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Chapter 1

Introduction

Geometric group theory is a descendant of combinatorial group theory, which in turn
is the study of groups using their presentations. So one studies mainly infinite, finitely
generated groups and is more interested in the class of finitely presented groups. Com-
binatorial group theory was developed in close connection to low dimensional topology
and geometry.

The fundamental group of a compact manifold is finitely presented. So finitely
presented groups give us an important invariant that helps us distinguish manifolds.
Conversely topological techniques are often useful for studying groups. Dehn in 1912
posed some fundamental algorithmic problems for groups: The word problem, the conju-
gacy problem and the isomorphism problem. He solved these problems for fundamental
groups of surfaces using hyperbolic geometry. Later the work of Dehn was generalized
by Magnus and others, using combinatorial methods.

In recent years, due to the fundamental work of Stallings, Serre, Rips, Gromov
powerful geometric techniques were introduced to the subject and combinatorial group
theory developed closer ties with geometry and 3-manifold theory. This led to important
results in 3-manifold theory and logic.

Some leitmotivs of combinatorial /geometric group theory are:

1. Solution of the fundamental questions of Dehn for larger classes of groups. One
should remark that Novikov and Boone in the 50’s showed that Dehn’s problems are un-
solvable in general. One may think of finitely presented groups as a jungle. The success
of the theory is that it can deal with many natural classes of groups which are also im-
portant for topology/geometry. As we said the first attempts at this were combinatorial
in nature, one imposed the so-called small cancelation conditions on the presentation.
This was subsequently geometrized using van-Kampen diagrams by Lyndon-Schupp.



Gromov in 1987 used ideas coming from hyperbolic geometry to show that algorithmic
problems can be solved for a very large (‘generic’) class of groups (called hyperbolic
groups). It was Gromov’s work that demonstrated that the geometric point of view was
very fruitful for the study of groups and created geometric group theory. We will give a
brief introduction to the theory of hyperbolic groups in the last sections of these notes.

2. One studies the structure of groups, in particular the subgroup structure. Ideally
one would want to describe all subgroups of a given group. Some particular questions
of interest are: existence of subgroups of finite index, existence of normal subgroups,
existence of free subgroups and of free abelian subgroups etc.

Another structural question is the question of the decomposition of a group in ‘sim-
pler’ groups. One would like to know if a group is a direct product, free product,
amalgamated product etc. Further one would like to know if there is a canonical way to
decompose a group in these types of products. The simplest example of such a theorem
in the decomposition of a finitely generated abelian group as a direct product of cyclic
groups.

In this course we will focus on an important tool of geometric group theory: the
study of groups via their actions on trees, this is related to both structure theory and
the subgroup structure of groups.

3. Construction of interesting examples of groups. Using amalgams and HNN ex-
tensions Novikov and Boone constructed finitely presented groups with unsolvable word
and conjugacy problem. We mention also the Burnside question: Are there infinite
finitely generated torsion groups? What about torsion groups of bounded exponent?
The answer to both of these is yes (Novikov) but to this date it is not known whether
there are infinite, finitely presented torsion groups.

Some of the recent notable successes of the theory is the solution of the Tarski
problem by Sela and the solution of the virtually Haken conjecture and the virtually
fibering conjecture by Agol-Wise.

The Tarski problem was an important problem in Logic asking whether the free
groups of rank 2 and 3 have the same elementary theory i.e. whether the set of sen-
tences which are valid in F3 is the same with the set of sentences valid in F3. Somewhat
surprisingly the positive solution to this uses actions on Trees and Topology (and com-
prises more than 500 pages!).

The solution of the virtually Haken conjecture and the virtually fibering conjecture
by Agol-Wise implies that every closed 3-manifold can be ‘build’ by gluing manifolds
that are quite well understood topologically and after the fundamental work of Perelman
completed our picture of what 3-manifolds look like. More explicitly an obvious way to



construct 3-manifolds is by taking a product of a surface with [0, 1] and then gluing the
two boundary surface pieces by a homeomorphism. The result of Agol-Wise shows that
every 3-manifold can be build from pieces that have a finite sheeted cover that is either
S3 or of the form described in the previous sentence.



Chapter 2

Free Groups

Definition 2.1. Let X be a subset of a group F'. We say that F'is a free group with basis
X if any function ¢ from X to a group G can be extended uniquely to a homomorphism
o F—=G.

One may remark that the trivial group {e} is a free group with basis the empty set.
Also the infinite cyclic group C' =< a > is free with basis {a}. Indeed if G is any group
and if p(a) = g then ¢ is extended to a homomorphism by

p(a”) = ¢(a)", neZ

It is clear that this extension is unique. So {a} is a free basis of C. We remark that
{a™'} is another free basis of C.

Proposition 2.1. Let X be a set. Then there is a free group F(X) with basis X.

Proof. We consider the set S = X U X! where X! = {s7!':s€ X}. A word on X
is a finite sequence (s, ..., s,) where s; € S. We denote by e the empty sequence. We
usually denote words as strings of letters, so eg if (a,a™!,b,b) is a word we write simply
aa~'bb or aa~'b?. Let W be the set of words on S. We define an equivalence relation ~
on W generated by:

waa v ~ wv, ua"tav ~uv for any a € S, u,v € W

So two words are equivalent if we can go to one from the other by a finite sequence of
insertions and/or deletions of consecutive inverse letters.

Let F':= W/ ~ be the set of equivalence classes of this relation. We denote by [w]
the equivalence class of w € W. If

w = (ay,...,a,), v=(by, ..., bg)

b}



then we define the product wv of w,v by
wv = (a1, ..., Qp, by, ..., bg)

We remark that if wy ~ ws, v1 ~ vy then wiv; ~ wsyve, so we define multiplication on F
by [w][v] = [wv]. We claim that F with this operation is a group. Indeed e = [(}] is the
identity element and if w = (by, ..., b,) the inverse element is given by w=! = (b7, ..., b7 ).
Here we follow the usual convention that if s7' € X! then (s7!)™! = s. Tt is clear that
associativity holds:

since both sides are equal to [wuv].
If w € W we denote by |w| the length of w (eg |aa1ba| = 4). We say that a word w
is reduced if it does not contain a subword of the form aa™! or a~'a where a € X. To

complete the proof of the theorem we need the following;:

Lemma 2.1. Every equivalence class [w| € F has a unique representative which is a
reduced word.

Proof. 1t is clear that [w] contains a reduced word. Indeed one starts with w and
eliminates successively pairs of the form aa™! or e 'a till none are left. What this
lemma says is that the order under which eliminations are performed doesn’t matter.
This is quite obvious but we give here a formal (and rather tedious) argument.

It is enough to show that two distinct reduced words w, v are not equivalent. We
argue by contradiction. If w, v are equivalent then there is a sequence

Wy = W, W14 ..., Wy, =V
where each w;, is obtained from w; by insertion or deletion of a pair of the form aa™*

Ya. We assume that for the sequence w; the sum of the lengths L = Y |w;]| is the

or a”
minimal possible among all sequences of this type going from w to v. Since w,v are

reduced we have that |wq| > |wo|, |wn_1]| > |w,|. It follows that for some i we have
|wil > fwi—a], wi| > |wit]

So w;_; is obtained from w; by deletion of a pair a,a™! and w;,; is obtained from w; by
deletion of a pair b,b~!. If these two pairs are distinct in w; then we can delete b, b~!
first and then add a,a™! decreasing L. More precisely if we have for instance

w; = urbb tugaa ug, wi_q = u b tugus, Wiy1 = U U206 tug

we can replace w; by ujususz. In this way L decreases by 4, which is a contradiction.
Now if the pairs a,a™!,b,b~! are not distinct we remark that w;_; = w;,; which is
again a contradiction. O



We can now identify X with the subset {[s] : s € X} of F'. Let G be a group and let
¢ : X — G be any function. Then we define a homomorphism ¢ : F' — G as follows: if
st e X! we define ¢(s7') = p(s)~!. If w = s;...8, is a reduced word we define

p([w]) = ¢(s1)--p(sn)

It is easy to see that ¢ is a homomorphism. We remark finally that this extension of ¢
is unique by definition. So F/(X) = F is a free group with basis X. O

Using the lemma above we can identify the elements of F' with the reduced words of
wW.

Remark 2.1. In the sequel if w is any word in X (not necessarily reduced) we will also
consider w as an element of the free group F/(X). This could cause some confusion as it
is possible to have w # v as words but w = v in F(X).

Corollary 2.1. FEvery group is a quotient group of a free group.

Proof. Let G be a group. We consider the free group with basis G, F(G). If p: G - G
is the identity map ¢(g) = g, then ¢ can be extended to an epimorphism ¢ : F(G) — G.
If N = ker(p) then

G~ F(G)/N

If X is a set we denote by |X| the cardinality of X.

Proposition 2.2. Let F(X),F(Y) be free groups on X,Y. Then F(X) is isomorphic
to F(Y) if and only if | X| = |Y].

Proof. Assume that |X| = |Y|. We consider a 1-1 and onto function f : X — Y. Let
h = f~'. The maps f,h are extended to homomorphisms f,h and f o h is the identity
on F(Y) while ho f is the identity on F(X) so f is an isomorphism.

Conversely assume that F'(X) is isomorphic to F(Y). If X, Y are infinite sets then
the cardinality of F(X), F(Y) is equal to the cardinality, respectively of X,Y. So if

these groups are isomorphic |X| = |Y|. Otherwise if, say, |X]| is finite, we note that
there are 2%l homomorphisms from F(X) to Z,. Since F(X) = F(Y) we have that
2Xl =2l g0 | X| = |Y]. O

Remark 2.2. Let F(X) be a free group on X. If A is any set of generators of F/(X) then
Al = 1X].



Indeed if |A| < | X| then there are at most 214l homomorphisms from F(X) to Zs, a
contradiction.

If F'is a free group with free basis X then the rank of F'is the cardinality of X. We
denote by F;, the free group of rank n.

The word problem

If F'is a free group with free basis X then we identify the elements of F' with the
words in X. This is a bit ambiguous as equivalent words represent the same element. The
word problem in this case is to decide whether a word represents the identity element.
This is of course trivial as it amounts to checking whether the word reduces to the empty
word after cancelations.

The conjugacy problem
Definition 2.2. If w = s;...s, is a word then the cyclic permutations of w are the words:
SnS1.--Sn—1y Spn—1Sn-+-Spn—2y ... , §92...5,p81

A word is called cyclically reduced if it is reduced and all its cyclic permutations are
reduced words.

We remark that a word w on S is cyclically reduced if w is reduced and w # zvxr=?

for any x € S S~

Proposition 2.3. Let F'(X) be a free group. Every word w € F(X) is conjugate to a
cyclically reduced word. Two cyclically reduced words w,v are conjugate if and only if
they are cyclic permutations of each other.

Proof. Let r be a word of minimal length that is conjugate to w. If r = zuz~! then r is
conjugate to w and |u| < |r| which is a contradiction. Hence r is cyclically reduced.
Let w now be a cyclically reduced word. Clearly every cyclic permutation of w is
conjugate to w. We show that a cyclically reduced word conjugate to w is a cyclic
permutation of w. We argue by contradiction.
Let g be a word of minimal length such that the reduced word v representing g~ 'wg

1 is reduced

and w is cyclically reduced so gvg~! is

is cyclically reduced but is not a cyclic permutation of w. If the word gvg~

then it is not cyclically reduced. But w = gvg™*

not reduced. If g = s1...5,,, s; € X U X! then either v = s, 'u or v = us,. If v =s,u

then
-1 _ -1 —1
gug~ = 81...8p_1(us,, ) (S1.-.Sn_1)
By our assumption that g is minimal length we have that us; ! is a cyclic permutation

1

of w. But then v = s, u is also a cyclic permutation of w. We argue similarly if

V= US,. ]



Using this proposition it is easy to solve algorithmically the conjugacy problem in a
free group.

Remark 2.3. A word g is cyclically reduced if and only if gg is reduced. Clearly if a
word w is reduced then w = uvu~! where v is cyclically reduced.

Proposition 2.4. A free group F' has no elements of finite order.

