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CHAPTER 1

The geometry of numbers

DEFINITION (Lattices and their key parameters).

(1) Alattice A in R™ is a set
A=V12+"'+V7-Z

for some linearly independent vectors vy, ...,v, € R". We say{vi,...,v,}
is the basis of the lattice and r is the rank of the lattice. We say A is full-
rank if r =n.

(2) The fundamental parallelopiped of a lattice A with respect to the basis

Vi,...,V, s the set
P, ={zyvi+ - +zv,: z1,...,2, €[0,1]}

(3) The determinant det(A) is the r-dimensional volume of a fundamental

parallelopiped.

There are many possible choices of a basis for any given lattice, but quantities

like the rank and determinant do not depend on the choice of basis.

LeEMMA 1.1 (Basic properties of lattices).

(1) (Additive subgroup) If x,y € A thenxty € A

(2) (Discreteness) There is a constant & > 0 such that if x #y € A then
x—y|>4.

(3) (Determinant well-defined) If {v1,...,v,} and {w1,..., Wy} are two bases
of a lattice A, then r = k and vol(Py) = vol(Py). If A has full rank then
det(A) = | det(vy,...,vi)l|.

PRrROOF. (1) This is immediate from the definition
(2) If x = Zle a;v; € A has x # 0 then |a;| > 1 for some j since a; € Z.
Let v € R" be the component of v; orthogonal to the other v;. Then
[ve x| = |as||[vi]? > |v}|?, so [x] > miny [vi] > 0 for all x € A.
(3) Since the vectors v; are linearly independent and the w; are, we see
that » = k = dim(spang(A)). Since {v;}/_; form a basis for A and
{w; }é?:l C A, there is an r x r matrix M with integer entries such that

w; =y . M;;v;. But since {Wj};?:l also forms a basis there is a k x k

1



2 1. THE GEOMETRY OF NUMBERS

integer matrix N such that v; = Y, N; jw;. Thus we see that M ' = N,
so both matrixes have determinant +1 and vol(Py) = vol(Py). If r = n

then it is easy to see from a change variables vol(Py) = | det(v1,..., V)|
O

1.1. Minkowski’s first theorem and sums of squares

DEFINITION (Convex sets and successive minima).
(1) A convex set K C R™ is a set such that if x,y € K then the line segment
connecting x and y is also contained in K.
(2) A centrally symmetric set is a set S such that —x € S whenever x € S.
(3) Given a lattice and a conver set K of positive volume, the it" successive

manima of K with respect to A is
A =1inf{A € Ry : AK N A contains i linearly independent vectors}.

If K is the unit ball, we say A1 < --- < Ag are the successive minima of
the lattice A.

LEMMA 1.2 (Blichfeldt’s lemma). Let K C R™ be a measurable set and A C R™
be full rank lattice with vol(K') > det(A). Then there are distinct points x,y € K
with x —y € A.

PrOOF. Assume for a contradiction that there are no such x,y. Let P be the
fundamental parallelopiped of A. Then for every t € P, there is at most one v € A
such that t +v € K. On the other hand, every point in R" can be written as t + v
for some t € P, v € A. Thus

vol(K) = /P#{v EA:t+veK}dt < /Pldt = vol(P) = det(A). O

THEOREM 1.3 (Minkowski’s first Theorem). Let K be a centrally symmetric
convex set and A C R™ a full rank lattice with vol(K) > 2"det(A). Then K

contains a non-zero lattice point of A.

PROOF. vol(3 - K) = 27" vol(K) > det(A), so by Blichfeldt’s Lemma there
are X #y € %-Ksuchthat x—y € A. But if x,y € %-Kthen 2z,2y € K,
so X —y € (2x — 2y)/2 € K since K is centrally symmetric and convex. Thus

0#x—ye KNA. O

PROPOSITION 1.4 (Sums of two squares). An integer q can be written as the
sum of two squares if and only if all primes factors of ¢ which are 3 (mod 4) occur

with even multiplicity.

PROOF. If p = 3 (mod 4), the only solutions to 2 + y> = 0 (mod p) are
r =y = 0 (mod p), which means that 22 + y? is divisible by p?. It follows that
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there are no solutions to z? + 32 = ¢ unless every prime factor of ¢ which is
3 (mod 4) occurs with even multiplicity, and any such solutions must have x? and
y? a multiple of all of these factors. By dividing through by all square factors of ¢,
it suffices to consider the case when ¢q is squarefree and has no prime factors which
are 3 (mod 4).

If p =1 (mod 4) then there is a residue class b such that 5> = —1 (mod p)
(we can take b = ¢(P~1/4 for a primitive root ¢), and obviously 12 = —1 (mod 2).
Thus, by the Chinese remainder theorem it follows that there an integer b such that
b2 = —1 (mod q).

Consider the centrally smmetric convex set K C R? and lattice A given by

K = {(z1,22) € R*: a¥ + a3 < 2¢},
9 . b 0
A={(z1,22) €Z° : x1 = bxs (mod ¢)} = ) Z+ Z.
q

Then we have vol(K) = 2mq and det(A) = ¢, so Minkowski’s first theorem applies
and there is a non-zero point in (z1,z2) € AN K. But then 22 + 22 = 0 (mod q)

and 0 < 22 + 23 < 2¢, so 22 + 23 = ¢, as required. O

LEMMA 1.5 (Sums of 4 squares). Every positive integer can be written as the

sum of four integer squares.

PROOF. We note the identity
(af + a3 + a3 + af) (b + b3 + b3 + bf) = (a1by — azbz — azbs — asbs)® + (a1b2 + asby + azbs — asbs)?
+(a1b3 — agby + azby + a4b2)2 + (a1b4 + agbs — agby + a4b1)2,

so the set of integers representable as the sum of four squares is closed under
multiplication. In particular, it suffices to show the result for all primes p. The

result is trivial for p = 2, so we just consider odd p. Let
A:={1—-2% (mod p) : z € Z}, B:= {z? (mod p) : = € Z}.

Then |A| = |B| = (p+1)/2 and so ANB # 0. In particular, there are r, s € Z such
that 72 + 52+ 1 =0 (mod p). Let A C Z* be the lattice

p O T S

0 _ _ .
A= 7 + p 7+ s 7+ r Z:{er4:x1 ras + sry (Mo p)}’

0 0 1 0 Ty = sx3 — 24 (Mod p)

0 0 0
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so that if x € A coming from a € Z* then
22+ 22+ 22 + 23 = (pay + ras + sas)? + (pag + saz — rag)* + a3 + a:
=(1+7r*+5*) (a3 +a?) =0 (mod p).
We see that det(A) = p?. Let K be the centrally symmetric convex region
K :={xeR": 27+ 23 + 23 + 25 < 2p}

so that vol(K) = 72(v/2p)*/2 = 2n%p? > 2*p?. Thus Minkowski’s first Theorem
applies and so Theoremimplies that there is v» € ANK\{0}, and hence satisfies

0<a?+ad+a+a?<2p, 22+ 22+ 22+ 22 =0 (mod p).
Thus 2% + 23 + 23 + 22 = p, as required. O
LEMMA 1.6 (Dirichlet). Let 64,...,6, € R. Then for any choices of M > 1
and €1,...,¢. € (0,1/2) with szl €; > 1/M there is an integer 0 < m < M such

that
[lmb;|| < e foralll <i<nr.

PRrOOF. Choose M’ > M such that M’ < |[M] + 1. Let K be the centrally
symmetric convex set
K= {(x,yl, conyr) ERTL ) < M) |0 — ] < eiVi}

Then vol(K) = 2""'M'[]/_, e > 2""'M'/M > 2"+t'. Thus, by Minkowski’s

Theorem KNZ"*! contains a non-zero point. Either the z-coordinate or its negative
then gives the result (noting that all integers < M’ are < M). O

1.2. Minkowski’s second theorem

THEOREM 1.7 (Reduced basis of a lattice). Let A C R™ be a lattice. Then there

are linearly independent vectors vi, ..., v, such that
(1) (Basis of the lattice) We have that
A=viZ+ - -+ Vv, Z.
(2) (Quasi-orthongality) For any a,...,a, € R we have
larvi + -+ apvy| > 2_7'2(|a1v1| + o+ Jarve]).

(8) (Minkowski’s second theorem) Let A have successive minima Ay < -+ <
An. Then |vi| < 2071\, and if A has full rank

27N Ay < det(A) < 27 A1 M.
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ProOOF. We begin by constructing the basis of A. First we choose vy # 0 € A to
be a vector of minimal length. By minimiality, we then see that ANspang(v1) = v1Z
and that |vi| = A;.

Imagine v, ..., Vv; have already been chosen such that ANspang(vy,...,v;) =
viZ + -+ -+ v;Z and such that |v;| < 2/71);. We wish to select v;1. Let

H :=spang(vy,...,v;),

and choose w € A\ H of shortest length (which exists since we assumed A # ANH).
Let P be the closed parallelopiped

P:={z1vi+ - +azjvj+zjpiw: 0<z <1}

Since A is discrete, AN P is a finite set. Now choose v;;1 to be a vector in ANP\H
which minimises the distance to a vector in H. Then clearly vi,...,v;4q are
linearly independent (since vj41 ¢ H) and viZ+---+v,;11Z C A (since vj11 € A).
Moreover, we see that v;;; minimises the distance to H amongst all vectors in
ViZ+ -+ v Z\H.

Now we show spang(vi,...,Vj41) NA=ViZ+ -+ v; 1 Z. If

X=x1V1 + -+ T;41V41 € spang(vy, ..., V41) NA,

then let x’ := x — |z11|v,41. We see that the distance of x’ from H is (z,41 —
|zj+1]) < 1 times the distance of v;4q from H. However, v;41 minimizes this
distance amongst vectors not in H, so we must have that =11 € Z and x’ €
spang(vi,...,v;) NA =viZ+---+v;Z. Thus x; € Z for all i, so

spanR(vl, ‘e ,Vj+1) NA= V1Z + -+ Vj+1Z.

Since w had minimal length in A and was linearly independent of vy,...,v;, we
see that |[w| < Aj;1. By the triangle inequality, and element of P therefore has size
at most
J i ‘

Z |Vi| + |W| < Z 21_1)\1‘ + A1 < 2j)\j+1.

i=1 i=1
In particular, |v,q1] < 23‘)\]417 as requried. Repeating this we obtain a basis of A
with |V1| < 21-71)\1'.

