Additive Number Theory

James Maynard

MATHEMATICAL INSTITUTE, OXFORD

Email address: maynard@maths.ox.ac.uk






Contents

|Chapter 1. The geometry of numbers|

I1.1. Minkowski’s first theorem and sums of squares|

o Mikosky I |

|Chapter 2. Sumset inequalities|

|Chapter 3. Equations in Z/gZ|

|Chapter 4. Introduction to circle method|
4.1, The Fourier Transform over Z and Rl
4.2. A warm-up example|
4.3.  The circle methodl

|Chapter 5.  Waring’s Problem|
b.1.  Major Arcs for Waring’s problem|
15.2. Minor Arcs for Waring’s problem|

|Chapter 6. Roth’s Theorem]|
6.1.  The density increment strategy|

6.2.  Circle method and large Fourier coefficients|

|Chapter 7. Freiman’s Theorem|
|7.1.  Modelling integers sets with cyclic groups|
[7.2. Structure in sumsets|

|Appendix A. Asymptotic estimates|

|Appendix B. Analytic identities|

iii

13

21
21
22
25

27
28
32

37
37
38

43
45
47

o1

93






CHAPTER 1

The geometry of numbers

The geometry of numbers studies the integers by viewing them geometrically
as a lattice in R (or R™).

DEFINITION (Lattices and their key parameters).

(1) Alattice A in R™ is a set
A=viZ+ ---+v,Z

for some linearly independent vectors vy, ...,v, € R". We say {vi,...,v,}
is the basis of the lattice and r is the rank of the lattice. We say A is full-
rank if r = n.

(2) The fundamental parallelepiped of a lattice A with respect to the basis
{v1i,..., v} of A is the set

Pv = {$1V1+"'+$rvr: Tly-.0yTr € [071]}

(8) The determinant det(A) is the r-dimensional volume of a fundamental

parallelepiped.

There are many possible choices of a basis for any given lattice, but quantities

like the rank and determinant do not depend on the choice of basis.

LEMMA 1.1 (Basic properties of lattices).

(1) (Additive subgroup) If x,y € A then x +y € A.

(2) (Discreteness) There is a constant § > 0 such that if x #y € A then
x—y|>4.

(3) (Determinant well-defined) If {v1,...,v,} and {w1,..., Wy} are two bases
of a lattice A, then r = k and vol(Py) = vol(Py). If A has full rank then
det(A) = | det(vy,...,vi)l|.

PRrROOF. (1) This is immediate from the definition.

(2) If x = Zle a;v; € A has x # 0 then |a;| > 1 for some j since a; € Z.
Let vi € R" be the component of v; orthogonal to the other v;. Then
|vi-x| = |a;|[v}[> > [v}|*. Thus for all x € A we have [x| > min; [v}| > 0.

(3) Since the vectors v; are linearly independent and the w; are, we see
that r = k = dim(spang(A)). Since {v;}/_; form a basis for A and
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{w;}i_, C A, there is an r x r matrix M with integer entries such that
w; = >, M;;v;. But since {w;}¥_, also forms a basis there is a k x k
integer matrix N such that v; = >, N; jw;. Thus we see that M~'=N,
so both matrixes have determinant £1 and vol(P,) = vol(Py). If r =n
then it is easy to see from a change variables vol(P,) = |det(vy,..., V)|

[

1.1. Minkowski’s first theorem and sums of squares

DEFINITION (Convex sets and successive minima).
(1) A convex set K C R™ is a set such that if x,y € K then the line segment
connecting x and 'y is also contained in K.
(2) A centrally symmetric set is a set S such that —x € S whenever x € S.
(3) Given a lattice and a centrally symmetric convez set K of positive volume,

the it successive minima of K with respect to A is
A =inf{\ € Ryo : AK N A contains i linearly independent vectors}.

If K is the unit ball, we say A1 < --- < A\g are the successive minima of
the lattice A.

LEMMA 1.2 (Blichfeldt’s lemma). Let K C R™ be a measurable set and A C R™
be full rank lattice with vol(K) > det(A). Then there are distinct points x,y € K
with x —y € A.

PROOF. Assume for a contradiction that there are no such x,y. Let P be the
fundamental parallelepiped of A. Then for every t € P, there is at most one v € A
such that t +v € K. On the other hand, every point in R™ can be written as t +v
for some t € P, v € A. Thus

VOI(K)Z/P#{VGA:t—i—VEK}dtS/PldtZVOI(P)Zdet(A). O

THEOREM 1.3 (Minkowski’s first Theorem). Let K be a centrally symmetric
conver set and A C R™ a full rank lattice with vol(K) > 2"det(A). Then K

contains a non-zero lattice point of A.

PROOF. vol(3 - K) = 27" vol(K) > det(A), so by Blichfeldt’s Lemma there
are X £y € %~Ksuchthat x—y € A. But if x,y € %~Kthen 2z,2y € K,
sox —y € (2x — 2y)/2 € K since K is centrally symmetric and convex. Thus
0#x—-—yeKnNA. |

PROPOSITION 1.4 (Sums of two squares). An integer q can be written as the
sum of two squares if and only if all primes factors of ¢ which are 3 (mod 4) occur

with even multiplicity.
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PROOF. If p = 3 (mod 4), the only solutions to 22 4+ y> = 0 (mod p) are
x =y = 0 (mod p), which means that 22 + y? is divisible by p2. It follows that
there are no solutions to 2% +y? = ¢ unless every prime factor of ¢ which is 3 (mod 4)
occurs with even multiplicity, and any such solutions must have 22 and y? a multiple
of all of these factors. By restricting to x,y a multiple of d whenever d?|q and then
dividing through by all square factors of ¢, it suffices to consider the case when ¢
is squarefree and has no prime factors which are 3 (mod 4).

Let b € Z be such that b = —1 (mod ¢). Consider the centrally smmetric
convex set K C R? and lattice A given by

K = {(z1,22) € R*: a¥ + a3 < 2q},

A= {(z1,22) €Z? : 21 = by (mod q)} = (i) 7+ (2) Z.

Then we have vol(K) = 2mq and det(A) = ¢, so Minkowski’s first theorem applies
and there is a non-zero point in (z1,z2) € AN K. But then 27 + 22 = 0 (mod ¢)
and 0 < 23 + 23 < 2¢, so x? + 23 = ¢, as required. (]

LEMMA 1.5 (Sums of 4 squares). Every positive integer can be written as the

sum of four integer squares.

PROOF. We note the identity
(a34a3 + a2 + a2)(b? + b2 + b2 +b3)
= (a1b1 — agbs — aszbs — a4b4)2 + (a162 + agb; + asby — a4b3)2
+ (a1b3 — azby + azby + asbe)? + (a1bs + asbs — azbs + asbr)?,

so the set of integers representable as the sum of four squares is closed under
multiplication. In particular, it suffices to show the result for all primes p. The

result is trivial for p = 2, so we just consider odd p. Let
A:={1—2% (mod p) : z € Z}, B:= {z? (mod p) : x € Z}.

Then |A| = |B| = (p+1)/2 and so ANB # 0. In particular, there are r, s € Z such
that 72 + 52 + 1 =0 (mod p). Let A C Z* be the lattice

P 0 r s

0 — = d
A= z+ | z+ " z+| Z:{X€Z4:xl s s (mo p)},

0 0 1 0 2o = sx3 — 4 (mod p)

0 0 0
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so that if x € A coming from a € Z* then
22+ 22+ 22 + 23 = (pay + ras + sas)? + (pag + saz — rag)* + a3 + a:
=(1+7r*+5*) (a3 +a?) =0 (mod p).
We see that det(A) = p?. Let K be the centrally symmetric convex region
K :={xeR": 27+ 23 + 23 + 25 < 2p}

so that vol(K) = 72(v/2p)*/2 = 2n%p? > 2*p?. Thus Minkowski’s first Theorem
applies and so Theorem implies that there is x € AN K\{0}, and hence satisfies

0<a?+ad+a2+a<2p, 22+ 22+ 22+ 22 =0 (mod p).
Thus 2% + 23 + 23 + 22 = p, as required. O
LEMMA 1.6 (Dirichlet). Let 64,...,6, € R. Then for any choices of M > 1
and €1,...,¢. € (0,1/2) with szl €; > 1/M there is an integer 0 < m < M such

that
[lmb;|| < e foralll <i<nr.

PRrOOF. Choose M’ > M such that M’ < |[M] + 1. Let K be the centrally
symmetric convex set
K = {(x,yl, conyr) ERTL ) < M) |0 — ] < eiVi}.

Then vol(K) = 2" 'M'[]/_, e > 2""'M'/M > 2"+1. Thus, by Minkowski’s

Theorem KNZ"*! contains a non-zero point. Either the z-coordinate or its negative
then gives the result (noting that all integers < M’ are < M). O

1.2. Minkowski’s second theorem

THEOREM 1.7 (Reduced basis of a lattice). Let A C R™ be a lattice of rank r.

Then there are linearly independent vectors vy, ...,v, such that
(1) (Basis of the lattice) We have that
A=viZ+ - -+ Vv, Z.
(2) (Quasi-orthogonality) For any aq,...,a,. € R we have
larvi + -+ apvy| > 2_7'4(|a1v1| + o+ Jarve]).

(3) (Minkowski’s second theorem) Let A have successive minima Ay < -+ <
An. Then |vi| < 2071\, and if A has full rank

27N A < det(A) < 27 g M.
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ProOOF. We begin by constructing the basis of A. First we choose vy # 0 € A to
be a vector of minimal length. By minimiality, we then see that ANspang(v1) = v1Z
and that |vi| = A;.

Imagine vi,...,v; have already been chosen (with j < ) such that A N
spang(vi,...,v;) = viZ + --- + v;Z and such that |v;| < 2°71\;. We wish to
select v;11. Let

H :=spang(vy,...,v;),
and choose w € A\H of shortest length (which exists since if A = AN H we have
a basis so j =r). Let P be the closed parallelepiped

Pi={zivi+- Fajvi+ajpw: 0<z; <1}

Since A is discrete, AN P is a finite set. Now choose v;11 to be a vector in ANP\H
which minimises the distance to a vector in H. Then clearly vi,...,v 1 are
linearly independent (since v; 1 ¢ H) and viZ+---+v;11Z C A (since vj1; € A).
Moreover, we see that v;;; minimises the distance to H amongst all vectors in
ViZ+ -+ v 1 Z\H.

Now we show spang(v1,...,Vjt1) NA=VviZ+ -+ v; 1 Z. If

X=x1Vi+ -+ 211V €spang(vi, ..., Vjp1) NA,

then let x' := x — [z;41]v;j+1. We see that the distance of x’ from H is (zj41 —
lzj+1]) < 1 times the distance of v;;; from H. However, v;;; minimizes this
distance amongst vectors not in H, so we must have that z;;; € Z and x' €
spang(vi,...,v;) NA =viZ+---+ v;Z. Thus x; € Z for all ¢, so

spang(vi,..., V1) VA =viZ+ -+ v Z.

Since w had minimal length in A and was linearly independent of vy,...,v;, we
see that |w| < Aj41. By the triangle inequality, any element of P therefore has size
at most
J i _

Z |Vz| + |W| S Z?zilAi + )‘j—i-l S 2j)\j+1.

i=1 i=1
In particular, |v;1] < 27\;41, as requried. Repeating this we obtain a basis of A
with |v;| < 271)\;. By reordering if necessary, we may assume that |v;| > \;.