Proof. Let g € F. Then g is conjugate to a cyclically reduced word h. Clearly g, h have
the same order. We remark now that h™ is reduced for any n € N so h™ # e, ie the order
of ¢ is infinite. O]

Proposition 2.5. Let F be a free group and g,h € F. If ¢* = h¥ for some k > 1 then
g=h.

Proof. Let’s say that ¢ = ugiu~! with u € F and g; cyclically reduced. Then gf =

(u~tgu)¥ = (u=thu)*. Let h; be the reduced word equal to u~'hu.
If hy is not cyclically reduced then gf # h¥ since h¥ is not cyclically reduced. Oth-
erwise
k_ 1k _
g =hi = g=mh

since g¥, h¥ are reduced words. Hence g = h. ]

Exercises 2.1. 1. Show that F; has a free subgroup of rank 3.
2. Show that F5 has a free subgroup of infinite rank.



Chapter 3

Presentations

Definition 3.1. A presentation P is a pair P = (S|R) where S is a set and R is a set
of words in S. The group defined by P is the quotient group

G =F(S)/(R)

where ((R)) is the smallest normal subgroup of the free group F'(S) that contains R. By
abuse of notation we write often G = (S|R).

Remark 3.1. From corollary 2.1 it follows that every group has a presentation.

A group G is called finitely generated if there are finitely many elements of G, g1, ..., g
such that any element of g can be written as a product of giﬂ, t =1,...,n. Clearly if
G is finitely generated then G has a presentation (S|R) with S finite. We say that a
group G' = (S|R) is finitely related if R is finite. If both S and R are finite we say
that G is finitely presented. S is the set of generators and R is the set of relators of the
presentation. Sometimes we write relators as equations, so instead of writing r we write
r =1 or even r = r9, which is of course equivalent to rir; L—1.

Examples. 1. A presentation of Z is given by (a| ).

2. A presentation of Z,, is given by (a|a™).

3. A presentation of the free group F(S) is given by (S| ).

4. A presentation of Z @ Z is given by (a,blaba=tb™1).

Indeed if ¢ : F(a,b) — Z @ Z is the homomorphism defined by ¢(a) = (1,0), ¢(b) =
(0,1) then clearly aba='b~! € ker p. We set N = {(aba='b~1)). Since aba™'b~! € ker ¢,
N C ker . We remark that in F'(a,b)/N we have that ab = ba. If

w = a"b™ af ™ € ker o

10



then > k; = > m; = 0. Therefore w = 1 in F(a,b)/N since ab = ba in this quotient
group. It follows that ker ¢ C N and (a, blaba='b™') is a presentation of Z & Z.

5. If G is a finite group, G = {g1, ..., g} then a presentation of G is: (G|R) where R
is the set of the n? equations of the form g;g; = g given by the multiplication table of
G.

6. The presentation (a,bla~'ba = b* b~lab = a?®) is a presentation of the trivial
group. Indeed

1

atba=b0 = (b laWa=b = a'=b = a=1=b

Remark 3.2. Let G = (S|R). Then a word w on S represents the identity in G if and
only if w lies in the normal closure of R in F(S). Equivalently if w can be written in
F(S) as a product of conjugates of elements of R :

n
w= Ha:iriilxi_l, ri € R, x; € F(5)
i=1
We note that if w represents the identity in G we could prove that it is the case by
listing all expressions of this form. Eventually we will find one such expression that is
equal to w in S. Of course this presupposes that we know that w = 1 in G, otherwise
this process will never terminate.

Proposition 3.1. Let G = (S|R) and let H be a group. If ¢ : S — H is a function
then ¢ can be extended to a homomorphism ¢ : G — H if and only if p(r) =1 for every

il:l +1 il...go(an)il.

r € R, where if v is the word ai...a, ", we define p(r) = ¢(a;)

Proof. 1t is obvious that ¢(r) = 1 for every r € R is a necessary condition for ¢ to
extend to a homomorphism.
Clearly ¢ extends to ¢ : F(S) — H. Assume now that ¢(r) = 1 for every r € R.
If N = ((R)) then clearly N C ker¢. So the map ¢(aN) = p(a) is a well defined
homomorphism from G = F(S)/N to H that extends ¢.
O

One can use this proposition to show that a group given by a presentation is non
trivial by finding a non trivial homomorphism to another group.

Before the next example we recall the definition of the semidirect product:

Let A, B be groups and let ¢ : B — Aut(A) be a homomorphism. Then we define
the semidirect product of A and B to be the group G = A x, B with elements the
elements of the Cartesian product A x B and operation defined by

(a1,b1) - (a2, b2) = (a19p(b1)(az), bibs) .

11



Example 3.1. If G = (a, t|tat™ = a?) then < t >X< a >X Z.

Proof. Consider the subgroup of Q:

1

Z2] = {2 . meZ,neN}

2 2n

We define an isomorphism ¢ : Z[3] — Z[3], by ¢(x) = 2z. We form now the semidirect
product Z[3] x Z where Z acts on Z[3] via ¢. The elements of this semidirect product

can be written as pairs (5%, k). We define now

QWG%ZQNZ,Ww@:UﬁLMﬂ:@H

Since
Y(tat™") = ¢(a®) = (2,0),
¥ is a homomorphism. Since a,t map to infinite order elements we have that
<t >E<a>EZ.
m

Exercise 3.1. Show that a finite index subgroup of a finitely generated group is finitely
generated.

3.1 Dehn’s problems

Dehn posed in 1911 the following fundamental algorithmic problems:

1. Word problem. Given a finite presentation G = (S|R) is there an algorithm to
decide whether any word w on S is equal to 1 in G?

2. Conjugacy problem. Given a finite presentation G = (S|R) is there an algo-
rithm to decide whether any words w, v on S represent conjugate elements of G7

3. Isomorphism problem. Is there an algorithm to decide whether any two groups
G1, G given by finite presentations Gy = (S1|R;), G2 = (S2|Ry) are isomorphic?

All these problems were shown to be unsolvable in general by Novikov (1955) and
independently by Boone (1959). Adyan (1957) and Rabin (1958) showed that there is no
algorithm to decide whether a given presentation is a presentation of the trivial group.

12



3.2 Tietze transformations

Different presentations of the same group are related via Tietze transformations. There
are two types of Tietze transformations:

(T1) If (S|R) is a presentation and r € (R)) C F(S) then T1 is the replacement
of (S|R) by (S|RU{r}). Clearly these two presentations define isomorphic groups, an
isomorphism ¢ is defined on the generators by ¢(s) = s for all s € S.

We denote also by T1 the inverse transformation.

(T2) If (S|R) is a presentation, a ¢ S and w € F(S) then T2 is the replacement
of (S|R) by (S U {a}|RU {a 'w}). Clearly these two presentation define isomorphic
groups. A homomorphism ¢ is defined on the generators by ¢(s) = s for all s € S. One
verifies easily that the inverse of ¢ is given by 1 (s) = s for all s € S and ¥(a) = w.

We denote also by T2 the inverse transformation.

Theorem 3.1. Two finite presentations (Sy1|Ry1), (S2|Rs) define isomorphic groups if
and only if they are related by a finite sequence of Tietze transformations.

Proof. 1t is clear that if two presentations are related by a finite sequence of Tietze
transformations they define isomorphic groups. Conversely suppose that G; = (S| Ry) =
(S2|R) = G5. We may assume that S; NSy = (). Indeed if this is not the case using
moves T1, T2 we can replace S; by a set of letters with the same cardinality, disjoint
from S;. We consider now isomomorphisms

0:GL—= Gy V=0p1:Gy— Gy
For each s € Sy,t € Sy consider words wy, v such that ¢(s) = ws, ¥(t) = vy. Let
Uy ={s'ws:s€ 8}, Uy={tlv:tecS)
We consider the presentation:
(S1USe|Ry U Ry UU; UUs)

We claim that there is a finite sequence of Tietze transformations from (S;|R;) to this
presentation. Indeed using 72 we may introduce one by one the generators of S, and
the relations U;. So we obtain the presentation

(S1 US| Ry UU,)

The Tietze transformations give as an isomorphism

13



p: <Sl U SQ|R1 U U2> — <Sl|R1>

where p(s) = s, p(t) = v, for s € S1, t € S3. We remark that ¢ o p is a homomorphism
from (S; U S3|Ry U Us) to (S2|Rs) and @ o p(t) =t for all t € S,. It follows that for any
r € Ry, pop(r) =r =1, hence Ry C ((RyUUs)). So using T'1 we obtain the presentation

<Sl U S2|R1 U R2 U U2>

We remark now that ¢ o p is still defined on this presentation and ¢ o p(s) = wy for
all s € Sy, while p o p(w,) = w,. It follows that s~ 'w, is mapped to 1 by ¢ o p, hence
the relators U; also follow from Ry U Ry U Uy. So applying T1 we obtain

(S1USy|RURy UU; UU,)

Similarly we see that there is a finite sequence of Tietze transformations from (Ss|Rs)
to this presentation.
O

Remark 3.3. Let G = (X) = (Y) and X is finite then there is a finite subset Y’ C YV
such that G = (Y’).

So, in a sense, finite generation does not depend on the generating set we pick. The
next proposition shows that something similar holds for finite presentability.

Proposition 3.2. Let G = (S|R) = (X|Q) where S, X, R are finite. Then there is a
finite subset Q' of Q such that G = (X|Q")

Proof. Let ¢ : F(S)/{(R) — F(X)/{Q)) be an isomorphism. Let
S={s1,..,8n}, R={r1,....rx}, X ={x1,..., 20}

Then the r;’s are words in the s;’s, r; = 7;(s1,...,8,). Let p(s;) = s}, =1,...,n. If

we see the s as elements of F/(X), since ¢ is onto we have that the generators of G

can be written in terms of the s}, so there are words w;(s,...,s}), j = 1,...,m and

Uty ..., U, € (@) such that

/ / .
x; = w;(sy,...,sp)uj, j=1,....m

cey O

where the equality is in F'(X). Since ¢ is a homomorphism we have also that



Let @ be a finite subset of @) such that all wj,v;, j = 1,...,m, ¢ = 1,...,k can be
written as products of conjugates of elements of Q). We claim that (Q") = (@)). Indeed
the map

b F(S)/(R) — F(X)/(Q)

given by v¢(s;) = s} is an onto homomorphism and ¢ = 7 o ¢ where 7 is the natural
quotient map

™ F(X)/(Q) — F(X)/(Q)
However ¢ is 1-1 so 7 is also 1-1. Tt follows that (@) = (Q)). O

Proposition 3.3. If the word problem is solvable for the finite presentation (S|R) of a
group G then it is solvable for any other finite presentation (X|Q) of G. The same is
true for the conjugacy problem.

Proof. To solve the word problem, given a word w on X we run ‘in parallel’ two proce-
dures:

1) We list all elements in (@)) in F(X) and we check whether w is equal to one of
these words in F(X).

2) We list all homomorphisms ¢ : FI(X)/{(Q)) — F(S)/{R)). To find ¢ we enumerate
| X|-tuples of words in F(S) and we check for each such choice whether the relations @
are satisfied. We note that this is possible to do since the word problem is solvable in
(S|R). Given a homomorphism ¢ we check whether ¢(w) # 1 (which is possible to do
since the word problem is solvable in (S|R)).

Clearly one of the procedures 1,2 will terminate. We note that if the conjugacy
problem is solvable for a group then the word problem is also solvable (why?). To solve
the conjugacy problem, given two words w,v on X we argue similarly.

We do the following procedures ‘in parallel’:

la) We list all elements of the form gvg='w™!.

1 1

1b) We list all elements in (@) and check whether some element is equal to gvg~'w™
in F(X).

2. We list all homomorphisms ¢ : F'(X)/{(Q)) — F(S)/{(R)) and, given a homomor-
phism f, we check whether f(w), f(v) are not conjugate in (S|R). Clearly if f(w), f(v)

are not conjugate in (S|R) they are not conjugate in (X|Q). O

We remark that this proposition shows that the solvability of the word and the
conjugacy problem is a property of the group and not of the presentation.

15



3.3 Residually finite groups, simple groups

Definition 3.2. A group G is called residually finite if for every 1 # g € G there is a
homomorphism ¢ from G to a finite group F' such that ¢(g) # 1.

