w̃).

g+ = −g− g+ = g−

We want Im(w) = ∂φ/∂y so that there is a jump in Im(w) across y = 0, 0 < x < c. Thus
w = i(φy + iψy) = −ψy + iφy = −φx + iψy = −u + iv. We know that

w̃ = (z − c)n+1/2zm−1/2
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(a) (b)

Figure 4.6: Flow past a thin aerofoil. (a) The problem for the velocity potential Φ(x, y).
(b) The linearised problem for the disturbance potential φ(x, y).

4.5 Example: Aerodynamics of a thin aerofoil

Here the physical model is the flow of a uniform stream of ideal fluid past a thin aerofoil with
a sharp trailing edge and a small angle of attack, as illustrated in Figure 4.6(a). We denote
the boundary of the aerofoil by y = εg±(x) for 0 < x < c, where g−(x) ≤ g+(x) and ε� 1. If
Φ(x, y) is the velocity potential, then:

• ∇2Φ = 0 in the fluid surrounding the aerofoil;

• the no-flux boundary condition states that ∂Φ/∂n = 0 on the boundary of the aerofoil;

• there is an inverse square root singularity in the velocity at the leading edge, so that
|∇Φ| = O

(
r−1/2

)
as r =

√
x2 + y2 → 0;

• the Kutta condition states that the velocity ∇Φ must be finite at the sharp trailing
edge;

• the velocity is uniform at infinity, so that ∇Φ ∼ (1, 0) +O
(
r−1
)

as r →∞.

In the limit of a thin aerofoil, ε → 0 and we can expand about the uniform flow, setting
Φ(x, y) ∼ x + εφ(x, y). Since the outward normal to the upper surface of the aerofoil is
proportional to (−εg′+, 1), the no-flux boundary condition on the upper surface implies

0 = (−εg′+, 1) · ∇Φ on y = εg+(x)

= (−εg′+, 1) ·
(
1 + εφx(x, εg+), φy(x, εg+)

)

∼ −εg′+ + εφy(x, 0) +O(ε2) (4.44)

as ε→ 0. A similar expansion holds for the no-flux boundary condition on the lower surface.
Thus the boundary conditions which were originally imposed on the surface of the aerofoil
may be linearised down onto the x-axis when ε is small.

The leading-order problem for the disturbance potential φ(x, y) is:

• ∇2φ = 0 except on the line segment {(x, y) : 0 ≤ x ≤ c, y = 0};

• ∂φ

∂y
= g′±(x) on 0 < x < c, y = 0±;
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• |∇φ| = O
(
r−1/2

)
as r → 0;

• ∇φ is finite as (x, y)→ (c, 0);

• |∇φ| = O
(
r−1
)

as r →∞.

We translate this into a Plemelj type problem by defining

w(z) = −
(
φx(x, y)− iφy(x, y)

)
(4.45)

(the unconventional minus sign is taken for convenience). Then w(z) has the properties

• w(z) is holomorphic on C \ Γ;

• Imw±(x) = g′±(x) on Γ = {x+ iy : 0 < x < c, y = 0};

• w(z) = O(z−1/2) as z → 0 and w(z) = O(1) as z → c;

• w(z) = O
(
z−1
)

as z →∞.

fracture aerofoil

z → 0 w(z) = O
(
z−1/2

)
w(z) = O

(
z−1/2

)

z → c w(z) = O
(
(z − c)−1/2

)
w(z) = O (1)

z →∞ w(z) = O
(
z−2
)

w(z) = O
(
z−1
)

Table 1: Comparison between the prescribed behaviours of w(z) in the fracture and aerofoil
problems.

Remark: In Table 1 we summarise the conditions specified for w(z) at z = 0, z = c and as
z →∞ in the fracture and aerofoil problems. Compared with the fracture problem, we have
now strengthened the condition at z = c but weakened the condition at infinity.

For a symmetric aerofoil, g+(x) = −g−(x), so that g′+(x) = −g′−(x) and we must solve
an easy problem as in Problem 2.1. A zero-thickness aerofoil has g+(x) = g−(x), as shown in
Figure 4.7, so that g′+(x) = g′−(x) and we must solve a harder problem as in Problem 2.2.

Lecture 12

Example: Aerodynamics

Here the physical model is a thin wing y = εg±(x), ε ! 1. The model is inviscid,
irrotational (⇒ u = ∇Φ), incompressible (⇒ ∇ · u = 0), flow, giving

∇2Φ = 0.

The boundary conditions are a uniform stream at infinity (u → (1, 0) as x2 + y2 → ∞), and
no flow through the wing (u · n = 0). Expanding

u = (1, 0) + ε∇φ

gives
∇2φ = 0,

with φ → 0 at infinity. Since the normal to the wing is (−εg′, 1) the boundary condition on
the wing gives

0 = u · n = (1, 0) · (−εg′, 1) + ε(φx(x, εg), φy(x, εg)) · (−εg′, 1) = −εg′ + εφy(x, 0) + O(ε2).

At leading order,
φy(x,±0) = g′

±(x).

∇2Φ = 0

Φ → x as x2 + y2 → ∞.

y = εg+(x)

y = εg−(x)

∂Φ
∂n

= 0

∇2φ = 0

φ → 0 as x2 + y2 → ∞.

∂φ
∂y

= g+(x)

∂φ
∂y

= g−(x)

Thus at leading order the wing is replaced by boundary conditions on y = ±0, 0 < x < c.
A symmetric aerofoil has g+ = −g− (easy problem). A zero-thickness aerofoil has g+ = g−
(difficult, requiring w̃).

g+ = −g− g+ = g−

We want Im(w) = ∂φ/∂y so that there is a jump in Im(w) across y = 0, 0 < x < c. Thus
w = i(φy + iψy) = −ψy + iφy = −φx + iψy = −u + iv. We know that

w̃ = (z − c)n+1/2zm−1/2

13

Figure 4.7: Schematic of a symmetric aerofoil (left); a zero-thickness aerofoil (right).

In the latter case, we let g′+(x) = g′−(x) = g(x) and again choose w̃(z) = z−1/2(c− z)−1/2,
so that we can use the same solution (4.39) as for the crack problem. As in the crack
problem, H(z) can only have isolated singularities at the endpoints of Γ and is therefore
entire. However, now the weaker condition w = O(z−1) as z →∞ implies that H(z) = O(1)
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as z → ∞, so H(z) is constant by Liouville’s theorem (in contrast to the crack problem).
Finally, we ensure that w is finite as the trailing edge z = c by setting

H(z) = H(c) = − 1

π

∫ c

0

g(ξ)ξ1/2(c− ξ)1/2

ξ − z dξ

∣∣∣∣∣
z=c

, (4.46)

giving

w(z) =
1

πz1/2(c− z)1/2

∫ c

0
g(ξ)ξ1/2(c− ξ)1/2

(
1

ξ − z −
1

ξ − c

)
dξ

=
(c− z)1/2

πz1/2

∫ c

0

g(ξ)ξ1/2

(c− ξ)1/2(ξ − z) dξ. (4.47)

It is an exercise in perturbation methods to verify that the solution (4.47) satisfies
w(z) = O(1) as z → c. Equation (4.47) could have been obtained more directly by choosing
w̃(z) = (c− z)1/2/z1/2, thereby incorporating the specified behaviour of w(z) near the end
points.

