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CHAPTER 1

The geometry of numbers

The geometry of numbers studies the integers by viewing them geometrically

as a lattice in R (or Rn).

Definition (Lattices and their key parameters).

(1) A lattice Λ in Rn is a set

Λ = v1Z + · · ·+ vrZ

for some linearly independent vectors v1, . . . ,vr ∈ Rn. We say {v1, . . . ,vr}
is the basis of the lattice and r is the rank of the lattice. We say Λ is full-

rank if r = n.

(2) The fundamental parallelepiped of a lattice Λ with respect to the basis

{v1, . . . ,vr} of Λ is the set

Pv := {x1v1 + · · ·+ xrvr : x1, . . . , xr ∈ [0, 1]}.

(3) The determinant det(Λ) is the r-dimensional volume of a fundamental

parallelepiped.

There are many possible choices of a basis for any given lattice, but quantities

like the rank and determinant do not depend on the choice of basis.

Lemma 1.1 (Basic properties of lattices).

(1) (Additive subgroup) If x,y ∈ Λ then x± y ∈ Λ.

(2) (Discreteness) There is a constant δ > 0 such that if x 6= y ∈ Λ then

|x− y| ≥ δ.
(3) (Determinant well-defined) If {v1, . . . ,vr} and {w1, . . . ,wk} are two bases

of a lattice Λ, then r = k and vol(Pv) = vol(Pw). If Λ has full rank then

det(Λ) = |det(v1, . . . ,vk)|.

Proof. (1) This is immediate from the definition.

(2) If x =
∑k
i=1 aivi ∈ Λ has x 6= 0 then |aj | ≥ 1 for some j since aj ∈ Z.

Let v∗j ∈ Rn be the component of vj orthogonal to the other vi. Then

|v∗j ·x| = |aj ||v∗j |2 ≥ |v∗j |2. Thus for all x ∈ Λ we have |x| ≥ minj |v∗j | > 0.

(3) Since the vectors vi are linearly independent and the wi are, we see

that r = k = dim(spanR(Λ)). Since {vi}ri=1 form a basis for Λ and
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2 1. THE GEOMETRY OF NUMBERS

{wj}kj=1 ⊆ Λ, there is an r × r matrix M with integer entries such that

wi =
∑
jMi,jvj . But since {wi}ki=1 also forms a basis there is a k × k

integer matrix N such that vi =
∑
iNi,jwj . Thus we see that M−1 = N ,

so both matrixes have determinant ±1 and vol(Pv) = vol(Pw). If r = n

then it is easy to see from a change variables vol(Pv) = |det(v1, . . . ,vk)|.
�

1.1. Minkowski’s first theorem and sums of squares

Definition (Convex sets and successive minima).

(1) A convex set K ⊆ Rn is a set such that if x,y ∈ K then the line segment

connecting x and y is also contained in K.

(2) A centrally symmetric set is a set S such that −x ∈ S whenever x ∈ S.

(3) Given a lattice and a centrally symmetric convex set K of positive volume,

the ith successive minima of K with respect to Λ is

λi = inf{λ ∈ R>0 : λK ∩ Λ contains i linearly independent vectors}.

If K is the unit ball, we say λ1 ≤ · · · ≤ λk are the successive minima of

the lattice Λ.

Lemma 1.2 (Blichfeldt’s lemma). Let K ⊆ Rn be a measurable set and Λ ⊆ Rn

be full rank lattice with vol(K) > det(Λ). Then there are distinct points x,y ∈ K
with x− y ∈ Λ.

Proof. Assume for a contradiction that there are no such x,y. Let P be the

fundamental parallelepiped of Λ. Then for every t ∈ P , there is at most one v ∈ Λ

such that t + v ∈ K. On the other hand, every point in Rn can be written as t + v

for some t ∈ P , v ∈ Λ. Thus

vol(K) =

∫
P

#{v ∈ Λ : t + v ∈ K}dt ≤
∫
P

1dt = vol(P ) = det(Λ). �

Theorem 1.3 (Minkowski’s first Theorem). Let K be a centrally symmetric

convex set and Λ ⊆ Rn a full rank lattice with vol(K) > 2n det(Λ). Then K

contains a non-zero lattice point of Λ.

Proof. vol( 1
2 · K) = 2−n vol(K) > det(Λ), so by Blichfeldt’s Lemma there

are x 6= y ∈ 1
2 · K such that x − y ∈ Λ. But if x,y ∈ 1

2 · K then 2x, 2y ∈ K,

so x − y ∈ (2x − 2y)/2 ∈ K since K is centrally symmetric and convex. Thus

0 6= x− y ∈ K ∩ Λ. �

Proposition 1.4 (Sums of two squares). An integer q can be written as the

sum of two squares if and only if all primes factors of q which are 3 (mod 4) occur

with even multiplicity.
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Proof. If p ≡ 3 (mod 4), the only solutions to x2 + y2 = 0 (mod p) are

x ≡ y ≡ 0 (mod p), which means that x2 + y2 is divisible by p2. It follows that

there are no solutions to x2+y2 = q unless every prime factor of q which is 3 (mod 4)

occurs with even multiplicity, and any such solutions must have x2 and y2 a multiple

of all of these factors. By restricting to x, y a multiple of d whenever d2|q and then

dividing through by all square factors of q, it suffices to consider the case when q

is squarefree and has no prime factors which are 3 (mod 4).

Let b ∈ Z be such that b2 = −1 (mod q). Consider the centrally smmetric

convex set K ⊆ R2 and lattice Λ given by

K = {(x1, x2) ∈ R2 : x2
1 + x2

2 < 2q},

Λ = {(x1, x2) ∈ Z2 : x1 ≡ bx2 (mod q)} =

(
b

1

)
Z +

(
0

q

)
Z.

Then we have vol(K) = 2πq and det(Λ) = q, so Minkowski’s first theorem applies

and there is a non-zero point in (x1, x2) ∈ Λ ∩K. But then x2
1 + x2

2 ≡ 0 (mod q)

and 0 < x2
1 + x2

2 < 2q, so x2
1 + x2

2 = q, as required. �

Lemma 1.5 (Sums of 4 squares). Every positive integer can be written as the

sum of four integer squares.

Proof. We note the identity

(a2
1+a2

2 + a2
3 + a2

4)(b21 + b22 + b23 + b24)

= (a1b1 − a2b2 − a3b3 − a4b4)2 + (a1b2 + a2b1 + a3b4 − a4b3)2

+ (a1b3 − a2b4 + a3b1 + a4b2)2 + (a1b4 + a2b3 − a3b2 + a4b1)2,

so the set of integers representable as the sum of four squares is closed under

multiplication. In particular, it suffices to show the result for all primes p. The

result is trivial for p = 2, so we just consider odd p. Let

A := {1− x2 (mod p) : x ∈ Z}, B := {x2 (mod p) : x ∈ Z}.

Then |A| = |B| = (p+ 1)/2 and so A∩B 6= ∅. In particular, there are r, s ∈ Z such

that r2 + s2 + 1 = 0 (mod p). Let Λ ⊆ Z4 be the lattice

Λ :=


p

0

0

0

Z+


0

p

0

0

Z+


r

s

1

0

Z+


s

−r
0

1

Z =
{

x ∈ Z4 :
x1 = rx3 + sx4 (mod p)

x2 = sx3 − rx4 (mod p)

}
,
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so that if x ∈ Λ coming from a ∈ Z4 then

x2
1 + x2

2 + x2
3 + x2

4 = (pa1 + ra3 + sa4)2 + (pa2 + sa3 − ra4)2 + a2
3 + a2

4

≡ (1 + r2 + s2)(a2
3 + a2

4) ≡ 0 (mod p).

We see that det(Λ) = p2. Let K be the centrally symmetric convex region

K := {x ∈ R4 : x2
1 + x2

2 + x2
3 + x2

4 < 2p}

so that vol(K) = π2(
√

2p)4/2 = 2π2p2 > 24p2. Thus Minkowski’s first Theorem

applies and so Theorem 1.3 implies that there is x ∈ Λ∩K\{0}, and hence satisfies

0 < x2
1 + x2

2 + x2
3 + x2

4 < 2p, x2
1 + x2

2 + x2
3 + x2

4 = 0 (mod p).

Thus x2
1 + x2

2 + x2
3 + x2

4 = p, as required. �

Lemma 1.6 (Dirichlet). Let θ1, . . . , θr ∈ R. Then for any choices of M ≥ 1

and ε1, . . . , εr ∈ (0, 1/2) with
∏r
i=1 εi ≥ 1/M there is an integer 0 < m ≤ M such

that

‖mθi‖ ≤ εi for all 1 ≤ i ≤ r.

Proof. Choose M ′ > M such that M ′ < bMc + 1. Let K be the centrally

symmetric convex set

K :=
{

(x, y1, . . . , yr) ∈ Rr+1 : |x| ≤M ′, |θix− yi| < εi ∀i
}
.

Then vol(K) = 2r+1M ′
∏r
i=1 εi ≥ 2r+1M ′/M > 2r+1. Thus, by Minkowski’s

Theorem K∩Zr+1 contains a non-zero point. Either the x-coordinate or its negative

then gives the result (noting that all integers ≤M ′ are ≤M). �

1.2. Minkowski’s second theorem

Theorem 1.7 (Reduced basis of a lattice). Let Λ ⊆ Rn be a lattice of rank r.

Then there are linearly independent vectors v1, . . . ,vr such that

(1) (Basis of the lattice) We have that

Λ = v1Z + · · ·+ vrZ.

(2) (Quasi-orthogonality) For any a1, . . . , ar ∈ R we have

|a1v1 + · · ·+ arvr| ≥ 2−r
4

(|a1v1|+ · · ·+ |arvr|).

(3) (Minkowski’s second theorem) Let Λ have successive minima λ1 ≤ · · · ≤
λn. Then |vi| ≤ 2i−1λi and if Λ has full rank

2−n
3

λ1 . . . λn ≤ det(Λ) ≤ 2n
2

λ1 . . . λn.
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Proof. We begin by constructing the basis of Λ. First we choose v1 6= 0 ∈ Λ to

be a vector of minimal length. By minimiality, we then see that Λ∩spanR(v1) = v1Z
and that |v1| = λ1.

Imagine v1, . . . ,vj have already been chosen (with j < r) such that Λ ∩
spanR(v1, . . . ,vj) = v1Z + · · · + vjZ and such that |vi| ≤ 2i−1λi. We wish to

select vj+1. Let

H := spanR(v1, . . . ,vj),

and choose w ∈ Λ\H of shortest length (which exists since if Λ = Λ ∩H we have

a basis so j = r). Let P be the closed parallelepiped

P := {x1v1 + · · ·+ xjvj + xj+1w : 0 ≤ xi ≤ 1}.

Since Λ is discrete, Λ∩P is a finite set. Now choose vj+1 to be a vector in Λ∩P\H
which minimises the distance to a vector in H. Then clearly v1, . . . ,vj+1 are

linearly independent (since vj+1 /∈ H) and v1Z+ · · ·+vj+1Z ⊆ Λ (since vj+1 ∈ Λ).

Moreover, we see that vj+1 minimises the distance to H amongst all vectors in

v1Z + · · ·+ vj+1Z\H.

Now we show spanR(v1, . . . ,vj+1) ∩ Λ = v1Z + · · ·+ vj+1Z. If

x = x1v1 + · · ·+ xj+1vj+1 ∈ spanR(v1, . . . ,vj+1) ∩ Λ,

then let x′ := x − bxj+1cvj+1. We see that the distance of x′ from H is (xj+1 −
bxj+1c) < 1 times the distance of vj+1 from H. However, vj+1 minimizes this

distance amongst vectors not in H, so we must have that xj+1 ∈ Z and x′ ∈
spanR(v1, . . . ,vj) ∩ Λ = v1Z + · · ·+ vjZ. Thus xi ∈ Z for all i, so

spanR(v1, . . . ,vj+1) ∩ Λ = v1Z + · · ·+ vj+1Z.

Since w had minimal length in Λ and was linearly independent of v1, . . . ,vj , we

see that |w| ≤ λj+1. By the triangle inequality, any element of P therefore has size

at most
j∑
i=1

|vi|+ |w| ≤
j∑
i=1

2i−1λi + λj+1 ≤ 2jλj+1.

In particular, |vj+1| ≤ 2jλj+1, as requried. Repeating this we obtain a basis of Λ

with |vi| ≤ 2i−1λi. By reordering if necessary, we may assume that |vi| ≥ λi.
Having constructed our basis, we now show it has the required properties. If

|vk+1 − µ1v1 − · · · − µkvk| ≤ ε|vk+1|
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for some µ1, . . . , µk ∈ R, then by Lemma 1.6 we can choose m ≤ M such that

‖mµi‖ ≤M−1/k for all i. Then we see that

|mvk+1 − bmµ1cv1 − · · · − bmµkcvk| ≤ mε|vk+1|+M−1/k
k∑
i=1

|vi|

≤ 2kλk+1Mε+M−1/k
k∑
i=1

2i−1λi

≤ 2kλk+1(Mε+M−1/k).

On the other hand, the vector on the left hand side is clearly in Λ with non-

zero vk+1 coefficient, so of size at least λk+1. Taking M = ε−k/(k+1) gives the

inequality 1 ≤ 2k+1ε−1/(k+1), so ε ≥ 2−(k+1)2 . Thus the distance from vk+1 to

spanR{v1, . . . ,vk} is at least 2−(k+1)2 |vk+1|.
Let let v∗j be the component of vj orthogonal to v1, . . . ,vj−1. We then have

|v∗i | ≥ 2−i
2 |vi| ≥ 2−i

2

λi. If Λ has full rank, then det(Λ) = |det(v1, . . . ,vn)| =∏n
i=1 |v∗i |, and so

|det(v1, . . . ,vk)| ≥
n∏
i=1

2−i
2

λi ≥ 2−n
3

λ1 · · ·λn.

|det(v1, . . . ,vk)| ≤
n∏
i=1

|vi| ≤
n∏
i=1

2i−1λi ≤ 2n
2

λ1 · · ·λn.