Remark 3.4. A group G is residually finite if for every ¢ € G,g # 1 there is a finite
index subgroup H of G such that g ¢ H (exercise).

If a group G is residually finite then clearly any subgroup of G is also residually
finite.

Proposition 3.4. Let G be a residually finite group and let gy, ..., g, be distinct elements
of G. Then there is a homomorphism ¢ : G — F where F is finite, such that p(g;) #
©(g;) for any 1 <i<j<n.

Proof. If hq, ..., hy are non trivial elements of G there are homomorphisms ¢; : G — Fj,
where F; are finite, such that ;(h;) # 1 for every 4. It follows that
©=(p1,.y01) 1 G—= F1 X ... X Fy,

is a homomorphism to a finite group such that ¢(h;) # 1 for every i. Now we apply this
observation to the set of non-trivial elements gigj_1 (1 <i < j < n)and we obtain a
homomorphism ¢ : G — F (F finite), such that gp(gigj_l) # 1, hence ¢(g;) # ¢(g;) for
any 1 <1 <7< n. O

Intuitively residually finite groups are groups that can be ‘approximated’ by finite
groups.

Matrix groups furnish examples of residually finite groups. To whow this we will
need two easy lemmas. We leave the proofs to the reader.

Lemma 3.1. Let A, B be commutative rings with 1 and let f : A — B be a ring
homomorphism. Then the map f : SL,(A) — SL,(B) given by f((ai;)) = (f(ay)) is a
group homorphism.

Lemma 3.2. Let A be a subring of Q. Assume that there is a prime p such that for
any a/b € A, p does not divide b. Then the map ¢ : A — Z,, ¢(a/b) = ab™' is a ring
homomorphism.

Proposition 3.5. GL,(7Z) is a residually finite group.

Proof. Indeed by lemma 3.1 if p is a prime we have a homomorphism
vy GL,(Z) — GL,(Z,)

Clearly for any g # 1, ¢,(g) # 1 for some p. O
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Proposition 3.6. Any finitely generated subgroup G of SL,(Q) (or GL,(Q)) is a resid-
ually finite group.

Proof. Let G =< g1, ..., g, >. Let pq, ..., pr be the primes that appear in the denomina-
tors of the entries of the matrices gi', ..., g*'. If p is any other prime then by lemmas
3.1, 3.2 we have a homomorphism:

oy G — SL,(Z,)

Clearly for any g € G, g # 1, p,(g) # 1 for some prime p.
Clearly the same holds for subroups of GL,(Q) as we may see GL,,(Q) as a subgroup

of SLyi1(Q).
O

In fact by a similar argument one can show that the same proposition holds for any
finitely generated subgroup of GL,(C).

Example 3.2. The group (Q,+) is not residually finite. Indeed if f : Q — F is a
homomorphism such that F' is finite and f(1) = g # 1 then g = f(1/n)" for any n,
which is clearly impossible in a finite group.

Theorem 3.2. Let G be a residually finite group admitting a finite presentation (S|R).
Then G has a solvable word problem.

Proof. Given a word w € F(S) we enumerate in parallel homomorphisms f : G —
Sy (where S,, are the groups of permutations of {1,...,n}) and the elements of ((R)).
Eventually either for some f, f(w) # 1, hence w # 1 in G, or we will have that
w € (R)) and so w =1 in G. O

Theorem 3.3. The free group F,, is residually finite.

Proof. Since F,, is a subgroup of Fj it is enough to show that F3 is residually finite. One
way to show this is to prove that F; is isomorphic to a subgroup of GLy(Z) (exercise).
We give here a different proof. Let w € Fy, =< a,b > be a reduced word of length £.
Let B be the set of reduced words of length less or equal to k. We consider the group
of permutations of B, Symm(B). We define now two permutations «, 8 of Symm/(B):
If [v] < k—1 we define a(v) = av and we extend « to the words of length & in any way.
Similarly if |v| < k —1 we define f(v) = bv and we extend § in the words of length k in
any way. We define now a homomorphism

2 Fy = Symm(B), ¢(a) = a,p(b) =

Clearly p(w)(e) = w so p(w) # 1. O
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Definition 3.3. We say that a group G is Hopf if every epimorphism ¢ : G — G is 1-1.
Theorem 3.4. If a finitely generated group G is residually finite then G is Hopf.

Proof. Assume that G is residually finite but not Hopf. Let f : G — G be an onto
homomorphism and let 1 # g € ker f. Let F' be a finite group and let ¢ : G — F be a
homomorphism such that ¢(g) # 1.

Since f is onto there is a sequence go = ¢, g1, -+, gn, -.. such that f(g,) = gn_1 for any
n > 1. This implies that the homomorphisms

Yo f(n) G — F
are all distinct since for any n > 1

o [ (g) #1, o f(g)=1fork<n

This is a contradiction since G is finitely generated and so there are only finitely many
homomorphisms from G to F. ]

Corollary 3.1. If A is a generating set of n elements of the free group of rank n, F,,
then A is a free basis of F,.

Proof. Let X be a free basis of F}, and let ¢ : X — A be a 1-1 function. Then ¢ extends
to a homomorphism ¢ : F,, — F},. Since A is a generating set ¢ is onto. However F), is

residually finite and hence Hopf. It follows that ¢ is an isomorphism and A a free basis
of F,. O

Definition 3.4. A non-trivial group G is called simple if the only normal subgroups of
G are {1} and G.

Theorem 3.5. Let G = (S|R) be a finitely presented simple group. Then G has a
solvable word problem.

Proof. Let w be a word in S. We remark that if w # 1 in G then (w)) = G, so
w U R) = F(S).

We enumerate in parallel the elements of (w U R)) and of (R)) in F(S). If w =1
then eventually w will appear in the list of (R)), while if w # 1 the set S will eventually
appear in the list of {(w U R)). O
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Chapter 4

Group actions on Trees

4.1 Group actions on sets

We recall the definition of a group action on a set:

Definition 4.1. Let G be a group and let X be a set. An action of G on X is a map
p:GxX —X

so that the following hold:
1. p(1,z) =z for all x € X.

2. p(g192, ) = p(g1, p(g2,x)) for all g1,9, € G,z € X.

We often write simply g(x) or gz instead of p(g,x). Note that by property 2,
g (gr) = z. Tt follows that the map

T gr

is 1-1 and onto map from X to X.
In fact we have an equivalent definition of a group action as a homomorphism:

v : G — Symm(X)

Indeed if p : G x X — X is an action define ¢ : G — Symm/(X) by ¢(g)(x) = gz.
Property 2 of the definition implies that ¢(g192) = ©(g91)p(g2). Conversely given a
homomorphism ¢ we define p: G x X — X by p(g,2) = ¢(g)(x).

We often denote an action by G ~ X.
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4.2 Graphs

Definition 4.2. A graph I' consists of a set of vertices V' = V(I'), a set of edges
E = E(T'), a map:
E—=V XV, e~ (ole),t(e))

and a map FF — FE, e+ é such that the following hold: for any e € F, € = e, € # e and

o(e) =t(e), t(e) = o(e).

The pair of edges {e, e} is called geometric edge. Often when we define graphs we
just give the vertices and the geometric edges of the graph. A choice of edges ET C E(T)
such that for any e € E(T") either e € E* or € € E™ is called an orientation of T.

A morphism between two graphs is a map that preserves the graph structure. More
formally we have:

Definition 4.3. A morphism f from a graph I' = (V(I"), E(I")) to graph A = (V(A), E(A))
is given by maps fy : V(I') — V(A), fg : E(I') — E(A) such that o(f(e)) =
f(oe)), t(f(e)) = f(t(e)), f(€) = f(e). An automorphism of I' is a morphism I' — T
that is 1-1 and onto on the sets of edges and vertices. We denote by Aut(I") the group

of automorphisms of T'.

Definition 4.4. Let G =< S > be a group generated by S. We define the Cayley graph
of G, T =T(S,G), to be the graph with vertices V(I') = {g : ¢ € G} and oriented edges
Et(T)={(g9,99) : g € G, s € S}. We define o(g, gs) = g, t(g,g9s) = gs.

More generally if S C G, where S is not necessarily a generating set we define the
graph ['(S, G) as before to be the graph with vertices {g : ¢ € G} and oriented edges

{(9,95): g€ G, s € S}

Definition 4.5. A path in a graph T' is a sequence of edges p = (eq, ..., €,) such that
o(e;) = t(e;—1) for all i > 1. The vertices © = o(e1), y = t(e,) are the origin and the
end point of the path respectively. We often say that p joins x,y. We define similarly
infinite paths. We say that a path is reduced if e; # ¢;_ for all i« > 1. We say that a
path (eq, ..., e,) is a circuit if it is reduced, the vertices t(e;) (i = 1,...,n) are all distinct
and t(e,) = o(e1). We say that a graph is connected if any two vertices can be joined
by a path. A tree is a connected graph with no circuits.

Remark 4.1. The Cayley graph of G is a connected graph. Conversely if if I'(.S,G) is
connected for some S C G, then S is a generating set of G.

Remark 4.2. A graph I is a tree if and only if for any two vertices of I' there is a unique
reduced path joining them (exercise).
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One may realize graphs as 1-dimensional CW-complexes: we start with a set of points
(vertices) and glue edges to them; so if e = [0,1] is an edge we glue 0 to o(e) and 1 to
t(e). The edges e, e correspond geometrically to the same edge, and e, € are thought of
as the two possible orientations of this edge. We can equip a connected graph with a
metric by identifying each edge with an interval of length 1 and defining the distance of
two points to be the length of the shortest path joining them.

Definition 4.6. An action of a group G on a graph I' is a homomorphism p : G —
Aut(T).

If p: G — Aut(I') is an action, g € G and v € V(I') then p(g)(v) € V(I'). Usually
we simplify the notation and we write gv rather than p(g)(v). If G acts on I we write
also G ~ T'. If there is some v € V(I') such that gv = v for all ¢ € G then we say that
G fixes a vertex of I

Remark 4.3. A group G =< S > acts on its Cayley graph I'(S, Q) as follows: If g € G
and (v,vs) an edge of I'(S, G) we define g - (v,vs) = (gv, gvs). We remark that this
action is transitive on the set of vertices of I'(S, G).

4.3 Actions of free groups on Trees

Theorem 4.1. Let S be a subset of a group G, and let X =T'(S,G). The following are
equivalent:

i) X is a tree.

ii) G is free with basis S.

Proof. ii) = 1i).
Assume that G is free with basis S. Every element of G' can be represented by a
reduced word on S, s;...s,. There is a path from 1 to sy...s,:

p=((1,s1), (51,5152), -+, (S1S2...8n_1, S152--Sn—_15n))

so X is connected. In general a reduced path starting at 1 corresponds to a reduced
word on S, w. Since reduced words represent non trivial elements in G we have that
w # 1 in G, so there are no circuits staring at 1. However since the action of G is
transitive on vertices we deduce that X has no circuits, hence it is a tree.

i) = ii)

Since X is connected there is a reduced path from 1 to any g € G. Therefore any
g € G can be written as a word on S. It follows that S generates G. Let ¢ : F'(S) — G
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be the onto homomorphism defined by ¢(s) = s for all s € S. Then if s;...s,, € ker ¢
(81...8, reduced word) we have that the path

p=((1,51),(s1,8182), .., (8182...8_1, $152---Sn_15n))

is a reduced path in X from 1 to 1, which is impossible. We conclude that ¢ is 1-1, so
G = F(9).
m

Definition 4.7. Let GG be a group acting on a graph X. We say that G acts on X
without inversions if for every g € G, e € E(X) we have that ge # e. We say that G
acts freely on X if G acts on X without inversions and for any 1 # g € G, v € V(X),

gu # v.
Remark 4.4. A group G =< S > acts without inversions on the Cayley graph I'(S, G).

Note that if G acts on a graph I' then it acts without inversions on the barycentric
subdivision of I" (i.e. the graph obtained by subdividing each edge of I" in two edges).