Having constructed our basis, we now show it has the required properties. If

Vi1 — pave — - — g Vve| < €|vig|
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for some p1,...,p, € R, then by Lemma [I.6] we can choose m < M such that
lmpus|| < M~1/* for all i. Then we see that

k
mvigs — [mp Jvy =< = [mp | vi] < melvie| + M7VES v
=1
k
< 2PN Me+ MTVEY T2y,
=1

< 2PN (Me+ M~YF),

On the other hand, the vector on the left hand side is clearly in A with non-zero
vi+1 coefficient, so of size at least A\iy1. Taking M = e k/(k+1) gives the inequality
1 < 2k V/(k+D) g0 ¢ > 2=%* Thus the distance from v,y1 to spang{vi,...,vg}is
at least 277 |viy1|. It follows that

vy + -+ apvy| > 27F (\alvl\ b Iakvk\)
If A has full rank, then det(A) = | det(vy,...,v,)|, and we see that
|det(vy,...,vi)| > ﬁ P RUGEVES VDD S W W
izl §
[det(vi, ..., vi)| < [T Ival < JT27 "N <27 A0+ . O
i=1 i=1
LEMMA 1.8 (Bohr sets contain generalized arithmetic progressions). Let n €
(0,1/2), M > 1 and 04, ...,0; € [0,1]. Define
By:={x€Z: ||z0;|| <n fori=1,....k, |z| < M}.
Then there are wy, ..., w, € Z and constants Ly, ..., L; > 0 such that the set
S ={awi + -+ apwy, : a; €Z, |a;| < L;}

is contained in By, has size at least 2’2k3nkM, and all elements aywy + - - - + apwy

are distinct.

PROOF. Let A; = ZF*1 and
K = {(xaylv"'vyk) € Rk+1 : |.'L'| S M’ |l‘61 _y1| S T/}

Then we see that every point of By corresponds to a point in AN K. To apply
Theorem [I.7] we apply a linear transformation so K is comparable to the unit ball.
Let
1/M 0 0
0r/n 1/n :
) 7+ lZ2+---+] 0 | Z
0

Or/n 0 1/n

2 =
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Then we see that every point in A N B(0, 1) gives rise to a point of By, and A has
determinant M ~'n~*. By Theorem 1.7} there is a reduced basis {v1,...,v;} for
Ao, and by the triangle inequality

{a1v1+«~+akvk a; €7, |a;] < }CAQQB(O 1).

1
k|Vz|
Letting w; € Z be the first component of Mv; and L; = 1/(k|v;|), we then see that
the set S defined in the lemma is contained in By. Moreover, since there are at
least t integers in the interval [—¢,t], we see that the number of choices of ay, .. ., ax

is at least

2~ Kok 2k3 k
L;= > 27 Mn”.
H kkH|v|* KR H)\ KE det(As) = K
Finally, we need to check that two distinct choices of coefficients a; cannot give the
same point in S. If
arwy + -+ apwr = bywy + ... bpw = x,

then since there are unique choices of y1,...,yx satisfying |0;z — y;| < n, we see

that we must have
a1vi+ -+ apvg = bivy + .. bpvi.

But this implies that (ai,...,ar) = (b1,...,bx) by the linear independence of v;.
The the size of S is at least 272 MnF, as required. O






CHAPTER 2

Sumset inequalities

DEFINITION (Sumsets). Given sets A, B in some additive group , we write

A+B:={a+b:ac A be B},
A—B:={a—b:a€ A be B}.
Given an integer k > 1 we define the k-fold iterated sumset
kA=A+- -+ A={a1+ - +ax: a; € A},
k times

Throughout this chapter, we will implicitly assume that we are working inside

a fixed additive group; in practice we will always be interested in sets in Z or Z/qZ.

LEMMA 2.1 (Rusza Triangle inequality). We have
|A|IB - C| < |A-B|lA-C|

PROOF. For each d € B — C, fix a representative by € B and ¢4 € C such that
d =bg — cq. Then define ¢ : A x (B —C) by

d((a,d)) = (a — bg,a — ¢q).

¢ is injective since we can recover (a,d) from its image; if ¢((a,d)) = (z,y) then
d=y—xand a =z + b,_,. Thus the size of the domain is at most the size of the

codomain, giving the result. O

LEMMA 2.2 (Rusza’s covering lemma). Suppose that |A + B| < K|A|. Then
there is a set X with |X| < K such that

BCA-A+4X.

PROOF. Choose a subset X C B of maximal size such that the sets {A+ z :
x € X} are all disjoint. Then the union of these sets contains exactly |A||X|
elements and is contained in A 4+ B, so |A||X| < |A+ B| < K|A| and hence
|X| < K. For every b € B, the set b+ A must intersect  + A for some x € X’ by
maximiality of X. Therefore there exists a1, as € A such that b+ a; = x + as, so
b=x+a—a € X+ A- A O
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LEMMA 2.3 (Subset-maximal ratio implies sumsets-minimal ratio).
Suppose that
A+ B[ _ A+ B

< for all non-empty A" C A.
| Al |A']

Then
|A+ B| S A+ B+C|

A 2 A+cC for all C.

PROOF. We prove this by induction on |C|. If |C| = 1 then the result is auto-
matic since |A + B+ C| = |A+ B and | A+ C| = | A]. Now assume that the result
holds for all |C| < m, and consider C’ of size m + 1. Let C' = C U {c} for a set C of
size m. Thus we wish to show

A+ B+ (CU{c})| < |A+ B|
[A+(Cu{chl — B
Since |[A+ B+ (CU{c})| = |[A+B+C|+|(A+B+c)\(A+B+C)| (and similarly for
the denominator), and by the induction hypothesis we see that it suffices to show
|A+ B
Al

[(A+ B+ c)\(A+B+0C)| <

[(A+c)\(A+C)|.

We have
[(A+B+c\(A+B+C)|={a+b+c:ac A beB,a+b+c¢ A+ B+C}

Cla+b+c:ac A beB,a+B+cZ A+ B+ C}.
Therefore, if we let

Di={a€A:a+c+BC A+ B+C},
we have
{a+b+c:acAbeB,a+B+cZA+B+C}=(A+B+c)\(D+ B+c).
In particular,
[(A+B+c)\(A+B+C)| <|A+B|-|D+B5|.

Moreover, ifa € Ahasa+ce€ A+C,thena+c+BC A+ B+CsoaeD. Thus

[(A+A\(A+C)| = [Al - D]

Putting this together, it suffices to show that

|A+ B
A]

But this follows immediately from the hypothesis applied to A" = D C A. O

|A+B| - [D+B| < (A = D).
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LEMMA 2.4 (Pliinnecke’s inequality). Let |A+B| < K|A|. Then for all integers
m,n >0
|mB — nB| < K™ | Al.

In particular, if |A+ A| < K|A| then |mA — nA| < K™"|Al.

PROOF. Choose X C A to minimize |X + B|/|X|. Then we have
(X +B| _ [Y+B
X =
|X + B| < |A+ B <K
X Al
Thus, by Lemma [2.3] applied to C' = nl3, we have for any integer n > 0
X + (n+1)B] <K
|X +nB| —
Therefore, by induction we find |X + nB| < K™|X|. Finally, applying Lemma

we have

for all non-empty Y C X,

X + nB||X + mB]
||

|mB —nB| < < K™ x| < K™ A O

LEMMA 2.5 (GAPs in sumsets and small doubling means contained in a GAP).
Let 24| < K|A| and Q C LA — LA be a generalised arithmetic progression of
dimension d and size |A|/S.

Then there is a constant C(K,d,S,{) such that A is contained in a gener-
alised arithmetic progression of dimension at most C(K,d,S,{) and size at most

C(K,d, S, 0)| Al

PROOF. Since @ C LA— (LA, we have Q+ A C ({+1)A—¢A. Thus, by Lemma

24

|Q + Al < |(£+1) A~ LA| < K*THA] < SK*H Q).
Thus, by Lemma there is a set X C A such that || < SK?*! and A C
X+Q-0Q.

By using two elements in each direction, X is contained in a generalised arith-
metic progression of dimension |X| — 1 and size 2/*1=1. Since Q is a generalised
arithmetic progression with dimension d and size < [¢A — LA| < K?|A|, we see
that @ — @ is a generalised arithmetic progression with dimension d and volume
at most 27K 2| A|. Thus A C X + Q — Q is contained in a generalised arithmetic

progression of dimension at most
d+|X|—1<d+ SK*H!

and size at most

K20+

2\X\71+dK2Z|A| < 2d+S K2Z|.A|. 0
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LEMMA 2.6 (Cauchy-Davenport). Let A,B C Z/qZ. If 0 € B and for all
b € B\{0} we have (b,q) =1, then we have

A+ B| > min(q, Al +|B| — 1).

PROOF. The result is trivial if |A| = g, so assume |.A| < g. We prove the result
by induction on s = |B|; the case s = 1 is trivial. Assume that the result holds
whenever |B| < s. We claim that A + B # A. Indeed, if A+ b = A for some

b € B\{0} then

Z(a+b) = Z a (mod q),

acA acA
which implies that |A]b = 0 (mod ¢), which is impossible since |A| < g and (b, q) =
1. Therefore there is an ag € A and by € B that ag + by ¢ A. Let

Blii{bGB:b+aoeA}, Al::AU{a0+b:b€B,ao+b¢A}.

Then |A;| + |Bl1 = |A| + |B|, 0 € By and |By| < |B| since by ¢ By. Moreover, we
see that
A1 +B1 CA+B

Thus the induction hypothesis now gives the result. [l



CHAPTER 3
Equations in Z/qZ

DEFINITION (Discrete Fourier transform on Z/qZ). Let f : Z/qZ — C. Then
we define the Fourier transform f: Z/qZ — C by

fm) = > fa)e(-am/q),

a€Z/qZ

where e(x) := €™ noting that (with some abuse of notation) v — e(x/q) can be

viewed as a well-defined function on Z/qZ.

LEMMA 3.1 (Properties of the discrete Fourier transform). Let f, g : Z/qZ — C.

e (Orthogonality of characters). For any b € Z we have

LS eabe) =

a (mod q)

1, ifb=0 (mod q),

0, otherwise.

o (Inversion formula). We have
@)=y 3 Flapela/o)
a (mod q)
e (Parseval).
Y. fayl@ =" Y @)
z (mod q) a (mod q)

o (Convolutions). Let h(x) := 3, ) (mod q) f(a)g(b). Then

h(a) = f(a)g(a).

PROOF. These all follow quickly from the definitions. If b = 0 (mod ¢) then
e(ab/q) = 1 for all a, so the result is trivial in this case. If b #Z 0 (mod ¢) we can
sum the geometrc series

> elabfe) = = o

a (mod q)
since e(ab) = 1.