4.6 General Hilbert problem

We have seen that when w+−w− is given on Γ we can solve immediately for f and therefore
for w. When w+ + w− is given on Γ, we find a singular integral equation for f , but we can
find w (and f) by introducing w̃ such that w̃+ = −w̃− 6= 0 on Γ. What about more general
relations between w+ and w− on Γ?

The general so-called Hilbert problem is

a(z)w+(z) + b(z)w−(z) = c(z) on Γ, (4.48)

with a, b 6= 0 and c prescribed on Γ. Suppose we can find w̃(z) holomorphic and non-zero
away from Γ, with

a(z)w̃+(z) = −b(z)w̃−(z) 6= 0 on Γ. (4.49)

Then W (z) = w(z)/w̃(z) satisfies

W+(z)−W−(z) =
w+(z)

w̃+(z)
− w−(z)

w̃−(z)

=
w+(z)

w̃+(z)
− w−(z)

−a(z)w̃+(z)/b(z)

=
a(z)w+(z) + b(z)w−(z)

a(z)w̃+(z)

=
c(z)

a(z)w̃+(z)
on Γ, (4.50)

giving

W (z) =
1

2πi

∫

Γ

c(ζ)

a(ζ)w̃+(ζ)(ζ − z) dζ +H(z), (4.51)

where H(z) is an arbitrary function of z that is holomorphic away from the endpoints of Γ.
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To solve for w̃(z) we again take logs. Since w̃+(z)/w̃−(z) = −b(z)/a(z), we get

log w̃+(z)− log w̃−(z) = log

(
− b(z)
a(z)

)
on Γ. (4.52)

We can therefore use the Plemelj formulae as before to solve for w̃(z) and hence find w(z).
The general linear Cauchy singular integral equation for f :

a(z)f(z) + b(z)

∫

Γ

f(ζ) dζ

ζ − z = c(z), (4.53)

can be rewritten as a Hilbert problem for

w(z) =
1

2πi

∫

Γ

f(z)

ζ − zdζ,

using the Plemelj formulae, and hence solved by following the above strategy.
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5 Complex Fourier Transforms

5.1 Introduction

Below we summarise the main properties of the standard Fourier transform. One of the main
restrictions on the Fourier transform is that it only applies to functions which decay suffi-
ciently rapidly at infinity. Here we will show how this restriction may be lifted by extending
the concept of the Fourier transform into the complex plane. We will then show how this
generalised Fourier transform may be used to solve some linear differential equations.

Basic properties of the Fourier transform

Given an integrable function f(x), we define the Fourier transform of f by

F [f(x)] = f̄(k) =

∫ ∞

−∞
f(x)eikx dx. (5.1)

Given the transform f̄(k), then we can recover f(x) using the inverse Fourier transform:

1

2

(
f(x−) + f(x+)

)
= F−1

[
f̄(k)

]
=

1

2π
−
∫ ∞

−∞
f̄(k)e−ikx dk, (5.2)

where the prinicipal value integral is defined by

−
∫ ∞

−∞
= lim

R→∞

∫ R

−R
. (5.3)

If f(x) is continuous, then the left-hand side of equation (5.2) is just f(x). Moreover, the
integrand on the right-hand side of equation (5.2) is integrable and the dash may be removed
from the integral sign.

We will just list without proof some useful properties of the Fourier transform, assuming
the required integrability where necessary. First, the Fourier transform of a derivative
is given by

F
[
f ′(x)

]
= −ikf̄(k), (5.4)

which is easily shown using integration by parts. Differentiation under the integral sign in
(5.1) gives the derivative of a Fourier transform, namely

df̄(k)

dk
= iF [xf(x)]. (5.5)

Equation (5.4) shows that F will turn a linear differential equation for f(x) into a linear
algebraic equation for f̄(k). Once we have solved for f̄(k), in principle we can recover f(x)
from the inversion formula (5.2), typically using contour integration in the complex k-plane.
In practice this is rarely necessary: one can look up very many Fourier transforms that often
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arise, and the following is also useful. The inverse Fourier transform of a product is
given by

F−1
[
f̄(k)ḡ(k)

]
= (f ? g)(x), (5.6)

where f ? g denotes the convolution of f and g, defined by

(f ? g)(x) =

∫ ∞

−∞
f(s)g(x− s) ds. (5.7)

Example: solving Laplace’s equation by Fourier transform. Find u(x, y) that satis-
fies Laplace’s equation in the half-space y > 0, with the boundary condition u(x, 0) = u0(x)
on y = 0, and such that u(x, y) is bounded as x2 + y2 →∞.

Solution. We take the Fourier transform in x, i.e.

ū(k, y) =

∫ ∞

−∞
u(x, y)eikx dx. (5.8)

The whole problem is transformed as follows:

∇2u =
∂2u

∂x2
+
∂2u

∂y2
= 0 ⇒ ∂2ū

∂y2
− k2ū = 0, (5.9a)

u = u0(x) at y = 0 ⇒ ū = ū0(k) at y = 0, (5.9b)

u bounded as x2 + y2 →∞ ⇒ ū bounded as y →∞, (5.9c)

where ū0(k) is the Fourier transform of u0(x).
The general solution of (5.9a) is

ū(k, y) = A(k)eky +B(k)e−ky, (5.10)

where A and B are arbitrary integration functions. We need to make sure that ū is bounded
as y →∞. Which of the two exponentials in (5.11) should be kept depends on k: if k > 0 then
A must be zero, while if k < 0 then B must be zero. Both of these cases may be encompassed
by setting

ū(k, y) = C(k)e−|k|y, (5.11)

so that the decaying exponential is selected regardless of the sign of k. Finally we apply the
boundary condition (5.9b) to get

ū(k, y) = ū0(k)e−|k|y. (5.12)

This shows how the Fourier transform converts a PDE for u to an ODE for ū which is then
easily solved. However, it remains to invert (5.12) to find u. Here we can use the convolution
theorem (5.6) to get

u(x, y) = u0(x) ? g(x, y) =

∫ ∞

−∞
u0(s)g(x− s, y) ds, (5.13)

where

g(x, y) = F−1
[
e−|k|y

]
=

1

2π

∫ ∞

−∞
e−|k|y−ikx dk =

y

π (x2 + y2)
. (5.14)

Thus we obtain the general solution

u(x, y) =
y

π

∫ ∞

−∞

u0(s)

(x− s)2 + y2
ds. (5.15)
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5.2 Complex Fourier transform

Our aim is to generalise the Fourier transform to a wider class of functions by allowing k
to take complex values. For simplicity we will assume that f(x) is continuous, although
this assumption can be relaxed relatively easily. We also assume that f grows at most
exponentially at infinity, that is f(x) = O

(
ec|x|

)
as x → ±∞ for some constant c > 0; this

rules out f(x) = ex
2
, for example.