Definition 4.8. Let GG be a group acting without inversions on a graph X. We define
the quotient graph of the action X/G as follows: If v € V(X), e € E(X) we set

[v] ={gv:9 € G}, [e] ={ge: g€ G}
The vertices and edges of the quotient graph are given by

V(X/G) ={[v] ;v e V(X)}, E(X/G)=A{le] :e € E(X)}

and o([e]) = [o(e)], t([e]) = [t(e)], [e] = [é].

We remark that since the action is without inversions [é] # [e]. There is an obvious
graph morphism

p: X — X/G, given by p(v) = [v], p(e) = [e], v € V(X), e € E(X)
Theorem 4.2. If a group G acts freely on a tree T then G is free.

Proof.

Lemma 4.1. There is a tree X C T such that X contains exactly one vertex from each
orbit of the action.
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Proof. Let X be a maximal subtree of T such that X contains at most one vertex
from each orbit. Clearly such a tree exists by Zorn’s lemma. Suppose that X does not
intersect all orbits of vertices. Let v be a vertex of minimal distance from X such that
X does not meet its orbit. If d(v, X) = 1 then we can add v to X contradicting its
maximality. Otherwise if p is a reduced path from v to X and v’ is the first vertex of
p then gv' € X for some g € G. But then d(gv, X) = 1 so we can add gv to X, a
contradiction. We conclude that X contains exactly one vertex from each orbit. O]

Let X be as in the lemma. We choose an orientation of the edges of T, ET C E(T)
such that ET is invariant under the action (that is e € ET = ge € E*, for all g € G).
This is possible since the action is without inversions.

Consider the set

S ={g € G: thereis an edge e € ET with o(e) € X, t(e) € g(X)}

We will show that G is a free group with basis S.

Clearly if g; # ¢ then ¢1X N g X = (). Let T” be the tree that we obtain from T
by contracting each translate gX to a point. Clearly G acts on T'. We will show that
T ~ I'(S,G). We remark that V(T") = {¢X : g € G}, E(T") = {e € T, e ¢ GX}.
The orientation of T" induces an orientation of the edges of T” which we denote still by
E*. We define now ¢ : T" — I'(S,G) as follows: ¢(¢gX) = g. If e € ET is an edge
joining ¢1 X to ¢, X then s = g7 'gs € S since g;'e joins X to g;'g2X. So we define
o(e) = (g1,015) = (g1,92). Tt is clear that ¢ is 1-1 and onto on the set of vertices V(T").
It is also onto on oriented edges: if (g, gs) is an oriented edge of I'(S,G) then there is
an oriented edge e € T joining X to sX and ¢(ge) = (g,gs). We note that if

ple1) = ple2) = (g, 9s)

then eq, e; are both oriented edges joining g X to gsX. But 7" is a tree so e; = ey and
pis 1-1.
It follows that I'(S, G) is a tree, hence G is free (theorem 4.1).

Corollary 4.1. Subgroups of free groups are free.

Proof. Let F(S) be a free group with basis S. Then F'(S) acts freely on its Cayley graph
['(S, G) which is a tree. So any subgroup H of F(S) acts freely on I'(S, G) hence by the
previous theorem H is free. O
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4.4 Amalgams

The construction of amalgams allows us to ‘combine’ some given groups and construct
new groups. Let A, B be two groups which have two isomorphic subgroups, that is there
are embeddings o : H — A, f: H — B. Intuitively the amalgam of A, B over H is a
group that contains copies of A, B which intersect along H and no other relations are
imposed. To simplify notation we pose a(h) = h, B(h) = h for all h € H.

One way to define amalgams is via their universal property:

Definition 4.9. We say that a group G is the amalgamated product of A, B over H and
we write G = A ol B if there are homomorphisms i4 : A — G, ig : B — G which agree
on H such that for every group L and homomorphisms «y : A — L, 31 : B — L which
satisfy a;(h) = B1(h), Yh € H, there is a unique homomorphism ¢ : G — L such that

ap =¢@oigand f; = poip.

A4 G B
0
Av%
L

The amalgam of A, B over H depends of course on the maps «, [, it is however
customary to suppress this on the notation. We note that it is not clear by the definition
whether 74,75 are injective.

Remark 4.5. Assuming that an amalgam of A, B over H exists it is easy to see that this
amalgam is unique using the universal property.

Indeed let Gy, G5 be two such amalgams and let i 4, %5, j4, jp be the inclusions of A, B
in GGy, G4 respectively. The homomorphisms j 4, jg induce a homomorphism j : G; — G»
such that jois = ja, joig = jg. Similarly 74, ¢ induce a homomorphism ¢ : G5 — Gj.
The compositions of these maps induce homomorphisms G; — G, G5 — G5 which are
both equal to the identity since they are induced by 74,75 and ja,jp respectively. So
Gy = Gs.

We show now that the amalgam of A, B over H exists:

Let (S1|R1), (S2|R2) be presentations of A, B respectively. Without loss of generality
we assume that S; N Sy = (. Then the amalgam of A, B over H is given by

A;I;B:<51U52’R1UR2U{}L:FL : hEH})

Indeed it is easy to see that this group satisfies the universal property of the definition.
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When H = {1} then the amalgam does not depend on the maps «a, § and it is called
free product of A, B; we denote this by A * B. We remark that F, = Z % Z. We would
like to describe the elements of A * B by ‘words’. To simplify notation we identify H

with its image in A, B. If a € A (or b € B) we will denote the corresponding element of
G by a (b) rather than is(a) (ig(b)). It is important to distinguish whether we see a as
an element of A or of GG since, a priori, it is possible that a; = as in G while a; # as in
A (and similarly for B).

Let Ay, B be sets of right coset representatives of H in A, B respectively, such that
1€ Aq,1 € By. So we have the 1-1 and onto maps:

Hx A, — A, (ha) — ha, Hx B; — B, (h,b) — hb

A reduced word of the amalgam A * B is a word of the form (h, sq, ..., s,) where h € H,

s; € A1 U By, s; # 1 for every ¢ and the s;’s alternate from A; to B;. That is for all
i, 8 €Ay = 841 € By, s € Bl = s;41 € Ay If (b, 81, ..., 8,) 18 a reduced word
we associate to this the group element hs;...s, € A x B. We say that the length of the

reduced word (h, s, ..., s,) is n.

Theorem 4.3. (Normal forms) Each g € G = A;}B 1s represented by a unique reduced

word.

Proof. Any element g € G can be written as a product of the form
g = &1b1...anbn, a; € A, bl € B

By successive reductions we arrive at a reduced word, so we can represent g by a reduced
word. We show now that this word is unique.

Let X be the set of all reduced words. We define an action of G on X. We recall
that an action is a homomorphism G — Symm(X). By the universal property of
the amalgam it is enough to define homomorphisms (actions) A — Symm(X), B —
Symm(X) which agree on H. We define the action of A. If a € H and (h, sq, ..., s,) is
a reduced word we define

a-(h,s1,...,8,) = (ah, sq, ..., S,)

If a € A\ H and (h, sy, ..., s,) a reduced word then there are two cases.
1st case: s; € B. Then ah = hys for some h; € H, s € A; and we define

a-(h,s1,...,8,) = (h1,$, 51, .., Sn)
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2nd case: s; € A. Then ahs; = hys for some hy € H, s € Ay. If s # 1 we define
a-(h,s1,...,8,) = (h1, 8, S, ..y Sp)
while if s =1 we define
a-(h,s,...,8,) = (h1, 82, ..., Sn)
One sees easily that if a;,ay € A then

(araz) - (hy S1, ..y 8n) = ay - (az - (hyS1, ..y Sn))

so we have indeed an action. We define the action of B similarly. So we have an action
of G on X. Now if g = hsy...s,, where (h, sy, ..., s,) is a reduced word then

g- (1) = (h731a “'7371)
It follows that the reduced word representing ¢ is unique. O

Corollary 4.2. The homomorphisms iy : A — A?}B, ip: B— A?}B are injective. So

we can see A, B as subgroups of A d B.
From now on we may identify elements of A * B with reduced words.

Corollary 4.3. Let A * B be an amalgamated product. If (g1, ..., gn) is such that g; €
AUB ,n>1, g, ¢ H for any i > 1 and the g;’s alternate between A and B then
9192---gn # 1 in A;}B.

Proof. Starting from g, we replace successively the g¢;’s by elements of the form hs;
where s; lies in A; U By \ 1 (right coset representatives of H). Eventually we arrive at a
reduced word representing g ¢s...g, which has length n if g; ¢ H, and n — 1 if g, € H.
It follows that g19s...9, # 1. ]

Exercise 4.1. Show that if A # H # B then the center of A * B is contained in H.

If hsy...s, is a reduced word (element) in A * B then we say that n is the length of

this word. We say that a reduced element hs;...s, (n > 1) is cyclically reduced if s;s,, is
reduced.

Proposition 4.1. 1. Fvery element of A ud B is conjugate either to a cyclically reduced

element or to an element of A or B.
2. Fvery cyclically reduced element has infinite order.
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Proof. 1. If g = hsy...s, is not cyclically reduced then g is conjugate to an element of
length n — 1. We repeat till we arrive either at a reduced word or an element of A or B.
2. If g is cyclically reduced of length n then ¢* has length kn so ¢* # 1. O

Exercise 4.2. If K is a finite subgroup of A * B then K is contained in a conjugate of
either A or B.

Example 4.1. (Higman) Let
A= {a,s|sas™" = a?)
B = (b, t|tht ™' = b?)
Then < a >=< b >= 7Z so we may form the amalgam

G=A % B=/{a,stlsas ' =d? tat™' =a?)

<a>=<b>

The group G is not Hopf.

Proof. We define ¢ : G — G by

ola) = a* o(s) = s, p(t) =t

It is easy to see that the relations are satisfied so ¢ is a homomorphism. More-
over p(t~tat) = t7'a’t = a so p is onto. On the other hand ¢(s~last™ta=1t) =
sta’stla*t =aa' =1. Asslas € A— <a >, t7ta't € B— < b > (check this! see
example 3.1) the element (s 'as)(t 'a~'t) has length 2 in the amalgam A ks B so
ker o # 1.

[

4.5 Actions of amalgams on Trees

Definition 4.10. Let G be a group acting without inversions on a tree 7. A subtree
S C T is called a fundamental domain of the action if the standard projection p : S —
T'/G is an isomorphism.

Theorem 4.4. Let G = A;;B be an amalgamated product. Then G acts on a tree T with
fundamental domain an edge e = [P, Q] so that stab(P) = A, stab(Q) = B, stab(e) = H.
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Proof. We define the vertices of T to be
V(T)=G/AUG/B={gA:ge G}U{gyB:g€ G}

and the edges
E(T)=G/HUG/H

We define o(gH) = gA, t(gH) = gB. The action of GG is the obvious one: If ¢ € G then

g -9A=(d9)A, ¢ -9B=(d9)B, ¢ -9gH=I(49)H

Clearly G acts transitively on the set of geometric edges of T" and there are two orbits
of vertices. T is connected since if g = hs;...s,, (reduced word of length n) then there
is an edge joining gA to hsy...s, 1B if s, € A. Otherwise there is an edge joining gB to
hsi...s,_1A. Since gA, gB are joined by an edge we see by induction on the length of g
that every vertex gA or gB can be joined by a path to 1- A, so T is connected.

We note that if p a path starting and ending at 1- A then necessarily the length of p
is even. Suppose now that p is a reduced path of length 2n starting at 1- A. We claim
that the vertices of p are of the form

1- A, CLlB, alblA, ceey albl...anbnA

where a; € A — H for i > 1 and b; € B — H for all 7. Indeed this is easily proven
inductively as if e.g. a1b;...apbp A, gB are successive vertices then gb = a1b;...aibra
for some a € A,b € B. However gbB = ¢gB so we may denote the vertex gB by
a1by...agbgaB (in other words ag1 = a). Note also that if a € H then ¢B = a1b;...a;xB
so the path is not reduced. It follows that the length of aib;...a,b, is at least 2n — 1 so
1A # aiby...a,b, A, ie there are no reduced paths starting and ending at A. Similarly
there are no reduced paths starting and ending at B. As every vertex of T lies either in
the orbit of A or of B we conclude that T has no circuits.

Therefore T' is a tree. O

Corollary 4.4. Let F' be a subgroup of A * B which intersects trivially any conjugate
of A or B. Then F' 1is free.