Moreover, this implies that the component of vj orthogonal to all of the other

vi has length at least 2−r
3 |vj |. Thus

|a1v1 + · · ·+ arvr| ≥ 2−r
3

sup
i
|aivi| ≥ 2−r

4

(|a1v1|+ · · ·+ |arvr|). �

Definition (Generalized arithmetic progression). A generalized arithmetic

progression of dimension d and size S is a set of the form

G = {w0 + a1w1 + · · ·+ adwd : 0 ≤ ai < Li, ai ∈ Z}

for some w0, . . . , wd ∈ Z and L1, . . . , Ld with L1 · · ·Ld = S. If |G| = S (so that all

expressions w0 + a1w1 + · · ·+ adwd with 0 ≤ ai < Li are distinct) we say that G is

proper.

Lemma 1.8 (Bohr sets contain generalized arithmetic progressions). Let η ∈
(0, 1/2), M > 1 and θ1, . . . , θk ∈ [0, 1]. Define

Bθ := {x ∈ Z : ‖xθi‖ < η for i = 1, . . . , k, |x| ≤M}.

Then there are w1, . . . , wk ∈ Z and constants L1, . . . , Lk > 0 such that the set

S = {a1w1 + · · ·+ akwk : ai ∈ Z, |ai| ≤ Li}
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is contained in Bθ, has size at least 2−2k3ηkM , and all elements a1w1 + · · ·+ akwk

are distinct.

Proof. Let Λ1 = Zk+1 and

K = {(x, y1, . . . , yk) ∈ Rk+1 : |x| ≤M, |xθi − yi| ≤ η}.

Then we see that every point of Bθ corresponds to a point in Λ ∩ K. To apply

Theorem 1.7 we apply a linear transformation so K is comparable to the unit ball.

Let

Λ2 :=


1/M

θ1/η
...

θk/η

Z +


0

1/η
...

0

Z + · · ·+


0
...

0

1/η

Z.

Then we see that every point in Λ2 ∩B(0, 1) gives rise to a point of Bθ, and Λ has

determinant M−1η−k. By Theorem 1.7, there is a reduced basis {v1, . . . ,vk} for

Λ2, and by the triangle inequality{
a1v1 + · · ·+ akvk : ai ∈ Z, |ai| ≤

1

k|vi|

}
⊆ Λ2 ∩B(0, 1).

Letting wj ∈ Z be the first component of Mvj and Li = 1/(k|vi|), we then see that

the set S defined in the lemma is contained in Bθ. Moreover, since there are at

least t integers in the interval [−t, t], we see that the number of choices of a1, . . . , ak

is at least

k∏
i=1

Li =
1

kk

k∏
i=1

1

|vi|
≥ 2−k

2

kk

k∏
i=1

1

λi
≥ 2−k

2

2−k
3

kk det(Λ2)
≥ 2−2k3Mηk.

Finally, we need to check that two distinct choices of coefficients ai cannot give the

same point in S. If

a1w1 + · · ·+ akwk = b1w1 + . . . bkwk = x,

then since there are unique choices of y1, . . . , yk satisfying |θix − yi| < η, we see

that we must have

a1v1 + · · ·+ akvk = b1v1 + . . . bkvk.

But this implies that (a1, . . . , ak) = (b1, . . . , bk) by the linear independence of vi.

The the size of S is at least 2−2k3Mηk, as required. �





CHAPTER 2

Sumset inequalities

Definition (Sumsets). Given sets A,B in some additive group , we write

A+ B := {a+ b : a ∈ A, b ∈ B},

A− B := {a− b : a ∈ A, b ∈ B}.

Given an integer k ≥ 1 we define the k-fold iterated sumset

kA = A+ · · ·+A︸ ︷︷ ︸
k times

= {a1 + · · ·+ ak : ai ∈ A},

Throughout this chapter, we will implicitly assume that we are working inside

a fixed additive group; in practice we will always be interested in sets in Z or Z/qZ.

Lemma 2.1 (Ruzsa’s Triangle inequality). We have

|A||B − C| ≤ |A − B||A − C|.

Proof. For each d ∈ B − C, fix a representative bd ∈ B and cd ∈ C such that

d = bd − cd. Then define φ : A× (B − C) by

φ((a, d)) = (a− bd, a− cd).

φ is injective since we can recover (a, d) from its image; if φ((a, d)) = (x, y) then

d = y − x and a = x+ by−x. Thus the size of the domain is at most the size of the

codomain, giving the result. �

Lemma 2.2 (Ruzsa’s covering lemma). Suppose that |A + B| ≤ K|A|. Then

there is a set X with |X | ≤ K such that

B ⊆ A−A+ X .

Proof. Choose a subset X ⊆ B of maximal size such that the sets {A + x :

x ∈ X} are all disjoint. Then the union of these sets contains exactly |A||X |
elements and is contained in A + B, so |A||X | ≤ |A + B| ≤ K|A| and hence

|X | ≤ K. For every b ∈ B, the set b +A must intersect x +A for some x ∈ X by

maximality of X . Therefore there exists a1, a2 ∈ A such that b + a1 = x + a2, so

b = x+ a2 − a1 ∈ X +A−A. �

9
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Lemma 2.3 (Petridis’ lemma/Subset-minimality implies sumsets-maximality).

Suppose that

|A+ B|
|A|

≤ |A
′ + B|
|A′|

for all non-empty A′ ⊆ A.

Then
|A+ B|
|A|

≥ |A+ B + C|
|A+ C|

for all C.

Proof. We prove this by induction on |C|. If |C| = 1 then the result is auto-

matic since |A+ B + C| = |A+ B| and |A+ C| = |A|. Now assume that the result

holds for all |C| ≤ m, and consider C′ of size m+ 1. Let C′ = C ∪ {c} for a set C of

size m. Thus we wish to show

|A+ B + (C ∪ {c})|
|A+ (C ∪ {c})|

≤ |A+ B|
|B|

Since |A+B+(C ∪{c})| = |A+B+C|+ |(A+B+c)\(A+B+C)| (and similarly for

the denominator), and by the induction hypothesis we see that it suffices to show

|(A+ B + c)\(A+ B + C)| ≤ |A+ B|
|A|

|(A+ c)\(A+ C)|.

We have

|(A+ B + c)\(A+ B + C)| = {a+ b+ c : a ∈ A, b ∈ B, a+ b+ c /∈ A+B + C}

⊆ {a+ b+ c : a ∈ A, b ∈ B, a+B + c 6⊆ A+B + C}.

Therefore, if we let

D := {a ∈ A : a+ c+ B ⊆ A+ B + C},

we have

{a+ b+ c : a ∈ A, b ∈ B, a+B + c 6⊆ A+B + C} = (A+B + c)\(D +B + c).

In particular,

|(A+ B + c)\(A+ B + C)| ≤ |A+ B| − |D + B|.

Moreover, if a ∈ A has a+ c ∈ A+ C, then a+ c+ B ⊆ A+ B + C so a ∈ D. Thus

|(A+ c)\(A+ C)| ≥ |A| − |D|.

Putting this together, it suffices to show that

|A+ B| − |D + B| ≤ |A+ B|
|A|

(|A| − |D|).

But this follows immediately from the hypothesis applied to A′ = D ⊆ A. �
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Lemma 2.4 (Plünnecke’s inequality). Let |A+B| ≤ K|A|. Then for all integers

m,n ≥ 0

|mB − nB| ≤ Km+n|A|.

In particular, if |A+A| ≤ K|A| then |mA− nA| ≤ Km+n|A|.

Proof. Choose X ⊆ A to minimize |X + B|/|X |. Then we have

|X + B|
|X |

≤ |Y + B|
|Y|

for all non-empty Y ⊆ X ,

|X + B|
|X |

≤ |A+ B|
|A|

≤ K.

Thus, by Lemma 2.3 applied to C = nB, we have for any integer n ≥ 0

|X + (n+ 1)B|
|X + nB|

≤ K.

Therefore, by induction we find |X + nB| ≤ Kn|X |. Finally, applying Lemma 2.1

we have

|mB − nB| ≤ |X + nB||X +mB|
|X |

≤ Km+n|X | ≤ Km+n|A|. �

Lemma 2.5 (GAPs in sumsets and small doubling means contained in a GAP).

Let |2A| ≤ K|A| and Q ⊆ `A − `A be a generalised arithmetic progression of

dimension d and size |A|/S.

Then there is a constant C = C(K, d, S, `) such that A is contained in a gen-

eralised arithmetic progression of dimension at most C and size at most C|A|.

Proof. Since Q ⊆ `A− `A, we have Q+A ⊆ (`+1)A− `A. Thus, by Lemma

2.4

|Q+A| ≤ |(`+ 1)A− `A| ≤ K2`+1|A| ≤ SK2`+1|Q|.

Thus, by Lemma 2.2, there is a set X ⊆ A such that |X | ≤ SK2`+1 and A ⊆
X +Q−Q.

By using two elements in each direction, X is contained in a generalised arith-

metic progression of dimension |X | − 1 and size 2|X |−1. Since Q is a generalised

arithmetic progression with dimension d and size ≤ |`A − `A| ≤ K2`|A|, we see

that Q − Q is a generalised arithmetic progression with dimension d and volume

at most 2dK2`|A|. Thus A ⊆ X + Q − Q is contained in a generalised arithmetic

progression of dimension at most

d+ |X | − 1 ≤ d+ SK2`+1

and size at most

2|X |−1+dK2`|A| ≤ 2d+SK2`+1

K2`|A|. �
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Lemma 2.6 (Cauchy-Davenport). Let A,B ⊆ Z/qZ. If 0 ∈ B and for all

b ∈ B\{0} we have (b, q) = 1, then we have

|A+ B| ≥ min
(
q, |A|+ |B| − 1

)
.

Proof. The result is trivial if |A| = q, so assume |A| < q. We prove the result

by induction on s = |B|; the case s = 1 is trivial. Assume that the result holds

whenever |B| < s. We claim that A + B 6= A. Indeed, if A + b = A for some

b ∈ B\{0} then ∑
a∈A

(a+ b) =
∑
a∈A

a (mod q),

which implies that |A|b = 0 (mod q), which is impossible since |A| < q and (b, q) =

1. Therefore there is an a0 ∈ A and b0 ∈ B that a0 + b0 /∈ A. Let

B1 := {b ∈ B : b+ a0 ∈ A}, A1 := A ∪ {a0 + b : b ∈ B, a0 + b /∈ A}.

Then |A1| + |B1| = |A| + |B|, 0 ∈ B1 and |B1| < |B| since b0 /∈ B1. Moreover, we

see that

A1 + B1 ⊆ A+ B.

Thus the induction hypothesis now gives the result. �



CHAPTER 3

Equations in Z/qZ

Definition (Discrete Fourier transform on Z/qZ). Let f : Z/qZ → C. Then

we define the Fourier transform f̂ : Z/qZ→ C by

f̂(m) :=
1

q

∑
a∈Z/qZ

f(a)e(−am/q),

where e(x) := e2πix, noting that (with some abuse of notation) x → e(x/q) can be

viewed as a well-defined function on Z/qZ.

Lemma 3.1 (Properties of the discrete Fourier transform). Let f, g : Z/qZ→ C.

• (Orthogonality of characters). For any b ∈ Z we have

1

q

∑
a (mod q)

e(ab/q) =

1, if b ≡ 0 (mod q),

0, otherwise.

• (Inversion formula). We have

f(x) =
∑

a (mod q)

f̂(a)e(ax/q).

• (Parseval). ∑
x (mod q)

f(x)g(x) = q
∑

a (mod q)

f̂(a)ĝ(a).

• (Convolutions). Let h(x) :=
∑
a+b=x (mod q) f(a)g(b). Then

ĥ(a) = qf̂(a)ĝ(a).

Proof. These all follow quickly from the definitions. If b ≡ 0 (mod q) then

e(ab/q) = 1 for all a, so the result is trivial in this case. If b 6≡ 0 (mod q) we can

sum the geometric series ∑
a (mod q)

e(ab/q) =
e(ab)− 1

e(b)− 1
= 0

since e(ab) = 1.

13
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Using the above formula, by expanding the definition of f̂ and swapping the

order of summation∑
a (mod q)

f̂(a)e(ax/q) =
1

q

∑
a,b (mod q)

f(b)e(a(x− b)/q)

=
∑

b (mod q)

f(b)1b≡x (mod q) = f(x).

Using the inversion formula, we have∑
x

f(x)g(x) =
∑
a,b,x

f̂(a)ĝ(b)e
(x(b+ a)

q

)
.

By orthogonality of characters, the x sum vanishes unless a = −b (mod q). Thus

this is equal to

q
∑
a

f̂(a)ĝ(−a).

We then note that ĝ(−a) = ĝ(a) from the definition.

Substituting the definitions

ĥ(a) =
1

q

∑
b

∑
c+d=b

f(c)g(d)e(−ab/q) =
1

q

∑
c,d

f(c)g(d)e(−ac/q)e(−ad/q)

= qf̂(a)ĝ(a).

�

Definition (Pseudorandom functions and sets).