To investigate the convergence of the Fourier integral (5.1) as x→ ±∞, we split up f(x)
by writing

f(x) = f+(x) + f−(x), (5.16)

where

f+(x) = 0 for x < 0, f−(x) = 0 for x > 0. (5.17)

From the definition of the Fourier transform,

f̄+(k) =

∫ ∞

0
f+(x)eikx dx =

∫ ∞

0
f+(x)ei Re(k)xe− Im(k)x dx, (5.18)

we see that ∣∣f̄+(k)
∣∣ ≤

∫ ∞

0
|f(x)|e− Im(k)x dx, (5.19)

and the integral converges provided Im k > c. Thus f̄+(k) exists and is holomorphic for
Im k > c, since its derivative

df̄+

dk
= iF [xf+(x)] = i

∫ ∞

0
xf+(x)eikx dx (5.20)

likewise exists for Im k > c.
Next we need to extend the Fourier inversion theorem to recover f+(x) from f̄+(k). To

this end, let F+(x) = e−αxf+(x), where α > c, so that F̄+(k) = f̄+(k + iα) exists and is
holomorphic for Im k > c − α, in particular for k ∈ R, since α > c. Thus we can apply the
Fourier Inversion Theorem (5.2), which gives

F+(x) =
1

2π
−
∫ ∞

−∞
F̄+(k)e−ikx dk (5.21a)

⇒ e−αxf+(x) =
1

2π
−
∫ ∞

−∞
f̄+(k + iα)e−ikxdk (5.21b)

⇒ f+(x) =
1

2π
−
∫ ∞

−∞
f̄+(k + iα)e−i(k+iα)xdk. (5.21c)

The final integral corresponds to integration along a horizontal contour in the complex k-
plane, i.e.

f+(x) =
1

2π
−
∫ ∞+iα

−∞+iα
f̄+(k)e−ikx dk, (5.22)

where the integration contour is as shown in Figure 5.1.
Suppose f̄+(k) can be continued below Im k = c, so that it is holomorphic in some region

Ω+ ⊃ {k : Im k > c} except for singularities at k = a1, a2, · · · . By the deformation theorem,
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Figure 5.1: Inversion contour for complex Fourier transform f̄+(k), where f+(x) = O (ecx) as
x→∞.

the inversion contour Γ+ = {x + iα : −∞ < x < ∞} may be deformed into Ω+ provided it
passes above all the singularities of f̄+, as shown in Figure 5.2(a). Since the singularities of
f̄+(k) are below the inversion contour, for x < 0 we can close the inversion contour at +i∞,
as shown in Figure 5.2(b). This gives the expected result that f+(x) = 0 for x < 0. For
x > 0, we would need to close the contour in Im k < 0, picking up the contributions from the
singularities in f̄+(k) and giving a nonzero value of f+(x).

(a) (b)

Figure 5.2: (a) An inversion contour that passes above the singularities (?) in f̄+(k). (b)
Closing the contour at infinity when x < 0.

The same procedure works for f−(x) with everything upside down: f̄−(k) exists and
is holomorphic for Im k < −c, while an application of the Fourier Inversion Theorem to
F−(x) = eβxf−(x) gives

f−(x) =
1

2π
−
∫ ∞−iβ

−∞−iβ
f̄−(k)e−ikx dk (5.23)

provided −β < −c. Suppose f̄−(k) can be continued above Im k = −c, so that it is holomor-
phic in some region Ω− ⊃ {k : Im k < −c} except for singularities at k = b1, b2, · · · . By the
deformation theorem, the inversion contour Γ− = {x− iβ : −∞ < x <∞} may be deformed
into Ω− provided it passes underneath the singularities bj of f̄−.

If there is a non-empty overlap region Ω = Ω+ ∩ Ω− \ ({aj} ∪ {bj}), then the Fourier
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Similarly for f̄−(k) we must choose an inversion contour with Im(k) sufficiently large and

negative to pass underneath the singularities of f̄−(k).
If the singularities of f̄±(k) are labelled + and − respectively, the inversion contour must

be of the form:

Re(k)

Im(k)

4

Figure 5.3: An inversion contour that passes above the singularities (⊕) in f̄+(k) and below
the singularities (	) in f̄−(k).

transform of f is defined by
f̄(k) = f̄+(k) + f̄−(k) (5.24)

for k ∈ Ω. Moreover, if Γ+ and Γ− can be deformed into the same contour Γ ⊂ Ω, with Γ
above the singularities of f̄+(k) and below the singularities of f̄−(k), as illustrated in figure
5.3, then

f(x) =
1

2π
−
∫

Γ
f̄(k)e−ikx dk. (5.25)

Note that we need Γ to extend from Re k = −∞ to Re k = +∞ and {aj} ∩ {bj} to be empty,
i.e. no singularities are shared by f̄+(k) and f̄−(k).

Example. Fourier transform of the Heaviside function The Heaviside function

H(x) =

{
0 x < 0,

1 x > 0,
(5.26)

has Fourier transform

H̄(k) =

∫ ∞

0
eikx dx =

[
eikx

ik

]∞

0

=
i

k
(5.27)

provided Im k > 0. We can analytically continue H̄(k) into C\{0} because i/k is holomorphic
except for a simple pole at k = 0. When we invert, the inversion contour must pass above the
pole at k = 0:

H(x) =
i

2π

∫ ∞+iα

−∞+iα

e−ikx

k
dk, where α > 0. (5.28)

If x < 0 we can close the contour in the upper half plane to find by Cauchy’s Theorem that
H(x) = 0 for x < 0. For x > 0 we need to close the contour in the lower half plane, and we
pick up a residue contribution from the pole at the origin (note the minus sign since we are
integrating clockwise round the pole) to find

H(x) = −2πi×
(

i

2π

)
= 1 for x > 0. (5.29)

The inversion contours for x > 0 and x < 0 are illustrated in Figure 5.4.
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Example:

We have seen that

H̄(k) =

∫ ∞

0
eikx dx =

[
eikx

ik

]∞

0

= − 1

ik
providing Im(k) > 0.

Thus when we invert the inversion contour must have Im(k) > 0:

H(x) = − 1

2πi

∫ ∞+iα

−∞+iα

e−ikx

k
dk.

Now, if x < 0 we can close the contour in the upper half plane to find by Cauchy’s Theorem
that H(x) = 0 for x < 0. For x > 0 we need to close the contour in the lower half plane, and
we pick up a residue contribution from the pole at the origin [note the minus sign since we
are integrating clockwise round the pole] to find

H(x) = −2πi ×
(

− 1

2πi

)
= 1 for x > 0.

Re(k)

Im(k)

In fact, you have seen this idea before:

Laplace transforms

When we set k = ip (p complex), f̄+(k) = f̂+(p) we get

f+(x) =
1

2πi

∫ α+i∞

α−i∞
f̂+(p)epx dd

where

f̂+(p) =

∫ ∞

0
f+(x)e−px dx,

which is just the Laplace transform and inversion formula. Now α must be sufficiently large
that the inversion contour lies to the right of any singularities of f̂(p).

So Laplace transforms are just a special case of Fourier Transforms if you allow complex
k.

5

Figure 5.4: The inversion contours for the Heaviside function. For x < 0 we close in the upper
half-plane; for x > 0 we close in the lower half-plane, picking up the residue from the pole at
k = 0.

The Laplace transform

If we set k = ip (with p complex) and f̄+(k) = f̂+(p), then the Fourier transform (5.18) takes
the form

f̄+(k) = f̂+(p) =

∫ ∞

0
f+(x)e−px dx, (5.30)

while the inversion formula (5.22) is transformed to

f+(x) =
1

2πi

∫ α+i∞

α−i∞
f̂+(p)epx dp. (5.31)

Equation (5.30) defines the Laplace transform of a function f+(x) : [0,∞) 7→ R such that
f+(x) = O (ecx) as x→∞. Equation (5.31) is the Laplace transform inversion formula, where
now α must be sufficiently large that the inversion contour lies to the right of any singularities
of f̂(p), as illustrated in Figure 5.5. So we see that the Laplace transform is just a special
case of the Fourier Transform if we allow complex values of k.