Proof. Let T be the tree constructed in the theorem 4.4. The stabilizers of vertices of T’
are conjugates of A, B. Since F' intersects trivially the conjugates of A, B, F' acts freely
on T'. By theorem 4.2 F'is a free group. O]

Proposition 4.2. Let G = AxB. Then the kernel of the natural map ¢ : AxB — Ax B
is free.
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Proof. If R = ker ¢ then R intersects trivially all conjugates of A, B since these map
isomorphically to their image. By corollary 4.4 R is free. [

Corollary 4.5. If A, B are finite groups then A x B has a finite index subgroup which
is free.

Theorem 4.4 has a converse:

Theorem 4.5. Assume that G acts on a tree T with fundamental domain an edge
e =[P,Q]. If stab(P) = A, stab(Q) = B, stab(e) = H then G = A * B.

Proof. The inclusions A — G, B — G induce a homomorphism
A 4 B—dG

We consider the subgroup G’ =< A, B >. Note that if for some ¢g; € G, go € G’ we
have that g;P = g, P then g, 'g; € A so gi € G'. The same holds if g;Q = ¢Q. So
(G—G"enG'e =1. On the other hand T'= Ge = (G — G')e UG’e and T is connected.
Moreover the sets (G — G')e, G'(e) are closed.

It follows that G — G’ = () and G = G’. Therefore ¢ is onto. We show now that ¢ is
1-1. Let g = hsy...s, (reduced word in A * B) be an element of ker ¢. Clearly n > 1.

We distinguish now two cases. If s, € A then we see by induction on n that
d(gQ,Q) = n if n is even and d(¢9Q,Q) = n + 1 if n is odd. Similarly if s, € B
we see inductively that d(gP, P) = n if n is even and d(gP, P) = n+ 1 if n is odd. It
follows that g # 1 in G so ¢ is 1-1.

O

4.6 HNN extensions

Definition 4.11. Let GG be a group, A a subgroup of G and 6 : A — G a monomorphism.
The HNN-eztension of G over A with respect to 6 is the group

Gx=(Gx<t> ltat™* = 0(a), Va € A) = G* <t > /{tat '0(a)*,a € A))
The letter ¢ is called stable letter of the HNN-extension.

We remark that if (S|R) is a presentation of G then a presentation of G * is given
by
(SU{t}|RU {tat™" = f(a), Ya € A})
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Let Ay, As be sets of right coset representatives of A, 0(A) in G so that 1 € A;,1 € A,.
A reduced word of the HNN extension Gj is a word of the form

(907 tq)gl? tez’ ceey tena gn)

where € = :l:l, Jo € G, g; € Al if € = 1, g; € AQ if € = —1 and g; 7é 1if €11 = —€;.
If (go, 1, ..., t, g,) is a reduced word we associate to this the group element got...t g, €
G .
A
Theorem 4.6. (Normal forms) Each g € ij; 1s represented by a unique reduced word.

Proof. 1t is easy to see by successive reductions that any g € G * can be represented by

some reduced word. We show now that this representation is unique. We use a similar
argument as for amalgamated products. Let X be the set of all reduced words. We
define an action of GG * on X. To do this it is enough to define actions of G and < t >

and show that the relations are satisfied. Let ¢ € G and (go,t%,...,t**, g,) a reduced
word. We define

g- (907 tela EREE) tena gn) = (9907 tqa ERE) t€n7 gn)
Clearly this defines an action of G on X. We define now the action of ¢.

(O(a),t,gh, t, ..yt gn)  if go = ag), 1 # gy € Av
te(go, t st gn) = S (0(go), t, 1,0, ..t g,) ifgo€ Aeg=1
(0(g0)g1,t2, ..., t", gn) if goe A,eg =—1

So t defines a 1-1 map X — X. We show that this map is onto. If (go, t, ..., t*, g,) € X
then

t (1,671 go, t, oy 1 g1) if go ¢ 6(A)
(go, t, st gn) = St (agr, 12, ...t gy) if go=0(a),a € Ajeg =1
te(a, t71 1t 62t g,)  ifgo=0(a), a € Ajep = —1

So t gives an element of Symm/(X). In other words we have defined homomorphisms
G — Symm(X), < t >— Symm(X). It follows that there is an extension of these
homomorphisms to Gx < t >— Symm(X). We verify that tat™' and 6(a) (a € A) act
in the same way. So we have an action of Gj on X. If got...t"g, € Gj is an element

corresponding to a reduced word then

Gttt gy - (1) = (g0, t, .o, 1", gn)

So each element is represented by a unique reduced word. O
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Corollary 4.6. The group G embeds in G;kx'

Corollary 4.7. Let G;k1 be an HNN extension. Let (go,t, g1,t, ..., t", gn) be such that
gi € G foralli, ¢, =1, g ¢ Aife, =1 and €1 = —1, g; ¢ 0(A) if e, = —1 and
€01 = 1, then got“gy..t1"g, # 1 in Gj'

Proof. Starting from g, we replace successively the g¢;’s by elements of the form hs;
where s; lies in A; U Ay (right coset representatives of A,0(A)). Specifically if after
some successive reductions we need to rewrite t“¢g; we do the following: if ¢; = 1 we set
gi =hs; with h € A,s; € A;. Then tg; = 0(h)ts;. If ¢, = —1 we set g, = 6(h)hs; with
h e A, s; € Ay. Then t%g, = ht%s;. Note that g;_; is replaced then by ¢g/_; = ¢;—10(h) in
the first case and by ¢;_; = ¢g;_1h in the second case. The hypothesis of the Corollary still
holds for g/, so we proceed to the next step. In particular the hypothesis of the corollary
ensures that no successive letters ¢,¢t=! or t=1, ¢ appear as we apply this procedure, so
we eventually arrive at a reduced word representing got“ g;...t* g, which has length n.
Hence got“ ¢gy...tg, # 1. O]

Definition 4.12. If a group G is an amalgam G = A jd B (with A # H # B) or an
HNN-extension G = A;; then we say that G splits over H.

Example 4.2. (Higman, Neumann and Neumann) Any countable group embeds in a
group with 2 generators.

Proof. Let C = {cy = e,c1,¢a,...} be a countable group. We remark that the set of
elements S = {a"ba™" : n € N} forms a basis for free subgroup of the free group of rank
2, F = F(a,b). Consider the group

H=FxC

The subgroups
A= (a"ba™" :neN), B=(c,b"ab™":n €N)

are both free of infinite rank by the normal form theorem for free products (theorem
4.3). Let ¢ : A — B be the isomorphism given by ¢(a"ba™") = ¢,b"ab™". Consider the
HNN extension

G = Hj = (Hx <t>|ta"ba™"t™! = c,b"ab™", Vn € N)
Clearly C' embeds in G (normal form theorem for HNN extensions). Morover
ta"ba "t = ¢, b"ab™" = ¢, = ta"ba "t b a "

so G is generated by t,a, b, and in fact since tht~! = a, G is generated by a,t. n
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Chapter 5

Graphs of Groups

5.1 Fundamental groups of graphs of groups

Definition 5.1. A graph of groups (G,Y’) consists of a connected graph Y and a map
G such that

1. G assigns a group G, to every vertex v € V(Y') and a group G, to every edge
e € E(Y), so that G, = Gb.

2. For each edge e there is a monomorphism a, : Ge — Gy(e).

Graphs of groups occur naturally in the context of group actions on trees. If a group
G acts on a tree T without inversions then we can form the quotient graph Y = T'/G.
We note that there is a projection p : T'— T'/G.

To each vertex v € Y (or edge e € Y) we associate a group G, (G.) where G, is
the stabilizer of a vertex in p~*(v) (edge in p~'(e)). Note that all stabilizers of vertices
in p~!(v) are isomorphic and the same holds for edges. If the vertex v' € p~!(v) is an
endpoint of the edge ¢’ € p~!(e) in T we have a monomorphism (inclusion) stab(e’) —
stab(v') and this is how we obtain the monomorphism G. — G,. We will associate
graphs of groups to actions more formally later, here we mention this as a source of
examples and in order to put this definition in context.

Definition 5.2. The path group of the graph of groups (G,Y) is the group
FG)YY)={( x G, x (e)le=e ealg)e ! =aslg), Ye € BE(Y), g € G,)

veV(Y)  ecE(Y)

If G, = (S,|R,) then a presentation of F(G,Y) is given by

< ‘L/J(Y>S’UU{€ € E(Y)H U R, e= 671, eae(g)efl — Oég(g), Ve € E(Y), = V(Y), ge Ge>
€ €
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Remarks.

1. If G, = {1} for all v € V(Y) then F(G,Y) = F(ET(Y)) (the free group with
basis the geometric edges of Y).

2. If Go.={1} for all e € E(Y) then F(G,Y) = v@\;k(y)G” x F(E*(Y)).

3. There is an epimorphism F(G,Y) — F(ET(Y)) defined by sending all g € G,
(for all v) to 1.

Definition 5.3. A path ¢ in the graph of groups (G,Y) is a sequence

C= (90761;91762, "“7gn—17en7gn>

such that t(e;) = o(ei1) and g; € Go(e,,,) = G, for all i. If

€it1
vo = o(ey), vy = o(ez) =t(ey), ..., v, = t(en)

we say that c is a path from vy to v, and (v, ...,v,) is the sequence of vertices of the
path c. We define |c| to be the element of the path group: |c¢| = goe€191....€nGn.

If ag,a; € V(Y) we define
wlag, a1] = {|c| : ¢ path from ag to a;}
If ag,ar,a2 € V(Y) and 7 € wlag, a1], 6 € w[ay, as] then v - § € w[ag, as).

Proposition 5.1. Let (G,Y) be a graph of groups. The set mlag, ag] (ag € V(Y)) is a
subgroup of F(G,Y). We call this fundamental group of the graph of groups (G,Y") with
base point ag and we denote it by m(G,Y, ag).

Proof. Tt is enough to show that every element of m[ag, ag] has an inverse in 7[ag, ag|. If
¢ =(g0,€1,91,€2, -+ Gn_1, €n, gn) is a path from ag to ag then

|t = g te,....e1g5" € Tlag, ag)
O

Definition 5.4. Let (G,Y) be a graph of groups and let T' be a maximal tree of Y. We
define the fundamental group of (G,Y’) with respect to T', m1(G, Y, T') to be the quotient

group
m(G,Y,T) = F(G,Y)/{{e,e € T}))

We have the obvious quotient map ¢ : F'(G,Y) — m(G,Y,T).
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Proposition 5.2. The restriction of q to m(G,Y, ag) is an isomorphism, so
WI(G7 Y7 aO) = 1 (G> Y7 T)

Proof. We would like to define a homomorphism f : m(G,Y,T) — m (G, Y, ap). Let a €
V(Y) and (e, ..., e,) a geodesic path on T' from ag to a. We set g, = e;...e, € F(G,Y).
If a = ag we set g, = 1.

If e is an edge with o(e) = a, t(e) = b we define

fle) = gaegb_l € m(G,Y, ao)

Clearly if e € T then f(e) =1 so this makes sense.
If g € G, we define

f(9) = 999, " € m(G.Y, ap).
If e is an edge and o(e) = P, t(e) = @ then

fleac(g)e™) = (gpegn')(9ae(9)9g" ) (9oegp') = greac(gle™ gp' = gpae(g)gp'

and
flaelg)) = grae(g)gp'
so the relations are satisfied for all e € E(Y"). It follows that f is a homomorphism.

Also go f(g) = g forall g € G, v € V(T) and go f(e) = e for all e ¢ T. So
qgo f =1d.

We calculate now fogq. Let (go, €1, ..., €n, gn) be a path such that go, g, € G4,. lf €; =
[Pi—1, P] then q(g;) = g; and f(g:) = gp.gigp, - Also q(e;) = e; and f(e;) = gp_,€igp,
We remark also that gp, = gp, = gu, = 1.

So

foqlgoer...engn) = golergp)gp, 95, (9P, ,€ngn) = Go€1...Cngn
so foq=1id. [

Corollary 5.1. The fundamental group of the graph of groups m(G,Y,ay) does not
depend on the basepoint ag.