• Given a set A ⊆ Z/qZ, the balanced function of A is the function

fA(x) = 1x∈A −
|A|
q
.

• Given a constant η > 0, a 1-bounded function f : Z/qZ → C is called

η-pseudorandom if |f̂(m)| ≤ q−η for all m ∈ Z/qZ.

• A set A ⊆ Z/qZ is called η-pseudorandom if the balanced function fA(m)

is η-pseudorandom.

Note: Much of the above notation, in particular the notation of ‘η-pseudorandom’

is not standard in the wider literature. There is a somewhat arbitrary choice of

normalisation for the Fourier transform, so elsewhere it is sometimes defined as

f̂(a) =
∑
b f(a)e(−ba/q) without the 1/q factor.

Proposition 3.2 (Solutions to equations in pseudorandom sets). Let f :

Z/qZ→ C. Then we have for any x ∈ Z/qZ∣∣∣ ∑
a1+···+ak=x

f(a1) · · · f(ak)− qk−1f̂(0)k
∣∣∣ ≤ qk−1

∑
b6=0 (mod q)

|f(b)|k.
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In particular, if A is an η-pseudorandom set, then∣∣∣#{a1, . . . , ak ∈ A : a1 + · · ·+ ak = x
}
− |A|

k

q

∣∣∣ ≤ qk−kη.

Proof. By orthogonality of characters, the left hand side is∑
a1,...,ak

f(a1) . . . f(ak)
1

q

∑
b (mod q)

e
(b(x− a1 − · · · − ak)

q

)
=

1

q

∑
b (mod q)

e(bx/q)
(∑

a

f(a)e(−ab/q)
)k

= qk−1T
∑

b (mod q)

e(bx/q)f̂(b)k.

We separate out the term b = 0 which contributes qk−1f̂(0)k, giving

qk−1 f̂(0)k

q
+ qk−1

∑
b (mod q)

b 6=0

e(bx/q)f̂(b)k.

The triangle inequality now gives the first result.

For the second result, we apply the above with f(a) = 1a∈A. We note that

f̂(0) = |A|/q and

f̂(b) =
1

q

∑
a (mod q)

fA(a)e(ab/q) +
|A|
q2

∑
a (mod q)

e(ab/q).

When b 6= 0 (mod q) the second term is 0 by orthogonality of characters. The first

term is f̂A(b). Thus we find that∣∣∣#{a1, . . . , ak ∈ A : a1 + · · ·+ ak = x
}
− |A|

k

q

∣∣∣ ≤ qk−1
∑

b (mod q)
b 6=0

∣∣∣f̂A(b)
∣∣∣k

≤ qk sup
b (mod q)

|fA(b)|k.

Clearily if A is η-pseudorandom then |fA(b)| < q−η which gives the result. �

Lemma 3.3 (Squares are pseudorandom (mod q)). If (a, q) = 1 then

∣∣∣ ∑
b (mod q)

e(ab2/q)
∣∣∣ ≤


√
q, 2 - q,
√

2q, 2|q.
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Proof. We square the sum in question, expand, and write x2 = x1 + h. This

gives ∣∣∣ ∑
b (mod q)

e(ab2/q)
∣∣∣2 =

∑
x1,x2 (mod q)

e
(a(x2

1 − x2
2)

q

)
=

∑
h (mod q)

∑
x1 (mod q)

e
(2ahx1 + ah2

q

)
.

By orthogonality of characters, the inner sum vanishes unless 2ah = 0 (mod q).

Since (a, q) = 1, this implies that 2h = 0 (mod q). Thus there are at most 2 choices

of h (mod q) if 2|q and one choice of 2 - q. Thus we obtain the bound

q
∑

h (mod q)
2h≡0 (mod q)

e
(ah2

q

)
≤

2q, 2|q

q 2 - q
. �

Corollary 3.4 (Representations as sums of squares (mod q)). Let q be odd.

Then every residue class a (mod q) can be represented as a sum of three squares

(mod q).

(There are easier ways of proving this, but we use it to demonstrate the basic

method.)

Proof. By the Chinese remainder theorem, it suffices to show the result for q

being a prime power pj . First, using the Proposition with

f(x) = #{b (mod q) : b2 ≡ x},

we find for any x ∈ Z/qZ∣∣∣#{a2
1 + a2

2 + a2
3 = x (mod q)} − q2

∣∣∣ ≤ 1

q

∑
a (mod q)

a6=0

|f̂(a)|3.

We then see that, using Lemma 3.3, if p is odd then

1

q

∑
a (mod q)

a6=0

∣∣∣ ∑
x (mod q)

e(ax2/q)
∣∣∣3 ≤ 1

q

∑
1<d|q

d
p− 1

p
sup

a (mod d)
(a,d)=1

( q
d

∣∣∣ ∑
x (mod d)

e(ax2/d)
∣∣∣)3

≤ q2 p− 1

p

∑
1<d|q

1

d1/2

≤ q2(p− 1)

p(p1/2 − 1)
.

Thus the number of solutions is at least

q2 − q2(p− 1)

p(p1/2 − 1)
> 0

for p ≥ 3. �
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Lemma 3.5 (Polynomial values are pseudorandom (mod q)). Let P (x) ∈
Z/qZ[x] be a polynomial of degree d with leading coefficient a. Then∣∣∣ ∑

b (mod q)

e(P (b)/q)
∣∣∣ ≤ 2ω(q)(q, d!a0)1/2d−1

q1−1/2d−1

.

Proof. We prove the result by induction. The statement holds for d = 2 by

Lemma 3.3. Assume the statement holds for all polynomials of degree less than

d ≥ 3. We square the sum, and write b2 = b1 + h. This gives∣∣∣ ∑
b (mod q)

e(P (b)/q)
∣∣∣2 =

∑
b1,b2 (mod q)

e
(P (b2)− P (b1)

q

)
=
∑
b1,h

e
(Qh(b1)

q

)
where Qh(b1) = P (b1 + h)− P (b1) is a polynomial in b1 of degree d− 1, with lead

coefficient a0hd. Thus, by the induction hypothesis∑
b1

e
(Qh(b1)

q

)
≤ 2ω(q)(d!ah, q)1/2d−2

q1−1/2d−2

.

We now sum this over all h (mod q), giving a bound

2ω(q)(d!a, q)1/2d−2

q1−1/2d−2 ∑
h (mod q)

(h, q)1/2d−2

≤ 2ω(q)(d!a, q)1/2d−2

q1−1/2d−2 ∑
e|q

e1/2d−2

φ(q/e)

≤ 2ω(q)(d!a, q)1/2d−2

q2−1/2d−2 ∏
p|q

( 1− 1/p

1− p1/2d−2−1

)
.

We have that (1 − 1/p)/(1 − p1/2d−2−1) ≤ (1 − 1/p)/(1 − 1/p1/2) ≤ 2 since d ≥ 3.

Thus the product is bounded by 2ω(q). This gives the bound∣∣∣ ∑
b (mod q)

e(P (b)/q)
∣∣∣2 ≤ (2ω(q)(d!a, q)1/2d−1

q1−1/2d−1
)2

,

as required. �

Lemma 3.6. Let k ≥ 4d and

N(m, q) := #{a1, . . . , ak ∈ Z/qZ : ad1 + · · ·+ adk = m (mod q)}.

Then for all m, q we have

N(m, q) ≥ qk−4d.

Proof. By the Chinese remainder theorem, we have thatN(m, q1q2) = N(m, q1)N(m, q2)

if (q1, q2) = 1. Therefore it suffices to prove the result for prime powers q = pj . Let

B = {bd (mod pj) : (b, p) = 1} ∪ {0} ⊆ Z/pjZ. Since (Z/pjZ)× is cyclic for p > 2
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and ∼= (Z/2Z)× (Z/2j−2Z) if p = 2 and j ≥ 3, we have

|B| =


pj(p−1)

(d,pj(p−1)) , p > 2,

2j−2

(d,2j−2) , p = 2 and j ≥ 2 and 2|d,

2j−1, p = 2 and (j = 1 or 2 - d).

Regardless, |B| − 1 ≥ pj/(4d). Now, by repeatedly applying Lemma 2.6 we find

that for any integer r

|rB| ≥ min(pj , r(|B| − 1)).

In particular, 4dB = Z/pjZ, so every residue class (mod q) can be represented as

the sum of 4d dth powers. We then see that by fixing the first k − 4d variables in

N(pj), we have that∑
a1,...,ak−4d (mod pj)

#{(b1, . . . , b4d (mod pj) : bd1 + · · ·+ bd4d = m− ad1 − . . . adk−4d (mod pj)}

≥ (pj)k−4d. �

Proposition 3.7 (Sums of dth powers modulo q). Let k > d2d+1 and

N(m, q) := #{a1, . . . , ak ∈ Z/qZ : ad1 + · · ·+ adk = m (mod q)}.

Then for 0 ≤ j1 < j2 we have∣∣∣N(m, pj1)

pj1(k−1)
− N(m, pj2)

pj2(k−1)

∣∣∣≤ 2k+1p−j1k/2
d

.

In particular

βp(m) = lim
j→∞

N(m, pj)

pj(k−1)

exists and |βp(m)− 1| ≤ 2k+1p−k/2
d

and βp(m) ≥ p−d2d+3

.

Proof. By Fourier inversion and then splitting the sum according to the gcd

with pj , we have that

N(m, pj) =
1

pj

∑
b (mod pj)

e
(mb
pj

)( ∑
a (mod pj)

e
(−adb

pj

))k
=

1

pj

∑
0≤`≤j

∑
b (mod pj)

(b,pj)=pj−`

e
(m(b/pj−`)

p`

)(
pj−`

∑
a (mod p`)

e
(−ad(b/pj−`)

p`

))k

= pj(k−1)
∑

0≤`≤j

∑
b′ (mod p`)

(b′,p)=1

e
(mb′
p`

)(
p−`

∑
a (mod p`)

e
(−adb′

p`

))k
.
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Thus if j1 < j2∣∣∣N(m, pj1)

pj1(k−1)
− N(m, pj2)

pj1(k−1)

∣∣∣ ≤ ∑
j1<`≤j2

∑
b′ (mod p`)

(b′,p)=1

∣∣∣p−` ∑
a (mod p`)

e
(−adb′

p`

)∣∣∣k.
By Lemma 3.5, the inner sum over a is bounded by 2(p`)1−1/2d−1

. There are

p` choices of b′. Thus we have∣∣∣N(m, pj1)

pj1(k−1)
− N(m, pj2)

pj1(k−1)

∣∣∣ ≤ ∑
j1<`≤j2

2kp−`(k/2
d−1−1) ≤ 2k+1p−j1(k/2d−1−1).

Since the right hand side tends to 0 as j1, j2 → ∞, the limit βp(m) exists. Using

the inequality with j1 = 0 j2 →∞ gives the bound |βp(m)−1| ≤ 2k+1p−k/2
d

. This

automatically shows that βp(m) > 0 for p > 22d . For smaller p we use the main

inequality with j2 →∞ and Lemma 3.6 to give

βp(m) ≥ N(pj)

pj(k−1)
− 2k+1p−j(k/2

d−1−1) ≥ pj(k−4d)

pj(k−1)
− 2k+1p−j(k/2

d−1−1)

≥ pj(1−4d)
(

1− 2k+1p−j(k/2
d−1−4d)

)
.

Since we have assumed k ≥ d2d+2, we see that k/2d−1− 4d ≥ k/2d. Thus choosing

j = 2d + 1 gives

βp(m) ≥ p(2d+1)(1−4d)(1− 2p−4d) ≥ p(2d+1)(1−4d)(1− 2p−4d) ≥ p−d2d+3

. �

Corollary 3.8 (Waring’s problem modulo p). Let k > d2d+1. Then we have

that for any m ∈ Z/pZ

#{a1, . . . , ak ∈ Z/pZ : ad1 + · · ·+ adk = m (mod p)} = pk−1 +Ok(pk−1−k/2d).





CHAPTER 4

Introduction to circle method

4.1. The Fourier Transform over Z and R

We now generalise much of the previous chapter to the more complicated situ-

ation of equations over Z

Definition (Fourier transform on Z). Let f : Z→ C be supported on |x| < N .

Then we define the Fourier transform f̂ : R/Z→ C by

f̂(θ) :=
∑
a∈Z

f(a)e(−aθ),

where e(x) := e2πix, noting that (with some abuse of notation) x → e(x) can be

viewed as a well-defined function on R/Z.

Lemma 4.1 (Properties of the integer Fourier transform). Let f, g : Z→ C.

• (Orthogonality of characters). For any b ∈ Z we have∫ 1

0

e(bθ)dθ =

1, if b = 0,

0, otherwise.

• (Inversion formula). We have

f(n) =

∫ 1

0

f̂(θ)e(nθ)dθ.

• (Parseval). ∑
x∈Z

f(x)g(x) =

∫ 1

0

f̂(θ)ĝ(θ)dθ.

• (Convolutions). Let h(x) :=
∑
a+b=x f(a)g(b). Then

ĥ(θ) = f̂(θ)ĝ(θ).

Proof. These all follow quickly from the definitions in an identical way to

Lemma 3.1. If b = 0 then e(bθ) = 1 for all θ, so the result is trivial in this case. If

b 6= 0 we can integrate ∫ 1

0

e(bθ)dθ =
e(b)− 1

2πi
= 0

since e(b) = 1.

21
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Using the above formula, by expanding the definition of f̂ and swapping the

order of summation and integration∫ 1

0

f̂(θ)e(xθ) =
∑
b

f(b)

∫ 1

0

e(θ(x− b))dθ = f(x).