Having constructed our basis, we now show it has the required properties. If

[Vit1 — pavi — - — pevie] < €| Vi)
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for some p1,...,p, € R, then by Lemma [I.6] we can choose m < M such that
lmpus|| < M~1/* for all i. Then we see that

k
mvigs — [mp Jvy =< = [mp | vi] < melvie| + M7VES v
=1
k
< 2PN Me+ MTVEY T2y,
=1

< 2PN (Me+ M~YF),

On the other hand, the vector on the left hand side is clearly in A with non-
zero vi41 coefficient, so of size at least A\py1. Taking M = e k/(k+1) gives the
inequality 1 < 2F+1e=1/(k+1) g5 ¢ > 2=+ Thus the distance from vj,1 to
spang{v1,...,vi} is at least 2= F+1% |y, .

Let let v} be the component of v; orthogonal to vi,...,v;_1. We then have
Ivi| > 27" |v;| > 277\, If A has full rank, then det(A) = |det(vy,...,v,)| =

[T, [vi], and so

|det(v1,. e 7Vk)| > H2_i2>\i > 2_n3)\1 c Ap.
i=1

n n
|det(vi,...,vi)| < H [vi| < H2i71)\i <2 AL A
i=1 i=1
Moreover, this implies that the component of v; orthogonal to all of the other
v; has length at least 2*’”3|Vj|. Thus

4
larvi + -+ arve| > 277 sup lagv| > 277 (|lagvi| + -+ ey, ). O
K3

DEFINITION (Generalized arithmetic progression). A generalized arithmetic

progression of dimension d and size S is a set of the form
G={wy+awy+ -+ aqwg: 0<a; < L;, a; € Z}

for some wo,...,wqg € Z and Ly,...,Lq with Ly ---Lqg=S. If |G| =S (so that all
expressions wo + ajwy + - - - + agqwg with 0 < a; < L; are distinct) we say that G is

proper.
LEMMA 1.8 (Bohr sets contain generalized arithmetic progressions). Let n €
(0,1/2), M > 1 and 0y,...,0; € [0,1]. Define
By:={ax€Z: ||z0;|| <n fori=1,... k, |z| < M}.
Then there are wy, ..., wg € Z and constants L1, ..., Ly > 0 such that the set

S={aw + -+ apwy : a; € Z, |a;| < L;}
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272]{,‘3

is contained in By, has size at least n*M, and all elements aywy + - - - + apwy

are distinct.
PROOF. Let A; = Z**1 and
K = {(xaylv"'vyk) € Rk+1 : |.'L'| S M’ |.’L'61 _y1| S T/}

Then we see that every point of By corresponds to a point in AN K. To apply
Theorem [I.7] we apply a linear transformation so K is comparable to the unit ball.
Let

1/M 0 0
01/n 1/n :
Ay = / Z + / Z+--+| L
: : 0
Or /1 0 1/n

Then we see that every point in A N B(0,1) gives rise to a point of By, and A has
determinant M ~'n~*. By Theorem 1.7} there is a reduced basis {v1,..., v} for
As, and by the triangle inequality

{a1V1+~'~+CLka a; €7, |a;] < } C A, N B(0,1).

1
klvi|
Letting w; € Z be the first component of Mv; and L; = 1/(k|v;|), we then see that
the set S defined in the lemma is contained in By. Moreover, since there are at
least t integers in the interval [—¢,t], we see that the number of choices of ay, .. ., ax

is at least

2

k 2 3
1 27Kk 5
— > 2 > 972 gk,
[[A = WP det(As) ~ !

k 1 k
=y

Finally, we need to check that two distinct choices of coefficients a; cannot give the

same point in S. If
a1w1+"'+akwk :b1w1+...bkwk =T,

then since there are unique choices of y1, ...,y satisfying |0;z — y;| < n, we see

that we must have
aivi+ -+ apvg = bivi + .. b v,

But this implies that (ai,...,ar) = (b1,...,bx) by the linear independence of v;.
The the size of S is at least 27 2% Mn*, as required. O






CHAPTER 2

Sumset inequalities

DEFINITION (Sumsets). Given sets A, B in some additive group , we write

A+B:={a+b:ac A be B},
A—B:={a—b:a€ A be B}.
Given an integer k > 1 we define the k-fold iterated sumset
kA=A+- -+ A={a1+ - +ax: a; € A},
k times

Throughout this chapter, we will implicitly assume that we are working inside

a fixed additive group; in practice we will always be interested in sets in Z or Z/qZ.

LEMMA 2.1 (Ruzsa’s Triangle inequality). We have
|A|IB-C| < |A-BJ|A-C|

PROOF. For each d € B — C, fix a representative by € B and ¢4 € C such that
d =bg — cq. Then define ¢ : A x (B —C) by

d((a,d)) = (a — bg,a — cq).

¢ is injective since we can recover (a,d) from its image; if ¢((a,d)) = (z,y) then
d=y—zand a =z + b,_,. Thus the size of the domain is at most the size of the

codomain, giving the result. O

LEMMA 2.2 (Ruzsa’s covering lemma). Suppose that |A + B| < K|A|. Then
there is a set X with |X| < K such that

BCA-A+AX.

PROOF. Choose a subset X C B of maximal size such that the sets {A+ z :
x € X} are all disjoint. Then the union of these sets contains exactly |A||X|
elements and is contained in A 4+ B, so |A||X| < |A+ B| < K|A| and hence
|X| < K. For every b € B, the set b+ A must intersect  + A for some x € X’ by
maximality of X'. Therefore there exists ai,as € A such that b+ a3 = = + ag, so
b=x+a—a € X+ A- A O
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LEMMA 2.3 (Petridis’ lemma/Subset-minimality implies sumsets-maximality).
Suppose that
A+ B[ _ A+ B

< for all non-empty A" C A.
| Al |A']

Then
|A+ B| S A+ B+C|

A 2 A+cC for all C.

PROOF. We prove this by induction on |C|. If |C| = 1 then the result is auto-
matic since |A + B+ C| = |A+ B and | A+ C| = | A]. Now assume that the result
holds for all |C| < m, and consider C’ of size m + 1. Let C' = C U {c} for a set C of
size m. Thus we wish to show

A+ B+ (CU{c})| < |A+ B|
[A+(Cu{chl — B
Since |[A+ B+ (CU{c})| = |[A+B+C|+|(A+B+c)\(A+B+C)| (and similarly for
the denominator), and by the induction hypothesis we see that it suffices to show
|A+ B
Al

[(A+ B+ c)\(A+B+0C)| <

[(A+c)\(A+C)|.

We have
[(A+B+c\(A+B+C)|={a+b+c:ac A beB,a+b+c¢ A+ B+C}

Cla+b+c:ac A beB,a+B+cZ A+ B+ C}.
Therefore, if we let

Di={a€A:a+c+BC A+ B+C},
we have
{a+b+c:acAbeB,a+B+cZA+B+C}=(A+B+c)\(D+ B+c).
In particular,
[(A+B+c)\(A+B+C)| <|A+B|-|D+B5|.

Moreover, ifa € Ahasa+ce€ A+C,thena+c+BC A+ B+CsoaeD. Thus

[(A+\(A+C)| = Al - |D].

Putting this together, it suffices to show that

|A+ B
A]

But this follows immediately from the hypothesis applied to A" = D C A. O

|A+B| - [D+B| < (A = D).
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LEMMA 2.4 (Pliinnecke’s inequality). Let |A+B| < K|A|. Then for all integers
m,n >0

|mB — nB| < K™t"| Al
In particular, if |A+ A| < K|A| then |mA — nA| < K™"|Al.

PrOOF. Choose & C A to minimize |X + B|/|X|. Then we have
|X + B| < |V + B|

E4 N
|X + B| < | A+ B

Xl = A

Thus, by Lemma [2.3| applied to C' = nBB, we have for any integer n > 0
X + (n+1)B] <K
X +nB]  —

Therefore, by induction we find |X 4+ nBB| < K™|X|. Finally, applying Lemma

we have

for all non-empty Y C X,

< K.

X + nB||X +mB

mB — nB| <

< Km+n|X| < Km+n|A‘ O

LEMMA 2.5 (GAPs in sumsets and small doubling means contained in a GAP).
Let 2A] < K|A| and Q@ C LA — LA be a generalised arithmetic progression of
dimension d and size | A]/S.

Then there is a constant C = C(K,d, S, ) such that A is contained in a gen-

eralised arithmetic progression of dimension at most C and size at most C|A|.

PROOF. Since Q C ¢A—/¢A, we have Q+ A C ({+1)A—LA. Thus, by Lemma

24

Q4+ Al < |(0+ 1) A — LA < KAl < SK*H Q.
Thus, by Lemma there is a set X C A such that |X| < SK?*! and A C
X+Q—-Q.

By using two elements in each direction, X is contained in a generalised arith-
metic progression of dimension |X'| — 1 and size 21¥1=1. Since Q is a generalised
arithmetic progression with dimension d and size < [¢A — LA| < K?| A, we see
that Q — Q is a generalised arithmetic progression with dimension d and volume
at most 27K 2| A|. Thus A C X + Q — Q is contained in a generalised arithmetic

progression of dimension at most
d+|X|—1<d+SK**

and size at most
2\X\—1+dK2€|A| < 2d+SK2“1K2€|A|. 0
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LEMMA 2.6 (Cauchy-Davenport). Let A,B C Z/qZ. If 0 € B and for all
b € B\{0} we have (b,q) =1, then we have

A+ B| > min(q, Al +|B| — 1).

PROOF. The result is trivial if |A| = g, so assume |.A| < g. We prove the result
by induction on s = |B|; the case s = 1 is trivial. Assume that the result holds
whenever |B| < s. We claim that A + B # A. Indeed, if A+ b = A for some

b € B\{0} then

Z(a+b) = Z a (mod q),

acA acA
which implies that |A]b = 0 (mod ¢), which is impossible since |A| < g and (b, q) =
1. Therefore there is an ag € A and by € B that ag + by ¢ A. Let

Blii{bGB:b+aoeA}, Al::AU{a0+b:b€B,ao+b¢A}.

Then |A1| + |B1| = |A| 4+ |B|, 0 € By and |B;| < |B| since by ¢ B;. Moreover, we
see that
A1 +B1 C A+ B.

Thus the induction hypothesis now gives the result. [l



CHAPTER 3
Equations in Z/qZ

DEFINITION (Discrete Fourier transform on Z/qZ). Let f : Z/qZ — C. Then
we define the Fourier transform f: Z/qZ — C by

fm) =+ 3 Fla)e(=am/o)

a€Z/qZ

2mix

where e(x) := e*™* noting that (with some abuse of notation) x — e(x/q) can be

viewed as a well-defined function on Z/qZ.

LEMMA 3.1 (Properties of the discrete Fourier transform). Let f,g: Z/qZ — C.

e (Orthogonality of characters). For any b € Z we have

1 Z (ab/q) = 1, fb=0 (mod q),

a (mod q) 0, otherwise.

o (Inversion formula). We have
fay="3 Fa)elar/q).
a (mod q)

e (Parseval).

Yo f@elm) =q Y. fla)gla).
(mod q)

z (mod q) a

o (Convolutions). Let h(x) := 3, ) (mod q) f(a)g(b). Then

h(a) = ¢f(a)d(a).