13
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Using the above formula, by expanding the definition of J? and swapping the

order of summation

Yo fla)elax/g)= D f(b)e(alx —b)/q)

a (mod q) a,b (mod q)

Z f(b)lbzw (mod q) — qf(x)

b (mod q)
Using the inversion formula, we have

Y i) = 5 3 Flioe (N,

a,b,x

By orthogonality of characters, the z sum vanishes unless a = —b (mod ¢). Thus

1 ~ o~
=Y fla)g(—a
q a
We then note that g(—a) = g(a) from the definition.
Subtituting the definitions

a)=>_ Y fle)g(d)e(—ab/q) = Zf (—ac/q)e(—ad/q) = f(a)g(a).

b c+d=b

this is equal to

DEFINITION (Pseudorandom functions and sets).

e Given a set A C Z/qZ, the balanced function of A is the function

Bu(z) = lyea — 14

q

e Given a constant n > 0, a 1-bounded function f : Z/qZ — C is called
n-pseudorandom if | f(m)| < ¢~ for all m € Z/qZ.

o Aset ACZ/qZ is called n-pseudorandom if the balanced function Ba(m)

is m-pseudorandom.

PROPOSITION 3.2 (Solutions to equations in pseudorandom sets). Let f :
Z/qZ — C. Then we have for any x € Z/q7Z

T0)k
Y s - T <2 S ek

a1+-+ar=z q q b#0 (mod q)

In particular, if A is an n-pseudorandom set, then

Ak
‘#{al,...,akEA: a1+~~+ak:x}f%’§qk*k”.
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PrROOF. By orthogonality of characters, the left hand side is

Z f(al)...f(ak)l Z e(b(x—al—..._ak))

A1,..,0f q b (mod q) q

S elvr/a) (3 Fla)e(-ab/a))'

b (mod q) a

> elb/a)f ().

b (mod q)

QIR Q=

We separate out the term b = 0 which contributes f(O)k /q, giving

. A
TOZ LS~ chafo) Fioyk.
a ”?;ZS q)

The triangle inequality now gives the first result.

)

For the second result, we apply the above with f(a) = 1,c4. We note that
F(0) = | Al and

in= Y BA<a>e<ab/q>+f' S cabfa).

a (mod q) a (mod q)

When b # 0 (mod ¢) the second term is 0 by orthogonality of characters. The first
term is B4 (b). Thus we find that

AFp 1 —
‘#{ah-u,akGAZa1+"'+ak=$}—u‘§* Z BA(b)‘
q qb( g
mod q)
b£0
< sup [Ba(b)*
b (mod q)

Clearily if A is n-pseudorandom then |B4(b)| < ¢'~" which gives the result. O

LEMMA 3.3 (Squares are pseudorandom (mod gq)). If (a,q) =1 then

) 2 )
D B A
b (mod q) \% 2q, 2|q
PROOF. We square the sum in question, expand, and write o = x1 + h. This
gives
2 2_ .2
‘ _ Z e(a(ﬂﬁl 552))

q

> elar/a)

b (mod q) z1,22 (mod q)

Z Z e(2ahx1 +ah2)'

h (mod ¢q) z1 (mod q) q

By orthogonalty of characters, the inner sum vanishes unless 2ah = 0 (mod gq).

Since (a,q) = 1, this implies that 2h = 0 (mod ¢). Thus there are at most 2 choices
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of h (mod ¢) if 2|¢q and one choice of 2t ¢. Thus we obtain the bound

B2 2, 2
q Z e(L) < q lq ' 0
h (mod q) q q 2qu
2h=0 (mod gq)

COROLLARY 3.4 (Representations as sums of squares (mod ¢)). Let g be odd.
Then every residue class a (mod ¢) can be represented as a sum of three squares

(mod q).

PRrROOF. By the Chinese remainder theorem, it suffices to show the result for ¢

being a prime power p’. First, using the Proposition with
F(2) = #{b (mod ) : b? =2},

we find for any = € Z/qZ
1 ~
#lat+a3+ai=o mod g} - <= Y IF@P
q a (mod q)
a#0

We then see that, using Lemma, [3.3] if p is odd then

Z ‘ Z ax2/q’ < de sup (% Z e(aacQ/d)D3

a I;;)g q) = (mod q) 1<d|q (((:;lo)i{j) z (mod d)
2P —1 1
=4 D Z di/2
1<d|q
p—-1)
~ p(pt/?—1)
Thus the number of solutions is at least
2
> ¢(p—1)
— >0
TR
for p > 3. O

LEMMA 3.5 (Polynomial values are pseudorandom (mod ¢)). Let P(z) €
Z./qZ[z] be a polynomial of degree d with leading coefficient a. Then

Y PO/ < 20 gy
b (mod q)
PrOOF. We prove the result by induction. The statement holds for d = 2 by
Lemma Assume the statement holds for all polynomials of degree less than
d > 3. We square the sum, and write by = by + h. This gives

Z e(P(b)/Q)r: Z e(w) :Ze<@)

b (mod q) b1,b2 (mod q) b1,h
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where Q,(b1) = P(by + h) — P(b1) is a polynomial in by of degree d — 1, with lead
coefficient aghd. Thus, by the induction hypothesis
Z 6(Qh(bl)) < ow(@) (dlah, q)1/2d*2q1—1/2d*2'
b q
1
We now sum this over all & (mod ¢), giving a bound
Qw(q)(d!a’ (])1/2‘1*2q1—1/24*2 Z (h, q)l/zd*Z
h (mod gq)
< 29 (dla, q) /2" TN T2 (g e)

elg

w d—2 o_1/9d—2 1-1 P
<24 (dla,q)' /" g7 1/? H(l_ljl/2d/2_l)
plg

We have that (1 —1/p)/(1 —p/2"*=1) < (1 —1/p)/(1 —1/p"/2) < 2 since d > 3.
Thus the product is bounded by 2¢(9). This gives the bound

> e(P(b)/q)‘2 < <2w(q)(d!a,q)1/2d71q1—1/2d*1)2’

b (mod q)

as required. O

LEMMA 3.6. Let k > 4d and
N(m,q) == #{a1,...,ar € Z/qZ : al +--- 4+ af = m (mod ¢)}.

Then for all m,q we have
N(m,q) > ¢"~*.

PRrOOF. By the Chinese remainder theorem, we have that N(m, ¢1¢2) = N(m, ¢1)N(m, ¢2)
if (q1,q2) = 1. Therefore it suffices to prove the result for prime powers ¢ = p’. Let
B = {b? (mod p’) : (b,p) =1} U {0} C Z/p’Z. Since (Z/p'Z)* is cyclic for p > 2
and = (Z/27) x (Z/2972Z) if p=2 and j > 3, we have

P’ (p—1)

@ren P>
Bl =4 &=, p=2andj>2and2|d,
211, p=2and (j =1or2¢{d).

Regardless, |[B] — 1 > p’/(4d). Now, by repeatedly applying Lemma we find
that for any integer r

[rB| = min(p’, (|8 — 1)).
In particular, 4dB = Z/p’Z, so every residue class (mod ¢) can be represented as
the sum of 4d d** powers. We then see that by fixing the first k& — 4d variables in
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N(p?), we have that

Z #{(by,...,byg (mod p?): b+ +b}y =m—a—...al ,, (mod p’)}
a1,...,ag—aq (mod pi)
> (pf)-, 0

PROPOSITION 3.7 (Sums of d** powers modulo q). Let k > d29*! and
N(m,q) == #{a1,...,ar € Z/qZ : a} +--- 4+ a} = m (mod ¢)}.

Then for 0 < j1 < j2 we have

N(m,p")  N(m,p”) < gkt1p—nk/2!
pjl(k’_l) pj2(k_1) - ’

In particular

. N(m,p)
Bp(m) = Jim =G0~

exists and |B,(m) — 1| < 26+1p=F/2" gnd B,(m) > p=22""°.

Proor. By Fourier inversion and then splitting the summ according to the ged
with p’, we have, we have that

NW:% S (I o)

b (mod p7) a (mod pJ)
b/pi—t ) —a®(b/pi—* k
Z 3 e<m( /z; ))(p]_g ) e( a(ép )))
p p
0<£<g b (mod p 7Y a (mod p?)
(bp?)=p’~*
o mb/ B _adb/ k
=Y Y ()t X ()
0<l<7p/ (mod pe) P a (mod p*) p
(b/7p):1

Thus if ji < jo

N(mapjl> N m pj .y —adb' k
‘ pir(k=1) o pir(k=1) ’ Z Z ’p Z e( Pt )‘
J1<€<j2 b’ (mod p*) a (mod pt)
(" ,p)=1

By Lemma the inner sum over a is bounded by 2(p®)1=1/2*"". There are
p’ choices of ¥'. Thus we have
N(m,p™)
‘ pjl(k_l) - p]l(k 1) ‘ -

2kpff(k/2d_171) < 2k+1p7j1(k/2d_171).
J1<e<]2
Since the right hand side tends to 0 as j1,j2 — 0o, the limit §,(m) exists. Using
the inequality with j; = 0 jo — oo gives the bound |S,(m) —1| < 2k+1p_k/2d. This

automatically shows that 8,(m) > 0 for p > 22", For smaller p we use the main
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inequality with jo — oo and Lemma [3.6] to give
pilk—1d)

k41, —j(k/2971-1)
i

J . _

> pj(1—4d) (1 _ 2k+1p—j(k/2d’1—4d)>.

Since we have assumed k > d29+2, we see that k/2¢~! —4d > k/2¢. Thus choosing
j=2%+41 gives

B,(m) > p(2d+1)(1—4d)(1 . 2p—4d) > p(2d+1)(1—4d)(1 . 2p—4d) > p—d2d+3. 0






CHAPTER 4

Introduction to circle method

4.1. The Fourier Transform over Z and R
We now generalise much of the previous chapter to the more complicated situ-

ation of equations over Z

DEFINITION (Fourier transform on Z). Let f : Z — C be supported on |z| < N.
Then we define the Fourier transform f: R/Z — C by

F(0) =" f(a)e(—ab),

a€Z

2mix

where e(x) = e*™* noting that (with some abuse of notation) x — e(x) can be

viewed as a well-defined function on R/Z.

LEMMA 4.1 (Properties of the integer Fourier transform). Let f,g:7Z — C.

e (Orthogonality of characters). For any b € Z we have

1 1, ifb=0,
/ e(b0)do =
0

0, otherwise.

o (Inversion formula). We have

f(n):/o f(0)e(nb)ds.
e (Parseval). 1
>ty = | Foiaaas

TEL
e (Convolutions). Let h(z) =3, , . f(a)g(b). Then
h(#) = F(0)3(6).