5.3 Complex Fourier transform with multifunctions

Example. Find a function u(x, y) which satisfies Laplace’s equation in the upper half-plane
y > 0, which is bounded as x2 + y2 → ∞ and which is equal to the Heaviside function on
y = 0, that is u(x, 0) = H(x).

Solution. As we will see, it is straightforward to spot the appropriate harmonic function
u(x, y), but the aim of this example is to illustrate the solution procedure using the complex
Fourier transform. The Fourier transform of u(x, y) satisfies the problem

∂2ū

∂y2
− k2ū = 0 in y > 0, (5.32a)

ū = H̄(k) =
i

k
at y = 0, (5.32b)

|ū| <∞ as x2 + y2 →∞. (5.32c)
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Re(p)

Im(p)

α − i∞

α + i∞

Lecture 10

Integral solutions of differential equations

Consider the differential equation
dy

dx
= xy.

Suppose we represent the solution as an integral

y(x) =

∫

Γ
g(ζ)exζ dζ

around some contour Γ. Then

dy

dx
= xy ⇔

∫

Γ
ζg(ζ)exζ dζ =

∫

Γ
xg(ζ)exζ dζ

=

∫

Γ

d

dζ

(
g(ζ)exζ

)
− g′(ζ)exζ dη

=
[
g(ζ)exζ

]
Γ

−
∫

Γ
g′(ζ)exζ dη.

Thus we will have a solution to the equation if

g′ = −ζg

and the change in gexζ around Γ is zero. This gives

g = Ce−ζ2/2,

6

Figure 5.5: The Laplace transform inversion contour passes to the right of all singularities
in f̂+(p).

We recall that the Fourier transform H̄(k) is defined for Im k > 0 and can be analytically
extended onto C \ {0}.

As we found in equation (5.11), the general solution to (5.32a) which does not grow
exponentially as y →∞ is C(k)e−|k|y if k is real. When k ∈ C, this approach does not work,
since |k| is not a holomorphic function of k so that none of the tools of complex analysis (e.g.
Cauchy’s theorems) can be used for the Fourier inversion.

To avoid this difficulty, we approximate k by a function that is holomorphic in a neigh-
bourhood of the real k-axis, namely

|k| ≈ |k|ε =
(
k2 + ε2

)1/2
, (5.33)

where 0 < ε � 1. The branch of this multifunction is chosen such that the branch cuts are
along the imaginary k-axis on the intervals i(−∞,−ε] and i[ε,∞), as shown in Figure 5.6, and(
k2 + ε2

)1/2
=
√
k2 + ε2 > 0 when k is real. Then |k|ε defines a function that is holomorphic

on the cut complex plane, and |k|ε → |k| as ε→ 0 when k is real.
Using this approximation, we write the solution for ū as

ū(k, y) =
i

k
e−y(k

2+ε2)
1/2

. (5.34)

Note that the solution (5.34) corresponds to solving the modified Helmholtz equation

∇2u = ε2u (5.35)

instead of Laplace’s equation. The idea now is to invert (using contour integration) to find
u(x, y), and then let ε→ 0. The inversion formula (5.22) gives

u(x, y) =
i

2π

∫

Γ
e−y(k

2+ε2)
1/2−ikx dk

k
, (5.36)

where the inversion contour Γ passes between the pole at k = 0 and the branch point at k = ε,
as shown in Figure 5.6. Now the contour used to evaluate u(x, y) depends on the sign of x.

If x is negative, then to ensure that the exponential in (5.36) decays at infinity, we close
the integration contour in the upper half-plane, as illustrated in Figure 5.7(a). This results
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ϵ

-ϵ

Γ

��(�)

��(�)

Figure 5.6: Inversion contour for (5.36) passing between the pole at k = 0 and the branch

point at k = iε. The branch cuts for the multifunction
(
k2 + ε2

)1/2
are on the intervals

(−i∞,−iε] and [iε, i∞) along the imaginary k-axis.

in two integrals along either side of the branch cut, which may be parameterised using k = it

with t ∈ (ε,∞) and
(
k2 + ε2

)1/2
= ±i

√
t2 − ε2 on k = it±0. The resulting integrals may then

be combined to give

u(x, y) =
1

π

∫ ∞

ε
sin
(
y
√
t2 − ε2

)
etx

dt

t
for x < 0. (5.37)

Letting ε→ 0, we find

u(x, y) =
1

π

∫ ∞

0
sin (yt) etx

dt

t
=

1

π

∫ ∞

0
sin (r sinα) e−r cosα dr

r
for x < 0, (5.38)

where sinα = y/
√
x2 + y2 and cosα = −x/

√
x2 + y2. By applying Cauchy’s Theorem to the

function e−z/z on the closed contour sketched in Figure 5.8, we obtain

lim
ε→0

{∫ ∞

ε

e−x dx

x
−
∫ ∞

ε
e−r cosα

[
cos(r sinα)− i sin(r sinα)

] dr

r
− iα

}
= 0, (5.39)

and the imaginary part gives
∫ ∞

0
e−r cosα sin(r sinα)

dr

r
= α. (5.40)

Therefore the integral in (5.38) may be evaluated to give the solution

u(x, y) =
1

π
tan−1

(
y

−x

)
for x < 0. (5.41)
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(a) (b)

Figure 5.7: Inversion contours for (5.36). (a) If x < 0 the contour is closed in the upper
half-plane. (b) If x > 0 the contour is closed in the lower half-plane, picking up the residue
from the pole at k = 0.

If x is positive, then we evaluate (5.36) by closing the integration contour in the lower
half-plane, as illustrated in Figure 5.7(b). This time we get two integrals along either side
of the branch cut on the negative imaginary k-axis, as well as the residue from the pole at
k = 0, resulting in

u(x, y) = 1− 1

π

∫ ∞

0
sin (yt) e−xt

dt

t
= 1− 1

π
tan−1

(y
x

)
for x > 0. (5.42)

Finally, combining the solutions (5.41) and (5.42) in x < 0 and x > 0, we see that the
solution is simply

u(x, y) = 1− θ

π
, (5.43)

where θ is the usual polar angle. As pointed out earlier, we might have spotted this simple
solution of Laplace’s equation straight away, either by using polar coordinates or by writing
it as 1− 1/π Im(log z).

5.4 Integral solutions of differential equations

Now we show how a class of linear ordinary differential equations may be solved by a gen-
eralised complex Fourier transform. We illustrate the general method using the simple first-
order differential equation

dy

dx
= xy. (5.44)

Our aim is to represent the solution as a generalised Fourier integral

y(x) =

∫

Γ
g(ζ)exζ dζ, (5.45)
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Figure 5.8: Closed contour for the integral of e−z/z.

where both the function g(ζ) and the integration contour Γ are to be determined.