5.2 Reduced words

Definition 5.5. Let (G,Y) be a graph of groups and let ¢ = (go, €1, 91, €2, s Gn—1, €n, In)
be a path. We say that c is reduced if:
1) go #1if n=0.
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2) For every i if e;11 = €; then g; ¢ a.,(G.,).
If ¢ is a reduced path we say that gee;....e g, is a reduced word. We denote by |c|
the element of F(G,Y") represented by the word gpe....€, 0.

Theorem 5.1. If ¢ is a reduced path then |c| # 1 in F(G,Y). In particular for any
vertez v € V(Y') the homomorphism G, — F(G,Y) is injective.

Proof. We prove first the theorem for finite graphs by induction on the number of edges.
If Y is a single vertex there is nothing to prove. Otherwise we distinguish two cases:
Case 1: Y =Y’ U{e} where Y’ is a connected graph and v = t(e) ¢ Y’. In this case

F(G)Y)=(F(G,Y") *G,) (>X<G :
and a reduced word on F(G,Y) corresponds to a reduced word in the HNN extension
which is non trivial by corollary 4.7.
Case 2: Y = Y'U{e} where Y’ is a connected graph and o(e), t(e) € Y’. In this case

F(G,Y)=F(GY'") =«
(G,Y) = F( )QE(GE)

and a reduced word on F(G,Y’) corresponds to a word in the HNN extension which is
non trivial by corollary 4.7.
This proves the theorem in case Y is finite. If Y is infinite and a reduced word
w is equal to 1 in F(G,Y) then it is equal to a product of finitely many conjugates
of relators of F(G,Y). However these relators involve only group elements and edge
generators lying in a finite subgraph Y;. By taking Y; big enough we may assume that
the conjugating elements also lie in Y;. It follows that w = 1 in F(G,Y;) which is a
contradiction since w is a reduced word and Y is finite.
O

Corollary 5.2. For any vertex v € V(Y') the homomorphism G, — m(G,Y,T) is
mjective.

Proof. The homomorphism G, — 7 (G, Y, v) is injective since m (G, Y, v) is a subgroup
of F(G,Y) and if 1 # g € G, g is a reduced word in F(G,Y) hence g # 1. However
m(G,Y,v) 2 m(G,Y,T) and g € G, maps to itself in m (G, Y, T) so g # 1inm(G,Y,T).

O

Remark 5.1. If Y consists of a single edge e = [u,v] with u # v then one sees from the
presentation that m (G,Y,T) = G, X G,. If the endpoints of e are equal (u = v) then
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m(G,Y,T) =G, * where the homomorphism of the HNN extension 6 : a.(G.) — G,

Qe e)

is given by 0(g) = az o a; ! and the stable letter is e.
In general if Y =Y’ Ue and t(v) ¢ Y’ then

7T1(G, Y, T) = Wl(G, Y,, T/) Ci'k GU
while if ¢(v) € Y’ then

7TI(C;?Y; T) = 7T1(G7 Y/7T) (*G )

As we did for amalgams and HNN-extensions we can find a set of words that is in
one to one correspondence with the elements of the fundamental group of the graph of
groups.

Let (G,Y) be a graph of groups. For each edge e € E(Y') we pick a set S, of left
coset representatives of az(Ge) in Gor). We require that 1 € Se.

Definition 5.6. We say that the path (s, eq, ...., S, €n, g) is S-reduced if s; € S, for all
1 and Si # 1if €;i_1 = €.

Lemma 5.1. Let a,b € V(Y). Then every element of w[a,b] is represented by a unique
S-reduced path.

Proof. Existence. For every element v € 7[a, b] there is a reduced path ¢ = (g1, €1, g2, €2, ..., Gn, €n, 9)
such that v = |¢|. We can write g; = s104,(h1), s1 € Se,, 1 € Ge,. So

g1€1 = Slaél(hl)el = 5161510451(]11)61 = 816104(31(]11)

So we replace ¢ by (s1,e1, Qe (h1)g2, €2, ..., €n, gn) and we continue similarly replacing
e, (h1)g2 and so on till we arrive at an S-reduced path ¢ such that |¢/| = 7.
Uniqueness. Let

c= (81,61, ey Sy €0y G)y € = (t1, Y1y vees iy Yiy )
be S-reduced paths such that |¢| = |/|. Then
51€1....8p€ng = t1y1.... txyrh = h_lylzl...yfltflslel....sneng =1

Obviously this word is not reduced so y; = e; and t]'s; € g, (G.,). Since t1, s, are left
coset representatives of oz, (G,,) we have t; = s;. So y; 't;'s;e; = 1. Continuing in the
same way we see that all corresponding elements are equal so ¢ = ¢'.

O
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5.3 Graphs of groups and actions on Trees

Let (G,Y) be a graph of groups. We will show in this section that the fundamental
group of this graph of groups acts on a tree T' so that the quotient graph of this action
is isomorphic to Y.

The construction of T" resembles the construction of the universal cover in topology.
The universal cover X of a space X is defined using the paths of X modulo an equivalence
relation (homotopy). Here we do something similar: we consider paths in the graph of
groups. The group elements on the paths account for the branching of the tree. A
trivial case which illustrates this point is the case of a Z, action on a tree with 2 edges
fixing the vertex in the middle and permuting the 2 edges. The quotient space is just a
single edge, so topologically it is the universal cover of itself. However we can recover
the original 2-edge tree using the Z, stabilizer of the middle vertex.

Let ag € Y. We consider the set of paths in (G,Y):

mlag, a] = {|c| : ¢ path from ag to a}

We define an equivalence relation in 7[ag, a]: |c1]| ~ |ea] if |¢1]| = |e2|g for some g € G,.
We define then
V)= |J rlava/~
acv(Y)
We remark that an element of 7[ag, a] /~ corresponds to a unique S-reduced path of the
form: (s1,€1,...., Sn, €,) Where t(e,) = a and o(e;) = ag. Indeed note that

[(81, €15 ey Sny €n)| ~ (81, €1, ceey Sny €y 9)| (9 € Ga)

So we may identify the vertices of T' with S-reduced paths of the form (sq, e, ...., Sp, €,).
A geometric edge of T' now is given by a pair of S-reduced paths that differ by an edge
of Y:

{(51,€1, ey Sny€n)y (S15€15eevy Sny €y Sntly €nt1) }

Clearly T is connected since (1) can be joined to any other vertex by a path. By our
definition of edges a reduced path in 7" from (1) to a vertex v € V(T') corresponds to an
S-reduced path. However, it follows from lemma 5.1 that if v € V(T') there is a unique
S-reduced path joining (1),v. Therefore T is a tree.

We define now the action of H = m(G,Y,a0) = wlag,a0] on T. If g € wlag, ag
and v € wlag,al then gv € 7lag,a]. So we define g - [v] = [gv] (where we denote by
[v] the equivalence class of v in 7[ag,a]/ ~). This defines an action of H on V(T)
since (g192) - [v] = ¢1 - (g2 - [v]). We note that adjacent vertices go to adjacent vertices
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under this action so we have an action on 7. We remark that if vy, vy € 7lag, a] then
vovy !t € Tlag, ag) and (vovyt)-[v1] = [va]. Tt follows that we can identify the vertices of the
quotient graph 7'/ H with the vertices of Y. We show now that the edges of the quotient
graph T'/H correspond to the edges of Y too. Let e; = ([v],[vs1€]),ea = ([v], [vs2e])
be two edges of T' with o(e;) = o(ez) = [v], s1,82 € Goe). If g = v(s257 " )v7!
that g € 7lag,a0] and g - e; = e5. So both edges lie in the same orbit and this orbit
corresponds to the edge e € E(Y).

We can see further that stabilizers of vertices and edges of T" are conjugates of vertex

we have

and edge groups of (G,Y). Precisely:

Proposition 5.3. 1. If [v] € V(T) and v € 7|ag, b] then stab([v]) = vGyvt.
2. If6 € E(T), 6 = [[v], [vge]] where e = [a,b], g € G, then stab(d) = (vg)(ae(Ge))(vg)™".

Proof. 1. Clearly vGyv™! C stab([v]). Assume now that g € stab([v]). Then by the
definition of V(T) gv = vgy, g € Gp. So g € vGyu~t. We conclude that stab([v]) =
vGyv~ .

2. stab(d) = stab([v]) N stab([vge]). So
stab(8) = vGu ™' N (vge)Gy(vge) ™ = v(Gy N geGre tg o™t =

= (v9)(Gy N eGre™H(vg) ™!

since g € G,. We remark that eGye™ NG, = ag(G,). This is because if g, € G, either
egre ! is a reduced word and so does not lie in G, or g, € a.(G.) and then egre™ € G,.
We conclude that

stab(0) = (vg)(as(Ge)(vg) ™
O

P

We denote the tree T by (G, Y, ap) and we say that it is the universal covering tree
or the Bass-Serre tree of the graph of groups (G,Y).

5.4 Quotient graphs of groups

We showed in the previous section that if m(G,Y, ag) is the fundamental group of a
graph of groups then m(G,Y,a) acts on a tree T' ,without inversions, with quotient
graph Y. The converse is also true: If a group I' acts on a tree T" with quotient Y, then
there is a graph of groups (G,Y) so that m(G,Y,a¢) =T.

We explain now how to associate a graph of groups (G,Y) to an action I' ~ T
(where T is a tree). We define Y = T'/T". We have the projection map p : T'— Y. Let
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X C S C T be subtrees of T such that p(X) is a maximal tree of Y, p(S) =Y and the
map p restricted to S is 1-1 on the set of edges. We introduce some convenient notation:
if v, e are respectively a vertex and an edge of Y we write vX for the vertex of X for
which p(v¥) = v and e for the edge of S for which p(e®) = e. We define now a graph
of groups with Y as underlying graph. If v € V(Y) we set G, = stab(v™). If e € E(Y)
we set G, = stab(es ). It remains to define monomorphisms a, : G. — Gy). For every
x € V(S) we pick g, € T such that g,z € X. If z € X we take g, = 1. If x = t(e%) we
define:
e : Ge = Gie), by ac(g) = 6299, "

In this way we define a graph of groups (G,Y). We define a homomorphism ¢ :
F(G,Y) — T as follows: ¢|g, = id for all a € V(Y). If e € E(Y) and y = o(e”), x =
t(e®) then we define ¢(e) = g,g;'. We verify that the relations are satisfied:

pleae(g)e™) = (9492 ) (92992 ) (9y9: )" = 9499,
and
o(ae(9)) = 9499,"
So ¢ is indeed a homomorphism. We note that if e € p(X) then ¢(e) = 1 so we have in
fact a homomorphism

©: 7T1(G7Y7p(X>) = 7T1(G7 Y7 (Io) — T
We have the following:

Theorem 5.2. The map ¢ := m (G, Y, a0) — I is an isomorphism. If T is the universal
covering tree of (G,Y’) then there is a graph morphism ¢ : T — T such that 1) is 1-1

and onto and ¥ (gv) = p(g)Y(v) for allv € V(T), g € m(G,Y, ap).

We omit the proof of this theorem. What this theorem essentially says is that we
can recover the group and the action on the tree by the quotient graph of groups.
We can now understand subgroups of fundamental groups of graphs of groups.

Theorem 5.3. Let I' = m (G, Y, ap) where (G,Y') is a graph of groups. If B is a subgroup
of I then there is a graph of groups (H,Z) such that B = m(H, Z,by) and for every
veV(Z),ee E(Z), H, < gG,g7 ", H. < Gy~ for some a € V(Y),y € E(Y) and
9,7 €Tl

Proof. T acts on a tree T with quotient graph of groups (G,Y). Since B < T', B acts
also on T" and the vertex and edge stabilizers of B are contained in the vertex and edge
stabilizers of I'. If Z = T'/B it is clear that the quotient graph of groups (H, Z) that we
obtain from the action of B satisfy the assertions of the theorem. O
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Corollary 5.3. (Kurosh’s theorem) Let G = Gy %...xG,,. If H < G then H = ('*IHi)*F
1€

where F is a free group and the H;’s are subgroups of conjugates of the G;’s.