Using the definition, and orthogonality we have∫ 1

0

f̂(θ)ĝ(θ)dθ =
∑
a,b∈Z

f(a)g(b)

∫ 1

0

e(θ(b− a))dθ =
∑
a∈Z

f(a)g(a).

Subtituting the definitions

ĥ(θ) =
∑
b

∑
c+d=b

f(c)g(d)e(−bθ) =
∑
c,d

f(c)g(d)e(−cθ)e(−dθ)

= f̂(θ)ĝ(θ). �

Definition (Fourier transform on R). Let f ∈ L1(R). Then we define the

Fourier transform f̂ : R→ C by

f̂(ξ) :=

∫ ∞
−∞

f(u)e(−uθ)du.

Lemma 4.2 (Properties of the real Fourier transform). Let f, g, fg ∈ L1(R).

• (Inversion formula). If f̂(ξ) ∈ L1(R) and f is continuous at x, then

f(x) =

∫ ∞
−∞

f̂(ξ)e(xξ)dξ.

• (Parseval). If f̂ ĝ ∈ L1(R) then∫ ∞
−∞

f(t)g(t)dt =

∫ ∞
−∞

f̂(ξ)ĝ(ξ)dξ.

• (Convolutions). Let h(x) :=
∫∞
−∞ f(t)g(x− t)dt. Then

ĥ(ξ) = f̂(ξ)ĝ(ξ).

Proof. Non-examinable, see appendix. �

Note: As with the Fourier transform on Z/qZ, different authors use slightly

different normalisations for their definition of the Fourier Transform. In some pre-

vious versions of the course (and in C3.8) the Fourier transfrom on R has been

defined as f̂(ξ) =
∫
R f(t)e−itξdt which is f̂(ξ/(2π)) in our notation.

4.2. A warm-up example

It is a trivial combinatorial counting problem that if N > m then

#{(x1, . . . , xk) ∈ Zk>0 : x1+· · ·+xk = m, |xi| ≤ N} =

(
m+ k − 1

k − 1

)
=

mk−1

(k − 1)!
+O(mk−2).
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(We will view k as fixed and allow any implied constants to depend on k). We now

reprove this in the spirit of the circle method, which generalises more readily to

when the xi lie in more complicated sets.

4.2.1. Using orthogonality. Let f : Z → C be given by f(x) = 11≤x≤N .

Then the orthogonality relation∫ 1

0

e(θ(m− x1 − · · · − xn))dθ =

1, If x1 + · · ·+ xn = m,

0, If x1 + · · ·+ xn −m ∈ Z\{0}.

gives

#{(x1, . . . , xk) ∈ Zk>0 : x1 + · · ·+ xk = m, |xi| ≤ N}

=
∑

x1,...,xk

f(x1) · · · f(xk)1x1+···+xk=m

=
∑

x1,...,xk

f(x1) · · · f(xk)

∫ 1

0

e(θ(m− x1 − · · · − xk))dθ

=

∫ 1

0

f̂(θ)ke(mθ)dθ.

4.2.2. Splitting the integral according to the size of the Fourier trans-

form. We see that since |e(θ)− 1| = 2| sin(πθ)| ≥ ‖θ‖

f̂(θ) =

N∑
x=1

e(−xθ) =
e(−θ(N + 1))− 1

e(−θ)− 1
= O

( 1

‖θ‖

)
.

Therefore f̂(θ) is small unless θ is very close to 0 (mod 1). With this in mind we

split the integral according to whether ‖θ‖ ≤ η or not. We see that∫
‖θ‖>η

f̂(θ)ke(mθ)dθ �
∫
‖θ‖>η

dθ

‖θ‖k
� 1

ηk−1
.

When ‖θ‖ ≤ η

f̂(θ) =
e(−θ(N + 1))− 1

e(−θ)− 1
=
e(−θ(N + 1))− 1

−2πiθ(1 +O(η))
=

∫ N+1

0

e(−θt)dt+O(ηN).

Substituting this back in, we find

#{(x1, . . . , xk) ∈ Zk>0 : x1 + · · ·+ xk = m, |xi| ≤ N}

=

∫
|θ|<η

e(mθ)
(∫ N+1

0

e(−θu)du
)k
dθ +O(η2Nk) +O(η−(k−1)).(4.1)

4.2.3. Understanding main term as a local factor. Ignoring the error

terms, this is just an analytic integral only involving real numbers (and so just an

analytic quantity with no number-theoretic properties). It essentially counts the
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measure number of real solutions to the equation u1 + · · ·+ uk = m. Indeed, since∫ N+1

0

e(−θu)du� 1

|θ|

we can extend the integral in (4.1) to θ ∈ R at the cost of a η−(k−1) error term.

But then, if g(x) = 1x∈[0,N+1] we see that the integral is given by∫ ∞
−∞

e(mθ)ĝ(θ)kdθ +O(η−(k−1)).

We recall from Lemma 4.1 that

̂(f ∗ · · · ∗ f)︸ ︷︷ ︸
k times

(ξ) = f̂(ξ)k, f(x) =

∫ ∞
−∞

f̂(ξ)e(ξx)dξ

so we see that∫ ∞
−∞

e(mθ)ĝ(θ)kdθ = (g ∗ · · · ∗ g)(m) =

∫
u1,...,uk∈[0,N+1]
u1+···+uk=m

1.

Thus, for any choice of η > 0 we have

#{(x1, . . . , xk) ∈ Zk>0 : x1 + · · ·+ xk = m, |xi| ≤ N}

=

∫
u1,...,uk∈[0,N+1]
u1+···+uk=m

1 +O(η2Nk) +O(η−(k−1)).

We can choose η = N−k/(k+1) to balance the error terms and obtain an asymptotic

mk−1

(k − 1)!
+O(mk−2+2/(k+1)).

If we instead counted solutions where x1, . . . , xk were all a multiple of a prime p,

then there would only be solutions if m is a multiple of p. If now f(x) = 11≤x≤N, p|x

then

f̂(θ) =
e(−pθ(bN/pc+ 1)− 1

e(−pθ)− 1
= O

( 1

‖pθ‖

)
.

As before, we can discard ‖pθ‖ > η at the cost of a O(η−(k−1)) error term. Now,

however, we also have to take into acount values of θ near 1/p, 2/p etc. This gives

#{(x1, . . . , xk) ∈ Zk>0 : x1 + · · ·+ xk = m, |xi| ≤ N p|xi}

=
1

p

∑
a (mod p)

∫
|δ|<η

e
(
m
(a
p

+ δ
))(∫ N+1

0

e(−δu)du
)k
dθ +O(η2Nk) +O(η−(k−1)).

The arithmetic fact that there are no solutions modulo p to the equation unless

p|m is now accounted for by the contribution from these other rationals. Indeed
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the main term factorises as(1

p

∑
a (mod p)

e(am/p)
)(∫

|δ|<η
e(mδ)

(∫ N+1

0

e(−δu)du
)k
dθ
)

=
(#{x1 + · · ·+ xk = m (mod p)}

pk−1

)
·
∫
u1,...,uk∈[0,N+1]
u1+···+uk=m

1.

Therefore now the main term is a product of the density of solutions (mod p) and

the density of solutions over R.

4.3. The circle method

By Fourier inversion, we have that for any function f : Z → C with compact

support ∑
a1+···+ak=n

f(a1) · · · f(ak) =

∫ 1

0

e(−nθ)f̂(θ)kdθ.

If f̂(θ) is small for all θ, this shows that the weighted count of solutions is small

(which is what we would expect if f looked like a random ±1 function, for example).

However, it is less clear how to extract a ‘main term’ when f is the indicator function

of a set. The Hardy-Littlewood circle method splits the integral in ‘major arcs’ M

where the Fourier transform is large, and ‘minor arcs’ m = [0, 1]\M where the

Fourier transform is small. Although the precise choice of M can vary depending

on the situation, in most number-theoretic applications the most natural choice

depends on Diophantine properties of θ. In this case, the major arc contribution is

essentially a product of densities of solutions in all places.





CHAPTER 5

Waring’s Problem

The aim of this chapter is to establish

Theorem 5.1 (Asymptotic formula for the number of representations as the

sum of k dth powers). Let k ≥ 20d2d. Then we have

#{nd1 + · · ·+ ndk = m} = mk/d−1
(
β∞(m)

∏
p

βp(m) +O(m−1/2d)
)
.

where β∞(m)
∏
p βp(m) converges to a constant, which is bounded away from 0

uniformly in m. In particular, every sufficiently large integer can be written as the

sum of 20d2d positive dth powers, and there is a number g(d) such that every integer

can be represented by at most g(d) dth powers

Rather better bounds are known in this problem; we can get the same asymp-

totic formula when k ≥ d2, and the fact that there exists at least one representation

for large integers occurs when k > d log d+5d. If we wish to represent every integer

then 2db(3/2)dc − 1 requires at least 2d + b(3/2)dc − 2, and it is known that every

integer can be expressed as essentially this many dth powers.

Proposition 5.2 (Major arc contribution). Let k ≥ d2d+2, N ≥ m1/d, Q ≥ 1

and M be given by

M =
⋃
q≤Q

⋃
(a,q)=1

[a
q
− Q

Nd
,
a

q
+

Q

Nd

]
.

Then we have∫
M

(∑
n≤N

e(θnd)
)k
e(−mθ)dθ = mk/d−1β∞(m)

∏
p

βp(m)+O
(
Nk−d

(Q5

N
+

1

Qk/2d−1−2

))
,

where

βp(m) := lim
j→∞

#{b1, . . . , bk (mod pj) : bd1 + · · ·+ bdk = m (mod pj)}
pj(k−1)

,

β∞(m) :=
Γ(1 + 1/d)k

Γ(k/d)
,

and β∞(m)
∏
p βp(m) converges to a positive constant bounded away from 0 uni-

formly in m.

27
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Proposition 5.3 (Minor arc contribution). Let m = [0, 1]\M. Then for Q ≤ N
we have ∫

m

∣∣∣∑
n≤N

e(θP (n))
∣∣∣kdθ � Nk+o(1)

Qk/2d
.

Proof of Theorem 5.1 assuming Proposition 5.2 and Proposition 5.3.

Using orthogonality (Lemma 4.1 we have

#{nd1 + · · ·+ ndk = m, 0 ≤ ni ≤ N} =

∫ 1

0

(∑
n≤N

e(θnd)
)k
e(−mθ)dθ.

Let M be as given in Proposition 5.2, and m = [0, 1]\M as in Proposition 5.3.

Then, splitting the integral according to whether θ ∈M or not, the above is equal

to ∫
M

(∑
n≤N

e(θnd)
)k
e(−mθ)dθ +

∫
m

(∑
n≤N

e(θnd)
)k
e(−mθ)dθ.

Applying Propostion 5.2 to estimate the first integral and Proposition 5.3 to bound

the second one, we find that for k > d2d+2 this is

mk/d−1β∞(m)
∏
p

βp(m) +O
(
Nk−d

(Q5

N
+

1

Qk/2d−1−2
+

Nd

Qk/2d

))
.

We now choose N = m1/d, Q = N1/10, and see that for k ≥ 20d2d the error term

is O(mk/d−1−1/2d) which is much smaller than mk/d−1. Thus we have

#{nd1 + · · ·+ ndk = m} = mk/d−1
(
β∞(m)

∏
p

βp(m) +O(m−1/2d)
)
. �

Thus we are left to establish Proposition 5.2 and Proposition 5.3.

5.1. Major Arcs for Waring’s problem

Lemma 5.4 (Polynomial exponential sum when close to a rational with small

denominator). Let θ = a/q + ε and P (x) ∈ Z[x] be an integer polynomial of degree

d. Then we have∑
n≤N

e(θP (n)) =
(1

q

∑
b (mod q)

e(aP (b)/q)
)(∫ N

0

e(εP (u))du
)

+O(qεNd).

Proof. We note that e(aP (n)/q) only depends on the residue class n (mod q).

Therefore, splitting into residue classes∑
n∈[N,2N ]

e(θP (n)) =
∑

b (mod q)

e(aP (b)/q)
∑

n∈[N,2N ]
n≡b (mod q)

e(εP (n)).

Since ε is small, e(εP (n)) only really depends on the rough size of P (n), and so

we can approximate the sum by an integral. Since P has degree d, we see that
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|P ′(t)| = O(Nd−1) for |t| ≤ N . Thus, if |u− v| ≤ q and u, v ≤ N then

|P (v)− P (u)| ≤ |v − u| sup
|t|≤N

P ′(t) = O(qNd−1).

Therefore, for b ≤ q, b+ rq ≤ 2N∣∣∣e(εP (b+ rq))− 1

q

∫ (r+1)q

rq

e(εP (u))du
∣∣∣ ≤ sup

u∈[rq,(r+1)q]

∣∣∣2πiε∫ P (b+rq)

P (u)

e(εt)dt
∣∣∣

= O(εqNd−1).

Thus∑
n∈[N,2N ]

e(θP (n)) =
(1

q

∑
b (mod q)

e(aP (b)/q)
)(∫ 2N

N

e(εP (u))du
)

+O(εqNd). �

Lemma 5.5 (Completion of local factors). Let k > 2d and M be as in Proposi-

tion 5.2. Then we have∫
M

(∑
n≤N

e(θnd)
)k
e(−mθ)dθ = S(m)J(m) +O

(
Nk−d

(Q5

N
+

1

Qk/2d−1−2

))
,

where

S(m) :=
∑
q

∑
(a,q)=1

(1

q

∑
b (mod q)

e(abd/q)
)k
e(−am/q),

J(m) :=

∫ ∞
−∞

(∫
u≤N

e(−vud)du
)k
e(vm)dv.