PROOF. These all follow quickly from the definitions in an identical way to
Lemma If b = 0 then e(bf) = 1 for all 6, so the result is trivial in this case. If

b # 0 we can integrate
! b)—1
/ eoydn = D=1
0

since e(b) = 1.

21
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Using the above formula, by expanding the definition of J? and swapping the

order of summation and integration

1 1
/ Fo)etat) = 32 10 | 0w =mya0 = fia).

Using the definition, and orthogonality we have

/f =3 fa)g / e(6(b—a))do = 3 f(a)g(a)

a,beEZ a€Z

Subtituting the definitions

=D > f@g(de(=b0) = f(e)g(d)e(—ch)e(—db)
b c+d=b c,d

= f(0)g(0). =

DEFINITION (Fourier transform on R). Let f € LY(R). Then we define the
Fourier transform f: R — C by
:/ fw)e(—ub)du

LEMMA 4.2 (Properties of the real Fourier transform). Let f,g, fg € L*(R).

o (Inversion formula). If f(€) € L\(R) and f is continuous at x, then

0= [ T f(©e(at)de

e (Parseval). If f§ € L*(R) then

/ " f(t)atdt = / fleee.

e (Convolutions). Let h(z):= [~ f(t)g(x —t)dt. Then

n(E) = F©)a(e).

PROOF. Non-examinable, see appendix. (I

4.2. A warm-up example

It is a trivial combinatorial counting problem that if N > m then

m+k—1\ mF—1
k—1 )  (k—1)

We now reprove this in the spirit of the circle method, which generalises more

#{(x1,...,05) €25y 21+ Hap =m, |2 < N} = < +0(m*=2).

readily to when the z; lie in more complicated sets.



4.2. A WARM-UP EXAMPLE 23

4.2.1. Using orthogonality. Let f : Z — C be given by f(z) = li<z<n.
Then the orthogonality relation

1 1
/ e(@(m—zy— - —x,))dd =<
0 0, Ifzy+---+z, —m e Z\{0}.

Ifz;+--+x, =m,

gives
#{(wl,...,zk)EZ’;():x1+"'+zk:ma‘xi|§N}
= Z f(ml)"'f(xk)1m1+~~+rk:m

= 30 S-S [ em—a =)o

4.2.2. Splitting the integral according to the size of the Fourier trans-
form. We see that since |e(0) — 1| = 2|sin(76)| > ||6]|

_ _Ne_m _e(O0(N+1) -1 1
FO) =3 e(=at) = == =5 =1— = O(i7):

r=1

~

Therefore f(#) is small unless 6 is very close to 0 (mod 1). With this in mind we

split the integral according to whether |6 < n or not. We see that

~ do 1
f(0)*e(m8)deo <</ —_— .
/||9|>n joy>n ON% " pFt

When |[6]} < 7
=~ e(=0(N+1)—1 e(-0(N+1)—-1 N+1
f0) = e(-0)—1  —2mif(1+O(n)) —/O e(—0t)dt + O(nN).

Substituting this back in, we find

#{(r1,... o) €28, w1+ + a3 =m, |z;] < N}

= e(m NHe —bu)du * 2NF —(k=1)
(4.1) /9|<n ( 9)(/0 (—0u)d ) b + O(*N*) + O(n ).

4.2.3. Understanding main term as a local factor. Ignoring the error
terms, this is just an analytic integral only involving real numbers (and so just an
analytic quantity with no number-theoretic properties). It essentially counts the
measure number of real solutions to the equation uy + - - - + ur = m. Indeed, since

N+1 1
/ e(—0u)du < —
0 10
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we can extend the integral in (@.1]) to # € R at the cost of a =%~ error term.
But then, if g(z) = 1,¢[0,n+1] We see that the integral is given by

/Oo c(mb)G(6)£do + O(n~+-1).

— 0o

We recall from Lemma [L.1] that

grn©=fet  sw- | " F(©e(en)de
N——  — — 00

k times

so we see that
> I~ k — . =
/700 e(mB)g(0)"dd = (g *---*g)(m) /u, LuR€[0,N+1] 1
1+-tu=m

Thus, for any choice of > 0 we have
#{(I‘l,...,mk) EZI;O: 1+ + 2 =m, |.’E1‘ SN}
_ 1 2Nk (k—1)
fo oo+ 0L 067
Uy Fug=m

We can choose n = N~F/(k+1) to balance the error terms and obtain an asymptotic
k-1

m
O(mF—2+2/(k+1)y
G T om )

If we instead counted solutions where xq,...,x; were all a multiple of a prime p,

then there would only be solutions if m is a multiple of p. If now f(x) = 1i<,<n, p|=
then

(NPl i1 1
fo) === — = o)

As before, we can discard |[pf|| > 1 at the cost of a O(n~*~1) error term. Now,

however, we also have to take into acount values of 6 near 1/p, 2/p etc. This gives

#{ (1, wp) €28 ay + - 2 =m, |2 < Nopla;}

p,

The arithmetic fact that there are no solutions modulo p to the equation unless

p|m is now acconted for by the contribution from these other rationals. Indeed the
main term factorises as
1
(; X ctemm)(/,

N+1 k
L e(md) (/0 e(—du)du) dH)

_(#{x1+...+xk:m(modp)})_ 1
= pk,1 uy,...,ur €[0,N+1]

ur+t-Fup=m

[<n

_1 Z /5|<n +5)></ON+16(—5U)du)kd9+O( 2N 4 O (=D,
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Therefore now the main term is a product of the density of solutions (mod p) and

the density of solutions over R.

4.3. The circle method

By Fourier inversion, we have that for any function f : Z — C with compact
support

Z f(al)"'f(ak)Z/O e(—n@)f(@)kdﬂ.

art--tap=n
If f(&) is small for all 6, this shows that the weighted count of solutions is small
(which is what we would expect if f looked like a random +1 function, for example).
However, it is less clear how to extract a ‘main term’ when f is the indicator function
of a set. The Hardy-Littlewood circle method splits the integral in ‘major arcs’ 91
where the Fourier transform is large, and ‘minor arcs’ m = [0, 1]\9 where the
Fourier transform is small. Although the precise choice of 9t can vary depending
on the situation, in most number-theoretic applications the most natural choice
depends on Diophantine properties of 6. In this case, the major arc contribution is

essentially a product of densities of solutions in all places.






CHAPTER 5

Waring’s Problem

The aim of this chapter is to estimablish

THEOREM 5.1 (Asymptotic formula for the number of representations as the
sum of k dth powers). Let k > 20d2%. Then we have

#{nf 4o nf = m} = w7 (B (m) [T By(m) + O(m~/2)).

where Pog(m) [, By(m) converges to a constant, which is bounded away from 0
uniformly in m. In particular, every sufficiently large integer can be written as the
sum of 20d2% positive d** powers, and there is a number g(d) such that every integer

can be represented by at most g(d) d™* powers

Rather better bounds are known in this problem; we can get the same asymtotic
formula when k > d?, and the fact that there exists at least one represententation
for large integers occurs when k > dlog d+ 5d. If we wish to represent every integer
then 24| (3/2)%] — 1 requires at least 2¢ + [(3/2)?| — 2, and it is known that every

integer can be expressed as essentailly this many d*" powers.

PROPOSITION 5.2 (Major arc contribution). Let k > d2¢t2, N >m!/4, Q > 1
and I be given by

m=J U [“m’*%}
7<Q (a,

Then we have

5 ) et = w5 T (v L o),

n<N
where
, bi,....,b dp?):bd 4+ +bi = d p’
Bp(m) = ]g& #{b1 % (mod p’) pj(lkfl) m (mod p )}7
T +1/d)k
Pt = Gy

and Boo(m) Hp Bp(m) converges to a positive constant bounded away from 0 uni-

formly in m.

27
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PROPOSITION 5.3 (Minor arc contribution). Letm = [0, 1]\9. Then for @ < N
we have
Nk+o(1)

/m’ S e(t‘)P(n))‘de < i

n<N

PROOF OF THEOREM [5.1] ASSUMING PROPOSITION AND PrROPOSITION [5.3]
Using orthogonality (Lemma [4.1] we have

1 k
#nd 4. 40l =m,0<n; <N} :/ (Z e(ond)) e(—mb)db
0 <N
Let 2t be as given in Proposition and m = [0, 1]\9 as in Proposition
Then, splitting the integral according to whether 6 € 9t or not, the above is equal
to
k k
/ (Z e(end)) e(—m8)do +/ (Z e(end)) e(—mf)do.
m n<N ™ n<N

Applying Propostion[5.2] to estimate the first integral and Proposition[5.3]to bound
the second one, we find that for k& > d2¢t2 this is

mk/d1Bm(m)1;[l8p(m)+0<de<Q5+ S Q]Z/Zd))

N QK212

We now choose N = m!'/? Q = N'/19, and see that for k > 20d2¢ the error term

is O(m¥/4=1=1/24) which is much smaller than m*/?=!. Thus we have

#{nd 4o = m} = w1 (B (m) [T Bp(m) + O™ 2). O
P
Thus we are left to establish Proposition and Proposition [5.3

5.1. Major Arcs for Waring’s problem

LEMMA 5.4 (Polynomial exponential sum when close to a rational with small
denominator). Let 6 = a/q+ € and P(x) € Z[z] be an integer polynomial of degree
d. Then we have

1 N
S erm)= (> Y ear®)/a)( / e(eP(u))du) + O(geN").
n<N b (mod gq) 0
PROOF. We note that e(aP(n)/q) only depends on the residue class n (mod q).
Therefore, splitting into residue classes
Yo elbP(n)= Y elaP®)/a) Y e(eP(n).

n€[N,2N] b (mod q) n€[N,2N]
n=b (mod q)

Since € is small, e(eP(n)) only really depends on the rough size of P(n), and so

we can approximate the sum by an integral. Since P has degree d, we see that
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|P'(t)] = O(N?1) for [t| < N. Thus, if [u — v| < ¢ and u,v < N then
IP(v) = P(w)| < o —ul sup P'(t) = O(gN+~").
[t|<N
Therefore, for b < q, b+ rqg < 2N

(r+1)q P(b+rq)
e(eP(u))du‘ < sup ‘2m’e/ e(et)dt
q u€[rq,(r+1)q] P(u)

= O(egN?).