Proof. G is the fundamental group of a graph of groups with underlying graph a tree
with n vertices labeled by G4, ..., GG,, and trivial edge groups. We apply now the previous
theorem. O

We mention two important theorems on the structure of finitely presented groups.
We say that a group G is indecomposable if it can not be written as a non-trivial free
product G = A x B.

Theorem 5.4. (Grushko) Let G be a finitely generated group. There are finitely many
indecomposable groups Gy, ..., Gy and n > 0 such that

G=G*..xG,*xF,
Moreover if we have another decomposition of G as
G=H*..xH, *F,

where H; are indecomposable then m = k, r = n, and after reordering H; is conjugate
to G; for alli.

Theorem 5.5. (Dunwoody) Let T' be a finitely presented group. Then T' can be written
asT'=m (G, Y, ag) where (G,Y) is a finite graph of groups such that all edge groups are
finite and all vertex groups do not split over finite groups.

Dunwoody has shown that this last theorem does not generalize to all finitely gen-
erated groups.
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Chapter 6

Groups as geometric objects

Although geometric methods were used in group theory since its inception it was Gro-
mov in 1984 that set the foundations of modern group theory. His insight was that one
can derive many algebraic properties of infinite groups from their ‘geometry’. In fact
looking at the geometry turned out to be very revealing of the group structure, more so
than pure algebraic manipulations. The first section of this chapter will explain what
we mean by ‘geometry’ in this context. Riemannian geometry, even though it inspires
many arguments that follow, is useless for studying finitely generated groups. Finitely
generated groups are discrete objects with no interesting ‘local” geometry. Their true ge-
ometry becomes apparent only from ‘infinitely far away’. Gromov’s insight transformed
the field, as by bringing geometry into play, other tools such as analysis, dynamics etc.
became available for studying groups.

One of the most convincing demonstrations of the geometric point of view is the
theory of hyperbolic groups. This is a class of groups which is generic (in a precise
statistical sense ‘most’ groups are hyperbolic) and which can be studied by geometric
methods. The theory of hyperbolic groups unifies the small cancellation theory which
has algebraic origin and the deep theory of negatively curved manifolds. We will show in
the following sections that the word and conjugacy problem are solvable for hyperbolic
groups and we will give an introduction to the geometric tools used to study them.

6.1 Quasi-isometries

We consider in the sequel connected graphs as metric spaces. So if [' is a connected
graph we identify each edge of I' with the unit interval and the distance of any two
points is defined to be the length of the shortest path joining them.
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Definition 6.1. If v is a vertex of a graph I" we define the degree of v to be the number
of edges incident with v. So deg(v) = card{e € E(I') : o(e) = v}. We say that a graph
I is locally finite if every vertex is incident to finitely many edges. A graph is called
reqular if all vertices have the same degree. A subgraph L of I" is a bi-infinite geodesic
if it is isometric to R (where we consider L to be equipped with the metric induced by
r).

We remark that if [' is the Cayley graph of a finitely generated group then I' is a
regular locally finite graph.
We recall the definition of the Cayley graph of a group:

Definition 6.2. Let G be a group generated by a finite set S. The Cayley graph of G,
[ =T(S,G), is the graph with vertex set

V={g:9€G}

and oriented edges
E* ={(g,95),9 € G,s € S}

We can see GG as a subset of I', so the metric of I' induces a metric dg on G, called the
word metric of G. We remark that

ds(g,e) =min{n:g= s s s,...,s, € S}

O

In this way we can associate to a finitely generated group G a metric space or view
G itself as a metric space. There is a problem however, the graph we defined depends
on the generating set S. In general given a group G there is no natural way to pick a
generating set S and different generating sets give different graphs (and word metrics)
for G!

Example 6.1. Consider the Cayley graphs of Z equipped with 2 different generating
sets: S = {1}, S2 = {2,3}.

One sees from this example that Cayley graphs for the same group can look com-
pletely different. One may remark however that when viewed from ‘far away’ these
graphs look similar. Although the ‘local geometry’ of Cayley graphs changes when we
change generating sets the ‘large scale’ geometry is preserved.

We make this remark precise by introducing quasi-isometries.

Definition 6.3. A (usually non-continuous) map between metric spaces f : X — Y is
called a quasi-isometry if there exist K > 1, A > 0 such that
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e forall z1,20 € X

%d(wl,xg) — A <d(f(x1), f(xe)) < Kd(z1,22) + A, and

e for all y € Y there is some x € X such that d(y, f(z)) < A.

When there is a quasi-isometry f: X — Y we say that X, Y are quasi-isometric and
we write X ~ Y.

Example 6.2. 1. R and Z are quasi-isometric.
2. Any metric space of finite diameter is quasi-isometric to a point.

Exercises 6.1. 1. Show that ~ is an equivalence relation.
2. Let S1, .55 be finite generating sets of a group G. Show that I'(S1, G) ~ I'(Ss, G).
3. Let T3,T, be the regular trees of degrees, respectively, 3,4. Show that T3, T, are
quasi-isometric.

We remark that if a group G is not finitely generated we can not associate a ‘geom-
etry’ to the group in this way. Indeed if we take as generating set the set of all elements
of G the Cayley graph is a bounded metric space, so it is quasi-isometric to a point.

Given €,0 > 0 a subset N of a metric space X is called an (¢, 6)-net (or simply a net)
if for every € X there is some n € N such that d(z,n) < e and for every ny,ns € N,
d(ni,ng) > 6.

A set N that satisfies only the second condition (i.e. for every ny,ny € N, d(ny,ng) >
J) is called d-separated.

Exercises 6.2. 1. Show that any metric space X has a (1, 1)-net.

2. Show that if N C X is a net then X ~ N.

3. Show that X ~ Y if and only if there are nets Ny C X, N, C Y and a bilipschitz
map f: Ny — N, (i.e. fis a bijection and f, f~! are both Lipschitz).

4. Give an example of a metric space which is not quasi-isometric to any graph.

5. Let G be a finitely generated group. Show that H < GG is a net in G if and only
if H is a finite index subgroup of G.

It turns out that if a finitely generated group acts ‘nicely’ on a ‘nice’ metric space
then the space is quasi-isometric to the group.
We make this precise below.
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Definition 6.4. Let p : [0,1] — X be a path in a metric space (X, d). We define the
length of p to be the supremum of

Z d(p(ti), p(tiz1))

over all partitions 0 =ty < t; < ... < t, = 1 (n € N) of [0,1]. We say that X
is a geodesic metric space if for any a,b € X there is a path p joining a,b such that
length(p) = d(a,b). Such a path p is called geodesic.

It will be convenient to parametrize paths with respect to arc-length. We recall that
a path p: [0,]] — X is said to be parametrized by arc-length if

[t — s| = length(p([t, ), Vt,s € [a,b]
If X is a geodesic metric space and a,b € X we denote by [a,b] a geodesic path
joining them.

Examples. 1. Connected graphs with the metric defined earlier are geodesic metric
spaces.

2. R™ with the Fuclidean distance and, more generally, complete Riemannian mani-
folds are geodesic metric spaces (Hopf-Rinow).

3. R? — {(0,0)} is not a geodesic metric space.

Definition 6.5. We say that a metric space X is proper if every closed ball in X is
compact.

Example 6.3. A graph with a vertex of infinite degree is not a proper metric space.

Definition 6.6. Assume that a group G acts on a metric space X by isometries. We
say that the action is co-compact if there is a compact K C X such that

Uy} =X

geG
We say that G acts properly discontinuously on X if for every compact K C X the set
{9 € G:gKNK # (0} is finite.

Theorem 6.1. (Milnor-Svaré lemma) Let X be a proper geodesic metric space. If G
acts by 1sometries, properly discontinuously and co-compactly on X then:

1) G is finitely generated.

2) If S is a finite generating set of G the map

fF(S,G) _>X7 g — gxo

is a quasi-isometry (for any fized xy € X ).
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Proof. Let R > 0 be such that the G-translates of B = B(zg, R) cover X, i.e.
J{sB} =X
geG
The set
S ={seG:d(sxg,x0) <2R+ 1}

is finite since the action of G is properly discontinuous. We claim that S is a generating
set of G. Indeed let g € G. Consider a geodesic path [xg, gzo]. If

k—1<d(zo,gz0) <k, (k € N)

consider zy, ...,xx = gxo such that d(z;,x;41) < 1foralli=0,...k—1. Pick ¢g; € G,
i=1,..,k —1such that d(g;wo,7;) < R. Then d(gizo, gir170) < 2R+ 150 g; *gis1 € S.
We pick gy = e, g = g. We have then

9= gr = (eg1)(91 ' 92)---(91209k-1) (9 2198)
So g can be written as a product of elements in S.

Let’s denote now by dg the distance in I'(.S, G). The previous calculation shows that
d(gxo, wo) = ds(g,e) =1 (%)
Assume that dg(g,e) = n, so g = s;...s, where s; € SUS™! for all 7. Then
d(gxo, o) = d(s1...8n%0, To) < d(81..-8pT0, S1.--Sn—1%0) + ... + d($120,20) < (2R + 1)n

S0
d(gxo,z0) < 2R+ 1)ds(g,e)  (*x*)

As ds(g,h) = ds(h™tg,e) and d(gxg, hwg) = d(h~ gz, z0), it follows by by (), (*x)
that the map ¢ — gzo is a quasi-isometry between I'(S, G) and Gxy. Since for any
x € X there is some gxy with d(z, gx¢) < R, f is a quasi-isometry from G to X.

]

Corollary 6.1. 1. Let G =< S > be a finitely generated group and let H be a finite
index subgroup of G. Then H is quasi-isometric to G.

2. Let G be a finitely generated group and let N be a finite normal subgroup of G.
Then G/N is quasi-isometric to G.

Proof. 1. H acts freely and co-compactly on I'(S, G).
2. G acts properly discontinuously and co-compactly on the Cayley graph of G/N.
[
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In geometric group theory we ‘identify’ groups which differ by a ‘finite amount’ as
in the corollary above.

We give now some examples of algebraic properties that are preserved by quasi-
isometries.

Exercise 6.1. Let G =< S|R > be a finitely presented group and let H be a finitely
generated group quasi-isometric to G. Then H is finitely presented.

Definition 6.7. If G =< S > is a finitely generated group we define the growth function
of G to be
volg(r) = |B(r)|

where B(r) is the ball of radius 7 in (G, dg) centered at e.

We define an equivalence relation on functions f : Rt — R*. We say that f < g if
there are A, B,C' > 0 such that for all » € RT we have f(r) < Ag(Br) + C. We note
that < is a partial order.

We say that f ~ g if f <gand g < f. ~ is clearly an equivalence relation.

Exercise 6.2. Show that if G; =< § >,Gy =< 5" > are finitely generated quasi-
isometric groups then volgq, ~ volgs ¢,. Deduce that the growth function of a group
does not depend (up to equivalence) on the generating set that we pick.

Usually one considers this function up to equivalence, and denotes it by volg(r).

Theorem 6.2. (Gromov) A finitely generated group G has a nilpotent subgroup of finite
index if and only if volg(r) < ™ for some n € N.

It follows from this theorem that if GG is quasi-isometric to a finitely generated nilpo-
tent group then G has a nilpotent subgroup of finite index.

Definition 6.8. (ends) Let I be a locally finite graph. If K C I' is compact we define
¢(K) to be the number of unbounded connected components of I' — K. We define then
the number of ends of I' to be

e(I') = sup{c(K) : K C T, compact}

We remark that we obtain an equivalent definition if, instead of compact sets K, we
consider finite sets of vertices of I'. Clearly finite graphs have 0 ends.

For a finitely generated group G we define the number of ends, e(G), of G to be the
number of ends of the Cayley graph of G.
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Exercise 6.3. Show that two quasi-isometric locally finite graphs have the same number
of ends. Deduce that the number of ends of a finitely generated group is well defined (ie
it does not depend on the Cayley graph that we pick).

Exercise 6.4. Show that a finitely generated group has 0,1,2 or oo ends.

For example Z? has 1 end, Z has 2 ends while [F, has oo ends.
It turns out that the number of ends of the Cayley graph of a group tells us whether
the group splits over a finite group:

Theorem 6.3. (Stallings) A finitely generated group G splits over a finite group if and
only if G has more than 1 end.