PROOF. These all follow quickly from the definitions. If b = 0 (mod ¢) then
e(ab/q) = 1 for all a, so the result is trivial in this case. If b #Z 0 (mod ¢) we can
sum the geometric series

b) — 1
Z e(ab/q) = % =0

b)—1
a (mod q) 6()

since e(ab) = 1.

13
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Using the above formula, by expanding the definition of J? and swapping the
order of summation

S Flaelaz/g =~ S f®)ela - b)/g)

a (mod q) a,b (mod q)
= Z f(b)]-bzx (mod ¢q) = f(.T)
b (mod q)
Using the inversion formula, we have
—_ ~ o~ z(b+ a)
> F@)gl) = 3 Flago)e(= ).

a,b,x
By orthogonality of characters, the z sum vanishes unless a = —b (mod ¢). Thus

this is equal to

¢ J(@)j(-a).

We then note that g(—a) = g(a) from the definition.
Substituting the definitions

Ra)= 23" 3 fe)g(de(~abja) = = 3 f(e)gldye(ac/q)e(~ad/q)
47 iz 7° 3

= qf(a)g(a).

DEFINITION (Pseudorandom functions and sets).

e Given a set A C Z/qZ, the balanced function of A is the function

fal®) =1peq — —.

e Given a constant n > 0, a 1-bounded function f : Z/qZ — C is called
n-pseudorandom if |f(m)| < q™" for allm € Z/qZ.
o A set ACZ/qZ is called n-pseudorandom if the balanced function f4(m)

is n-pseudorandom.

Note: Much of the above notation, in particular the notation of ‘n-pseudorandom’
is not standard in the wider literature. There is a somewhat arbitrary choice of
normalisation for the Fourier transform, so elsewhere it is sometimes defined as
f(a) = >, f(a)e(—ba/q) without the 1/q factor.

PROPOSITION 3.2 (Solutions to equations in pseudorandom sets). Let f :
Z/qZ — C. Then we have for any x € Z/q7Z

S ) fla) - RO <Y el

ai1+-+ar=x b#0 (mod gq)
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In particular, if A is an n-pseudorandom set, then

Ak
‘#{al,...,akEA: a1+~~+ak:x}f%’§qk*k”.

PRrROOF. By orthogonality of characters, the left hand side is

Z f(al)..,f(ak)l Z e(b(:calq...ak))

A1,...,0% q b (mod q)
_ 1 > elbz/q) (Zf (—ab/q) )k
b (mod q)
T Z b:v/q
b (mod q)

~

We separate out the term b = 0 which contributes ¢*~! f(0)*, giving

_1 f(0)* _ -
qk 1f(q) +qk 1 Z e(bx/q) (b)k
b (mod q)
b0

The triangle inequality now gives the first result.

For the second result, we apply the above with f(a) = 1,c4. We note that
f(0) = |Al/q and

oy =2 S fa(@e(ab/a) + q2' Z e(ab/q).

a (mod q) a (mod

When b # 0 (mod ¢) the second term is 0 by orthogonality of characters. The first
term is ﬁ(b) Thus we find that

AF L
‘#{al,...,akEA:a1+-~-+ak=x}—u‘§qk1 Z ‘fA(b)‘
q b (mod q)
b#0

<q" sup [fa()]".
b (mod q)

Clearily if A is n-pseudorandom then |f4(b)| < ¢~ which gives the result. O

LEMMA 3.3 (Squares are pseudorandom (mod q)). If (a,q) =1 then

Va 21'%
e(ab®/q)| <
’b (r%:l q) ’ \/277 2|q
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PROOF. We square the sum in question, expand, and write x5 = x1 + h. This

gives

2 a(z? — 23
|3 e ()

b (mod q) z1,z2 (mod q)

Z Z e(2ahx1q—|— ah? ) .

(mod q) z1 (mod gq)

By orthogonality of characters, the inner sum vanishes unless 2ah = 0 (mod g).
Since (a, q) = 1, this implies that 2k = 0 (mod ¢). Thus there are at most 2 choices
of h (mod ¢) if 2|¢ and one choice of 2 1 ¢g. Thus we obtain the bound

2 2, 2
q Z e(ﬂ) < q lq . 0
h (mod q) q q 21'(]
2h=0 (mod q)

COROLLARY 3.4 (Representations as sums of squares (mod ¢)). Let g be odd.
Then every residue class a (mod ¢) can be represented as a sum of three squares

(mod q).

(There are easier ways of proving this, but we use it to demonstrate the basic
method.)

PRrROOF. By the Chinese remainder theorem, it suffices to show the result for ¢

being a prime power p’. First, using the Proposition with
f(z) = #{b (mod q) : b* = a},

we find for any = € Z/qZ

1 —~
ot a3} =a mod g} —¢’[ < 3 (@)
a (mod q)

a#0
We then see that, using Lemma @ if p is odd then

Z ‘ Z ax2/q‘ < de sup (q‘ (afc2/d)D3

(;n;g q) = (mod q) 1<d|q a(((:zgd{i (mod d)
2P —1 1
sq D Z di/2
1<d|q
¢*(p—1)
p(pt/? —1)
Thus the number of solutions is at least
2
—1
fﬁqw ) <0
P2 1)

for p > 3. (]
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LEMMA 3.5 (Polynomial values are pseudorandom (mod ¢)). Let P(x) €
Z/qZ[x] be a polynomial of degree d with leading coefficient a. Then

ST e(Pb)/q)| < 299 (g, dlag) /> gt 2T
b (mod q)

PrROOF. We prove the result by induction. The statement holds for d = 2 by
Lemma Assume the statement holds for all polynomials of degree less than
d > 3. We square the sum, and write b, = by + h. This gives

e = o(Pb2) = PO1)y _ 5~ (Qnlbr)
b@;q) (P(b)/q)‘ bl,@%;odq)( p ) ;( p )

where Qp(b1) = P(by + h) — P(b1) is a polynomial in b; of degree d — 1, with lead
coefficient aghd. Thus, by the induction hypothesis
Z G(Qh(bl)) < ow(@) (dlah, q)1/2d_2q171/2d_2'
b q
1
We now sum this over all & (mod ¢), giving a bound
Qw(q)(d!a’ q)l/zd*?ql—l/zfl*2 Z (h, q)l/z‘i*2
h (mod gq)
< 29 (dla, q) /2 TN T2 (g e)

elg

w d—2 o d—2 1-1 p
<24 (dla,q)'/*" "> 1? H(l_pl/Qd/z_l)

prlq
We have that (1 —1/p)/(1 —p/2"*=1) < (1 —1/p)/(1 —1/p"/2) < 2 since d > 3.
Thus the product is bounded by 2¢(9). This gives the bound
2 _ N2
> eP)/a)| < (220 (dha,q) g2
b (mod q)

as required. O

LEMMA 3.6. Let k > 4d and
N(m,q) == #{a1,...,ar € Z/qZ: al +---+ a} = m (mod ¢)}.

Then for all m,q we have
N(m,q) > ¢"*%.

PROOF. By the Chinese remainder theorem, we have that N(m, ¢1q2) = N(m, ¢1)N(m, ¢2)
if (q1,q2) = 1. Therefore it suffices to prove the result for prime powers ¢ = p’. Let
B = {b (mod p’) : (b,p) =1} U{0} C Z/p’Z. Since (Z/p’Z)* is cyclic for p > 2
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and = (Z/27) x (Z/2772Z) if p =2 and j > 3, we have

P’ (p—1)

@re-n P>
|B| = ((1%:2), p=2and j > 2 and 2|d,
2i—1 p=2and (j =1or2¢d).

Regardless, |B| — 1 > p//(4d). Now, by repeatedly applying Lemma we find
that for any integer r

|rB| > min(p’, r(|B| - 1)).
In particular, 4dB = Z/p’Z, so every residue class (mod ¢) can be represented as
the sum of 4d d*" powers. We then see that by fixing the first & — 4d variables in
N(p’), we have that

Z #{(by,...,bsq (mod p?): b+ + 0%y =m—af—...al_,,; (mod p’)}
ai,...,a—4q (mod p7)
> (p/) m

PROPOSITION 3.7 (Sums of d*" powers modulo q). Let k > d2¢*1 and
N(m,q) == #{a1,...,ar € Z/qZ: al +---+af = m (mod ¢)}.
Then for 0 < j1 < jo we have
N(m,p™) _ N(m,p”)

. k+1, —ji1k/2¢
P it <2 P

In particular

. N(m,p)
Bp(m) = Jim =0

exists and |8, (m) — 1] < 2H1p=h/2" and 8, (m) > p22***.

Proor. By Fourier inversion and then splitting the sum according to the ged
with p?, we have that

V)= T o(B)(F ()

b (mod p7) a (mod p7)
1 m®b/P )N (i —a(b/p’ ") \\*
LT Y (e s )
0<l<j b (mod p’) a (mod p*)
(bp?)=p~*
. v —a%b'\\ k
3y ¥ e(m7>(p—e 3 e( ae ))
0<L<j b (mod p%) P a (mod pt) p

(b’,p):l
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Thus if ji < jo

N(mapjl) N ’ITL pJ iy —adb/ k
’pjl(k—l) TG SIS ’p > e( ol ))
J1<€<]2 b (mod pt) a (mod pt)
(",p)=1

By Lemma the inner sum over a is bounded by 2(p®)1=1/2*"". There are
p’ choices of ¥'. Thus we have
‘N (m, p’*)

- = k/277 =) < kel =i (k/2071 1)
pin (k=1) p]l(k 1) ‘ > 2%p <2 p .

1 <e<]2
Since the right hand side tends to 0 as j1,j2 — 00, the limit §,(m) exists. Using
the inequality with j; = 0 jo — oo gives the bound |S8,(m) —1| < ok+1p=k/2% Thig
automatically shows that 8,(m) > 0 for p > 22", For smaller p we use the main
inequality with jo — oo and Lemma [3.6] to give

k—4d)

N(p?) k1, —j(k/2071 1) 5 P
Bp(m) = pit=) 2 = pit=1)
> pi(1—4d) (1 _ 2k+1p—j(k/2d’1—4d)>.

2k+1p—j(k/2d*1—1)

Since we have assumed k > d29+2, we see that k/2¢7! —4d > k/2¢. Thus choosing
j=2%+41 gives

—dod+s

ﬂp(m) Z p(2d+1)(1—4d)(1 _ 2p—4d) (2d+1)(1 4d)( 2p—4d) 2 p 0

COROLLARY 3.8 (Waring’s problem modulo p). Let k > d29t'. Then we have
that for any m € Z/pZ

#{a1,...,ar € Z/pZ : ail+~~-+azf (mod p)} = Pk 1+Ok(pk*1*k/2d).






CHAPTER 4

Introduction to circle method

4.1. The Fourier Transform over Z and R
We now generalise much of the previous chapter to the more complicated situ-

ation of equations over Z

DEFINITION (Fourier transform on Z). Let f : Z — C be supported on |z| < N.
Then we define the Fourier transform f: R/Z — C by

F(0) =" f(a)e(—ab),

a€Z

2mix

where e(x) = e*™* noting that (with some abuse of notation) x — e(x) can be

viewed as a well-defined function on R/Z.