By differentiating under the integral sign and then integrating by parts, we get

0 =
dy

dx
− xy

=

∫

Γ

(
ζg(ζ)− xg(ζ)

)
exζ dζ

=
[
−g(ζ)exζ

]
Γ

+

∫

Γ

(
ζg(ζ) + g′(ζ)

)
exζ dζ. (5.46)

We require this equation to be satisfied for all x, and also the integration contour Γ to be
independent of x. It follows that we will have a solution to the differential equation (5.44)
only if

g′(ζ) = −ζg(ζ) (5.47)

and the change in g(ζ)exζ around Γ is zero. Integration of (5.47) gives

g(ζ) = Ce−ζ
2/2, (5.48)

for some constant C, and hence

y(x) = C

∫

Γ
exζ−ζ

2/2 dζ. (5.49)

For the integral to exist, we need the integrand to decay as |ζ| → ∞, which is true provided
Re
[
ζ2
]
> 0, which occurs in two sectors −π/4 < arg ζ < π/4 and 3π/4 < arg ζ < 5π/4. Thus

the contour Γ must start and end in one of these “valleys”. If Γ starts and ends in the same
valley the integral (5.49) evaluates to zero by Cauchy’s Theorem. Thus there is just one
independent solution, corresponding to a contour Γ which starts in one valley and ends in
the other, as shown in Figure 5.9. For example, we can simply take Γ along the real axis to
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Figure 5.9: A possible integration contour Γ for equation (5.49).

obtain

y(x) = C

∫ ∞

−∞
exξ−ζ

2/2 dξ = Cex
2/2

∫ ∞

−∞
e−(x−ξ)2/2 dξ = C

√
2π ex

2/2. (5.50)

Of course we could easily have found the solution (5.50) directly from the first-order ODE
(5.44). The method becomes more useful when applied to higher-order ODEs which are not
directly solvable in terms of elementary functions. For example, consider Airy’s equation

d2y

dx2
+ xy = 0. (5.51)

We again seek a solution for y(x) in the form of the generalised Fourier integral (5.45), and
again differentiate under the integral and integrate by parts, this time arriving at

[
g(ζ)exζ

]
Γ

+

∫

Γ

(
ζ2g(ζ)− g′(ζ)

)
exζ dη = 0. (5.52)

Hence, Airy’s equation (5.51) is satisfied only if

g′(ζ) = ζ2g(ζ) and
[
g(ζ)exζ

]
Γ

= 0. (5.53)

Thus, g(ζ) = Ceζ
3/3, where C is an arbitrary constant, and

y(x) = C

∫

Γ
exζ+ζ

3/3 dζ. (5.54)

Now the integrand decays at infinity in three sectors: either π/6 < arg ζ < π/2, or
5π/6 < arg ζ < 7π/6, or −π/2 < arg ζ < −π/6. Therefore, the integration contour Γ should
start and end as ζ → ∞ in one of these sectors. Since the integrand in (5.54) is entire, the
integral will be nonzero only if Γ begins and ends in two different sectors. Therefore there are
three possibilities for Γ, as shown in Figure 5.10, leading to three distinct solutions for y(x).
However, by contour deformation we can write

∫

Γ1

exζ+ζ
3/3 dζ +

∫

Γ2

exζ+ζ
3/3 dζ =

∫

Γ3

exζ+ζ
3/3 dζ, (5.55)

so there are only two independent solutions, as expected for the second-order linear ODE
(5.51).
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Figure 5.10: Three integration contours for Airy’s equation.

This method is equivalent to formally taking a Fourier transform of the equation, and then
choosing an inversion contour so that the resulting solution exists. Note that if there was a
coefficient of x2 in the ODE, then integration by parts would lead to a second-order ODE for
g(ζ), which might be just as hard to solve as the original ODE for y(x). The coefficient of x
in the Airy equation (5.51) produced a first-order ODE (5.53) for g(ζ) and thus apparently a
single integral solution (5.54). However, the freedom in the choice of the integration contour
Γ gave us the required two independent solutions.
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6 The Wiener-Hopf method

6.1 Example: an ODE problem

We will first illustrate the ideas underlying the Wiener–Hopf method by using it to solve a
simple ODE problem, before moving onto more complicated integral equations and mixed-
boundary-value problems. Suppose the complex-valued function y(x) satisfies

d2y

dx2
+ b2y = 0 for x < 0,

d2y

dx2
+ a2y = 0 for x > 0, (6.1a)

with

y(0+)− y(0−) = 0,
dy

dx
(0+)− dy

dx
(0−) = 1, (6.1b)

and y(x) → 0 as |x| → ∞, where a, b ∈ C with a 6= b and Im a > 0 and Im b > 0. The
problem (6.1) may readily be solved via elementary methods; here we will show how to
obtain the solution by taking a complex Fourier transform and using analytic continuation.

We begin by assuming that y(x) = O (eαx) as x→∞ and y(x) = O
(
eβx
)

as x→ −∞ for
some real constants α < β whose existence we shall need to verify a posteriori (once we have
found the solution). We then define the half-range functions

y+(x) =

{
0 x < 0,

y(x) x > 0,
y−(x) =

{
y(x) x < 0,

0 x > 0,
(6.2)

so that

ȳ+(k) =

∫ ∞

0
y(x)eikx dx (6.3)

is holomorphic in Im k > α, and

ȳ−(k) =

∫ 0

−∞
y(x)eikx dx (6.4)

is holomorphic in Im k < β.
Integration by parts gives

0 =

∫ ∞

0

(
y′′(x) + a2y(x)

)
eikx dx

= −y′(0+) + iky(0+) +
(
a2 − k2

)
ȳ+(k), (6.5)

provided ȳ+(k) exists and (y′(x)− iky(x))eikx → 0 as x→∞, which is the case for Im k > α.
Similarly,

0 = y′(0−)− iky(0−) + (b2 − k2)ȳ−(k) (6.6)
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provided Im k < β. Using the jump conditions (6.1b) at x = 0 to eliminate the unknowns
y(0±) and y′(0±) gives

(
k2 − a2

)
ȳ+(k) +

(
k2 − b2

)
ȳ−(k) = −1, (6.7)

for α < Im k < β. This is just one equation relating the two unknown functions ȳ−(k)
and ȳ+(k). However, remarkably there is enough auxiliary information to determine both
functions, using the Wiener–Hopf method.

Provided k 6= a and k 6= −b, we can divide (6.7) through by (k − a)(k + b) and rearrange
to obtain

(
k + a

k + b

)
ȳ+(k) +

(
k − b
k − a

)
ȳ−(k) = − 1

(k − a)(k + b)
=

1

a+ b

(
1

k + b
− 1

k − a

)
(6.8)

so that

(
k + a

k + b

)
ȳ+(k)− 1

(a+ b)(k + b)
= −

(
k − b
k − a

)
ȳ−(k)− 1

(a+ b)(k − a)
. (6.9)

The left-hand side of (6.9) is holomorphic in Im k > α1 = max(α,− Im b), while the right-
hand side is holomorphic in Im k < β1 = min(β, Im a). Since α < β, by assumption, and
− Im b < 0 < Im a, it follows that α1 < β1 so that these half-planes intersect in the overlap
strip α1 < Im k < β1. Hence, the left- and right-hand sides of (6.9) are equal on a dense set
of points, and therefore the right-hand side is the analytic continuation of the left-hand side
into the lower half-plane, so together they define an entire function, E(k), that is

(
k + a

k + b

)
ȳ+(k)− 1

(a+ b)(k + b)
= −

(
k − b
k − a

)
ȳ−(k)− 1

(a+ b)(k − a)
= E(k). (6.10)

Since ȳ+(k) → 0 as k → ∞ in Im k > α1 and ȳ−(k) → 0 as k → ∞ in Im k < β1, we
deduce that E(k)→ 0 as k →∞ and hence by Liouville’s theorem, E(k) ≡ 0. Thus we obtain
unique solutions for both functions ȳ±(k), namely

ȳ+(k) =
1

(a+ b)(k + a)
, ȳ−(k) = − 1

(a+ b)(k − b) , (6.11)

which may easily be inverted, recalling that the inversion contour must pass above the pole
k = −a in y+(k) and below the pole k = b in y−(k).