1
’e(eP(b—i— rq)) — g/r

3 e(@P(n)):(f 3 e(aP(b)/q))( /N2 Ne(eP(u))du)+O(equ). O

n€[N,2N] q b (mod q)

LeEMMA 5.5 (Completion of local factors). Let k > 2% and 9 be as in Proposi-
tion[52. Then we have

/s.m(zew"d))ke(—m‘))d@:G(m) (m) + O(N*~ d(Q +W))
n<N
where

Y Y (Y ) eeam

q (a,q)=1 b (mod q)

J(m) = /0; (/U<Ne(vud)du)ke(vm)dv.

PROOF. By Lemma [5.4] we have for § € M
k 1 k, N k
e(dn?)) = (- e(ab?/q) / e(eutydu) + O(Q*NF-1).
<7§V ) (q b (go;i ) ) ( 0 )

We note that the measure of M is O(Q3/N?), so the error term contributes a total
O(Q°N*~4=1) to the integral. The first factor depends on a,q but on €, whereas

the second factor depends only on €. Thus
k
/ (Z e(@nd)) e(—mb)do = &* (m; Q)J* (m, Q) + O(QPN*~4-1),
M p<N
where

& (mQ)i= Y Z( > abd/q) e(—am/q),

1<q<Q (a,9)=1 7y (mod q)

J*(m, Q) = /_C;//J;d </u§N e(eud)du)ke(—em)de.
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We first concentrate on the arithmetic piece &(m, Q). By Lemma [3.5 we have
1 k jod—
Y catie) <
(@a=1 L b (mod q)

Therefore, since k > 2?, we can extend the sum to all ¢ at the cost of a correction

term of size Qz_k/2d71. This gives

2{1—1

&*(m,Q) = &(m) + O(Q* "> ).

We now wish to similarly approximate the Archimedean factor J*(m, Q) with J(m).
We first note that, by letting v = eu?

d 1 1/d—1 1
/ugN e(eu®)du = m/o v e(v) < =Yz

We can therefore extend the integration in J*(m, @) to all of R at the cost of an

error term of size

< / de < Nk~ .
le[>q@/Na [e[F/d T QR/d=1
Thus
Nk—d
J*(m, Q) = J(m) + O(W>.
Putting these estimates together (alongside the trivial bounds J*(m, Q) < N*—¢
and &(m, Q) < Q?) then gives the result. O

LEMMA 5.6 (Singular series). For each prime p, let

#{b1,...,by (mod p/) : b+ -+ bl =m (mod p’)}
j—o0 pi(k=1)

as in Proposition[3.7} Then we have
&(m) = [ Bo(m)
P
which converges to a positive real number which is lower bounded uniformly in m.
PrOOF. If ¢ = pi*--- pjj then, by the Chinese remainder theorem, we have

S (0 elar'/a) el-am/a)

(a,q)=1 7 b (mod q)

J
1 RY .
S (% o) ecomin
i=1gq; (mod p;?) Y b (mod p;t)
(ai,pi)=1

Letting ¢; = p;’, the sum over q; is

hd . hd .
E G O)E - T G, X ) ()
pila;




5.1. MAJOR ARCS FOR WARING’S PROBLEM 31

Expanding out and using orthogonality (mod ¢;), the first sum above is

1 a;(b¢ + ... 0% —m) N(q;)
Loy y (eeetiomy Mo
¥ b1,...,bx (mod ¢;) a; (mod g;) ! &

where
N(q) := #{b1,... b (mod q) : b +--- 4+ b} =m (mod ¢)}.
Similarly, the second term is —N(q;/p;)/(q:/p:)*~. Thus we find
1 k N (g, N(q¢i/pi
S GX catf) ct-anjo =T[5 - TR,

(@a=1 b (mod q) iz

We note that by the Chinese Remainder Theorem that N(qiq2) = N(q1)N(gz) if

q1,q2 are coprime, so the above expression is multiplicative in ¢. Thus, summing

over all ¢ we obtain

1 k N(p? N(pi—1
>3 (G % ) e<—am/q>=H(1+;<pj(ip7 ) - )

b (mod q) p

(we note that these expressions converge avsolutely thanks to Proposition [3.7]).

Since the inner sum telescopes and converges, we see that

N(pi—!
HZ(W L ](f)(k_)m)* lim N (p') = B,(m).

j—)OO

Thus

m) = Hﬂp(m

Again, the absolute convergence follows from |3, (m) — 1| < 2k+1p=k/ 2 by Propo-
sition Indeed, alongside B,(m) > p_deH, this shows the uniform lower bound

)2 11 () 1 (- 20). 0

p<22¢ p>22¢

LEMMA 5.7 (Singular Integral). Let N > m!/¢. Then we have

B C LA+ 1/d)*
J(m) = Ah,,,,uke[o,ml/d] 1= T T(k/d) .

uf 4o tuf=m
Here the integral above is interpreted as wz’th respect to the (k—1) dimensional mea-

sure induced from duy .. .duy, and T'(z fo x*"te%dx is the Gamma function.

PRrOOF. Let f(u) = d_lul/d_llogugg\z. Then, by a change of variables v; = uf

. (/Ul...fuk)l/d_l .
/“w-kaG[QN] dur -ty = Al,...,vke[o,z\rd] dr = (fxox f)(m).

uf—&-m—&-uz:m v+ Fvg=m
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We see from Lemma [£.1] that the Fourier transform is given by

~ 1M 1 1
7o) = g/0 vl/dfle(—gv)dv — W/O pl/d=1, (—v)dv < 51/d

-~

. 1
(f - % f)(€) = fO" < R/

Therefore, by Fourier inversion we have
(Fxen Pm) = [ eme)F©) g = I(m),

k
We now show that this integral is %nk*d by induction on k. Letting w; =

vi/m*/?* we see that

_ dwy . ..dwg_1
J(m) = mF/d 1/ .
Loeens 01 1 l/d . 1-1/d

Thus J(m) = m*/41C(k,d) for some positive constant C(k,d). It isn’t really
important for us what this is, but Lemma [B.2] shows that this constant is

D(1/d)f  T(1+1/d)F .
d*T(k/d) —  T(k/d)

2. Minor Arcs for Waring’s problem

LeEMMA 5.8 (Fractional parts can’t be small too often). Let |0 —a/q| < 1/¢>
with (a,q) = 1. Then for any B € R we have

1 HN
Z min(N7 W+ B )<< + Hlogq+ N +qlogg.
2\ ) < g

PROOF. Let § = a/q + €. If € = 0 then ||6h| would be periodic with period
q, taking values which are 1/¢-seaprated. Moreover, eh would be small compared
with 1/¢ if h is a bit smaller than q. We therefore split the sum over h into [4H/q]

sums of length ¢/2 (potentially increasing the number of terms slightly for an upper
bound). Thus

[2H/q] q/2

> min(N ||oh1+5|\) > Ymin(¥ - +0r||)

|h|<H m=1 r=1

where 3, = Omq + 8 doesn’t depend on r. Finally, we note that if r1,ry < ¢/2
with 71 # r9 then a(ry —r2) # 0 (mod q) since (a,q) =1, so |la(r1 —r2)/q|| > 1/q.
Therefore, since |e| < 1/¢>

|0r1 — Or2|| = Ha )

Thus the values 8, + 0r (mod 1) € [-1/2,1/2] for 1 < r < ¢/2 are separated by
1/(2q), so the 5 smallest non-negative value is at least (j —1)/(2¢). In particular,
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for any m we have

/2 1 a/2— Ly
mm( ) N +2 < N +qlogg.
Z 18w + O Z
Recalling that there are < H/q + 1 such sums we obtain the result. O

LEMMA 5.9 (Minor arc bound for squares). If 0 = a/q + € with (a,q) =1 and
le] < 1/q>, then
N
‘Z (6n?) ’ +N1/210gq+q1/210gq
n<N

PROOF. We square the sum in question, expand, and write ny = ny + h. This

gives

’ Z e(9n2)‘2 = Z e(6(n3 — ni))

n<N ny1,n2 <N
= > e(6h?) > e(6hny).
|h|<N max(1l,—h)<n;<min(N,N—h)

By summing the geometric series, we have that
2 1
e(@hnl)‘ < min(N, 7) < min(N, 7)
| . )Z NN [e(8h) — 1] o]
max(1, <ni<min(N,
Now, applying Lemma gives
N
‘Ze(@n ‘ < Z mln( T )<< (f—l—l)(N—i—qlogq).
n<N |n|<N (1m0l 4

This gives the result. O

LEMMA 5.10 (Divisor Bound). Let 1, (n) be the number of ways of writing n as

a product ny ...ny of k positive integers. Then
() < nox@),

PRrROOF. If n = pi* - - p& then for any € > 0

T

Tk(n)l—[l<ezljk> SH(eiJrl)kS H ezirell

i=1 i=1
If p > 2F/¢ then (e; + 1)k < 2k¢ < peei. If p < 25/¢ then we see that

(e +1)* < (e+ 1)k
pée - 266

< C(e k)
for some constant C(e, k) independent of e. Thus

m(n) < N ] Clek) < N<C(e,k)*". O
p<2r/e
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LEMMA 5.11 (Minor arc bound for polynomials). Let P(x) € Z[z] be a polyno-
mial of degree d and 0 = a/q + € for (a,q) =1 and |¢| < 1/¢*>. Then

d—1
5 o] ) e ()
n<N

PrOOF. We claim that if P(z) has degree d and lead coefficient ag, then for

any interval Z C [1, N] we have
2d—1 _ 1

’Ze(@P(n))‘ < NFT N min(N, T

nel [hil,eslha—1|SN

“ha10] )

Assume that this is true for all polynomails of degree at most k, and we wish to
show it for P(z) of degree k + 1 and lead coefficient ag. We see that

‘Ze(@P(n))r: > e(6(P(n) — P(nz)))

ne’l ny,ne €L
(5.1) = > > e0Qn(n))
|h|<N n1€Jn
where J, = Z N (Z — h) and Qp(n) = P(n+ h) — P(n). Then Qr(n) has degree k
and lead coefficient (k+1)agh and J}, is an interval, so by the induction hypothesis
(5.2)

ok—1 - 1
| Q)| <N S in(w, , ).
= o <N l(k 4+ D)laghhy - - - hg—10)]]

Now Hoélder’s inequality gives

33 0@um) <N 32| Y eoautm)
|h|<N n1€Jn |h|<N n1€Tn
Substituting in (5.1) and (5.2) (and relabelling h as hy) gives

ok . 1

oP ‘ NZ k=L in{ N, :
‘Ze( n) < > mm( ||(k+1)!aoh1"‘hk0H)
nezl ‘hllv'“flhk‘SN

21@—1

)1/21‘:71

This establishes the claim.