LEMMA 4.1 (Properties of the integer Fourier transform). Let f,g:7Z — C.

e (Orthogonality of characters). For any b € Z we have

1 1, ifb=0,
/ e(b0)do =
0

0, otherwise.

o (Inversion formula). We have

f(n):/o f(0)e(nb)ds.
e (Parseval). 1
>ty = | Foiaaas

TEL
e (Convolutions). Let h(z) =3, , . f(a)g(b). Then
h(#) = F(0)3(6).

PROOF. These all follow quickly from the definitions in an identical way to
Lemma If b = 0 then e(bf) = 1 for all 6, so the result is trivial in this case. If

b # 0 we can integrate
! b)—1
/ eoydn = D=1
0

since e(b) = 1.

21
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Using the above formula, by expanding the definition of J? and swapping the

order of summation and integration

1 1
/ Fo)etat) = 32 10 | 0w =mya0 = fia).

Using the definition, and orthogonality we have

/f =3 fa)g / e(6(b—a))do = 3 f(a)g(a)

a,beEZ a€Z

Subtituting the definitions

=D > f@g(de(=b0) = f(e)g(d)e(—ch)e(—db)

b c+d=b c,d
= F(0)3(6). O

DEFINITION (Fourier transform on R). Let f € L'(R). Then we define the
Fourier transform f: R — C by

&= [ stwet-ut)iu

LEMMA 4.2 (Properties of the real Fourier transform). Let f,g, fg € L*(R).

o (Inversion formula). If f(ﬁ) € LY(R) and f is continuous at x, then

-/ " F(©ene)de

e (Parseval). If f§ € LY(R) then

/_ " f(taltdt = / Fleaeae.

e (Convolutions). Let h(z):= [~ f(t)g(x —t)dt. Then
h(€) = F(©)5(e).
PROOF. Non-examinable, see appendix. (I

Note: As with the Fourier transform on Z/¢Z, different authors use slightly
different normalisations for their definition of the Fourier Transform. In some pre-
vious versions of the course (and in C3.8) the Fourier transfrom on R has been
defined as f = [ f(t)e~ " dt which is f(f/(?w)) in our notation.

4.2. A warm-up example

It is a trivial combinatorial counting problem that if N > m then

m+k—1 B mF—1
k-1 N

#{(x1,...,78) € ZI;O s Xt Hag =m, |z < NP = <
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(We will view k as fixed and allow any implied constants to depend on k). We now
reprove this in the spirit of the circle method, which generalises more readily to

when the z; lie in more complicated sets.

4.2.1. Using orthogonality. Let f : Z — C be given by f(z) = li<z<n.
Then the orthogonality relation
L 1, e+ +z,=m,
/ e(@(m—x1 — - —x,))d0 = '
0 0, Ifaxy+--- 4z, —meZ\{0}.
gives

#{(xl,...,zk)EZI;O:I1+"'+=’17k:m7 |lzi| < N}
= Y f@) e f@R) ey g gay=m

L1y Tk

I
Kh
—~

K
=
SN—
=

&
=

c\
>
2

D>
—

3

|

&

=
|
|

K
-
=

S

4.2.2. Splitting the integral according to the size of the Fourier trans-
form. We see that since |e(0) — 1| = 2|sin(76)| > ||6]|

~ N e(—O(N +1)) — 1 1
f(0) =3 e(—ab) = e(—0) — 1 :O(W)'

r=1

~

Therefore f(#) is small unless 6 is very close to 0 (mod 1). With this in mind we
split the integral according to whether ||6]] < n or not. We see that
~ de 1
f(0)ke(mb)do < / .
Jﬁ9|>n loi>n I611% " n*=
When [|6]] <7
e(=0(N +1)) -1 e(-0(N+1))—1
e(-0)—1  —2mif(1+0(n))
Substituting this back in, we find

£(0) =

N+1
/ e(—0t)dt + O(nN).
0

#{(ml,...,xk)EZ’;O: 1+t ap=m, |z < N}

= e(m N+16 —bu)du ‘ 2Nk —(k=1)
(4.1) /e|<7, ( 9)(/0 (~Ou)du) d9 + O(*N*) + Oy~ *V).

4.2.3. Understanding main term as a local factor. Ignoring the error
terms, this is just an analytic integral only involving real numbers (and so just an

analytic quantity with no number-theoretic properties). It essentially counts the
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measure number of real solutions to the equation uy + - - - + ur = m. Indeed, since

N+1 1
/ e(—0u)du < —
0 10l

we can extend the integral in (&.1]) to € R at the cost of a n~(*~1) error term.
But then, if g(z) = 1,¢[0,n+1] We see that the integral is given by

/ - e(m0)g(0)*do + O(n~ 1),

— 00

We recall from Lemma 1] that

(F %))
N———’

k times

~

FOF,  f@)= /_ " Fl©elex)e

so we see that

/oo e(m0)g(0) dd = (g -+~ * g)(m) = A 0N

oo Jue,
U+ tug=m

Thus, for any choice of > 0 we have

#{(v1,...,op) €Z s 2+ dap =m, |3] < N}

_ 2 7k —(k—1)
Lo ety L+ OUPNY) +0( 1)

U+ tug=m

We can choose np = N ~5/(+1) t0o balance the error terms and obtain an asymptotic

mk! k—242/(k+1)
— + O0(m"™ .
Gy oo )
If we instead counted solutions where xq,...,xr; were all a multiple of a prime p,

then there would only be solutions if m is a multiple of p. If now f(z) = 1i<z<n, p|a
then

n e(—pf(IN/pj +1) -1 1

7(0) = —o(—).
AR (et

As before, we can discard |[pd|| > 7 at the cost of a O(n~*~1) error term. Now,

however, we also have to take into acount values of 6 near 1/p, 2/p etc. This gives

#{(x1,...,28) EZQO: x1+ -+ ap=m, |z;| < Npl;}

p

a (mod p) p

The arithmetic fact that there are no solutions modulo p to the equation unless

p|m is now accounted for by the contribution from these other rationals. Indeed

_1 > /|5|< e(m(f + 6)) (/ON+1 e(_(su)du)kd0+ ON®) + O(n~ (1),
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the main term factorises as

G Y cenm)(/

N+1 k
e(md) (/ e(—éu)du) d9)
a (mod p) 1d]<n 0

_(#{$1+'~-+$k=m(m0dp)}>. 1
= pkfl Up ..Uy €[0,N+1]

uy - Fug=m
Therefore now the main term is a product of the density of solutions (mod p) and

the density of solutions over R.

4.3. The circle method

By Fourier inversion, we have that for any function f : Z — C with compact
support

Z f(a1)"'f(ak)=/0 e(—nB) f(0)*d6.

a14-Fag=n
If f(@) is small for all 6, this shows that the weighted count of solutions is small
(which is what we would expect if f looked like a random +1 function, for example).
However, it is less clear how to extract a ‘main term’ when f is the indicator function
of a set. The Hardy-Littlewood circle method splits the integral in ‘major arcs’ 91
where the Fourier transform is large, and ‘minor arcs’ m = [0, 1]\9 where the
Fourier transform is small. Although the precise choice of 9t can vary depending
on the situation, in most number-theoretic applications the most natural choice
depends on Diophantine properties of 6. In this case, the major arc contribution is

essentially a product of densities of solutions in all places.






CHAPTER 5

Waring’s Problem

The aim of this chapter is to establish

THEOREM 5.1 (Asymptotic formula for the number of representations as the
sum of k dth powers). Let k > 20d2¢. Then we have

0+ i = m} = w9 (B (m) [T Bym) + O(m~1/24)).

where Boy (M) Hp Bp(m) converges to a constant, which is bounded away from 0
uniformly in m. In particular, every sufficiently large integer can be written as the
sum of 20d2% positive d*" powers, and there is a number g(d) such that every integer

can be represented by at most g(d) d™* powers

Rather better bounds are known in this problem; we can get the same asymp-
totic formula when k > d?, and the fact that there exists at least one representation
for large integers occurs when k > dlog d+5d. If we wish to represent every integer
then 2¢|(3/2)?| — 1 requires at least 2¢ + [(3/2)%] — 2, and it is known that every

integer can be expressed as essentially this many d*"* powers.

PROPOSITION 5.2 (Major arc contribution). Let k > d2d+2, N > ml/d, Q>1
and M be given by

m=U U [[-5 vl
4<Q (a,q)=

Then we have

[, (5 ) ctntn = =t Tt 0 (vt )

n<N
where
6, (m) = lim #{b1, ..., by (mod p?): bil_+---+bd =m (mod pj)}7
Jj—o0 p](k 1)
T +1/d)*
Boo(m) —W7

and Boo(m) Hp Bp(m) converges to a positive constant bounded away from 0 uni-

formly in m.

27
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PROPOSITION 5.3 (Minor arc contribution). Letm = [0, 1]\9. Then for @ < N
we have
Nk+o(1)

/m’ S e(t‘)P(n))‘de < i

n<N

PROOF OF THEOREM [5.1] ASSUMING PROPOSITION AND PrROPOSITION [5.3]
Using orthogonality (Lemma [4.1] we have

1 k
#ni+- 0l =m,0<n; <N} = / (Z e(ﬂnd)> e(—m@)do.
0 <N
Let 2t be as given in Proposition and m = [0, 1]\9 as in Proposition
Then, splitting the integral according to whether 6 € 9t or not, the above is equal
to
k k
/ (Z e(end)) e(—m8)do +/ (Z e(end)) e(—mf)do.
m n<N ™ n<N

Applying Propostion[5.2] to estimate the first integral and Proposition[5.3]to bound
the second one, we find that for k& > d2¢t2 this is

mk/d1Bm(m)1;[l8p(m)+0<de<Q5+ S Q]Z/Zd))

N QK212

We now choose N = m!'/? Q = N'/19, and see that for k > 20d2¢ the error term

is O(m¥/4=1=1/24) which is much smaller than m*/?=!. Thus we have

#{nd 4o = m} = w1 (B (m) [T Bp(m) + O™ 2). O
P
Thus we are left to establish Proposition and Proposition [5.3

5.1. Major Arcs for Waring’s problem

LEMMA 5.4 (Polynomial exponential sum when close to a rational with small
denominator). Let 6 = a/q+ € and P(x) € Z[z] be an integer polynomial of degree
d. Then we have

1 N
S erm)= (> Y ear®)/a)( / e(eP(u))du) + O(geN").
n<N b (mod gq) 0
PROOF. We note that e(aP(n)/q) only depends on the residue class n (mod q).
Therefore, splitting into residue classes
Yo elbP(n)= Y elaP®)/a) Y e(eP(n).

n€[N,2N] b (mod q) n€[N,2N]
n=b (mod q)

Since € is small, e(eP(n)) only really depends on the rough size of P(n), and so

we can approximate the sum by an integral. Since P has degree d, we see that
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|P'(t)] = O(N?1) for [t| < N. Thus, if [u — v| < ¢ and u,v < N then
IP(v) = P(w)| < o —ul sup P'(t) = O(gN+~").
[t|<N
Therefore, for b < q, b+ rqg < 2N

(r+1)q P(b+rq)
e(eP(u))du‘ < sup ‘2m’e/ e(et)dt
q u€[rq,(r+1)q] P(u)

= O(egN?).