Thus we obtain the solution

y(x) =





e−ibx

i(a+ b)
x < 0,

eiax

i(a+ b)
x > 0,

(6.12)

and we can confirm a posteriori our initial assumptions: y(x) = O (eαx) as x → ∞ and
y(x) = O

(
eβx
)

as x→ −∞, where α = − Im a and β = Im b, so that α < β, as required.
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6.2 The Wiener-Hopf method

The canonical Wiener–Hopf problem is to find functions ū+(k) holomorphic in Im k > α and
v̄−(k) holomorphic in Im k < β such that

F (k)ū+(k) + v̄−(k) = G(k) on Ω = {k ∈ C : α < Im k < β}, (6.13)

where F (k), G(k) are prescribed holomorphic functions and F (k) 6= 0 on Ω. Here, as in the
example from §6.1, we use the subscript + to indicate a function that is holomorphic on some
upper half-plane, and − to indicate a function holomorphic on a lower half-plane.

The general Wiener–Hopf method for solving this problem is as follows.

1. Product decomposition of F (k)
Find M+(k) holomorphic in Im k > α1 and N−(k) holomorphic in Im k < β1 such that
α ≤ α1 < β1 ≤ β and

F (k) =
M+(k)

N−(k)
on Ω1 = {k ∈ C : α1 < Im k < β1} ⊆ Ω. (6.14)

We can assume that M+(k) 6= 0 and N−(k) 6= 0 on Ω1 by cancelling common factors.
If we can find such functions M+(k) and N−(k), then we can transform (6.13) to

M+(k)ū+(k) +N−(k)v̄−(k) = N−(k)G(k) on Ω1. (6.15)

2. Sum decomposition of N−(k)G(k)
Find P+(k) holomorphic in Im k > α2 and Q−(k) holomorphic in Im k < β2 such that
α1 ≤ α2 < β2 ≤ β1 and

N−(k)G(k) = P+(k) +Q−(k) on Ω2 = {k ∈ C : α2 < Im k < β2} ⊆ Ω1. (6.16)

Given the functions P+(k) and Q−(k), we can then transform (6.15) to

M+(k)ū+(k) +N−(k)v̄−(k) = P+(k) +Q−(k) on Ω2. (6.17)

3. Analytic continuation
Define

E(k) = M+(k)ū+(k)− P+(k) = Q−(k)−N−(k)v̄−(k) on Ω2. (6.18)

Since the two expressions for E(k) are equal on a dense set of points Ω2, we can combine
them to analytically continue E(k) outside Ω2 as follows:

E(k) =

{
M+(k)ū+(k)− P+(k) Im k > α2,

Q−(k)−N−(k)v̄−(k) Im k < β2.
(6.19)

The resulting function E(k) is therefore entire.

4. Behaviour at infinity
Since M+(k), P+(k), N−(k), and Q−(k) are in principle known functions of k, we know
their behaviour as |k| → ∞.

The behaviour of ū+(k) as k →∞ in Im k > α2 and the behaviour of v̄−(k) as k →∞ in
Im k < β2 are in principle determined by the behaviours of u+(x) and v−(x) as x→ 0±.
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In general this step relies on asymptotic analysis of the relevant Fourier integrals, but
in this course we will assume that the required behaviour is given.

Then we know the behaviour of E(k) as |k| → ∞, and we can then apply Liouville’s
theorem as follows.

• If E(k) → constant as |k| → ∞, then E(k) is entire and bounded, and therefore
a constant by Liouville’s theorem. In particular if E(k) → 0 as |k| → ∞, then
E(k) ≡ 0.

• If E(k) = O (kn) as |k| → ∞, where n ∈ N, then E(k) is a polynomial of degree n.

To solve the system for n ≥ 0, we therefore need to determine n+1 coefficients from the
boundary conditions. This means that in practice we want n to be as small as possible.

5. Invert
To find u+(x) and v−(x), we need to apply Fourier inversion to

ū+(k) =
P+(k) + E(k)

M+(k)
and v̄−(k) =

Q−(k)− E(k)

N−(k)
. (6.20)

In principle, analytic continuation allows the inversion contours to be deformed outside
Ω2 but they must still pass above the singularities in P+(k), M+(k), and below the
singularities in Q−(k), N−(k).

Remarks

• Steps 1 and 2 in the Wiener–Hopf method are called Wiener–Hopf decompositions
or factorizations. These are not unique, for example, the sum decomposition (6.16)
would be unaffected if we add any entire function of k to P+(k) and subtract the same
entire function from Q−(k). Our aim is to find the decomposition that makes analysing
the behaviour at infinity (step 4) as straightforward as possible.

• In many applications we can spot the decompositions, though we will describe a con-
structive method below.

Wiener–Hopf decomposition

General method for sum decomposition

Suppose G(z) is holomorphic in Ω where Ω = {z ∈ C : α < Im z < β} and G(z) → 0 as
z →∞ in Ω. By Cauchy’s integral formula we can write G(z) as

G(z) =
1

2πi

∫

Γ

G(ζ)

ζ − z dζ, (6.21)

where Γ ⊂ Ω is the contour illustrated in Figure 6.1, whose interior is the rectangular region
−R < Re z < R, α < γ+ < Im z < γ− < β. Since G(ζ)→ 0 as |ζ| → ∞ in Ω, the contribution
from the vertical sides tends to zero as R→∞, giving

G(z) = G+(z)−G−(z) for γ+ < Im z < γ−, (6.22)
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Figure 6.1: Integration contour for sum decomposition.

where

G±(z) =
1

2πi

∫

Γ±

G(ζ)

ζ − z dζ (6.23)

and Γ± = {x + iγ± : −∞ < x < ∞}. Note that Γ+ passes underneath z, while Γ− passes
above z. Since G±(z) is holomorphic everywhere except on Γ±, we deduce that G+(z) is
holomorphic in Im z > γ+ and G−(z) is holomorphic in Im z < γ−.

General method for product decomposition

Here the trick is to take logs to turn product decomposition into sum decomposition. Suppose
F (z) is holomorphic in Ω, that F (z) 6= 0 on Ω and that F (z) → 1 as z → ∞ in Ω, where Ω
is again the strip {z ∈ C : α < Im z < β}. Since F (z) is non-zero, logF (z) is holomorphic on
Ω and logF (z)→ 0 as z →∞ in Ω. Hence, we can set G(z) = logF (z) in (6.22) to obtain

logF (z) = G+(z)−G−(z) for γ+ < Im z < γ−. (6.24)

Defining F±(z) = eG±(z) on Ω, we deduce that

F (z) =
eG+(z)

eG−(z)
=
F+(z)

F−(z)
for γ+ < Im z < γ−, (6.25)

where

F±(z) = exp

(
1

2πi

∫

Γ±

logF (ζ)

ζ − z dζ

)
for γ+ < Im z < γ−, (6.26)

and F±(z) are holomorphic on Im z > γ+ and on Im z < γ− respectively.

Example. Suppose we wish to find a product decomposition of

F (z) =
z2 − a2

z2 − b2 =
(z − a)(z + a)

(z − b)(z + b)
(6.27)

where a 6= b ∈ C, with Im a > 0 and Im b > 0. With the overlap region −γ < Im z < γ, where
γ = min(Im a, Im b), as shown in Figure 6.2, we find by inspection that

F (z) =
F+(z)

F−(z)
, where F+(z) =

z + a

z + b
, F−(z) =

z − b
z − a. (6.28)
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Figure 6.2: The overlap region −γ < Im z < γ for F (z) =
(
z2 − a2

)
/
(
z2 − b2

)
.