Let h = (k + 1)laghy ..., hx < N*. The number of choices of hy, ..., h; given
h is O(N°(M) by the divisor bound when h # 0, and O(N*~!') when h = 0. Thus
by Lemma we obtain

2k ®
2F —k—1 o(1) : k
‘Ze(ﬁp(n))’ <N (v S win(N, ||h0\|) +N*)
ne€zl 0<|h|KN*
k o
< N2k71+o(1) + N2 ol +N2k7k71+o(1)q' 0
o q
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Proor or ProrosiTioN (.3 By Dirichlet’s Theorem in Diphantine approxi-
mation (Lemma any 6 € [0,1] has an approximation
a Nd Q 1
9254—6; qéf,(a&):l,IeISWSqu-
If there is such an approximation with ¢ < @ then clearly 8 € 9. Therefore if
6 € m we see that ¢ € [Q, N?/Q], in which case Lemma gives

14o0(1)
|3 etopm)| < Nélﬁ.

n<N
Integrating the k" power of this bound over all # € m gives

(|5 oot :

n<N






CHAPTER 6

Roth’s Theorem

A k-term arithmetic progression is a sequence a, a +d, ..., a + (k — 1)d. We
call this non-trivial if d # 0.

THEOREM 6.1 (Roth’s Theorem). There is a constant C > 1 such hat any
subset A C {1,...,N} with |A| > CN//loglog N contains a non-trivial 3-term

arithmetic progression.

6.1. The density increment strategy

PROPOSITION 6.2 (Density increment). Let a € (0,1) and N > (10/a)10. Let
P C Z be an arithmetc progression of length N, and A C P a set with |A| > aN.
Then at least one of the following holds:

(1) A contains a non-trivial 3-term arithmetic prgression.
(2) There is an arithmetic progression P’ C P of length N’ > N'/° such that
A= ANP’ satisfies
|A'| o?

> —_—.
7~ *" %o

PROOF OF THEOREM ASSUMING PROPOSITION By increasing the con-
stant C if necessary,we may assume that N > N for any fixed choice of Ny. Assume
for a contradiction that A of the the Theorem contains no non-trivial three term
arithmetic progressions, but has density o > 1/4/loglog N. Then neither does
any subset of A. Let A; := A and Py := {1,...,N}. We now repeatedly apply
Proposition to obtain a sequence of arithmetic progressions P; 2 Py O ...
together with sets A; 2 As O ... where A; := ANP;. We do this until we can no
longer apply Proposition which must mean that the condition |P;| > (10/a;)1°
no longer holds. By the bounds from Proposition [6.2] we have that the lengths
n; = |P;| and densities aj := | A4,|/|P;| satisfy

=0
Sl

’/ljZNl/E)j, C)éj+120£j—|- Za](l—kg)

We see that «; are increasing, and for j < (loglog N)/10

loe N 10
n; > exp(wﬁw) = exp((logN)1_1°g5/10> > exp(y/log N) > (10\/10glogN) .

37
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on taking No large enough. Thus the condition n; > (10/a;)' holds for each
j < (loglog N)/10, so we produce at least (loglog N)/10 terms in the sequence.
On the other hand, we cannot have many terms in the sequence since the density
of a set cannot increase above 1. Let m = [60/a/]. Since oj41 > a;(1 + a/60), we
see that ) _
a\Jim 1\im J
arpm 2 a(1+ ) 2a(1+ =) = a2
However, all densities must be at most 1, so we must have that j < 2log1/«a. Thus,

recalling o > 1/+/loglog N, if Ny is large enough we can have at most
12 1 loglog N
log — < —=—>2>"
Hos 2= =150

terms un the sequence. This is a contradiction to our earlier bound, and so A must

1+2[E

have contained a non-trivial three term arithmetic progression. ([l

6.2. Circle method and large Fourier coefficients

To prove Propositon we wish to analyse the count of the number of three

term arithmetic progressions in A. We see that, using orthogonality,

Yo=Y 1

a,d<N ai,az,a3€A
a,a+d,a+2deA a1+az=2az
1 2
:/ (Z e(aﬁ)) (Z 6(72&9))d9.
0 “aca acA

For any set A C {1,...,N} we have that ) _ ,e(af) is large when 6 is a small
multiple of 1/N. For a random set, it would only be these arcs near 0 which make a
meangful contribution, and these would contribute roughly o> N2. THerefore there
must be a significant contribution from somehere else to cancel this if there are
actually no arithmetic progressions in A. To keep track of things more easily we
work with the balanced function B4(n) := 14(n) — « rather than the indicator
function. Given functions f, fa, f3 : Z — C, let

/;(Z fl(n)e(ne)) (Z fg(n)e(nG))(Z fz(n)e(—2n9))d9

n<N

T(f1, fo, f3)

= Z J1(n1) fa(nz) f3(n3).

ni,nz,ng<N
ni+nz=2nz

LEMMA 6.3. Let f1,f2,f3 : Z — C be supported on {1,...,N} and satisfy
Yonen | fi(n)|> < BN. Then for any j € {1,2,3}

T(f1, f2 f3) < ﬁngpm(en.
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PROOF. We prove the result for j = 1; the other cases are completely analo-
gous. We have that

1 o~ o~ o~
T(hfafi) = [ HOROT0)®
. 1
<sup|Fi6)] [ 172(26)1a(6)]d0
0 0
N 1 1/2 1 1/2
<swplfi0) ([ 1Coras) ([ 1roPan)"
By Parseval (Lemma we have
1 o~
| 1B@Raw =3 fi0p < oy

Substituting this in above gives the result. O

LEMMA 6.4.

3N2 o
oot — — TaN sup|B4(0)|
0

a,d<N
a,a+d,a+2de A

PRrOOF. Clearly T is trilinear, so by writing 1 4(n) = Ba(n) + «, we have
T(1a,14,14) = T(a,a,00) = T(Ba, Ba, Ba) + T(Ba, Ba, &) + T(Ba, o, Ba)
+T(a,Ba, Ba) + T(Ba, o, a) + T(Ba, a, Ba)
+ T(aa Q, B.A)

Each term on the right hand side invovles at least one copy of B4 as an argument
to T. We note that

SamP =aN, Y IBa? =a(l- )N,

so by Lemma [6.3] we have
714,14, 10) = T, @, 0)| < TaN sup [BA(6)].
0

By direct estimation we see that

N2
T(a, o, ) = a® Z 1>a®—.

ni,n2,n3<N - 2
ni+nz=2no
Therefore
a3 N2 -
T(14,14,14) > — TaN sup [Ba(0)]. O
0

LEMMA 6.5 (Sets without 3APs have large Fourier coefficients). Let o >
1/\/loglog N and N be sufficiently large. Then at least one of the following holds:

(1) A contains a non-trivial three-term arithmetic progression.



40 6. ROTH’S THEOREM

(2) supy |Ba(6)] > a2N/20.

PROOF. The number of trivial three term progressions in A is just |A| = aN.
Therefore, by Lemma[6.4] the number of non-triivial three term arithmetic progres-

sions is at least
a®N?

— 7aN sup [B4(0)| — aN
0

Since a > 1/+/loglog N, we see that for N large enough a®N?/2 —aN > 2a3N?/5.
Therefore if |§A(9)\ < a?N/20 for all @, the number of non-trivial three term

arithmetic progressions is at least

203N?  a3N?
) 20
LEMMA 6.6 (Large Fourier coefficients imply density increments). Let |B4(0)| >

a?N/20. Then there is an arithmetc progression P C {1,..., N} such that
APl o?

> 0. ]

i Jr@ |P| > N5,
PROOF. By LemmalL.6] there is a ¢ < N'/2 such that
b 1
9:54‘67 ‘dgmv (b)Q):l

We first split {1,..., N} into congruence classes (mod ¢), and then split each of
these into arithmetic progressions containing between N/> and 2N'/® consecutive
terms in the congruence class. If P = {c+¢r: r < Ny} is one of these arithmetic

progressions, then we see that
ZBA e(nd) = e(ch) ZBA (c+rq)e(erq)
nep r<Ni

We have that

21 N1 4

le(era) — 1] = [2sin(rer)| < 2merg < ~Tt < T

Thus, for N large enough

47Ny
’ZBA c+rq)e(erq) ZBAchrq’ Ng/logl.
r<N; r<N;

On the other hand, by assumption |§;(9)| > a?N/20. Thus, since the P partition
{1,..., N}, by the triangle inequality

S| S Butetnd)| = | 3 Bam)e(nd)| > O‘;év

P neP n<N

Combining these gives (for N sufficiently large)

SI3 B = 5

P neP
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Since ), oy Ba(n) =0, and }  [P| = N, we have

S| Bam| + 3 Batm) = &
nep neP >

P
Thus there is some P such that

0[2
| Ba)|+ Y Batm) = 517
nep

neP
> nep Ba(n) is real, and must be positive for the left hand side to be positive.
Thus
o2
Y Baln) = —|Pl.
60
neP
Recalling the definition of B 4, the left hand side is AN 7P| — a|P|. This then gives

the result. (]
We can now prove Proposition [6.2] and so complete the proof of Theorem [6.1

PROOF OF PROPOSITION [6.2] Assume that A contains no non-trivial 3-term
arithmetic progressions. After an affine rescalining, we may assume that P =
{1,..., N} since affine rescalings don’t change whether a set is a 3AP, and preserves
cardinalities.

Then, applying Lemma [6.5] we deduce that A has a large Fourier coefficient in
the sense that

= a’N

Ba(0)] = “~.

’ A= =55

Now applying Lemma [6.6] we see that this implies that there is an arithmetic

progression P C {1,..., N} of length at least N/5 such that
|[ANP| a?

>a+ —.
T







CHAPTER 7

Freiman’s Theorem

THEOREM 7.1 (Freiman’s Theorem). Let A C Z satisfy |A+ A| < K|A|. Then
there is a constant C(K) > 0 such that A is contained in a generalised arithmetic

progression of dimension C(K) and size C(K)|A|.

DEFINITION (Freiman Homomorphism). Let A, B be sets in (possibly different)
additive groups, and ¢ : A — B. Let s > 2 be an integer. We say that ¢ is a

Freiman homomorphism of order s and A is Freiman s-isomorphic to B if

dlar) + -+ dlas) = ¢(ay) + - + o(al)

whenever a; + -+ +as = ay +---+al,. We say that ¢ is a Freiman s-isomorphism

if ¢ is a bijection and both ¢ and ¢~ are Freiman s-homomorphisms.
Thus Freiman homomorphisms respect s-fold sum relations.

LEMMA 7.2 (Basic properties of Freiman homomorphisms).