Proof. By Lemma 5.4, we have for θ ∈M(∑
n≤N

e(θnd)
)k

=
(1

q

∑
b (mod q)

e(abd/q)
)k(∫ N

0

e(εud)du
)k

+O(Q2Nk−1).

We note that the measure of M is O(Q3/Nd), so the error term contributes a total

O(Q5Nk−d−1) to the integral. The first factor depends on a, q but not on ε, whereas

the second factor depends only on ε. Thus∫
M

(∑
n≤N

e(θnd)
)k
e(−mθ)dθ = S∗(m;Q)J∗(m,Q) +O(Q5Nk−d−1),

where

S∗(m;Q) :=
∑

1≤q≤Q

∑
(a,q)=1

(1

q

∑
b (mod q)

e(abd/q)
)k
e(−am/q),

J∗(m,Q) :=

∫ Q/Nd

−Q/Nd

(∫
u≤N

e(εud)du
)k
e(−εm)dε.
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We first concentrate on the arithmetic piece S(m,Q). By Lemma 3.5 we have∑
(a,q)=1

(1

q

∑
b (mod q)

e(abd/q)
)k
� q1−k/2d−1

.

Therefore, since k > 2d, we can extend the sum to all q at the cost of a correction

term of size Q2−k/2d−1

. This gives

S∗(m,Q) = S(m) +O(Q2−k/2d−1

).

We now wish to similarly approximate the Archimedean factor J∗(m,Q) with J(m).

We first note that, by letting v = εud∫
u≤N

e(εud)du =
1

dε1/d

∫ εNd

0

v1/d−1e(v)� 1

ε1/d
.

We can therefore extend the integration in J∗(m,Q) to all of R at the cost of an

error term of size

�
∫
|ε|>Q/Nd

dε

|ε|k/d
� Nk−d

Qk/d−1
.

Thus

J∗(m,Q) = J(m) +O
( Nk−d

Qk/d−1

)
.

Putting these estimates together (alongside the trivial bounds J∗(m,Q) � Nk−d

and S(m,Q)� Q2) then gives the result. �

Lemma 5.6 (Singular series). For each prime p, let

βp(m) = lim
j→∞

#{b1, . . . , bk (mod pj) : bd1 + · · ·+ bdk = m (mod pj)}
pj(k−1)

as in Proposition 3.7. Then we have

S(m) =
∏
p

βp(m)

which converges to a positive real number which is lower bounded uniformly in m.

Proof. If q = pe11 · · · p
ej
j then, by the Chinese remainder theorem, we have∑

(a,q)=1

(1

q

∑
b (mod q)

e
(abd
q

))k
e
(−am

q

)

=

j∏
i=1

∑
ai (mod p

ei
i )

(ai,pi)=1

( 1

peii

∑
b (mod p

ei
i )

e
(aibd
peii

))k
e
(−aim

peii

)
.
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Letting qi = peii , the sum over ai is∑
ai (mod qi)

( 1

qi

∑
b (mod qi)

e
(aibd
qi

))k
e
(−aim

qi

)
−

∑
ai (mod qi)

pi|ai

( 1

qi

∑
b (mod qi)

e
(aibd
qi

))k
e
(−aim

qi

)
.

Expanding out and using orthogonality (mod qi), the first sum above is

1

qki

∑
b1,...,bk (mod qi)

∑
ai (mod qi)

e
(ai(bd1 + . . . bdk −m)

qi

)
=
N(qi)

qk−1
i

,

where

N(q) := #{b1, . . . , bk (mod q) : bd1 + · · ·+ bdk = m (mod q)}.

Similarly, the second term is −N(qi/pi)/(qi/pi)
k−1. Thus we find

∑
(a,q)=1

(1

q

∑
b (mod q)

e
(abd
q

))k
e
(−am

q

)
=

j∏
i=1

(N(qi)

qk−1
i

− N(qi/pi)

(qi/pi)k−1

)
.

We note that by the Chinese Remainder Theorem that N(q1q2) = N(q1)N(q2) if

q1, q2 are coprime, so the above expression is multiplicative in q. Thus, summing

over all q we obtain∑
q

∑
(a,q)=1

(1

q

∑
b (mod q)

e
(abd
q

))k
e
(−am

q

)
=
∏
p

(
1 +

∑
j≥1

(
N(pj)

pj(k−1)
− N(pj−1)

p(j−1)(k−1)
)
)

(we note that these expressions converge absolutely thanks to Proposition 3.7).

Since the inner sum telescopes and converges, we see that

1 +
∑
j≥1

( N(pj)

pj(k−1)
− N(pj−1)

p(j−1)(k−1)

)
= lim
j→∞

N(pj) = βp(m).

Thus

S(m) =
∏
p

βp(m).

Again, the absolute convergence follows from |βp(m)− 1| ≤ 2k+1p−k/2
d

by Propo-

sition 3.7. Indeed, alongside βp(m) ≥ p−d2d+1

, this shows the uniform lower bound

S(m) ≥
∏
p≤22d

( 1

pd2d+3

) ∏
p>22d

(
1− 2k+1

pk/2d

)
. �

Lemma 5.7 (Singular Integral). Let N ≥ m1/d. Then we have

J(m) =

∫
u1,...,uk∈[0,m1/d]

ud1+···+udk=m

1 =
Γ(1 + 1/d)k

Γ(k/d)
mk/d−1.

Here the integral above is interpreted as with respect to the (k−1) dimensional mea-

sure induced from du1 . . . duk, and Γ(z) :=
∫∞

0
xz−1e−xdx is the Gamma function.
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Proof. Let f(u) = d−1u1/d−110≤u≤N . Then, by a change of variables vi = udi∫
u1,...,uk∈[0,N ]

ud1+···+udk=m

du1 . . . duk−1 =

∫
v1,...,vk∈[0,Nd]
v1+···+vk=m

(v1 · · · vk)1/d−1

dk
dv1 . . . dvk

= (f ∗ · · · ∗ f)(m).

We see from Lemma 4.1 and integration by parts that the Fourier transform is

given by

f̂(ξ) =
1

d

∫ Nd

0

v1/d−1e(−ξv)dv =
1

dξ1/d

∫ ξNd

0

v1/d−1e(−v)dv � 1

ξ1/d
,

̂(f ∗ · · · ∗ f)(ξ) = f̂(ξ)k � 1

|ξ|k/d
.

Therefore, by Fourier inversion we have

(f ∗ · · · ∗ f)(m) =

∫ ∞
−∞

e(mξ)f̂(ξ)kdξ = J(m).

We now show that this integral is Γ(1+1/d)k

Γ(k/d) nk−d by induction on k. Letting wi =

vi/m
1/d we see that

J(m) = mk/d−1

∫
w1,...,wk∈[0,1]
w1+···+wk=1

dw1 . . . dwk−1

dkw
1−1/d
1 · · ·w1−1/d

k

.

Thus J(m) = mk/d−1C(k, d) for some positive constant C(k, d). It isn’t really

important for us what this is, but Lemma B.2 shows that this constant is

Γ(1/d)k

dkΓ(k/d)
=

Γ(1 + 1/d)k

Γ(k/d)
. �

5.2. Minor Arcs for Waring’s problem

Lemma 5.8 (Fractional parts can’t be small too often). Let |θ − a/q| ≤ 1/q2

with (a, q) = 1. Then for any β ∈ R we have∑
|h|≤H

min
(
N,

1

‖hθ + β‖

)
� HN

q
+H log q +N + q log q.

Proof. Let θ = a/q + ε. If ε = 0 then ‖θh‖ would be periodic with period

q, taking values which are 1/q-seaprated. Moreover, εh would be small compared

with 1/q if h is a bit smaller than q. We therefore split the sum over h into d4H/qe
sums of length q/2 (potentially increasing the number of terms slightly for an upper

bound). Thus

∑
|h|<H

min
(
N,

1

‖θh+ β‖

)
≤
d2H/qe∑
m=1

q/2∑
r=1

min
(
N,

1

‖βm + θr‖

)
,
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where βm = θmq + β doesn’t depend on r. Finally, we note that if r1, r2 ≤ q/2

with r1 6= r2 then a(r1 − r2) 6= 0 (mod q) since (a, q) = 1, so ‖a(r1 − r2)/q‖ ≥ 1/q.

Therefore, since |ε| ≤ 1/q2

‖θr1 − θr2‖ =
∥∥∥a(r1 − r2)

q
+ ε(r1 − r2)

∥∥∥ ≥ 1

q
− |ε|q

2
≥ 1

2q
.

Thus the values βm + θr (mod 1) ∈ [−1/2, 1/2] for 1 ≤ r ≤ q/2 are separated by

1/(2q), so the jth smallest non-negative value is at least (j−1)/(2q). In particular,

for any m we have

q/2∑
r=1

min
(
N,

1

‖βm + θr‖

)
≤ N + 2

q/2−1∑
j=1

2q

j
� N + q log q.

Recalling that there are � H/q + 1 such sums we obtain the result. �

Lemma 5.9 (Minor arc bound for squares). If θ = a/q + ε with (a, q) = 1 and

|ε| ≤ 1/q2, then ∣∣∣∑
n≤N

e(θn2)
∣∣∣� N

q1/2
+N1/2 log q + q1/2 log q.

Proof. We square the sum in question, expand, and write n2 = n1 + h. This

gives ∣∣∣∑
n≤N

e(θn2)
∣∣∣2 =

∑
n1,n2≤N

e(θ(n2
2 − n2

1))

=
∑
|h|<N

e(θh2)
∑

max(1,−h)≤n1≤min(N,N−h)

e(θhn1).

By summing the geometric series, we have that∣∣∣ ∑
max(1,−h)≤n1≤min(N,N−h)

e(θhn1)
∣∣∣ ≤ min

(
N,

2

|e(θh)− 1|

)
� min

(
N,

1

‖θh‖

)
.

Now, applying Lemma 5.8 gives∣∣∣∑
n≤N

e(θn2)
∣∣∣2 � ∑

|h|≤N

min
(
N,

1

‖hθ‖

)
�
(N
q

+ 1
)

(N + q log q).

This gives the result. �

Lemma 5.10 (Divisor Bound). Let τk(n) be the number of ways of writing n as

a product n1 . . . nk of k positive integers. Then

τk(n) ≤ nok(1).

Proof. If n = pe11 · · · perr then for any ε > 0

τk(n) =

r∏
i=1

(
ei + k

k

)
≤

r∏
i=1

(ei + 1)k ≤ nε
r∏
i=1

(ei + 1)k

pεeii
.
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If p > 2k/ε then (ei + 1)k ≤ 2kei ≤ pεei . If p ≤ 2k/ε then we see that

(e+ 1)k

pεe
≤ (e+ 1)k

2εe
≤ C(ε, k)

for some constant C(ε, k) independent of e. Thus

τk(n) ≤ N ε
∏

p≤2r/ε

C(ε, k) ≤ N εC(ε, k)2k/ε . �

Lemma 5.11 (Minor arc bound for polynomials). Let P (x) ∈ Z[x] be a polyno-

mial of degree d and θ = a/q + ε for (a, q) = 1 and |ε| ≤ 1/q2. Then∣∣∣∑
n≤N

e(θP (n))
∣∣∣�P N

1−1/2d−1+o(1) +N1+o(1)q−1/2d−1

+N1+o(1)
( q

Nd

)1/2d−1

.

Proof. We claim that if P (x) has degree d and lead coefficient a0, then for

any interval I ⊆ [1, N ] we have∣∣∣∑
n∈I

e(θP (n))
∣∣∣2d−1

� N2d−1−d
∑

|h1|,...,|hd−1|≤N

min
(
N,

1

‖d!a0h1 · · ·hd−1θ‖

)
.

Assume that this is true for all polynomails of degree at most k, and we wish to

show it for P (x) of degree k + 1 and lead coefficient a0. We see that∣∣∣∑
n∈I

e(θP (n))
∣∣∣2 =

∑
n1,n2∈I

e(θ(P (n1)− P (n2)))

=
∑
|h|≤N

∑
n1∈Jh

e(θQh(n1)),(5.1)

where Jh = I ∩ (I − h) and Qh(n) = P (n+ h)− P (n). Then Qh(n) has degree k

and lead coefficient (k+1)a0h and Jh is an interval, so by the induction hypothesis

(5.2)∣∣∣ ∑
n1∈Jh

e(θQh(n1))
∣∣∣2k−1

� N2k−1−k
∑

|h1|,...,|hk−1|≤N

min
(
N,

1

‖(k + 1)!a0hh1 · · ·hk−1θ‖

)
.

Now Hölder’s inequality gives∑
|h|≤N

∑
n1∈Jh

e(θQh(n1)) ≤ N1−1/2k−1
( ∑
|h|≤N

∣∣∣ ∑
n1∈Jh

e(θQh(n1))
∣∣∣2k−1)1/2k−1

.

Substituting in (5.1) and (5.2) (and relabelling h as hk) gives∣∣∣∑
n∈I

e(θP (n))
∣∣∣2k � N2k−k−1

∑
|h1|,...,|hk|≤N

min
(
N,

1

‖(k + 1)!a0h1 · · ·hkθ‖

)
.

This establishes the claim.