Thus F+(z) is holomorphic in Im z > −γ and F−(z) is holomorphic in Im z < γ.
Clearly the factorisation (6.28) is not unique: We could for example multiply both F−(z)

and F+(z) by any entire function. However, the decomposition (6.28) is the only one for which
the overlap region includes Im z = 0 and such that F±(z) → 1 as z → ∞. If we multiplied
through by a nontrivial entire function, for example a polynomial in z, the behaviour of F±(z)
at infinity would be more complicated.

Now we show how the same decomposition may be found from the general formula (6.26).
We write

logF (z) =
{

log(z − a)− log(z − b)
}

+
{

log(z + a)− log(z + b)
}
, (6.29)

and then consider each of the terms in turn.
First consider

I±(z) =
1

2πi

∫ ∞+iγ±

−∞+iγ±

log(ζ − a)− log(ζ − b)
ζ − z dζ, (6.30)

where −γ < γ+ < Im z < γ− < γ. As shown in Figure 6.3, the integrand in (6.30) has
singularities at ζ = a, ζ = b, but may be analytically continued into Im ζ < γ− except for the
pole at ζ = z. By closing the contours Γ± at −i∞ and using Cauchy’s Residue Theorem, we
deduce that

I+(z) = 0, I−(z) = − log(z − a) + log(z − b), (6.31)

where the minus sign comes from the clockwise orientation of the integration contour.
Similarly, with

J±(z) =
1

2πi

∫ ∞+iγ±

−∞+iγ±

log(ζ + a)− log(ζ + b)

ζ − z dζ, (6.32)

the branch points are at ζ = −a, −b, and we can close the integration contours at +i∞ to
get

J+(z) = log(z + a)− log(z + b), J−(z) = 0, (6.33)

Combining (6.30) and (6.32), we get

1

2πi

∫

Γ+

logF (ζ)

ζ − z dζ = log(z + a)− log(z + b), (6.34a)

1

2πi

∫

Γ−

logF (ζ)

ζ − z dζ = − log(z − a) + log(z − b), (6.34b)
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Figure 6.3: Integration contours for the integrals I±(z) defined in equation (6.30).

and therefore the general formula (6.26) produces

F+(z) =
z + a

z + b
, F−(z) =

z − b
z − a, (6.35)

in agreement with the previously spotted decomposition (6.28).

6.3 Wiener–Hopf applied to an integral equation

Problem. Find a smooth bounded function f(x) such that

∫ ∞

0
K(x− t)f(t) dt = f(x) for x ≥ 0, (6.36)

where K(x) = e−|x| for −∞ < x <∞.

Solution. If this were a full range integral equation (i.e. on −∞ < x <∞), then we could
solve it easily by taking a Fourier transform. Our first step is thus to express (6.36) as a
full-range integral equation. By defining

f+(x) =

{
0 x < 0,

f(x) x > 0,
h−(x) =





∫ ∞

0
K(x− t)f(t) dt x < 0,

0 x > 0,
(6.37)

we can rewrite (6.36) as

∫ ∞

−∞
K(x− t)f+(t) dt = f+(x) + h−(x) for −∞ < x <∞. (6.38)
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Now we can take the Fourier transform of the full-range equation (6.38) and use the
Convolution Theorem to get

K̄(k) f̄+(k) = f̄+(k) + h̄−(k). (6.39)

Since f(x) is assumed to be bounded, f̄+(k) is holomorphic in Im k > 0. Since, for x < 0,

h−(x) = ex
∫ ∞

0
e−tf(t) dt = O (ex) as x→ −∞, (6.40)

it follows that h̄−(k) is holomorphic in Im k < 1. Hence both f̄+(k) and h̄−(k) are holomorphic
in the overlap strip 0 < Im k < 1, and the problem (6.39) may be solved by the Wiener–Hopf
technique.

First we calculate

K̄(k) =

∫ ∞

−∞
e−|x|+ikx dx =

2

1 + k2
, (6.41)

and substitute into (6.39) to get

1− k2

1 + k2
f̄+(k) = h̄−(k) for 0 < Im k < 1. (6.42)

We factorise
(
1− k2

)
/
(
1 + k2

)
using

1− k2

1 + k2
=
K+(k)

K−(k)
, where K+(k) =

1− k2

k + i
, K−(k) =k − i, (6.43)

so that K+(k) is holomorphic in Im k > −1 and K−(k) is entire. Hence,

1− k2

k + i
f̄+(k) = (k − i)h̄−(k) = E(k) (say) for 0 < Im k < 1, (6.44)

with the left-hand side holomorphic in Im k > 0 and the right-hand side holomorphic in
Im k < 1. Thus the right-hand side of (6.44) is the analytic continuation of the left-hand side
of (6.44) into the lower half-plane, so together they define an entire function E(k).

To pin down E(k), we need to consider the behaviour of the functions in equation (6.44)
as k →∞. It may be shown that, since f(x) is assumed to be smooth and bounded on (0,∞),
it follows that f̄+(k) is O

(
k−1

)
as k → ∞ in Im k > 0. Similarly, assuming that h−(x) is

smooth and bounded on (−∞, 0), it follows that h−(x) = O
(
k−1

)
as k →∞ in Im k < 1. The

detailed asymptotic analysis required to prove these results is not required for this course: for
completeness a simple derivation is given below.

Given that f̄+(k) and h̄−(k) are both O
(
k−1

)
as k →∞ in their respective half-planes, we

deduce from equation (6.44) that E(k)→ C, a constant, as k →∞, and Liouville’s theorem
implies that E(k) ≡ C. Hence we find

f̄+(k) =
C(k + i)

1− k2
, (6.45)

so the solution is given by

f+(x) =
C

2π

∫

Γ

(k + i)e−ikx

1− k2
dk, (6.46)
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where the inversion contour Γ lies in the strip 0 < Im k < 1 and thus passes above the poles
of f̄+(k) at k = ±1. By analytic continuation of f̄+(k) into the lower half-plane, we can close
the contour at −∞i to obtain the solution

f(x) = f+(x) = −2πi

(
res
[
f̄+(k)e−ikx;−1

]
+res

[
f̄+(k)e−ikx; 1

])
= iC(cosx+sinx), (6.47)

where C is an arbitrary constant.
Finally, we verify our claim about the asymptotic behaviour of f+(k) as k →∞. A simple

approach is to assume that f+(x) is differentiable, with bounded derivative f ′+(x), and then
integrate by parts to get

f̄+(k) =

∫ ∞

0
f+(x)eikx dx

=

[
f+(x)eikx

ik

]∞

0

+
i

k

∫ ∞

0
f ′+(x)eikx dx. (6.48)

In the first integrated term, the x = ∞ limit evaluates to zero provided Im k > 0. In the
second term, the integral is bounded, and indeed tends to zero as k →∞ with Im k > 0 (this
is an instance of the Riemann–Lebesgue Lemma). Therefore we have

f̄+(k) =
if+(0)

k
+ o

(
k−1

)
as k →∞ with Im k > 0 (6.49)

as required.