1
’e(eP(b—i— rq)) — g/r

3 e(@P(n)):(f 3 e(aP(b)/q))( /N2 Ne(eP(u))du)+O(equ). O

n€[N,2N] q b (mod q)

LeEMMA 5.5 (Completion of local factors). Let k > 2% and 9 be as in Proposi-
tion[52. Then we have

/s.m(zew"d))ke(—m‘))d@:G(m) (m) + O(N*~ d(Q +W))
n<N
where

Y Y (Y ) eeam

q (a,q)=1 b (mod q)

J(m) = /0; (/U<Ne(vud)du)ke(vm)dv.

PROOF. By Lemma [5.4] we have for § € M
k 1 k, N k
e(dn?)) = (- e(ab?/q) / e(eutydu) + O(Q*NF-1).
<7§V ) (q b (go;i ) ) ( 0 )

We note that the measure of M is O(Q3/N?), so the error term contributes a total
O(Q°N*~4=1) to the integral. The first factor depends on a, ¢ but not on ¢, whereas

the second factor depends only on €. Thus
k
/ (Z e(@nd)) e(—mb)do = &* (m; Q)J* (m, Q) + O(Q°N*~4-1),
M p<N
where

& (mQ) = Y Z( > abd/q) e(—am/q),

1<q<Q (a,9)=1 7y (mod q)

J*(m, Q) = /_C;//J;d </u§N e(eud)du)ke(—em)de.
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We first concentrate on the arithmetic piece &(m, Q). By Lemma [3.5 we have

NCEDS abd/q) < g Th

(@a=1 L b (mod q)

Therefore, since k > 2?, we can extend the sum to all ¢ at the cost of a correction

term of size Qz_k/2d71. This gives

&*(m,Q) = &(m) + O(Q* "> ).

We now wish to similarly approximate the Archimedean factor J*(m, Q) with J(m).
We first note that, by letting v = eu?

d 1 N 1/d—1 1
/ugN e(eu®)du = m/o v e(v) < =Yz

We can therefore extend the integration in J*(m, @) to all of R at the cost of an

<</ de < Nk—d
e[ >Q/N |€|k/d Qk/d71~

2{11

error term of size

Thus Ah—d

Putting these estimates together (alongside the trivial bounds J*(m, Q) < N*—¢
and &(m, Q) < Q?) then gives the result. O

LEMMA 5.6 (Singular series). For each prime p, let

. #{b1,...,bp (mod p?): b+ +b¢ =m (mod p/)}
Bp(m) = jlggo pi(k=1)

as in Proposition[3.7 Then we have

= H Bp(m)

which converges to a positive real number which is lower bounded uniformly in m.

Proor. If ¢ =p7* -- -pjj then, by the Chinese remainder theorem, we have
1 ab®\\* /—am
2 G, 2 o))
(a,q)=1 Ty (tmod ) 1 1
J 1 a; b\ \ * a;m
SIS ST HE )

a; (mod p )
(ai,pi)= 1
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Letting ¢; = p’, the sum over a; is

1 a;b"\\k /—a;m B 1 a;bé\\ —a;im
(r%; qi>(q"b<r§qi>e( e )) e( e ) a 0%;1 qi)(qiugqi)e( i )) e( 6% /
pilai

Expanding out and using orthogonality (mod ¢;), the first sum above is

ik Z Z e(ai(bil—i—...bg—m)) _Nk(qll)7

i b1,...,bx (mod g¢;) a; (mod g;) e 4

where
N(q) := #{b1,...,by (mod q) : b¢ +--- +b{ =m (mod ¢)}.
Similarly, the second term is —N(g;/p;)/(q:/p:)*~ . Thus we find
> (} 3 e(aibd»ke(—am) _ ﬁ(N(Qi) _ N(gi/p:) )
R—1 k=1 )
TN e N q g (4/p:)

We note that by the Chinese Remainder Theorem that N(q1¢2) = N(q1)N(g2) if

q1,q2 are coprime, so the above expression is multiplicative in ¢. Thus, summing

over all ¢ we obtain

S G E ) -0+ S - )

q (a,q)=1 b(

(we note that these expressions converge absolutely thanks to Proposition [3.7]).

Since the inner sum telescopes and converges, we see that

N(pi—1!
1+Z(pj(k ) p(j_(f)(k_)l)> = lim N(p?) = Bo(m).

]—)OO

Thus

m) =[] Bp(m)

Again, the absolute convergence follows from |3, (m) — 1| < 2k+1p=k/ 2 by Propo-
sition Indeed, alongside B,(m) > p_deH, this shows the uniform lower bound

)2 11 (o) 11 (- 20). 0

p<22¢ p>22¢

LEMMA 5.7 (Singular Integral). Let N > m!/¢. Then we have

B C A+ 1/d* e
J(m) = Ll,_.,uke[O,ml/d] 1= Wm .

uf+---+u%:m
Here the integral above is interpreted as with respect to the (k—1) dimensional mea-

sure induced from duy . ..dug, and T'(z fo x*~te~%dx is the Gamma function.
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PRrROOF. Let f(u) = d 'u/?'1g<,<n. Then, by a change of variables v; = u¢

o (’Ul"'Uk)l/dil
/u17~~»771«k€[0,N] duy ...dug_1 = /n,...,vke[o,N‘i] Tdyl ... dvg
utli"r"'-i-uz:m vt Fv=m

We see from Lemma and integration by parts that the Fourier transform is
given by

Y 1 N 1/d—1 1 et 1/d—1 1
f(6 = E/o v/ te(—gv)dv = W/o v/ e(—v)dv < i’

— -~ 1
(fx-x DE) = FO" < za-

Therefore, by Fourier inversion we have

oo
~

(F % f)(m) = / e(me) () de = J(m).

— 00

k
We now show that this integral is %nk_d by induction on k. Letting w; =

v;/m"?® we see that

J(m) _ mk/d71 dwl N d'Ukal
s or€0.1] gl V11
wi - Fwp=1 1 k

Thus J(m) = m*/4=1C(k,d) for some positive constant C(k,d). It isn’t really
important for us what this is, but Lemma [B.2] shows that this constant is

T(1/d)F  T(1+1/d)* .
dFT(kjd) ~ T(k/d)

5.2. Minor Arcs for Waring’s problem

LeEMMA 5.8 (Fractional parts can’t be small too often). Let |0 —a/q| < 1/¢?
with (a,q) = 1. Then for any B8 € R we have

1 HN
Z min(N7 ) < + Hlogq+ N +qlogg.
e [k + B]| q

PROOF. Let § = a/q + €. If € = 0 then ||6h| would be periodic with period
q, taking values which are 1/¢-seaprated. Moreover, eh would be small compared
with 1/¢ if h is a bit smaller than q. We therefore split the sum over h into [4H/q]

sums of length ¢/2 (potentially increasing the number of terms slightly for an upper
bound). Thus

[2H/q] q/2

Z min(N,m) < Z Zmin(l\ﬂm)7

|h|<H m=1 r=1
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where 3,, = 6mq +  doesn’t depend on r. Finally, we note that if r1,re < q/2
with 71 # r9 then a(ry —r2) # 0 (mod q) since (a,q) =1, so |la(r1 —r2)/q|| > 1/q.
Therefore, since || < 1/¢>

o1 — o = || L1 12)

Thus the values 8, + 0r (mod 1) € [—-1/2,1/2] for 1 < r < ¢/2 are separated by
1/(2q), so the 7" smallest non-negative value is at least (j —1)/(2¢). In particular,

for any m we have

/2 1 a/2— Ly
mln( ) N +2 < N +qlogg.
Z 1B + Ol Z
Recalling that there are < H/q + 1 such sums we obtain the result. (]

LEMMA 5.9 (Minor arc bound for squares). If § = a/q + ¢ with (a,q) =1 and
le] < 1/q?, then
‘Z (6n?) ’ < 1—/2 + NY%logq+ ¢*/*logq.
n<N
PrROOF. We square the sum in question, expand, and write ng = ny + h. This

gives

S eon)| = X eomd—nd)

n<N ni,no<N
= > e(6n?) > e(6hny).
|h|<N max(1,—h)<n;<min(N,N—h)

By summing the geometric series, we have that
2 1
e(Ghnl)‘ < min(]\f7 7) < min(N7 —)
. )Z I e(6h) — 1] ]
max(1, <ni<min(N,
Now, applying Lemma gives
2 N
‘Z e(@nQ)‘ < > min( - ) < (— + 1)(N-|—q10gq).
= e " [IR]] q

This gives the result. O

LEMMA 5.10 (Divisor Bound). Let 7i(n) be the number of ways of writing n as

a product ny ...ny of k positive integers. Then
Tr(n) < nor(1)

PROOF. If n = p7*--- p& then for any ¢ > 0

r

Ti(n) = H (Q Z k) <IJtei +1)¥ <n H (e fe,l
i=1 i=1 =1
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If p > 25/¢ then (e; + 1) < 2F¢ < peei. If p < 2%/¢ then we see that
(e+1)* < (e+ 1)k

< C(ek
pee — ¢ee — (6’ )
for some constant C(e, k) independent of e. Thus
m(n) < N° [ Clek) < N<Cle,k)*"". O
p<2r/e

LEMMA 5.11 (Minor arc bound for polynomials). Let P(z) € Z[z] be a polyno-
mial of degree d and 0 = a/q + € for (a,q) =1 and |¢| < 1/¢*>. Then

d—1
|32 c(0P()| scp N1 400 gyt o (Y
n<N

Proor. We claim that if P(z) has degree d and lead coefficient ag, then for
any interval Z C [1, N] we have

gd—1 a1 . 1
‘Ze(ap(n))’ <NFOTE N mm(N’||d!aoh1--'hd—19||).

nel [hil,slha—1|SN

Assume that this is true for all polynomails of degree at most k, and we wish to
show it for P(z) of degree k + 1 and lead coefficient ag. We see that

‘Z e(GP(n))r: Z e(0(P(n1) — P(n2)))

n€el ni,neE€L

(5.1) = > > e(6Qn(n))

|h|<N n1€Tn
where J, =Z N (Z — h) and Qp(n) = P(n+ h) — P(n). Then Qx(n) has degree k
and lead coefficient (k+ 1)agh and Jj is an interval, so by the induction hypothesis
(5.2)
k—1

2 k—1_ . 1
] > e(ﬂQh(m))] <NTOR Y mm<N’ ||(k+1)!aohh1---hk_19\|)'

n1€Jn [Pl slhe—1| SN

Now Holder’s inequality gives

Z Z (0Qn(n1)) <]\f1 1/2%= I(Z) Z (0Qr(n1) ‘
|h|<N ni1€Jn |h|<N n1€Jn
Substituting in (5.1) and (5.2)) (and relabelling h as hy) gives

2k k 1
or ‘ < N2kt in(N, .
@e( ) > (N )
n [hil,..|he| <N

Zk—l

k—1
)1/2 .