(1) (Preserved under composition) If ¢1 : A — B and ¢2 : B — C are
both Freiman s-homomorphisms, then ¢o 0 ¢1 : A — C is a Freiman
s-homomorphism. Moreover, if ¢1,¢2 are both Freiman s-isomorphisms
then so is ¢ o ¢P1.

(2) (Heirarchy) If ¢ is a Freiman s-homomorphism it is a Freiman t-homomorphism
forallt <s.

(3) (Interactions with sumsets) If ¢ : A — B is a Freiman s-homomorphism,
then it induces qzk’g : kA — bA — kB — (B, which is a Freiman §-
homomorphism for any § < s/(k + ).

(4) (Weakening of homomorphism) If ¢ is a homomorphism from (A) — (B)
then ¢ is a Freiman s-homomorphism for all s.

(5) (Dependency on additive structure of underlying sets) If A has no non-
trivial solutions to a1 +---+as = a} ++--+al, then every map ¢ : A — B
is a Freiman s-homomorphism.

(6) (Preserves GAPs) If ¢ : A — B is a Freiman 2-isomorphism and ) C A

is a proper generalised arithmetic progression of dimension d and size S,

43
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then &(Q) is a proper generalised arithmetic progression of dimension d

and size S.

PROOF. These all follow quickly from the definitions. If a; + --- + a5 = af +
-+ al, then ¢1(a1) + -+ ¢1(as) = ¢1(a)) + -+ + ¢1(al,) since ¢y is a Freiman
s-homomorphism, which then means ¢2(¢1(a1)) + - - + ¢2(¢1(as)) = d2(¢1(ah)) +
-+ ¢2(p1(al)) since ¢o is a Freiman s-homomorphism, and so ¢2 0 ¢y is a Freiman
s-homomorphism.
Ifay+---+as—1 =a}+---+a,_, then (choosing as € A arbitrarily) a1+---+
Qs = @byt ay, 50 Bar) + o+ B(ag) = B(ah) + -+ B(dly) + Bla)
(since ¢ is an s-homomorphism), so ¢(a1) + -+ + ¢p(as—1) = ¢( D+ +ola,_q)
and ¢ is a Freiman (s — 1)-homomorphism. Repeating this gives the result.
We define QNS by

Blan -k —ah -~ af) = Blar) -+ 6ow) — D{a) — -~ 6(a)).
We need to check that this is well-defined; if a1 + -+ +ax —a} — -+ —a;, =
ai+---4al—al’—---—a} then a1+ - -+ap+a’+ - -+a}’ = o+ - -+al+al+- - -+a}.

Since k + ¢ < s and ¢ is a Freiman s-homomorphism we then see that

¢(ar) +-- -+ (ar) — day) == d(ay) = d(af) +- -+ ¢(ay) — p(ay’) —- - — d(ay’),

so ¢ is independent of the choice of representative and is well-defined. Similarly if

ny+---+ns =nf + -+ n} with n;,n; € kA — (A then, picking representatives

nz—a(l) ~—|—a(i)—b(1i)—~-~—b(i) we find that
4
Z(Za()—i_zbl(l) Z(Za/(l _'_Zbgl))
=1 j=1 =1 j=1

Since § < s/(k + £), there are at most s terms on either side, so

s k 4
B(m) +++-+ d(ns) = > (D o(al) Z () = Gnh) + -+ + d(n})

i=1 j=1

If ¢ is a genuine homomrphism of additive groups then ¢(a; + -+ + as) =
¢(a1) + -+ ¢(as) so the result is immediate.

If A only has the trivial solutions then a; + --- + as = aj + --- + a/, implies
{a1,...,as} = {d], ..., a,} so certainly ¢(a1) + - + ¢(as) = ¢(a)) +--- + ¢(a})
without requiring any properties about the map ¢.

We see 1, T2, 3 being in arithmetic progression is equivalent to x1 4+ x3 = 2xs.
If this holds then ¢(x1) + ¢(x3) = 2¢(x2), so ¢(x1), d(x2), d(x3) are in arithmetic
progression. It follows that ¢(Q) is a generalised arithmetic progression of dimen-
sion d. O
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LEmMA 7.3. If A C Z satisfies
N
sup la —b| < —,
a,be A s

then A is Freiman s-isomorphic to its image (mod N).

PROOF. The reduction mod N map is a group homomorphism, so certainly
a Freiman s-homomorphism. Therefore we just need to consider the inverse map.

Imagine aq,...,as,a},...,a. € A are such that
(a1 + -+ +as) — (a) +---+a’) =0 (mod N).

By assumption on A, we see that (a1 +---+as) — (a] +---+a}) is an integer of size
less than N. But then the only such integer which is 0 (mod N) is 0 itself, so we

must have a; +- - -+ as = a} +- - - +a), whenever these are congruent (mod N). O

7.1. Modelling integers sets with cyclic groups

LEMMA 7.4 (Rusza modelling lemma). Let A C Z, and s, N > 2. If we have
that
|sA—sA| <N
then there is an A" C A such that |A’| > |Al/s and A’ is Freiman s-isomorphic to
a subset of Z/NZ.

PRrROOF. Fix a very large prime p > max(sA — sA). Let ¢y : Z — Z/pZ be
the reduction mod p map, let ¢o\ : Z/pZ — Z/pZ be ¢p2.x(x) = Az and ¢3 :
Z/pZ — {0,...,p— 1} the lift inverting ¢y on {0,...,p— 1}. Then, for each choice
of A€ {l,...,p— 1}, we define

O = @30 ¢p2,) 0 P1.

First we want to show that there exists a choice of A € {1,...,p — 1} such that
®x(d) is not a multiple of N for any d € s A—sA\{0}. Let Sy be the set of non-zero
elements of Z/pZ mapped to multiples of N by ¢3, so |Sy| < (p— 1)/N. We see
that

3 #{dESA—sA\{O}:N|¢,\(d)}: DD DD Dt

Ae{l,....,p—1} desA—sA\{0} beSN Aéil,(.l.i.),pgl}
()=

Since d is non-zero and p > max(sA — sA) > d, we see that d is coprime to p.

Therefore there is a unique choice of A such that ¢, (d) = b (namely A = bd~'mod p).
Thus

-1
3 #{d € sA—sA\{0} : N|¢A(d)} = |Sn||sA—sA| < pN |sA—sA| < p,
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on recalling that [sA — sA| < N. In particular, this means we cannot have that
#{d € sA— sA\{0} : N|pxr(d)} > 1 for all A, so there must be some choice of A
such that ¢,(d) is not a multiple of N for all d € sA — sA. From now on we fix
this choice of A and wirte ¢ = ¢,.

By the pigeonhole principle, we can find an interval Z C {0, ...,p—1} of length
at most p/s such that

A ={a€A: ¢(a) €T}
contains at least |A|/s elements. By Lemma ¢ sends A’ s-homomorphically
onto its imag. We now let ¢ be the composition of ¢ with the reduction (mod N)
map. We see the lemma follows if 1) maps A’ Freiman s-isomorphically onto its
image. Clearly ¢ is a Freiman s-homomorphism (since it is a composition of Freiman
s-homomorphisms). Thus it suffices to show ¥ (a1)+- - -+ (as) = ¥(a))+---+(al)
implies a1 + -+ +as =a) +---+al. W(ar) + -+ ¥(as) =(a)) + -+ (),
then
y=¢(a1) + -+ dlas) — dlay) — - — d(a;) € NZ.

Without loss of generality, we may assume that y > 0 (by swapping the a; with the
aj if necessary). Since ¢(A’) C Z, we see that 0 <y < p. Let

zi=a1+-+as—aj—--—a, € sA—sA
Since ¢ (mod p) is a group homomorphism,

¢(x) = dlar) + -+ + ¢(as) — d(ay) — -+ = ¢(a;) = y (mod p).
Thus ¢(x) = y (mod p) and ¢(z),y € [0,p), so ¢(z) = y. But N|y and we have

constructed ¢ such that ¢(z) ¢ NZ for all non-zero z € sA — sA. Thus we must
have that x = 0, and so % is indeed a Freiman s-isomorphism. ([l

7.2. Structure in sumsets

DEFINITION (Bohr sets in Z/qZ). Given R = {r1,...,mx} € Z/qZ and € > 0,
define

T,
q

B(R,e):={x € L)L ‘

H < eVi}

LEMMA 7.5 (Bogolyubov Lemma). Let A C Z/qZ be a set of size aq. Then
there is an integer k < 4/a® and a set R = {r1,...,7x} C Z/qZ such that 2A —2A
contains B(R,1/10).

PROOF. Let f:Z/qZ — 7./qZ be given by

flx) = Z 1=(Qa%1ax1_4*x1_4)(x).

ay,az,a3,a4€A
a1+as—az—as=x
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Then f(z) is supported on = € 24 — 2A4. By teh convolution identity (Lemma [3.1]

we have
Fr) = Talr)*.

Thus, by Fourier inversion (Lemma again) and the fact that f is real, we have

f(z) = R(f(z)) = 3%(2 |1/:4(r)‘4e(%)> = Z |1/:4(T)|4cos(27;7"93).

We now choose R to be the set of large Fourier frequencies

Ri={r €Z/qZ: |Ta(r)| = o*/*/2}
Then by Parseval’s identity
3
(0% - 2 T 2 _ 1 2 _
Rl < SNIAmP < D TamP == ) 1@’ =0

reR reZ/qZ x€Z/qZ
Thus |R| < 4/a?. To complete the proof it suffices to show that f(x) > 0 if
x € B(R,1/10) since f(x) > 0 only on 24 — 2.A. We split the Fourier expansion
into three parts: the term r = 0, the terms r» € R and the terms r ¢ R U {0}.

f) = [1a0)* + Z 1a(r) COS(2WqTx) + Z |f4(r)|4cos<2ﬂqrx).

reR rg¢RU{0}

We see that 14(0) = o4, and that since [14(r)| < a3/2/2 for r ¢ R U {0}
3 4

—~ 2wrx « o
1 4 ( )‘<7 1 2<— 1 2=
| X Tefes(TT) < T X 1Taw) ST <

r¢RU{0} r¢RU{0}
Finally, if z € B(R,1/10) then for all » € R we have that |rz/q|| < 1/10, so
cos(2mrx/q) > 0. In particular

—~ 2
g |14(r)|* cos( 71'7"1‘) > 0.
reR q

Putting this together, we find that for x € B(R,1/10) we have

ot 3a?

f(x)za4+0—Z=T>o. O
PROOF OF THEOREM [Z.1]
By Pliinnecke’s Theorem (Lemma [2.4)) we have |84 — 8A| < K'6|A4].
Choose N to be a prime wih K'6|A| < N < 2K16|A|.
By Rusza’s modelling lemma (Lemma , there is a subset A" C A with
|A’| > |A]/8 such that A’ is Frieman 8-isomorphic to a subset B of Z/NZ. We see

that ,
1Bl _ AT AL 1

N N *8N*16K16
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By Bogolubov’s lemma (Lemma we then see that 28 — 2B contains a Bohr set
B(R,1/10) for some set R C ZNZ of cardinality at most 256K 32.