6.4 A mixed boundary value problem

The temperature u(x, y) in an inviscid fluid flowing uniformly past a heated semi-infinite plate
is governed by the partial differential equation

∇2u =
∂u

∂x
in y > 0, (6.50a)

with the boundary and far field conditions

u = 1 on y = 0, x > 0,
∂u

∂y
= 0 on y = 0, x < 0, (6.50b)

u→ 0 as |x| → ∞, u = 1 +O
(
|x|1/2

)
as |x| → 0, (6.50c)

where x = (x, y). Note that this is a mixed boundary value problem because the boundary
conditions switch from Neumann (specified ∂u/∂y) to Dirichlet (specified u) across x = 0. We
know from Chapter 4 to expect square root type behaviour at the origin where the boundary
condition switches.

Take the Fourier transform of the partial differential equation (6.50a) to give

∂2ū

∂y2
− (k2 − ik)ū = 0 in y > 0. (6.51)

Since we require ū(k, y)→ 0 as y →∞, the relevant solution is

ū(k, y) = A(k)e−(k2−ik)1/2y, (6.52)
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r1 = |k| ∈ [0,∞),

r2 = |k − i| ∈ [0,∞),

θ1 = arg k ∈ [−π/2, 3π/2),

θ2 = arg(k − i) ∈ [−3π/2, π/2).

Figure 6.4: The lengths r1, r2 and angles θ1, θ2 used to define the multifunction
(
k2 − ik

)1/2
.

where A(k) is an arbitrary integration function, and the branch of the square root is defined

such that Re
(
k2 − ik

)1/2
> 0 on the inversion contour. Thus we place the branch cut along

the imaginary k-axis from −∞i to 0 and from i to ∞i, as illustrated in Figure 6.4, and define

(k2 − ik)1/2 =
√
r1r2 ei(θ1+θ2)/2, (6.53)

where the lengths r1,2 and angles θ1,2 are as shown in Figure 6.4, so that Re(k2 − ik)1/2 > 0
everywhere on the cut k-plane.

Now to take care of the mixed boundary conditions on y = 0, let

g+(x) =





0 x < 0,

∂u

∂y
(x, 0) x > 0,

f−(x) =




u(x, 0) x < 0,

0 x > 0,
(6.54)

so that (6.50b) may be restated as the full-range boundary conditions

u(x, 0) = f−(x) + H(x),
∂u

∂y
(x, 0) = g+(x), (6.55)

where H(x) is the Heaviside function.

We suppose that g+(x) = O (eαx) as x → ∞ and that f−(x) = O
(
eβx
)

as x → −∞ for
some constants α, β such that α < β. Then ḡ+(k) is holomorphic in Im k > α and f̄−(k)
is holomorphic in Im k < β, so that both functions are holomorphic in the overlap strip
α < Im k < β. We also recall that H̄(k) = i/k for Im k > 0, so that, provided β > 0, we can
take the Fourier transform of the boundary conditions (6.55) to get

ū(k, 0) = f̄−(k) +
i

k
for 0 < Im k < β,

∂ū

∂y
(k, 0) = ḡ+(k) for Im k > α. (6.56)
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Now we just substitute in the solution (6.52) for ū:

A(k) = f̄−(k) +
i

k
, −A(k)(k2 − ik)1/2 = ḡ+(k). (6.57)

Elimination of A(k) gives

1

(k2 − ik)1/2
ḡ+(k) + f̄−(k) = − i

k
, (6.58)

where f̄−(k) is holomorphic in Im k < β and ḡ+(k) is holomorphic in Im k > α. Provided
0 ≤ α < β ≤ 1, we can apply the Wiener–Hopf method, as follows.

First we split
(
k2 − ik

)1/2
to separate the singularities at k = 0 and k = 1 by setting

(
k2 − ik

)1/2
= k1/2 (k − i)1/2 , k1/2 =

√
r1 eiθ1/2 (k − i)1/2 =

√
r2 eiθ2/2, (6.59)

where r1,2 and θ1,2 are again as in Figure 6.4. Then (6.58) may be rearranged to

ḡ+(k)

k1/2
+ (k − i)1/2f̄−(k) = −i

(k − i)1/2

k
, (6.60)

where the first and second terms are holomorphic in Im k > α and in Im k < β respectively.
The right-hand side of equation (6.60) has a pole at k = 0 and a branch point at k = i.

To split these, the trick is to separate out the principal part of the pole as follows:

(k − i)1/2

k
=

(−i)1/2

k
+

(k − i)1/2 − (−i)1/2

k
. (6.61)

The second term on the right-hand side of (6.61) now has a removable singularity at k = 0

and therefore defines a holomorphic function in Im k < 1. Here (−i)1/2 is equal to (k − i)1/2

evaluated at k = 0, namely e−iπ/4.
Hence, equation (6.60) may be rearranged to

ḡ+(k)

k1/2
+

eiπ/4

k
= −(k − i)1/2f̄−(k)− i(k − i)1/2 − eiπ/4

k
for α < Im k < β, (6.62)

with the left-hand side holomorphic in Im k > α and the right-hand side holomorphic in
Im k < β. The right-hand side of (6.62) is the analytic continuation of the left-hand side of
(6.62) into the lower half-plane, so together they define an entire function, E(k) say.

To determine E(k), we must consider the behaviours of the left- and right-hand sides of
equation (6.62) as k → ∞. Since u(x, 0) is required to be bounded as x → 0, it follows (as
in the previous example) that f̄−(k) = O

(
k−1

)
as k → ∞ with Im k < β. However, since

u(x, y) has a square root behaviour as (x, y) → (0, 0), we expect ∂u/∂y to have an inverse
square root singularity, that is

g+(x) = O
(
x−1/2

)
as x↘ 0. (6.63)

It may be shown (for example using Laplace’s method) that the corresponding asymptotic
behaviour of the Fourier transform is

ḡ+(k) = O
(
k−1/2

)
as k →∞ with Im k > α. (6.64)
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Hence, equation (6.62) implies that E(k) → 0 as k → ∞, and we deduce from Liouville’s
theorem that E(k) ≡ 0.

We then solve for g+(k) and f−(k):

g+(k) = −eiπ/4

k1/2
, f̄−(k) = − i

k
+

eiπ/4

k(k − i)1/2
, (6.65)

and can now verify our assumptions a posteriori. Clearly g+(k) is holomorphic in Im k > 0
and is order k−1/2 as k →∞. Since the singularity at k = 0 is removable, f−(k) is holomorphic
in Im k < 1 and is order k−1 as k → ∞. Thus the required overlap region does exist; the
minimum admissible value of α is 0 and the maximum admissible value of β is 1.

To complete the solution, we substitute back into (6.57) to get

A(k) = f̄−(k) +
i

k
=

eiπ/4

k(k − i)1/2
, (6.66)

and therefore

ū(k, y) =
eiπ/4

k(k − i)1/2
e(k2−ik)

1/2
y. (6.67)

Hence the inversion formula gives

u(x, y) =
eiπ/4

2π

∫

Γ

e−(k2−ik)
1/2

y−ikx

k(k − i)1/2
dk, (6.68)

where the contour Γ must pass between the singularities at k = 0 and at k = i.
Remarkably, the integral (6.68) may be evaluated to obtain

u(x, y) = erfc



√√

x2 + y2 − x
2


 , where erfc(t) = 1− 2√

π

∫ t

0
e−ξ

2
dξ (6.69)

is the complementary error function, One can readily verify that u(x, y) satisfies the problem
(6.50) and has the expected square root behaviour as (x, y)→ (0, 0).

The solution (6.69) may be expressed in the form

u(x, y) = erfc
(

Im z1/2
)
, where z = x+ iy, (6.70)

and in fact this solution may be obtained much more directly by first conformally mapping
the problem using the map z 7→ ζ = z1/2.