Let h = (k + 1)!a0h1 . . . , hk � Nk. The number of choices of h1, . . . , hk given

h is O(No(1)) by the divisor bound when h 6= 0, and O(Nk−1) when h = 0. Thus
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by Lemma 5.8 we obtain∣∣∣∑
n∈I

e(θP (n))
∣∣∣2k � N2k−k−1

(
No(1)

∑
0<|h|�Nk

min
(
N,

1

‖hθ‖

)
+Nk

)

≤ N2k−1+o(1) +
N2k+o(1)

q
+N2k−k−1+o(1)q. �

Proof of Proposition 5.3. By Dirichlet’s Theorem in Diphantine approxi-

mation (Lemma 1.6, any θ ∈ [0, 1] has an approximation

θ =
a

q
+ ε, q ≤ Nd

Q
, (a, q) = 1, |ε| ≤ Q

qNd
≤ 1

q2
.

If there is such an approximation with q ≤ Q then clearly θ ∈ M. Therefore if

θ ∈ m we see that q ∈ [Q,Nd/Q], in which case Lemma 5.11 gives∣∣∣∑
n≤N

e(θP (n))
∣∣∣� N1+o(1)

Q1/2d
.

Integrating the kth power of this bound over all θ ∈ m gives∫
m

∣∣∣∑
n≤N

e(θP (n))
∣∣∣kdθ � Nk+o(1)

Qk/2d
. �





CHAPTER 6

Roth’s Theorem

A k-term arithmetic progression is a sequence a, a + d, . . . , a + (k − 1)d. We

call this non-trivial if d 6= 0.

Theorem 6.1 (Roth’s Theorem). There is a constant C ≥ 1 such that any

subset A ⊆ {1, . . . , N} with |A| ≥ CN/
√

log logN contains a non-trivial 3-term

arithmetic progression.

6.1. The density increment strategy

Proposition 6.2 (Density increment). Let α ∈ (0, 1) and N ≥ (10/α)10. Let

P ⊆ Z be an arithmetic progression of length N , and A ⊆ P a set with |A| ≥ αN .

Then at least one of the following holds:

(1) A contains a non-trivial 3-term arithmetic progression.

(2) There is an arithmetic progression P ′ ⊆ P of length N ′ ≥ N1/5 such that

A′ := A ∩ P ′ satisfies

|A′|
|P ′|

≥ α+
α2

60
.

Proof of Theorem 6.1 assuming Proposition 6.2. By increasing the con-

stant C if necessary, we may assume that N > N0 for any fixed choice of N0.

Assume for a contradiction that there is a set A ⊆ {1, . . . , N} containing no non-

trivial three term arithmetic progressions, but with density α ≥ 1/
√

log logN .

Then no subset of A contains non-trivial 3-term progressions. Let A1 := A
and P1 := {1, . . . , N}. We now repeatedly apply Proposition 6.2 to obtain a

sequence of arithmetic progressions P1 ⊇ P2 ⊇ · · · ⊇ PJ together with sets

A1 ⊇ A2 ⊇ · · · ⊇ AJ where Aj := A ∩ Pj has density αj := |Aj |/|Pj |. We

do this until we can no longer apply Proposition 6.2, which must mean that

(6.1) |PJ | < (10/αJ)10.

By the bounds from Proposition 6.2, we have that

|Pj | ≥ N1/5j , αj+1 ≥ αj +
α2
j

60
≥ αj

(
1 +

α

60

)
.(6.2)

We see that αj are increasing, and so we cannot have many terms in the sequence

since the density of a set cannot increase above 1. Let m := d60/αe. Since αj+1 ≥

37
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αj(1 + α/60), we see that

α1+jm ≥ α
(

1 +
α

60

)jm
≥ α

(
1 +

1

m

)jm
≥ α2j .

However, all densities must be at most 1, so we must have that j ≤ 2 log(1/α).

Thus, recalling α ≥ 1/
√

log logN , if N0 is large enough the number J of terms in

the sequence satisfies

J ≤ 1 + 2d60

α
e log

1

α
≤ log logN

100

terms in the sequence. However, this is incompatible with our bounds on |PJ |. The

lower bound (6.2) then implies (for N large enough)

|PJ | ≥ N1/5J ≥ exp
(

(logN)1−log 5/10
)
≥
(

10
√

log logN
)10

,

but the upper bound (6.1) implies

|PJ | < (10/α)10 <
(

10
√

log logN
)10

,

a contradiction. Thus A must have contained a non-trivial three term arithmetic

progression. �

6.2. Circle method and large Fourier coefficients

To prove Proposition 6.2 we wish to analyse the count of the number of three

term arithmetic progressions in A. We see that, using orthogonality,∑
a,d≤N

a,a+d,a+2d∈A

1 =
∑

a1,a2,a3∈A
a1+a3=2a2

1

=

∫ 1

0

(∑
a∈A

e(aθ)
)2(∑

a∈A
e(−2aθ)

)
dθ.

For any set A ⊆ {1, . . . , N} we have that
∑
a∈A e(aθ) is large when θ is a small

multiple of 1/N . For a random set, it would only be these arcs near 0 which make

a meaningful contribution, and these would contribute roughly α3N2. Therefore

there must be a significant contribution from somewhere else to cancel this if there

are actually no arithmetic progressions in A. To keep track of things more easily

we work with the balanced function fA(n) := 1A(n)− α rather than the indicator

function. Given functions f1, f2, f3 : Z→ C, let

T (f1, f2, f3) =

∫ 1

0

(∑
n≤N

f1(n)e(nθ)
)(∑

n≤N

f3(n)e(nθ)
)(∑

n≤N

f2(n)e(−2nθ)
)
dθ

=
∑

n1,n2,n3≤N
n1+n3=2n2

f1(n1)f2(n2)f3(n3).



6.2. CIRCLE METHOD AND LARGE FOURIER COEFFICIENTS 39

Lemma 6.3. Let f1, f2, f3 : Z → C be supported on {1, . . . , N} and satisfy∑
n≤N |fi(n)|2 ≤ βN . Then for any j ∈ {1, 2, 3}

T (f1, f2, f3) ≤ βN sup
θ
|f̂j(θ)|.

Proof. We prove the result for j = 1; the other cases are completely analo-

gous. We have that

T (f1, f2, f3) =

∫ 1

0

f̂1(θ)f̂3(θ)f̂(2θ))dθ

≤ sup
θ
|f̂1(θ)|

∫ 1

0

|f2(2θ)f3(θ)|dθ

≤ sup
θ
|f̂1(θ)|

(∫ 1

0

|f2(2θ)|2dθ
)1/2(∫ 1

0

|f3(θ)|2dθ
)1/2

.

By Parseval (Lemma 4.1) we have∫ 1

0

|f̂j(θ)|2dθ =
∑
n

|fj(n)|2 ≤ βN.

Substituting this in above gives the result. �

Lemma 6.4. ∑
a,d≤N

a,a+d,a+2d∈A

1 ≥ α3N2

2
− 7αN sup

θ
|f̂A(θ)|.

Proof. Clearly T is trilinear, so by writing 1A(n) = fA(n) + α, we have

T (1A,1A,1A)− T (α, α, α) = T (fA, fA, fA) + T (fA, fA, α) + T (fA, α, fA)

+ T (α, fA, fA) + T (fA, α, α) + T (fA, α, fA)

+ T (α, α, fA).

Each term on the right hand side involves at least one copy of fA as an argument

to T . We note that∑
n

|1A(n)|2 = αN,
∑
n

|fA|2 = α(1− α)N,

so by Lemma 6.3 we have∣∣∣T (1A,1A,1A)− T (α, α, α)
∣∣∣ ≤ 7αN sup

θ
|f̂A(θ)|.

By direct estimation we see that

T (α, α, α) = α3
∑

n1,n2,n3≤N
n1+n3=2n2

1 ≥ α3N
2

2
.
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Therefore

T (1A,1A,1A) ≥ α3N2

2
− 7αN sup

θ
|f̂A(θ)|. �

Lemma 6.5 (Sets without 3APs have large Fourier coefficients). Let α ≥
1/
√

log logN and N be sufficiently large. Then at least one of the following holds:

(1) A contains a non-trivial three-term arithmetic progression.

(2) supθ |f̂A(θ)| ≥ α2N/20.

Proof. The number of trivial three term progressions in A is just |A| = αN .

Therefore, by Lemma 6.4, the number of non-trivial three term arithmetic progres-

sions is at least
α3N2

2
− 7αN sup

θ
|f̂A(θ)| − αN.

Since α ≥ 1/
√

log logN , we see that for N large enough α3N2/2−αN ≥ 2α3N2/5.

Therefore if |f̂A(θ)| ≤ α2N/20 for all θ, the number of non-trivial three term

arithmetic progressions is at least

2α3N2

5
− α3N2

20
> 0. �

Lemma 6.6 (Large Fourier coefficients imply density increments). Let |fA(θ)| ≥
α2N/20. Then there is an arithmetic progression P ⊆ {1, . . . , N} such that

|A ∩ P|
|P|

≥ α+
α2

60
, |P| ≥ N1/5.

Proof. By Lemma 1.6, there is a q ≤ N1/2 such that

θ =
b

q
+ ε, |ε| ≤ 1

qN1/2
, (b, q) = 1.

We first split {1, . . . , N} into congruence classes (mod q), and then split each of

these into arithmetic progressions containing between N1/5 and 2N1/5 consecutive

terms in the congruence class. If P = {c+ qr : r ≤ N1} is one of these arithmetic

progressions, then we see that∑
n∈P

fA(n)e(nθ) = e(cθ)
∑
r≤N1

fA(c+ rq)e(εrq).

We have that

|e(εrq)− 1| = |2 sin(πεrq)| ≤ 2πεrq ≤ 2πN1

N1/2
≤ 4π

N3/10
.

Thus, for N large enough∣∣∣ ∑
r≤N1

fA(c+ rq)e(εrq)−
∑
r≤N1

fA(c+ rq)
∣∣∣ ≤ 4πN1

N3/10
≤ 1.
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On the other hand, by assumption |f̂A(θ)| ≥ α2N/20. Thus, since the P partition

{1, . . . , N}, by the triangle inequality∑
P

∣∣∣∑
n∈P

fA(n)e(nθ)
∣∣∣ ≥ ∣∣∣∑

n≤N

fA(n)e(nθ)
∣∣∣ ≥ α2N

20
.

Combining these gives (for N sufficiently large)∑
P

∣∣∣∑
n∈P

fA(n)
∣∣∣ ≥ α2N

30
.

Since
∑
n≤N fA(n) = 0, and

∑
P |P| = N , we have∑

P

(∣∣∣∑
n∈P

fA(n)
∣∣∣+

∑
n∈P

fA(n)
)
≥ α2

30

∑
P
|P|.

Thus there is some P such that∣∣∣∑
n∈P

fA(n)
∣∣∣+

∑
n∈P

fA(n) ≥ α2

30
|P|.

We see
∑
n∈P fA(n) is real, and must be positive for the left hand side to be positive.

Thus ∑
n∈P

fA(n) ≥ α2

60
|P|.

Recalling the definition of fA, the left hand side is |A ∩ P| − α|P|. This then gives

the result. �

We can now prove Proposition 6.2, and so complete the proof of Theorem 6.1.

Proof of Proposition 6.2. Assume that A contains no non-trivial 3-term

arithmetic progressions. After an affine rescalining, we may assume that P =

{1, . . . , N} since affine rescalings don’t change whether a set is a 3AP, and preserves

cardinalities.

Then, applying Lemma 6.5, we deduce that A has a large Fourier coefficient in

the sense that ∣∣∣f̂A(θ)
∣∣∣ ≥ α2N

30
.

Now applying Lemma 6.6, we see that this implies that there is an arithmetic

progression P ⊆ {1, . . . , N} of length at least N1/5 such that

|A ∩ P|
|P|

≥ α+
α2

60
.

�





CHAPTER 7

Freiman’s Theorem

Theorem 7.1 (Freiman’s Theorem). Let A ⊆ Z satisfy |A+A| ≤ K|A|. Then

there is a constant C(K) > 0 such that A is contained in a generalised arithmetic

progression of dimension C(K) and size C(K)|A|.

Definition (Freiman Homomorphism). Let A,B be sets in (possibly different)

additive groups, and φ : A → B. Let s ≥ 2 be an integer. We say that φ is a

Freiman homomorphism of order s if

φ(a1) + · · ·+ φ(as) = φ(a′1) + · · ·+ φ(a′s)

whenever a1 + · · ·+ as = a′1 + · · ·+ a′s. We say that φ is a Freiman s-isomorphism

if φ is a bijection and both φ and φ−1 are Freiman s-homomorphisms.

Thus Freiman homomorphisms respect s-fold sum relations.

Lemma 7.2 (Basic properties of Freiman homomorphisms).

(1) (Preserved under composition) If φ1 : A → B and φ2 : B → C are

both Freiman s-homomorphisms, then φ2 ◦ φ1 : A → C is a Freiman

s-homomorphism. Moreover, if φ1, φ2 are both Freiman s-isomorphisms

then so is φ2 ◦ φ1.

(2) (Hierarchy) If φ is a Freiman s-homomorphism it is a Freiman t-homomorphism

for all t ≤ s.
(3) (Interactions with sumsets) If φ : A → B is a Freiman s-homomorphism,

then it induces φ̃k,` : kA − `A → kB − `B, which is a Freiman s̃-

homomorphism for any s̃ ≤ s/(k + `).

(4) (Weakening of homomorphism) If φ is a homomorphism from 〈A〉 → 〈B〉
then φ is a Freiman s-homomorphism for all s.

(5) (Dependency on additive structure of underlying sets) If A has no non-

trivial solutions to a1 + · · ·+as = a′1 + · · ·+a′s then every map φ : A → B
is a Freiman s-homomorphism.

(6) (Preserves GAPs) If φ : A → B is a Freiman 2-isomorphism and Q ⊆ A
is a proper generalised arithmetic progression of dimension d and size S,

43
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then φ(Q) is a proper generalised arithmetic progression of dimension d

and size S.