By the geometry of numbers (Lemma B(R,1/10) contains a proper gen-
eralised arithmetic progression G of dimension d < 256K32 and size at least cx N
for some constant cx > 0 depending only on K.

Since B is Freiman 8-isomorphic to A’, 2B — 2B is Freiman 2-isomorphic to
2A" — 2A’ by Lemma

Generalised arithmetic progressions are preserved by Freiman 2-isomorphisms
(by Lemma , the G is mapped to a proper generalised arithmetic progression
Q C 24" — 24, with the same dimension d < 256 K32 and size at least cx N.

By Lemma this implies that A is contained in a generalised arithmetic
progression of dimension C(K) and size C'(K)|.A|. This gives the result. O



APPENDIX A

Asymptotic estimates

We will repeatedly encounter interesting number-theoretic objects which are
complicated, such as the counting function of the primes. To understand these
complicated functions, we want to approximate them by much simpler functions,
such as a continuous function with no number-theoretic properties. To do this we
need to control the error in such approximations, and the following notation is very

useful to keep us focused on what is going on.

DEFINITION (Big Oh notation). We write ‘O(h(z))’ to denote a function g(x)
which satisfies
l9(x)] < C- h(x)

for some constant C > 0 and all x under consideration.

Since the function g and the constant C' are unspecified, multiple uses of O(-)
can specify different functions. Moreover, this can lead to some initally confusing
issues when used with the = sign, since f(x) = O(h(z)) and g(z) = O(h(x))
does not imply that f(z) = g(z). Moreover, we will use O(h(zx)) inside various
expressions, so given functions f, g, h, when we write ‘f(z) = g(z) + O(h(z)) for
x € 8 we mean there exists a constant C' > 0 (which depends only on f,g,h,S)
such that

[f(z) —g(z)| < C - h(x)
for all x € S. If the set S is clear from the context (as is normally the case), we
just write ‘f(z) = g(z) + O(h(z))’. We sometimes call g(z) the ‘main term’ and

h(z) the ‘error term’ in an approximation to f.

ExAMPLE A.1.

x = 0(2?) forx > 1. (Since x < 2% forx >1.)

22 = O(x) for 0 < x < 10. (Since x*> < 10z for 0 < z < 10.)

It is not the case that x* = O(z) for x > 1 (since as x — oo, 2% /x — 0.)
(x+1)?2 =22+ O(x) for x > 1 (since |(x +1)? — 22| < 3z forx >1.)
lz] =sup{n€Z:n<z}=z+0(1) forx e R. (Sincex —1< |z] <=z,
so||lx] —xz| <1.)

49
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o Vr+1=x+ ﬁ - 896%/2 —l—O(le/Z) for x> 1. (Since for f(x) = /z,
Fa 1) = F@) 4 £1) + £7)2+ )6 for some y € [r,x+1] by
Taylor’s Theorem, and f"(y) = 3/(8y°/?) < 6/(82°/2) for x> 1.)

LEMMA A.2 (Properties of Big Oh notation).
(1) Non-negativity of error term:
If f(@) = O(g()) then g(x) > 0.
(2) Transitivity:
If f(z) = O(g(x)) and g(x) = O(h(x)) then f(x) = O(h(x)).
(8) Additivity:
If fi(z) = g1(x) + O(h1(x)) and fao(x) = ga(x) 4+ O(h2(x)) then
fi(@) + f2(2) = g1(2) + g2(2) + O(ha(2) + ho(x)).

PrROOF. These follow immediately from the definition. (]

DEFINITION (Further asymptotic notation).
o Little Oh notation:

Given h(x) > 0, when considering a limit © — a we write ‘o(h(z))’ to

denote a function g(x) which satisfies

9()

— 0.

lim

r—a h(x)
If we don’t explicitly mention the limit point a then it is assumed a = co.

e Vinogradov notation:

We have the binary relation f(x) < g(x) if f(z) = O(g(x)).

Although the Vinogradov notation overlaps with Big Oh notation, the Big
Oh notation should be thought of as a placeholder for some unspecified function,
whereas the < is an inequality which can exploit the transitivity of O(-), so we
might write things like f(z) < g(z) < h(x).



APPENDIX B

Analytic identities

DEFINITION (Schwarz functions on R). We let S(R) be the space of infinitely
differentiable functions f : R — C such that for all integers j, k > 0

1fO ()] <o 2] 7"

LEMMA B.1 (Properties of the real Fourier transform). Let f,g € S(R).

o (Fourier transform is smooth with rapid decay) fes (R).

e (Gaussian is egenfunction of Fourier operator)If f(x) = e~ then f(f) =

e~ e

(Inversion formula). We have

1(t) = /_ " Fl©ette)de.

(Parseval).

/ " f(t)aldt = / " e

— 00

(Convolutions). Let h(z) := [~ f(t)g(z —t)dt. Then

oo

~

n(E) = F)a(e).

PRrROOF. A bit of care is required because convergence issues can come into
play. Let
belx) = Zeme/
€

be an approximation of the identity. Clearly ¢. € S(R). Let
fel@) = ™D (f 5 po) (x) = 6_”(“)2/ Pe(x —t) f(t)dt.

Then f. € S(R) since f * ¢, is infinitely differentiable and e~(c)” has rapid decay.
We see that for x| < e~ 1/2

fe(z) = f(x) + O(e) + O( sup [f(y) — f(x)]).

ly—z|<el/2

In particular f.(z) — f(x) as e — 0 if z is a point of continuity of f. Thus,

since the conditions on f, g ensure that all integrals in the lemma are absolutely
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convergent, it suffices to establish the results for f., g. in place of f, g, so we only
need to consider f,g € S(R).

e First note that since f € S(R), we have that f(z) = O(|z|7%) for |z| > 1.

Thus f (€) is given by an absolutely convergent integral, and

ﬂ“ﬂ_ﬂQZK1ﬂmmzm%em“_ﬁm+[1¢%“m5®

€ € €

In the first integral we use the Taylor expansion e 27%¢ = 1 — 2mize +
O(x2€?). Thus, taking out a term —27iz f(z)e~2™*¢ from both integrals,
we find

f@+d—f@):/”

€

—2mix f(x)e 2T 4 O(/

|z|<e—1/2

+0(ﬂPEUJﬂmui+xm@
- /OO —27rimf(x)e_2”7”5 + O</:c|<e—1/2 EdﬂU) + O</|w|>e—1/2 i + %)dm)

= / —omizf(x)e 2™ 4+ O('/?).

ca?|f(2)|dr)

—0o0

This converges as € — 0, showing f’(&) is the Fourier transform of —2miz f(x).
Since —2mizf(z) € S(R) whenever f € S(R), we can repeat the above
argument and find that ) is the Fourier transform of (—2miz)? f(x) for
all j € Zsy.
By differentiating by parts k times, we see that
o o —2mixé ak ) 1
() (g) = € 7(_2’] )d R
0 = | G (2miaP 1)) do <
Thus f € S(R).
e By completing the square, we have
f(f) = /°° e~ —2ming g e /OO e~ @€ 1.
— 0 —00
By Cauchy’s residue theorem
Rti€ R -R —R+ig
[ [ g [ s [ fede =0,
—R+i€ R+ig R -R
where the integrals are straight line contours. Since |f(z)| < e‘”(%(z)2_§(2)2),
we see that the second and fourth terms both tend to 0 as R — co. Thus
we find that
oo s R+-1€ —o0 ') R
/ e @) dy = lim f(z)dz = 7/ f(z)dz = / e ™ dx.

—00 R—o0 —R+-i€ (e’ —00
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The result follows on recalling the identity [~ e~ du = 1.
e Let ¢ (x) = e ™@/9” Je. Then, by a change of variables and the previous

result, we see that

~ oo —ﬂ(m/s)z 5 s
qx(e):/ T e 1O

oo € €

/ $e(€)e(x€)d / S1yc(E)e(x€) = ‘“/6( ) ()

Then we see that

JEXAC / ftfu/ ¢E e(&u)dédu

/ T st/ F(t — w)e(~€(t - u))dudg

- /_ () F(©)eletyde.

Realling that f, fe S(R), we see that letting ¢ — 0 then gives
1) = tim( 000 = lim [ GO ©etenic = [ Fioetenie

e Substituting the defintions and then ¢ = u+ v gives (recalling f, g € S(R)

so everything converges absolutely)

:/Oo /Oo f(u)g(t_u)du)e(—tg)dt

/ / F(w)g(v)e(—u€)e(—€v)dudv = FE)F(E).

LEMMA B.2 (Gamma and Beta function identities). For R(s) > 0, let I'(s) :=
IS o te™"dx be the Gamma function. Then for R(s), R(on), ..., R(ax) > 0

D(s) = LU,

S
T ...T
/ ‘,Eflll 1 xkk ldl'l dxkfl — (Oé]) (ak) .
@y etag=1 Loy + -+ o)

PRrOOF. This is just an exercise in basic analysis. By integrating by parts, for

R(s) >0
I'(s) = / e dr = / Lo dy = Lls+1) 1).
0 0

S S

For the second part, first we note that by a change of variables y; = x;/(z2+- - -+xx)
for i > 2 the integral is

1
1 ctap—1 1 ap—1
/ T — )t T gy / Yo YRt dya . Yp—1.
0 y2+-typ=1
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By applying this repeatedly we see that the integral in question is
B(ag,ap + -+ +ag)Blag, a3 + - +ag) - Blag—1, k),
where B(z1, 22) = fol 21711 — 2)*2~Ydz, so it suffices to show

['(21)T(22)

B = .
(21, 22) T (21 + 22)

We see that
r(zl)r(zg):/ / uf Tt u e T 2 duy dusy.
0 0

By a change of variables s = uy + ug, t = uy/(u1 + uz2) (so uy = st, ug = s(1 —t)

and the Jacobian factor is s) we find this is

oo 1
I'(z1)T(22) = / Szl+2271675d8\/ 71— )2 dt = T(21 + 29) B(21, 22),
0 0

as required. O
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