This establishes the claim.
Let h = (k + 1)lagh; ..., hx < N¥. The number of choices of hy, ..., h; given
his O(N°M) by the divisor bound when h # 0, and O(N*~1) when h = 0. Thus
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by Lemma [5.8 we obtain

‘Z e(ﬂp(n))'Zk < N2 k-l (No(l) Z min(N, L) + Nk)

nel 0<|h|<N* ||h6H

N2*+o(1)

< N2k—1+o(1) + N2k—k—1+o(1)q. 0

PROOF OF PROPOSITION [5.3l By Dirichlet’s Theorem in Diphantine approxi-
mation (Lemma 1.6 any 6 € [0,1] has an approximation

a Nd
0:7—*—63 q< —, aqul, €| <
. 0 (a,q) €]

If there is such an approximation with ¢ < @ then clearly § € 9. Therefore if
6 € m we see that ¢ € [Q, N?/Q)], in which case Lemma gives

9
qN q

1+0(1)
‘ 3 e(HP(n))‘ < Z\&W'

n<N
Integrating the k' power of this bound over all # € m gives

/m’ S e(é)P(n))‘de < ‘]\g:/;D O

n<N






CHAPTER 6

Roth’s Theorem

A k-term arithmetic progression is a sequence a, a +d, ..., a + (k — 1)d. We
call this non-trivial if d # 0.

THEOREM 6.1 (Roth’s Theorem). There is a constant C > 1 such that any
subset A C {1,...,N} with |A] > CN//loglog N contains a non-trivial 3-term

arithmetic progression.

6.1. The density increment strategy

PROPOSITION 6.2 (Density increment). Let a € (0,1) and N > (10/a)10. Let
P C Z be an arithmetic progression of length N, and A C P a set with |A| > aN.

Then at least one of the following holds:
(1) A contains a non-trivial 3-term arithmetic progression.
(2) There is an arithmetic progression P’ C P of length N’ > N'/° such that
A= ANP’ satisfies
A’ a?
| 77’: > o+ 50"
PROOF OF THEOREM ASSUMING PROPOSITION By increasing the con-

stant C' if necessary, we may assume that N > Ny for any fixed choice of Nj.
Assume for a contradiction that there is a set A C {1,..., N} containing no non-
trivial three term arithmetic progressions, but with density o > 1/4/loglog N.
Then no subset of A contains non-trivial 3-term progressions. Let A; := A
and P; := {1,...,N}. We now repeatedly apply Proposition to obtain a
sequence of arithmetic progressions P; O P D --- DO P; together with sets
A D Ay D -+ D Ay where A; := AN P, has density a; = |A;|/|P;|. We
do this until we can no longer apply Proposition [6.2] which must mean that

(6.1) |Ps| < (10/as)*O.

By the bounds from Proposition [6.2] we have that
(6.2) [P > N1/ > o Oﬁ . i

. 5| > , a]+1_aj+602a](1+60).
We see that o; are increasing, and so we cannot have many terms in the sequence

since the density of a set cannot increase above 1. Let m := [60/«a]. Since a1 >

37
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o, (14 a/60), we see that

a\Jim 1\im j
Qi4jm 2&(14—@) Za(l—i-E) > a2,

However, all densities must be at most 1, so we must have that j < 2log(1/a).
Thus, recalling a > 1/y/loglog N, if Ny is large enough the number J of terms in
the sequence satisfies
60] log 1 < loglog N

a 100
terms in the sequence. However, this is incompatible with our bounds on |P;|. The
lower bound then implies (for N large enough)

10
[Py| > N5 > exp((logN)1_1°g5/1O> > (10\/loglogN) ,
but the upper bound ([6.1]) implies

10
|Ps| < (10/a)! < (10\/10g10gN) )

a contradiction. Thus A must have contained a non-trivial three term arithmetic

J<142—

progression. [l

6.2. Circle method and large Fourier coefficients

To prove Proposition we wish to analyse the count of the number of three

term arithmetic progressions in A. We see that, using orthogonality,

o= > 1

a,d<N ai,az,a3€A
a,a+d,a+2dc A a1+taz=2as
1 2
:/ (Z e(a9)> (Z e(—2a9))d9.
0 “seca acA

For any set A C {1,...,N} we have that ) _ ,e(af) is large when 6 is a small
multiple of 1/N. For a random set, it would only be these arcs near 0 which make

a meaningful contribution, and these would contribute roughly a®N2.

Therefore
there must be a significant contribution from somewhere else to cancel this if there
are actually no arithmetic progressions in A. To keep track of things more easily
we work with the balanced function f4(n) :=14(n) — « rather than the indicator

function. Given functions f1, f2, f3: Z — C, let

T(hfacfi) = | (S hmewd)) (X fstn)end) (3 falmye(—200))as
n<N n<N

n<N

= Y film)fa(no) fs(na).

ni,n2,n3<N
ni1+nz=2ns
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LEMMA 6.3. Let f1, fa,f3 : Z — C be supported on {1,...,N} and satisfy
Yonen [fi(n)|? < BN. Then for any j € {1,2,3}

T(f1, for f) < mvsgpw@(en.

PROOF. We prove the result for j = 1; the other cases are completely analo-
gous. We have that

1/\ ~ ~
T(f1, fou fs) = / 7(6)F2(0)F(26))d6
< sup |1 (0)] / 12(20) £5(0)d6
]

<swlfo ([ 1neora) ([ nopas)”

By Parseval (Lemma we have

/O FO)2d0 =S 1) < BN

Substituting this in above gives the result. O

LEMMA 6.4.
aSNZ o
> 1z 55— —TaNsup|fa(0).
0

a,d<N
a a+d a+2dc A

PRrROOF. Clearly T is trilinear, so by writing 1 4(n) = fa(n) + «, we have

T(lAv 1A7 1.A) - T(a’ a, Oé) = T(f.Aa f.A? f.A) + T(f.A7 f.Ava) + T(f-Aa «, f.A)
+T(a’fA7fA) +T(fA,Oé,O¢) +T(fA7a7fA)
+T(a,, fa).

Each term on the right hand side involves at least one copy of f4 as an argument
to T. We note that

> 11a(m) = aN, Z|f.A|2 a(l—a)N

n

so by Lemma [6.3] we have
T(1a 14 10) = T, 0,0) | < Tal sup | F4(0)].
0
By direct estimation we see that

T(a, o, ) = a® E 1>a7
ni,nz2,ng<N
ni+ng=2nsg
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Therefore
3 AT2

T(1a,14,14) >

— 7aNsup|f4(9)|. O
0

LEMMA 6.5 (Sets without 3APs have large Fourier coefficients). Let o >
1/+/loglog N and N be sufficiently large. Then at least one of the following holds:

(1) A contains a non-trivial three-term arithmetic progression.
(2) supy | Fa(0)] = a2N/20,

PROOF. The number of trivial three term progressions in A is just |A| = aN.
Therefore, by Lemma[6.4] the number of non-trivial three term arithmetic progres-

sions is at least
o’ N2

— 7aN sup |E(9)\ — aN.
o

Since a > 1/4/Toglog N, we see that for N large enough a3N?/2 —aN > 2a3N?/5.
Therefore if |f4(0)] < a®N/20 for all 6, the number of non-trivial three term
arithmetic progressions is at least

2a3N?  a3N?

- 0. 0
5 20

LEMMA 6.6 (Large Fourier coeflicients imply density increments). Let |fa(6)| >
«®N/20. Then there is an arithmetic progression P C {1,..., N} such that

a 2
ozt PN

PRrROOF. By Lemma there is a ¢ < N1/2 guch that

1

W7 (b,q) = 1.

b
9:7"_67 |€|§
q

We first split {1,..., N} into congruence classes (mod ¢), and then split each of
these into arithmetic progressions containing between N/® and 2N'/® consecutive
terms in the congruence class. If P = {¢+ gr : » < Ny} is one of these arithmetic

progressions, then we see that

ZfA e(nf) = e(ch) Z falc+rq)e(erq).

nep r<Ni

We have that
2 N1 4
le(erq) — 1] = |2sin(merq)| < 2merq < Ni2 = B/

Thus, for N large enough

4m N,
‘ZfA c+rq)e(erq) ZfAc—H“q‘ N3/10§1'
r<Ni r<Ni
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On the other hand, by assumption |f4(6)| > a2N/20. Thus, since the P partition
{1,..., N}, by the triangle inequality

SIS famemd)| = | fatm)eno)| = OiTN

P neP n<N

Combining these gives (for N sufficiently large)

SIS fatm] = 22X

P neP
Since ), o fa(n) =0, and >, |P| = N, we have

2
S (|2 sam] + X2 sam) = 5 D1
P nepP nepP P
Thus there is some P such that

S ]+ 3 fal) = S
nep

— 30
nePpP

Wesee ), .p fa(n)is real, and must be positive for the left hand side to be positive.
Thus
o2
> faln) = —|P|.
60
neP
Recalling the definition of f 4, the left hand side is [ANP| — «|P|. This then gives

the result. g
We can now prove Proposition [6.2] and so complete the proof of Theorem [6.1]

PROOF OF PROPOSITION [6.2] Assume that A contains no non-trivial 3-term
arithmetic progressions. After an affine rescalining, we may assume that P =
{1,..., N} since affine rescalings don’t change whether a set is a 3AP, and preserves
cardinalities.

Then, applying Lemma [6.5] we deduce that A has a large Fourier coefficient in
the sense that ~ 2y

OIEE=S
Now applying Lemma we see that this implies that there is an arithmetic
progression P C {1,..., N} of length at least N/5 such that

|ANP >a+oﬁ
[Pl — 60







CHAPTER 7

Freiman’s Theorem

THEOREM 7.1 (Freiman’s Theorem). Let A C Z satisfy |A+ A| < K|A|. Then
there is a constant C(K) > 0 such that A is contained in a generalised arithmetic

progression of dimension C(K) and size C(K)|A|.

DEFINITION (Freiman Homomorphism). Let A, B be sets in (possibly different)
additive groups, and ¢ : A — B. Let s > 2 be an integer. We say that ¢ is a

Freiman homomorphism of order s if

dlar) + -+ d(as) = ¢(ay) + - + o(al)

whenever a; + -+ as = ay + -+ +al,. We say that ¢ is a Freiman s-isomorphism

if ¢ is a bijection and both ¢ and ¢~ are Freiman s-homomorphisms.
Thus Freiman homomorphisms respect s-fold sum relations.

LEMMA 7.2 (Basic properties of Freiman homomorphisms).

(1) (Preserved under composition) If ¢1 : A — B and ¢2 : B — C are
both Freiman s-homomorphisms, then ¢o 0 ¢1 : A — C is a Freiman
s-homomorphism. Moreover, if ¢1,¢2 are both Freiman s-isomorphisms
then so is ¢ o 1.

(2) (Hierarchy) If ¢ is a Freiman s-homomorphism it is a Freiman t-homomorphism
forallt <s.

(3) (Interactions with sumsets) If ¢ : A — B is a Freiman s-homomorphism,
then it induces qzk’g : kA — bA — kB — (B, which is a Freiman §-
homomorphism for any § < s/(k + ).

(4) (Weakening of homomorphism) If ¢ is a homomorphism from (A) — (B)
then ¢ is a Freiman s-homomorphism for all s.

(5) (Dependency on additive structure of underlying sets) If A has no non-
trivial solutions to a1 +---+as = a} ++--+al, then every map ¢ : A — B
is a Freiman s-homomorphism.

(6) (Preserves GAPs) If ¢ : A — B is a Freiman 2-isomorphism and Q) C A

is a proper generalised arithmetic progression of dimension d and size S,

43
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then &(Q) is a proper generalised arithmetic progression of dimension d

and size S.