Proof. These all follow quickly from the definitions. If a1 + · · · + as = a′1 +

· · · + a′s then φ1(a1) + · · · + φ1(as) = φ1(a′1) + · · · + φ1(a′s) since φ1 is a Freiman

s-homomorphism, which then means φ2(φ1(a1)) + · · ·+ φ2(φ1(as)) = φ2(φ1(a′1)) +

· · ·+φ2(φ1(a′s)) since φ2 is a Freiman s-homomorphism, and so φ2 ◦φ1 is a Freiman

s-homomorphism.

If a1 + · · ·+as−1 = a′1 + · · ·+a′s−1 then (choosing as ∈ A arbitrarily) a1 + · · ·+
as = a′1 + · · · + a′s−1 + as, so φ(a1) + · · · + φ(as) = φ(a′1) + · · · + φ(a′s−1) + φ(as)

(since φ is an s-homomorphism), so φ(a1) + · · ·+ φ(as−1) = φ(a′1) + · · ·+ φ(a′s−1)

and φ is a Freiman (s− 1)-homomorphism. Repeating this gives the result.

We define φ̃ by

φ̃(a1 + · · ·+ ak − a′1 − · · · − a′`) = φ(a1) + · · ·+ φ(ak)− φ(a′1)− · · · − φ(a′`).

We need to check that this is well-defined; if a1 + · · · + ak − a′1 − · · · − a′` =

a′′1+· · ·+a′′k−a′′′1 −· · ·−a′′′` then a1+· · ·+ak+a′′′1 +· · ·+a′′′` = a′′1+· · ·+a′′k+a′1+· · ·+a′`.
Since k + ` ≤ s and φ is a Freiman s-homomorphism we then see that

φ(a1)+ · · ·+φ(ak)−φ(a′1)−· · ·−φ(a′`) = φ(a′′1)+ · · ·+φ(a′′k)−φ(a′′′1 )−· · ·−φ(a′′′` ),

so φ̃ is independent of the choice of representative and is well-defined. Similarly if

n1 + · · · + ns̃ = n′1 + · · · + n′s̃ with ni, n
′
i ∈ kA − `A then, picking representatives

ni = a
(i)
1 + · · ·+ a

(i)
k − b

(i)
1 − · · · − b

(i)
` we find that

s̃∑
i=1

( k∑
j=1

a
(i)
j +

∑̀
j=1

b′
(i)
j

)
=

s̃∑
i=1

( k∑
j=1

a′
(i)
j +

∑̀
j=1

b
(i)
j

)
.

Since s̃ ≤ s/(k + `), there are at most s terms on either side, so

φ̃(n1) + · · ·+ φ̃(ns̃) =

s̃∑
i=1

( k∑
j=1

φ(a
(i)
j )−

∑̀
j=1

φ(b
(i)
j )
)

= φ̃(n′1) + · · ·+ φ̃(n′s̃)

If φ is a genuine homomorphism of additive groups then φ(a1 + · · · + as) =

φ(a1) + · · ·+ φ(as) so the result is immediate.

If A only has the trivial solutions then a1 + · · · + as = a′1 + · · · + a′s implies

{a1, . . . , as} = {a′1, . . . , a′s} so certainly φ(a1) + · · · + φ(as) = φ(a′1) + · · · + φ(a′s)

without requiring any properties about the map φ.

We see x1, x2, x3 being in arithmetic progression is equivalent to x1 +x3 = 2x2.

If this holds then φ(x1) + φ(x3) = 2φ(x2), so φ(x1), φ(x2), φ(x3) are in arithmetic

progression. It follows that φ(Q) is a generalised arithmetic progression of dimen-

sion d. �
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Lemma 7.3. If A ⊆ Z satisfies

sup
a,b∈A

|a− b| < N

s
,

then A is Freiman s-isomorphic to its image (mod N).

Proof. The reduction mod N map is a group homomorphism, so certainly

a Freiman s-homomorphism. Therefore we just need to consider the inverse map.

Imagine a1, . . . , as, a
′
1, . . . , a

′
s ∈ A are such that

(a1 + · · ·+ as)− (a′1 + · · ·+ a′s) = 0 (mod N).

By assumption on A, we see that (a1 + · · ·+as)− (a′1 + · · ·+a′s) is an integer of size

less than N . But then the only such integer which is 0 (mod N) is 0 itself, so we

must have a1 + · · ·+as = a′1 + · · ·+a′s whenever these are congruent (mod N). �

7.1. Modelling integers sets with cyclic groups

A big difficulty of using Fourier analysis to study an arbitrary set AZ is that

this is typically very weak if A is very sparse. Therefore, to address this issue it is

very benefitial if we can find a set B with similar additive structure to A (such as

being s-isomorphic to A, or a large subset of A) but which is dense. One cannot

hope to find such a dense set B in Z (since an additive relations over Z encode

information about the relative size of integers), but we can find sets B is a cyclic

group Z/NZ (where there is no longer a notion of size).

Clearly you cannot hope to find a set B ⊆ Z/NZ s-isomorphic to A if N <

|sA− sA|. If N ≥ |sA− sA| and sA− sA contains no non-zero elements which are

a multiple of N , then for any interval I ⊆ Z/NZ of length N/s, and B = {b ∈ I :

b ∈ A (mod N)} is s-isomorphic to A by Lemma 7.3. By the pigeonhole principle

we can choose I such that B contains at least |A|/s elements. We wish to find

a substitute for this construction when sA − sA does contain non-zero elements

which are a multiple of N .

Lemma 7.4. Let A ⊆ Z, and s,N ≥ 2. If we have that

|sA− sA| ≤ N,

then there is a prime p and a subset B ⊆ Z such that:

• If d ∈ (sB − sB)\{0} then N - d.

• B is Freiman s-isomorphic to a subset A′ of A.

• |B| ≥ |A|/s.
• B is contained in an interval of length p/s.

• B = λA′ (mod p) for some λ ∈ (Z/pZ)×.
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Proof. The idea is to take a large prime p, and first choose B′ ⊆ [0, p−1] such

that B′ = λ · A (mod p) is congruent to the dilation of A (mod p) by a well-chosen

element λ ∈ (Z/pZ)× to ensure nothing is a multiple of N . This is an isomorphism

if we view everything (mod p), and we then restrict B′ to a short interval to ensure

that this is an s-isomorphism over the integers.

Fix a very large prime p > max(sA−sA). Let φ1 : Z→ Z/pZ be the reduction

mod p map, let φ2,λ : Z/pZ→ Z/pZ be φ2,λ(x) = λx and φ3 : Z/pZ→ {0, . . . , p−1}
the lift inverting φ1 on {0, . . . , p− 1}. Then, for each choice of λ ∈ {1, . . . , p− 1},
we define

φλ := φ3 ◦ φ2,λ ◦ φ1.

First we want to show that there exists a choice of λ ∈ {1, . . . , p − 1} such that

φλ(d) is not a multiple of N for any d ∈ (sA − sA)\{0}. Let SN be the set of

non-zero elements of Z/pZ mapped to multiples of N by φ3, so |SN | ≤ (p− 1)/N .

We see that∑
λ∈{1,...,p−1}

#
{
d ∈ sA− sA\{0} : N |φλ(d)

}
=

∑
d∈sA−sA\{0}

∑
b∈SN

∑
λ∈{1,...,p−1}
φλ(d)=b

1.

Since d is non-zero and p > max(sA − sA) ≥ d, we see that d is coprime to p.

Therefore there is a unique choice of λ such that φλ(d) = b (namely λ ≡ bd−1mod p).

Thus∑
λ∈{1,...,p−1}

#
{
d ∈ sA−sA\{0} : N |φλ(d)

}
< |SN ||sA−sA| ≤

p− 1

N
|sA−sA| ≤ p−1,

on recalling that |sA − sA| ≤ N . In particular, this means we cannot have that

#{d ∈ sA − sA\{0} : N |φλ(d)} ≥ 1 for all λ, so there must be some choice of λ

such that φλ(d) is not a multiple of N for all d ∈ sA− sA. Thus if we choose

B′ = φλ(A)

then B′ = λ · A (mod p) and no non-zero element of sB′ − sB′ is a multiple of N

and |B′| = |A|.
Finally, by the pigeonhole principle, we can find an interval I ⊆ {0, . . . , p− 1}

of length at most p/s such that

B := B′ ∩ I

contains at least |B′|/s = |A|/s elements. By Lemma 7.3, both A′ and B are s-

isomorphic to their images (mod p) (since A′ ⊆ A ⊆ [0, p/s], and these images are

isomorphic, so A′ and B are s-isomorphic. �
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Lemma 7.5 (Rusza modelling lemma). Let A ⊆ Z, and s,N ≥ 2. If we have

that

|sA− sA| ≤ N

then there is an A′ ⊆ A such that |A′| ≥ |A|/s and A′ is Freiman s-isomorphic to

a subset of Z/NZ.

Proof. By Lemma 7.4 there is a subset A′ of A of size at least |A|/s and an

s-isomorphism φ such that sφ(A′) − sφ(A′) contains no non-zero elements which

are a multiple of N and φ(A′) = λ ·A′ (mod p) and φ(A′) is contained in an interval

of length p/s.

It suffices to show that φ(A′) is Freiman s-isomorphic to its image (mod N).

Let ψ be the composition of φ with the reduction (mod N) map. Clearly ψ is a

Freiman s-homomorphism (since it is a composition of Freiman s-homomorphisms).

Thus it suffices to show that ψ(a1) + · · · + ψ(as) = ψ(a′1) + · · · + ψ(a′s) implies

a1 + · · ·+ as = a′1 + · · ·+ a′s. If ψ(a1) + · · ·+ ψ(as) = ψ(a′1) + · · ·+ ψ(a′s), then

y := φ(a1) + · · ·+ φ(as)− φ(a′1)− · · · − φ(a′s) ∈ NZ.

Without loss of generality, we may assume that y > 0 (by swapping the ai with the

a′i if necessary). Since φ(A′) is contained in an interval of length p/s, we see that

0 ≤ y < p. Let

x := a1 + · · ·+ as − a′1 − · · · − a′s ∈ sA′ − sA′.

Since φ(t) = λt (mod p), working (mod p) we have

φ(x) = λa1 + · · ·+ λas − λa′1 − · · · − λa′s = y (mod p).

Thus φ(x) = y (mod p) and φ(x), y ∈ [0, p), so φ(x) = y. But N |y and we have

constructed φ such that φ(x) /∈ NZ for all non-zero x ∈ sA − sA. Thus we must

have that x = 0, and so ψ is indeed a Freiman s-isomorphism. �

7.2. Structure in sumsets

Definition (Bohr sets in Z/qZ). Given R = {r1, . . . , rk} ⊆ Z/qZ and ε > 0,

define

B(R, ε) := {x ∈ Z/qZ :
∥∥∥rix
q

∥∥∥ ≤ ε ∀i}.
Lemma 7.6 (Bogolyubov Lemma). Let A ⊆ Z/qZ be a set of size αq. Then

there is an integer k ≤ 4/α2 and a set R = {r1, . . . , rk} ⊆ Z/qZ such that 2A− 2A
contains B(R, 1/10).
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Proof. Let f : Z/qZ→ Z/qZ be given by

f(x) =
∑

a1,a2,a3,a4∈A
a1+a2−a3−a4=x

1 = (1A ∗ 1A ∗ 1−A ∗ 1−A)(x).

Then f is supported on 2A−2A. By the convolution identity (Lemma 3.1) we have

f̂(r) = q3|1̂A(r)|4.

Thus, by Fourier inversion (Lemma 3.1 again) and the fact that f is real, we have

f(x) = <(f(x)) = <
(
q3
∑
r

|1̂A(r)|4e
(rx
q

))
= q3

∑
r

|1̂A(r)|4 cos
(2πrx

q

)
.

We now choose R to be the set of large Fourier frequencies

R := {r ∈ Z/qZ : |1̂A(r)| ≥ α3/2/2}.

Then by Parseval’s identity

|R|α
3

4
≤
∑
r∈R
|1̂A(r)|2 ≤

∑
r∈Z/qZ

|1̂A(r)|2 =
1

q

∑
x∈Z/qZ

1A(x)2 = α.

Thus |R| ≤ 4/α2. To complete the proof it suffices to show that f(x) > 0 if

x ∈ B(R, 1/10) since f(x) > 0 only on 2A − 2A. We split the Fourier expansion

into three parts: the term r = 0, the terms r ∈ R and the terms r /∈ R ∪ {0}.

f(x) = q3|1̂A(0)|4 + q3
∑
r∈R
|1̂A(r)|4 cos

(2πrx

q

)
+ q3

∑
r/∈R∪{0}

|1̂A(r)|4 cos
(2πrx

q

)
.

We see that 1̂A(0) = α4, and that since |1̂A(r)| ≤ α3/2/2 for r /∈ R ∪ {0}∣∣∣ ∑
r/∈R∪{0}

|1̂A(r)|4 cos
(2πrx

q

)∣∣∣≤ α3

4

∑
r/∈R∪{0}

|1̂A(r)|2 ≤ α3

4

∑
r

|1̂A(r)|2 ≤ α4

4
.

Finally, if x ∈ B(R, 1/10) then for all r ∈ R we have that ‖rx/q‖ ≤ 1/10, so

cos(2πrx/q) ≥ 0. In particular∑
r∈R
|1̂A(r)|4 cos

(2πrx

q

)
≥ 0.

Putting this together, we find that for x ∈ B(R, 1/10) we have

f(x) ≥ q3α4 + 0− q3α
4

4
=

3q3α4

4
> 0. �

Proof of Theorem 7.1.

(1) By Plünnecke’s Theorem (Lemma 2.4) we have |8A− 8A| ≤ K16|A|.
(2) Choose N to be a prime with K16|A| ≤ N ≤ 2K16|A|.
(3) By Rusza’s modelling lemma (Lemma 7.5), there is a subset A′ ⊆ A with

|A′| ≥ |A|/8 such that A′ is Frieman 8-isomorphic to a subset B of Z/NZ.
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We see that
|B|
N

=
|A′|
N
≥ |A|

8N
≥ 1

16K16
.

(4) By Bogolubov’s lemma (Lemma 7.6) we then see that 2B − 2B contains

a Bohr set B(R, 1/10) for some set R ⊆ ZNZ of cardinality at most

256K32.

(5) By the geometry of numbers (Lemma 1.8) B(R, 1/10) contains a proper

generalised arithmetic progression G of dimension d ≤ 256K32 and size

at least cKN for some constant cK > 0 depending only on K.

(6) Since B is Freiman 8-isomorphic to A′, 2B − 2B is Freiman 2-isomorphic

to 2A′ − 2A′ by Lemma 7.2.

(7) Generalised arithmetic progressions are preserved by Freiman 2-isomorphisms

(by Lemma 7.2). Thus G is mapped to a proper generalised arithmetic

progression Q ⊆ 2A′−2A′, with the same dimension d ≤ 256K32 and size

at least cKN .

(8) By Lemma 2.5, this implies that A is contained in a generalised arithmetic

progression of dimension C(K) and size C(K)|A|. This gives the result.

�





APPENDIX A

Asymptotic estimates

We will repeatedly encounter interesting number-theoretic objects which are

complicated, such as the counting function of the primes. To understand these

complicated functions, we want to approximate them by much simpler functions,

such as a continuous function with no number-theoretic properties. To do this we

need to control the error in such approximations, and the following notation is very

useful to keep us focused on what is going on.

Definition (Big Oh notation). We write ‘O(h(x))’ to denote a function g(x)

which satisfies

|g(x)| ≤ C · h(x)

for some constant C > 0 and all x under consideration.

Since the function g and the constant C are unspecified, multiple uses of O(·)
can specify different functions. Moreover, this can lead to some initally confusing

issues when used with the = sign, since f(x) = O(h(x)) and g(x) = O(h(x))

does not imply that f(x) = g(x). Moreover, we will use O(h(x)) inside various

expressions, so given functions f, g, h, when we write ‘f(x) = g(x) + O(h(x)) for

x ∈ S’ we mean there exists a constant C > 0 (which depends only on f, g, h,S)

such that

|f(x)− g(x)| ≤ C · h(x)

for all x ∈ S. If the set S is clear from the context (as is normally the case), we

just write ‘f(x) = g(x) + O(h(x))’. We sometimes call g(x) the ‘main term’ and

h(x) the ‘error term’ in an approximation to f .

Example A.1.

• x = O(x2) for x ≥ 1. (Since x ≤ x2 for x ≥ 1.)

• x2 = O(x) for 0 ≤ x ≤ 10. (Since x2 ≤ 10x for 0 ≤ x ≤ 10.)

• It is not the case that x2 = O(x) for x ≥ 1 (since as x→∞, x2/x→∞.)

• (x+ 1)2 = x2 +O(x) for x ≥ 1 (since |(x+ 1)2 − x2| ≤ 3x for x ≥ 1.)

• bxc = sup{n ∈ Z : n ≤ x} = x+O(1) for x ∈ R. (Since x− 1 ≤ bxc ≤ x,

so |bxc − x| ≤ 1.)
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•
√
x+ 1 =

√
x+ 1

2
√
x
− 1

8x3/2 +O
(

1
x5/2

)
for x ≥ 1. (Since for f(x) =

√
x,

f(x + 1) = f(x) + f ′(x) + f ′′(x)/2 + f ′′′(y)/6 for some y ∈ [x, x + 1] by

Taylor’s Theorem, and f ′′′(y) = 3/(8y5/2) ≤ 6/(8x5/2) for x ≥ 1.)

Lemma A.2 (Properties of Big Oh notation).

(1) Non-negativity of error term:

If f(x) = O(g(x)) then g(x) ≥ 0.

(2) Transitivity:

If f(x) = O(g(x)) and g(x) = O(h(x)) then f(x) = O(h(x)).

(3) Additivity:

If f1(x) = g1(x) +O(h1(x)) and f2(x) = g2(x) +O(h2(x)) then

f1(x) + f2(x) = g1(x) + g2(x) +O(h1(x) + h2(x)).

Proof. These follow immediately from the definition. �

Definition (Further asymptotic notation).

• Little Oh notation:

Given h(x) > 0, when considering a limit x → a we write ‘o(h(x))’ to

denote a function g(x) which satisfies

lim
x→a

g(x)

h(x)
→ 0.

If we don’t explicitly mention the limit point a then it is assumed a =∞.

• Vinogradov notation:

We have the binary relation f(x)� g(x) if f(x) = O(g(x)).

Although the Vinogradov notation overlaps with Big Oh notation, the Big

Oh notation should be thought of as a placeholder for some unspecified function,

whereas the � is an inequality which can exploit the transitivity of O(·), so we

might write things like f(x)� g(x)� h(x).



APPENDIX B

Analytic identities

Definition (Schwarz functions on R). We let S(R) be the space of infinitely

differentiable functions f : R→ C such that for all integers j, k > 0

|f (j)(x)| �j,k |x|−k.

Lemma B.1 (Properties of the real Fourier transform). Let f, g ∈ S(R).

• (Fourier transform is smooth with rapid decay) f̂ ∈ S(R).

• (Gaussian is egenfunction of Fourier operator)If f(x) = e−πx
2

then f̂(ξ) =

e−πξ
2

.

• (Inversion formula). We have

f(t) =

∫ ∞
−∞

f̂(ξ)e(tξ)dξ.

• (Parseval). ∫ ∞
−∞

f(t)g(t)dt =

∫ ∞
−∞

f̂(ξ)ĝ(ξ)dξ.

• (Convolutions). Let h(x) :=
∫∞
−∞ f(t)g(x− t)dt. Then

ĥ(ξ) = f̂(ξ)ĝ(ξ).

Proof. A bit of care is required because convergence issues can come into

play. Let

φε(x) =
1

ε
e−π(x/ε)2

be an approximation of the identity. Clearly φε ∈ S(R). Let

fε(x) := e−π(εx)2(f ∗ φε)(x) = e−π(εx)2
∫ ∞
−∞

φε(x− t)f(t)dt.

Then fε ∈ S(R) since f ∗φε is infinitely differentiable and e−π(εx)2 has rapid decay.

We see that for |x| < ε−1/2

fε(x) = f(x) +O(ε) +O( sup
|y−x|<ε1/2

|f(y)− f(x)|).

In particular fε(x) → f(x) as ε → 0 if x is a point of continuity of f . Thus,

since the conditions on f, g ensure that all integrals in the lemma are absolutely
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convergent, it suffices to establish the results for fε, gε in place of f, g, so we only

need to consider f, g ∈ S(R).

• First note that since f ∈ S(R), we have that f(x) = O(|x|−k) for |x| ≥ 1.

Thus f̂(ξ) is given by an absolutely convergent integral, and

f̂(ξ + ε)− f̂(ξ)

ε
=

∫
|x|<ε−1/2

f(x)e−2πixξ
(e−2πixε − 1

ε

)
dx+

∫
|x|≥ε−1/2

O
( |f(x)|

ε

)
dx.

In the first integral we use the Taylor expansion e−2πixε = 1 − 2πixε +

O(x2ε2). Thus, taking out a term −2πixf(x)e−2πixξ from both integrals,

we find

f̂(ξ + ε)− f̂(ξ)

ε
=

∫ ∞
−∞
−2πixf(x)e−2πixξ +O

(∫
|x|<ε−1/2

εx2|f(x)|dx
)

+O
(∫
|x|≥ε−1/2

|f(x)|(1

ε
+ x)dx

)
=

∫ ∞
−∞
−2πixf(x)e−2πixξ +O

(∫
|x|<ε−1/2

εdx
)

+O
(∫
|x|≥ε−1/2

1

x4ε
+

1

x3

)
dx
)

=

∫ ∞
−∞
−2πixf(x)e−2πixξ +O(ε1/2).

This converges as ε→ 0, showing f̂ ′(ξ) is the Fourier transform of−2πixf(x).

Since −2πixf(x) ∈ S(R) whenever f ∈ S(R), we can repeat the above

argument and find that f̂ (j) is the Fourier transform of (−2πix)jf(x) for

all j ∈ Z>0.

By differentiating by parts k times, we see that

f̂ (j)(ξ) =

∫ ∞
−∞

e−2πixξ

(2πiξ)k
∂k

∂xk

(
(−2πix)jf(x)

)
dx�j,k

1

|ξ|k
.

Thus f̂ ∈ S(R).

• By completing the square, we have

f̂(ξ) =

∫ ∞
−∞

e−πx
2−2πixξdx = e−πξ

2

∫ ∞
−∞

e−π(x+iξ)2dx.

By Cauchy’s residue theorem∫ R+iξ

−R+iξ

f(z)dz +

∫ R

R+iξ

f(z)dz +

∫ −R
R

f(z)dz +

∫ −R+iξ

−R
f(z)dz = 0,

where the integrals are straight line contours. Since |f(z)| ≤ e−π(<(z)2−=(z)2),

we see that the second and fourth terms both tend to 0 as R→∞. Thus

we find that∫ ∞
−∞

e−π(x+iξ)2dx = lim
R→∞

∫ R+iξ

−R+iξ

f(z)dz = −
∫ −∞
∞

f(z)dz =

∫ ∞
−∞

e−πx
2

dx.
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The result follows on recalling the identity
∫∞
−∞ e−πu

2

du = 1.

• Let φε(x) = e−π(x/ε)2/ε. Then, by a change of variables and the previous

result, we see that

φ̂ε(ξ) =

∫ ∞
−∞

e−π(x/ε)2

ε
dx = e−πξ

2ε2 =
φ1/ε(ξ)

ε
,

∫ ∞
−∞

φ̂ε(ξ)e(xξ)dξ =
1

ε

∫ ∞
−∞

φ1/ε(ξ)e(xξ) =
φ̂1/ε(−x)

ε
= φε(x).

Then we see that

f ∗ φε(t) =

∫ ∞
−∞

f(t− u)

∫ ∞
−∞

φ̂ε(ξ)e(ξu)dξdu

=

∫ ∞
−∞

φ̂ε(ξ)e(ξt)

∫ ∞
−∞

f(t− u)e(−ξ(t− u))dudξ

=

∫ ∞
−∞

φ̂ε(ξ)f̂(ξ)e(ξt)dξ.

Rcalling that f, f̂ ∈ S(R), we see that letting ε→ 0 then gives

f(t) = lim
ε→0

(f ∗ φε)(t) = lim
ε→0

∫ ∞
−∞

φ̂ε(ξ)f̂(ξ)e(ξt)dξ =

∫ ∞
−∞

f̂(ξ)e(ξt)dξ.

• Substituting the defintions and then t = u+ v gives (recalling f, g ∈ S(R)

so everything converges absolutely)

ĥ(ξ) =

∫ ∞
−∞

(∫ ∞
−∞

f(u)g(t− u)du
)
e(−tξ)dt

=

∫ ∞
−∞

∫ ∞
−∞

f(u)g(v)e(−uξ)e(−ξv)dudv = f̂(ξ)ĝ(ξ).

�

Lemma B.2 (Gamma and Beta function identities). For <(s) > 0, let Γ(s) :=∫∞
0
xs−1e−xdx be the Gamma function. Then for <(s),<(α1), . . . ,<(αk) > 0

Γ(s) =
Γ(s+ 1)

s
,∫

x1+···+xk=1

xα1−1
1 · · ·xαk−1

k dx1 . . . dxk−1 =
Γ(α1) · · ·Γ(αk)

Γ(α1 + · · ·+ αk)
.

Proof. This is just an exercise in basic analysis. By integrating by parts, for

<(s) > 0

Γ(s) =

∫ ∞
0

xs−1e−xdx =

∫ ∞
0

xs

s
e−xdx =

Γ(s+ 1)

s
.

For the second part, first we note that by a change of variables yi = xi/(x2+· · ·+xk)

for i ≥ 2 the integral is∫ 1

0

xα1−1
1 (1− x1)α2+···+αk−1dx1

∫
y2+···+yk=1

yα2−1
2 · · · yαk−1

k dy2 . . . yk−1.
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By applying this repeatedly we see that the integral in question is

B(α1, α2 + · · ·+ αk)B(α2, α3 + · · ·+ αk) · · ·B(αk−1, αk),

where B(z1, z2) =
∫ 1

0
xz1−1(1− x)z2−1dx, so it suffices to show

B(z1, z2) =
Γ(z1)Γ(z2)

Γ(z1 + z2)
.

We see that

Γ(z1)Γ(z2) =

∫ ∞
0

∫ ∞
0

uz1−1
1 uz2−1

2 e−u1−u2du1du2.

By a change of variables s = u1 + u2, t = u1/(u1 + u2) (so u1 = st, u2 = s(1 − t)
and the Jacobian factor is s) we find this is

Γ(z1)Γ(z2) =

∫ ∞
0

sz1+z2−1e−sds

∫ 1

0

tz1−1(1− t)z2−1dt = Γ(z1 + z2)B(z1, z2),

as required. �
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