PROOF. These all follow quickly from the definitions. If a; + --- + a5 = af +
-+ al, then ¢1(a1) + -+ ¢1(as) = ¢1(a)) + -+ + ¢1(al,) since ¢y is a Freiman
s-homomorphism, which then means ¢2(¢1(a1)) + - - + ¢2(¢1(as)) = d2(¢1(ah)) +
-+ ¢2(p1(al)) since ¢o is a Freiman s-homomorphism, and so ¢2 0 ¢y is a Freiman
s-homomorphism.
Ifay+---+as—1 =a}+---+a,_, then (choosing as € A arbitrarily) a1+---+
Qs = @byt ay, 50 Bar) + o+ B(ag) = B(ah) + -+ B(dly) + Bla)
(since ¢ is an s-homomorphism), so ¢(a1) + -+ + ¢p(as—1) = ¢( D+ +ola,_q)
and ¢ is a Freiman (s — 1)-homomorphism. Repeating this gives the result.
We define QNS by

Blan -k —ah -~ af) = Blar) -+ 6ow) — D{a) — -~ 6(a)).
We need to check that this is well-defined; if a1 + -+ +ax —a} — -+ —a;, =
ai+---4al—al’—---—a} then a1+ - -+ap+a’+ - -+a}’ = o+ - -+al+al+- - -+a}.

Since k + ¢ < s and ¢ is a Freiman s-homomorphism we then see that

¢(ar) +-- -+ (ar) — day) == d(ay) = d(af) +- -+ ¢(ay) — p(ay’) —- - — d(ay’),

so ¢ is independent of the choice of representative and is well-defined. Similarly if

ny+---+ns =nf + -+ n} with n;,n; € kA — (A then, picking representatives

nz—a(l) ~—|—a(i)—b(1i)—~-~—b(i) we find that
4
Z(Za()—i_zbl(l) Z(Za/(l _'_Zbgl))
=1 j=1 =1 j=1

Since § < s/(k + £), there are at most s terms on either side, so

s k 4
B(m) +++-+ d(ns) = > (D o(al) Z () = Gnh) + -+ + d(n})

i=1 j=1

If ¢ is a genuine homomorphism of additive groups then ¢(a; + -+ + as) =
¢(a1) + -+ ¢(as) so the result is immediate.

If A only has the trivial solutions then a; + --- + as = aj + -+ + a/, implies
{a1,...,as} = {d],...,a,} so certainly ¢(a1) + - + ¢(as) = ¢(a)) +--- + ¢(a})
without requiring any properties about the map ¢.

We see 1, T2, x3 being in arithmetic progression is equivalent to x1 4+ x3 = 2.
If this holds then ¢(x1) + ¢(x3) = 2¢(x2), so ¢(x1), d(x2), d(x3) are in arithmetic
progression. It follows that ¢(Q) is a generalised arithmetic progression of dimen-
sion d. O
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LEmMA 7.3. If A C Z satisfies
N
sup la —b| < —,
a,be A s

then A is Freiman s-isomorphic to its image (mod N).

Proor. The reduction mod N map is a group homomorphism, so certainly
a Freiman s-homomorphism. Therefore we just need to consider the inverse map.

Imagine aq,...,as,a},...,a., € A are such that
(a1 + -+ +as) — (a} +---+a’) =0 (mod N).

By assumption on A, we see that (a1 +---+as) —(a] +---+a}) is an integer of size
less than N. But then the only such integer which is 0 (mod N) is 0 itself, so we

must have a; +---+as = a} +- - -+ a, whenever these are congruent (mod N). O

7.1. Modelling integers sets with cyclic groups

A big difficulty of using Fourier analysis to study an arbitrary set AZ is that
this is typically very weak if A is very sparse. Therefore, to address this issue it is
very benefitial if we can find a set B with similar additive structure to A (such as
being s-isomorphic to A, or a large subset of \A) but which is dense. One cannot
hope to find such a dense set B in Z (since an additive relations over Z encode
information about the relative size of integers), but we can find sets B is a cyclic
group Z/NZ (where there is no longer a notion of size).

Clearly you cannot hope to find a set B C Z/NZ s-isomorphic to A if N <
|sA—sA|l. If N > |sA—sA| and sA— sA contains no non-zero elements which are
a multiple of N, then for any interval Z C Z/NZ of length N/s, and B={be T :
be A (mod N)} is s-isomorphic to A by Lemma By the pigeonhole principle
we can choose Z such that B contains at least |A|/s elements. We wish to find
a substitute for this construction when sA — sA does contain non-zero elements

which are a multiple of V.

LEMMA 7.4. Let ACZ, and s, N > 2. If we have that
|sA—sA| <N,

then there is a prime p and a subset B C Z such that:
o Ifde (sB—sB)\{0} then N td.

e B is Freiman s-isomorphic to a subset A" of A.
B| = |Al/s.

B is contained in an interval of length p/s.

B =MXA" (mod p) for some A € (Z/pZ)*.
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PROOF. The idea is to take a large prime p, and first choose B’ C [0, p— 1] such
that B’ = A+ A (mod p) is congruent to the dilation of A (mod p) by a well-chosen
element A € (Z/pZ)* to ensure nothing is a multiple of N. This is an isomorphism
if we view everything (mod p), and we then restrict B’ to a short interval to ensure
that this is an s-isomorphism over the integers.

Fix a very large prime p > max(s.A—sA). Let ¢1 : Z — Z/pZ be the reduction
mod p map, let ¢o » : Z/pZ — Z/pZ be ¢p2 5 (z) = Az and ¢3 : Z/pZ — {0,...,p—1}
the lift inverting ¢1 on {0,...,p — 1}. Then, for each choice of A € {1,...,p — 1},
we define

Ox =30 P25 0 P1.
First we want to show that there exists a choice of A € {1,...,p — 1} such that
ox(d) is not a multiple of N for any d € (sA — sA)\{0}. Let Sy be the set of
non-zero elements of Z/pZ mapped to multiples of N by ¢3, so |Sy| < (p —1)/N.
We see that

3 #{dESA—sA\{O}:N|¢,\(d)}: >y Y o

Ae{l,....,p—1} desA—sA\{0} beSN )\E(;El,(.l.i.),pgl}
\(d)=

Since d is non-zero and p > max(sA — sA) > d, we see that d is coprime to p.
Therefore there is a unique choice of X such that ¢ (d) = b (namely A = bd~'mod p).
Thus
p—1
3y #{d € sA—sA\{0} : N\gb,\(d)} < ISwllsA—sAl < F—

[sA—sA| < p—1,

on recalling that [sA — sA| < N. In particular, this means we cannot have that
#{d € sA— sA\{0} : N|gpxr(d)} > 1 for all A, so there must be some choice of A
such that ¢, (d) is not a multiple of N for all d € s.A — sA. Thus if we choose

B = ¢r(A)
then B’ = A - A (mod p) and no non-zero element of sB’ — sB’ is a multiple of N
and |B'| = | Al.
Finally, by the pigeonhole principle, we can find an interval Z C {0,...,p — 1}
of length at most p/s such that
B:=8B'NnT

contains at least |B'|/s = |A|/s elements. By Lemma both A" and B are s-
isomorphic to their images (mod p) (since A" C A C [0, p/s], and these images are

isomorphic, so A’ and B are s-isomorphic. O
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LEMMA 7.5 (Rusza modelling lemma). Let A C Z, and s, N > 2. If we have
that
|sA—sA| < N
then there is an A" C A such that |A’| > |Al/s and A’ is Freiman s-isomorphic to
a subset of Z/NZ.

PrROOF. By Lemma [7.4] there is a subset A’ of A of size at least |A|/s and an
s-isomorphism ¢ such that s¢(A’) — s¢(A’) contains no non-zero elements which
are a multiple of N and ¢(A’) = A- A’ (mod p) and ¢(A’) is contained in an interval
of length p/s.

It suffices to show that ¢(A’) is Freiman s-isomorphic to its image (mod N).
Let v be the composition of ¢ with the reduction (mod N) map. Clearly ¢ is a
Freiman s-homomorphism (since it is a composition of Freiman s-homomorphisms).
Thus it suffices to show that ¥(a1) + --- + ¥(as) = ¥(a}) + --- + ¢¥(a}) implies
Gty = dh e al (@) + o (ag) = (@) + -+ U(al), then

y = o(ar) + -+ dlas) — d(ay) — -+ — ¢(a) € NZ.

Without loss of generality, we may assume that y > 0 (by swapping the a; with the
a), if necessary). Since ¢(A’) is contained in an interval of length p/s, we see that
0<y<p. Let

ri=a1+ - +a;—a)—---—a, € sA —sA.
Since ¢(t) = At (mod p), working (mod p) we have
¢(z) = Aay + -+ + Aag — Aa) — -+ — Aa, = y (mod p).

Thus ¢(z) = y (mod p) and ¢(x),y € [0,p), so ¢(x) = y. But N|y and we have
constructed ¢ such that ¢(z) ¢ NZ for all non-zero = € sA — s.A. Thus we must

have that x = 0, and so v is indeed a Freiman s-isomorphism. O

7.2. Structure in sumsets

DEFINITION (Bohr sets in Z/qZ). Given R = {r1,...,rx} € Z/qZ and € > 0,
define

B(R,e):={zx € Z/qZ: ‘

fit H < eVi}.
q
LEMMA 7.6 (Bogolyubov Lemma). Let A C Z/qZ be a set of size ag. Then

there is an integer k < 4/a? and a set R = {r1,..., 7%} C Z/qZ such that 2A —2.A
contains B(R,1/10).
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PROOF. Let f:Z/qZ — 7/qZ be given by

flx) = Z 1=(Qa%1ax1_4*x1_4)(x).

ai,az,a3,a4 €A
a1+az—az—as=x

Then f is supported on 24 —2.A. By the convolution identity (Lemma we have
f(r) = ¢*|La(r)|*.

Thus, by Fourier inversion (Lemma again) and the fact that f is real, we have

@) = RU@) = R(a S ITaee(7)) = ¢ ST cos( 777

q

We now choose R to be the set of large Fourier frequencies
R:={r € Z/qZ: |14(r)| > a*/?/2}.
Then by Parseval’s identity
o’ T2 TR 2
Rl = DA< Y BamP == Y 1@’ =a

reR reZ/qZ T€Z/qZ
Thus |R| < 4/a?. To complete the proof it suffices to show that f(z) > 0 if
x € B(R,1/10) since f(z) > 0 only on 24 — 2.4. We split the Fourier expansion
into three parts: the term r = 0, the terms » € R and the terms r ¢ R U {0}.

10 = PO + ¢ X T eos(FFE) #4310 eos(S).

reR r¢RU{0}

We see that 14(0) = o#, and that since |[14(r)| < a3/2/2 for r ¢ R U {0}

— 2nrx ol — al —~ at
4 2 2
| Lefes(ZE)[< T X TP < TEEOP < T

rg RU{0} r¢ RU{0}

Finally, if z € B(R,1/10) then for all » € R we have that ||rz/q|| < 1/10, so
cos(2mra/q) > 0. In particular

—~ 2
Z MG cos( 71"1“:17) > 0.
reR q

Putting this together, we find that for z € B(R,1/10) we have

4 3.4
f@) > gPat 40— P& = 32

. ]
1 4>0

PROOF OF THEOREM [7.1]

(1) By Pliinnecke’s Theorem (Lemma [2.4) we have |84 — 8A| < K'0|A|.

(2) Choose N to be a prime with K'6|A| < N < 2K1|A|.

(3) By Rusza’s modelling lemma (Lemma [7.5), there is a subset A’ C A with
|A’| > |.A|/8 such that A’ is Frieman 8-isomorphic to a subset B of Z/NZ.
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We see that A ,
B _ A 1
N N — 8N ~ 16K16

By Bogolubov’s lemma (Lemma we then see that 28 — 25 contains

a Bohr set B(R,1/10) for some set R C ZNZ of cardinality at most

256K32.

By the geometry of numbers (Lemma B(R,1/10) contains a proper

generalised arithmetic progression G of dimension d < 256 K32 and size

at least cx N for some constant cx > 0 depending only on K.
Since B is Freiman 8-isomorphic to A’, 2B — 28 is Freiman 2-isomorphic
to 24" — 24" by Lemma
Generalised arithmetic progressions are preserved by Freiman 2-isomorphisms
(by Lemma . Thus G is mapped to a proper generalised arithmetic
progression Q C 2A’ —2A’, with the same dimension d < 256 K32 and size
at least cx V.
By Lemma this implies that A is contained in a generalised arithmetic
progression of dimension C'(K) and size C(K)|.A|. This gives the result.

O






APPENDIX A

Asymptotic estimates

We will repeatedly encounter interesting number-theoretic objects which are
complicated, such as the counting function of the primes. To understand these
complicated functions, we want to approximate them by much simpler functions,
such as a continuous function with no number-theoretic properties. To do this we
need to control the error in such approximations, and the following notation is very

useful to keep us focused on what is going on.

DEFINITION (Big Oh notation). We write ‘O(h(z))’ to denote a function g(x)
which satisfies
l9(x)] < C- h(x)

for some constant C > 0 and all x under consideration.

Since the function g and the constant C' are unspecified, multiple uses of O(-)
can specify different functions. Moreover, this can lead to some initally confusing
issues when used with the = sign, since f(x) = O(h(z)) and g(z) = O(h(x))
does not imply that f(z) = g(z). Moreover, we will use O(h(zx)) inside various
expressions, so given functions f, g, h, when we write ‘f(z) = g(z) + O(h(z)) for
x € 8 we mean there exists a constant C' > 0 (which depends only on f,g,h,S)
such that

[f(z) —g(z)| < C - h(x)
for all x € S. If the set S is clear from the context (as is normally the case), we
just write ‘f(z) = g(z) + O(h(z))’. We sometimes call g(z) the ‘main term’ and

h(z) the ‘error term’ in an approximation to f.

ExAMPLE A.1.

x = 0(2?) forx > 1. (Since x < 2% forx >1.)

22 = O(x) for 0 < x < 10. (Since x*> < 10z for 0 < z < 10.)

It is not the case that x* = O(z) for x > 1 (since as x — oo, 2% /x — 0.)
(x+1)?2 =22+ O(x) for x > 1 (since |(x +1)? — 22| < 3z forx >1.)
lz] =sup{n€Z:n<z}=z+0(1) forx e R. (Sincex —1< |z] <=z,
so||lx] —xz| <1.)

51
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o Vr+1=x+ ﬁ - 896%/2 —l—O(le/Z) for x> 1. (Since for f(x) = /z,
Fa 1) = F@) 4 £1) + £7)2+ )6 for some y € [r,x+1] by
Taylor’s Theorem, and f"(y) = 3/(8y°/?) < 6/(82°/2) for x> 1.)

LEMMA A.2 (Properties of Big Oh notation).
(1) Non-negativity of error term:
If f(@) = O(g()) then g(x) > 0.
(2) Transitivity:
If f(z) = O(g(x)) and g(x) = O(h(x)) then f(x) = O(h(x)).
(8) Additivity:
If fi(z) = g1(x) + O(h1(x)) and fao(x) = ga(x) 4+ O(h2(x)) then
fi(@) + f2(2) = g1(2) + g2(2) + O(ha(2) + ho(x)).

PrROOF. These follow immediately from the definition. (]

DEFINITION (Further asymptotic notation).
o Little Oh notation:

Given h(x) > 0, when considering a limit © — a we write ‘o(h(z))’ to

denote a function g(x) which satisfies

9()

— 0.

lim

r—a h(x)
If we don’t explicitly mention the limit point a then it is assumed a = co.

e Vinogradov notation:

We have the binary relation f(x) < g(x) if f(z) = O(g(x)).

Although the Vinogradov notation overlaps with Big Oh notation, the Big
Oh notation should be thought of as a placeholder for some unspecified function,
whereas the < is an inequality which can exploit the transitivity of O(-), so we
might write things like f(z) < g(z) < h(x).



APPENDIX B

Analytic identities

DEFINITION (Schwarz functions on R). We let S(R) be the space of infinitely
differentiable functions f : R — C such that for all integers j, k > 0

1fO ()] <o 2] 7"

LEMMA B.1 (Properties of the real Fourier transform). Let f,g € S(R).

o (Fourier transform is smooth with rapid decay) fes (R).

e (Gaussian is egenfunction of Fourier operator)If f(x) = e~ then f(f) =

e~ e

(Inversion formula). We have

1(t) = /_ " Fl©ette)de.

(Parseval).

/ " f(t)aldt = / " e

— 00

(Convolutions). Let h(z) := [~ f(t)g(z —t)dt. Then

oo

~

n(E) = F)a(e).

PRrROOF. A bit of care is required because convergence issues can come into
play. Let
belx) = Zeme/
€

be an approximation of the identity. Clearly ¢. € S(R). Let
fel@) = ™D (f 5 po) (x) = 6_”(“)2/ Pe(x —t) f(t)dt.

Then f. € S(R) since f * ¢, is infinitely differentiable and e~(c)” has rapid decay.
We see that for x| < e~ 1/2

fe(z) = f(x) + O(e) + O( sup [f(y) — f(x)]).

ly—z|<el/2

In particular f.(z) — f(x) as e — 0 if z is a point of continuity of f. Thus,

since the conditions on f, g ensure that all integrals in the lemma are absolutely
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convergent, it suffices to establish the results for f., g. in place of f, g, so we only
need to consider f,g € S(R).

e First note that since f € S(R), we have that f(z) = O(|z|7%) for |z| > 1.

Thus f (€) is given by an absolutely convergent integral, and

ﬂ“ﬂ_ﬂQZK1ﬂmmzm%em“_ﬁm+[1¢%“m5®

€ € €

In the first integral we use the Taylor expansion e 27%¢ = 1 — 2mize +
O(x2€?). Thus, taking out a term —27iz f(z)e~2™*¢ from both integrals,
we find

f@+d—f@):/”

€

—2mix f(x)e 2T 4 O(/

|z|<e—1/2

+0(ﬂPEUJﬂmui+xm@
- /OO —27rimf(x)e_2”7”5 + O</:c|<e—1/2 EdﬂU) + O</|w|>e—1/2 i + %)dm)

= / —omizf(x)e 2™ 4+ O('/?).

ca?|f(2)|dr)

—0o0

This converges as € — 0, showing f’(&) is the Fourier transform of —2miz f(x).
Since —2mizf(z) € S(R) whenever f € S(R), we can repeat the above
argument and find that ) is the Fourier transform of (—2miz)? f(x) for
all j € Zsy.
By differentiating by parts k times, we see that
o o —2mixé ak ) 1
() (g) = € 7(_2’] )d R
0 = | G (2miaP 1)) do <
Thus f € S(R).
e By completing the square, we have
f(f) = /°° e~ —2ming g e /OO e~ @€ 1.
— 0 —00
By Cauchy’s residue theorem
Rti€ R -R —R+ig
[ [ g [ s [ fede =0,
—R+i€ R+ig R -R
where the integrals are straight line contours. Since |f(z)| < e‘”(%(z)2_§(2)2),
we see that the second and fourth terms both tend to 0 as R — co. Thus
we find that
oo s R+-1€ —o0 ') R
/ e @) dy = lim f(z)dz = 7/ f(z)dz = / e ™ dx.

—00 R—o0 —R+-i€ (e’ —00



B. ANALYTIC IDENTITIES 55

The result follows on recalling the identity [~ e~ du = 1.
e Let ¢ (x) = e ™@/9” Je. Then, by a change of variables and the previous

result, we see that

~ oo —ﬂ(m/s)z 5 s
qx(e):/ T e 1O

oo € €

/ $e(€)e(x€)d / S1yc(E)e(x€) = ‘“/6( ) ()

Then we see that

JEXAC / ftfu/ ¢E e(&u)dédu

/ T st/ F(t — w)e(~€(t - u))dudg

- /_ () F(©)eletyde.

Realling that f, fe S(R), we see that letting ¢ — 0 then gives
1) = tim( 000 = lim [ GO ©etenic = [ Fioetenie

e Substituting the defintions and then ¢ = u+ v gives (recalling f, g € S(R)

so everything converges absolutely)

:/Oo /Oo f(u)g(t_u)du)e(—tg)dt

/ / F(w)g(v)e(—u€)e(—€v)dudv = FE)F(E).

LEMMA B.2 (Gamma and Beta function identities). For R(s) > 0, let I'(s) :=
IS o te™"dx be the Gamma function. Then for R(s), R(on), ..., R(ax) > 0

D(s) = LU,

S
T ...T
/ ‘,Eflll 1 xkk ldl'l dxkfl — (Oé]) (ak) .
@y etag=1 Loy + -+ o)

PRrOOF. This is just an exercise in basic analysis. By integrating by parts, for

R(s) >0
I'(s) = / e dr = / Lo dy = Lls+1) 1).
0 0

S S

For the second part, first we note that by a change of variables y; = x;/(z2+- - -+xx)
for i > 2 the integral is

1
1 ctap—1 1 ap—1
/ T — )t T gy / Yo YRt dya . Yp—1.
0 y2+-typ=1
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By applying this repeatedly we see that the integral in question is
B(ag,ap + -+ +ag)Blag, a3 + - +ag) - Blag—1, k),
where B(z1, 22) = fol 21711 — 2)*2~Ydz, so it suffices to show

['(21)T(22)

B = .
(21, 22) T (21 + 22)

We see that
r(zl)r(zg):/ / uf Tt u e T 2 duy dusy.
0 0

By a change of variables s = uy + ug, t = uy/(u1 + uz2) (so uy = st, ug = s(1 —t)

and the Jacobian factor is s) we find this is

oo 1
I'(z1)T(22) = / Szl+2271675d8\/ 71— )2 dt = T(21 + 29) B(21, 22),
0 0

as required. O



	Chapter 1. The geometry of numbers
	1.1. Minkowski's first theorem and sums of squares
	1.2. Minkowski's second theorem

	Chapter 2. Sumset inequalities
	Chapter 3. Equations in Z/qZ
	Chapter 4. Introduction to circle method
	4.1. The Fourier Transform over Z and R
	4.2. A warm-up example
	4.3. The circle method

	Chapter 5. Waring's Problem
	5.1. Major Arcs for Waring's problem
	5.2. Minor Arcs for Waring's problem

	Chapter 6. Roth's Theorem
	6.1. The density increment strategy
	6.2. Circle method and large Fourier coefficients

	Chapter 7. Freiman's Theorem
	7.1. Modelling integers sets with cyclic groups
	7.2. Structure in sumsets

	Appendix A. Asymptotic estimates
	Appendix B. Analytic identities