It is easy to see (exercise) that if a f.g. group G splits over a finite group then
e(G) > 1. So the interesting direction of the theorem is: if e(G) > 1 then G splits over
a finite group.

Stallings theorem combined with Dunwoody’s accessibility theorem implies that if a
finitely generated group G is quasi-isometric to a free group F' then it has a finite index
subgroup which is free.

We treat now the easier case of groups quasi-isometric to Z.

Proposition 6.1. Let G be a finitely generated 2-ended group. Then G has a finite
index subgroup isomorphic to Z.

Proof. Let T" be the Cayley graph of G. We consider a compact connected set K con-
taining e such that I' — K has 2 unbounded connected components C, D.

We claim that there is some a € G such that aC' is properly contained in C'.

Indeed pick g such that gK is contained in C. Then DUK is an unbounded connected
set of I' — g K that does not intersect g/ . So it is properly contained either in gC' or in
gD. If D C gD rename D to C' and set a = g~'. Otherwise D U K C gC, so K C gC
and gD U gK is an unbounded connected set of I' — K so it is contained in either C' or
D. But if it is contained in D then it is contained in ¢gC' which is absurd. So gD C C.

Pick now h such that hK is contained in gD. If hD is properly contained in gD then
g 'hD is properly contained in D. Set a = g~ *h and rename D to C. Otherwise hC' is
properly contained in gD, hence it is properly contained in C.

We remark that aC' C C and aC # C. So a?C C aC C C. Inductively we have
a"C C C, a"C # C. Tt follows that a is an element of infinite order.

We note now that K NaK = (). Let v be any vertex of I'. We claim that v is either
contained in " K or v is contained in a bounded component of I’ — (a"K U a" ™ K) for
some n. If v is contained in a bounded component of I' — @™ K for some n then the claim
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is proven. Otherwise we may assume that v € C. Since aC' C C and d(a"K,e) — o0
for some n, d(a"K,e) > d(e,v). It follows that v does not lie in a"C' as it can be joined
to e by a path that does not intersect " K. Let n be maximum such that v € a"C.
Then v lies in a connected component of I' — (a"K U a"™ K). If this component is
unbounded then it is contained either in a"*'C or in @™ D but this is impossible, so v
lies in a bounded connected component of I' — (a” K U a™" K) and the claim is proven.
It follows that
{a":n€Z}

is a net in I". So < a > is a finite index subgroup of G. n

Corollary 6.2. Let G be a finitely generated group quasi-isometric to Z. Then G has a
finite index subgroup isomorphic to Z.

6.2 Hyperbolic Spaces

If X is a geodesic metric space, a geodesic triangle [z,y, 2] in X is a union of three
geodesic paths [z, y] U [y, z] U [z, z] where x,y, z € X.

Definition 6.9. Let 0 > 0. We say that a geodesic triangle in a geodesic metric space
is 0-slim if each side is contained in the d-neighborhood of the two other sides. We say
that a geodesic metric space X is hyperbolic if there is some § > 0 so that all geodesic
triangles in X are d-slim.

Examples. 1. Trees are hyperbolic spaces (in fact 0-hyperbolic).
2. Finite graphs are hyperbolic spaces.
3. R? with the usual Euclidean metric is not hyperbolic.
4. Tt turns out that H?, the hyperbolic plane, is hyperbolic.

There are several equivalent formulations of hyperbolicity. We give one more now
and we will discuss some other reformulations later in the course.

If A = [z,y,z] is a triangle then there is a metric tree (a ‘tripod’ if A is not de-
generate) Ta with 3 points 2/,y, 2’ (the endpoints when Tx is not a segment) such
that there is an onto map fa : A — Ta which restricts to an isometry from each side
[z,y], [y, 2], [z, 2] to the corresponding segments [/, '], [/, 2], [, 2']. We denote by ca
the point [z, ¢/ N [y, '] N [2/, 2] of Ta.

Definition 6.10. Let § > 0. We say that a geodesic triangle A = [z, y, 2] in a geodesic
metric space is -thin if for every t € Ta = [2',y/, 2], diam(fx*(t)) < 6.
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Theorem 6.4. Let X be a geodesic metric space. The following are equivalent:
1. There is a 0 > 0 such that all geodesic triangles in X are §-slim.
2. There is a 0’ > 0 such that all geodesic triangles in X are &'-thin.

Proof. Clearly 2 implies 1. Indeed one can simply take § = ¢’.

We show now that 1 implies 2. We will show that we may take ¢’ = 40.

Let A = [x,y, z] be a geodesic triangle and let fa : A — Ta the map defined above
to a tripod. Let f~!(ca) = {cs, ¢y, c.} where

Cy € [yaz]a cy € [J:’Z]? & € [l’,y]

Let a € [z,¢;] and let @ in [z, ¢,] such that d(z,d’) = d(x,a). By symmetry it is enough
to show that d(a,a’) < 46.
We have that

for some

We distinguish two cases:
Case 1. a; € [z, 2]. Then

d(z,d)+ 86 > d(z,a) + d(a,ar) > d(z,a;) > d(z,a) —d(a,a;) > d(x,a") — ¢
by the triangle inequality. It follows that
d(a,a’) <6 +d(ay,a’) <26

Case 2. ay € [y, z]. We claim that d(a,c,) < 2§ in this case. Indeed if a; € [c,,y] by
the triangle inequality

da,y) < d(y,a1) +0 = d(y,a1) > d(y,c;) =0 = d(a1,¢,) <0

so d(a,c;) < 20.
If ay € [cg, 2] then again by the triangle inequality:

d(z,z) <d(xz,a) +0+d(ar,z) = d(z,2) <d(z,c.)+ 9+ d(ay,2)
Since d(x, z) = d(z,¢,) + d(x,c,) and d(z,¢,) = d(z, ¢,) we obtain:
d(z,¢;) <d(ay,z)+ 96

so d(ay,c,) < 6 and d(a,c,) < 20. By symmetry, either, as in case 1, d(a/,a) < 2§ or
d(a,c;) < 24. Tt follows that
d(a,a") <46
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Definition 6.11. Let X be a geodesic metric space. We say that X is d-hyperbolic if
all geodesic triangles in X are J-thin.

Lemma 6.1. Let X be a d-hyperbolic geodesic metric space. Let xg,x1,...,x, € X and
let p € [xo,x,]. Then

d(p, [z, x1] U [z1, 22]... U [2h_1, 24]) < (loga(n) + 1)0
Proof. Let’s say that 287! < n < 2% for k € N. It suffices to prove that
d(p, [xo, z1] U [21, 22]... U [2_1, 7)) < K.

We argue by induction on k. This is clearly true if £ = 1 (ie. n = 2). For k > 1, pick
m = 21, Then there is some p; € [z, Tpn] U [T, T,] with d(p, p1) < §. By the inductive
hypothesis

d(p1, [xo, z1] U [21, 22]... U [2p1, 7)) < (B — 1)

and the result follows.

6.3 Quasi-geodesics

Definition 6.12. A path o : I — X in a geodesic metric space X is a (A, )-quasi-
geodesic, where A > 1, u > 0, if for all ¢,s € I,

length (a(t, ) < Ad(a(t), a(s)) +

Proposition 6.2. Let X be a d-hyperbolic metric space. There exist constants L =
LA\ ), M = M(\ p) such that if z,y € X, a: I — X is a (A, p)-quasi-geodesic with
endpoints x,y and vy = [x,y] then

v C NL(CY), o C NM(”}/)

Proof. We show first the existence of L. Let a € 7 such that d(a,a) = D is maximum.
Let ay # as € v with
d(a,a,) =d(a,as) = D

and let a(t), a(s) points in « realizing d(aq, ), d(as, @), respectively. We consider the
path
B = lar, a(t)] Ua(t, s]) U az, a(s)]
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Clearly d(a, ) > D/2.
We pick points =7 = «(t),za,...,x,—1 = as) such that d(z;, ;1) = 1 for i =
1,..,n—3and d(x,_2,7,-1) < 1. By lemma 6.1

d(a,ay, a(t)] Uz, o) U ... U T2, Ty_1] Ulaz, a(s)]) < (loga(n) + 1)

and
—1

Nl|s]

(loga(n) +1)6 > = — 1 = (2n)° > 2

D
2
Since n — 3 < length (a(t, s])) and d(a(t), a(s)) < 4D we have length (a([t, s])) <
4D + p and we obtain:
(8DA + 21+ 6)? > 27!

which gives a bound L for D that depends only on A, u (and 0).

We show now the existence of M. Let z = a(s). By a continuity argument there is
some y € 7 such that y is at distance at most L from «a(s;) and a(sg) with 57 < s < ss.
It follows that

length(a([s1, s2]) < 2L+ p,

therefore
d(xz,v) < L2 A+1)+u
so we may take M = L(2\ 4+ 1) + p.
[

Corollary 6.3. Let X be a d-hyperbolic metric space and let Y be a geodesic metric
space quasi-isometric to X. Then'Y s hyperbolic.

Proof. Let A be a geodesic triangle in Y. If f : Y — X is a quasi-isometry f(A) is
contained in a finite neighborhood of a (A, 1) quasi-geodesic triangle A" in X, where A, p
depend only on f. By proposition 6.2 A’ is e-thin for some € = (A, p,§) > 0. But then
A is also ¢'-thin for some ¢’ that depends only on ¢ and f. O

6.4 Hyperbolic Groups

Definition 6.13. Let G = (S) where S is finite. We say that G is hyperbolic if the
Cayley graph I' = I'(S, G) is a hyperbolic metric space.
We say that G is d-hyperbolic if all geodesic triangles in I' are J-thin.
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Remark 6.1. By corollary 6.3 if G = (S;) = (S2) with 51,5, finite then I'(S;,G) is
hyperbolic if and only if T'(Ss, G) is hyperbolic, so the definition above does not depend
on the generating set S.

We note that if a group G is not finitely generated then for S = G, I'(S,G) is
bounded, hence hyperbolic. So one can not extend in any reasonable way the definition
of hyperbolicity to groups that are not finitely generated.

Examples. 1. Finitely generated free (or virtually free) groups are hyperbolic.

2. Groups acting discretely and co-compactly on H" are hyperbolic.

3. Z? is not hyperbolic.

4. A finite presentation (S|R) is said to satisfy condition C’(3) if for any two cyclic
permutations 71,75 of words in R U R™! any common initial subword w of 71,75 has
length |w| < £ min{|ry|, |r2|}. It can be shown that C’(%)-groups are hyperbolic. As an
example the group

G = (a, b, ¢, d|abcdbadc)

satisfies the C'(#) condition, so it is hyperbolic.
5. A theorem of Gromov-Olshanskii shows that ‘statistically most groups are hyper-
bolic’: Given p, g € N consider all presentations of the form

(A1, .oy p|ry, oy g)

where the r;’s are cyclically reduced words of the a;’s. Let’s denote by N(t, A\t) (where
A > 1) all presentations of this type such that for all i,

t<lri| <X\

We denote N}, the presentations of hyperbolic groups among those. Then
Ny,

lim ——— =1

oo N(t, M)
Definition 6.14. A Dehn presentation of a group G is a finite presentation (S|R) such
that every reduced word w € F(S) which is equal to the identity in G contains more
than half of a word in R.

Remark 6.2. If (S|R) is a Dehn presentation then the word problem for (S|R) is solvable.

Indeed if w is a word we check if it contains more than half of a relation in R. If not

then w # 1. Otherwise w = wyuw; for some wv € R with |v| < |u|. Then w = wiv™ ws

1

so we replace w by wijv™ wy and we repeat. Since the length decreases this procedure

terminates in finitely many steps.

92



Theorem 6.5. Let G = (S) be a hyperbolic group. Then G has a Dehn presentation.
In particular G is finitely presented and the word problem for G is solvable.

Proof. Assume that triangles in I' = I'(S, G) are 6-thin for § € N. We set
R={we F(9) : |w| <104, wgl}

We claim that (S|R) is a Dehn presentation for G. We will show that if w € F(S) is
word such that w = 1 then w contains more than half of a word in R. We remark that

this is trivially true if |w| < 105. We see w as a closed path of length n = |w| in the
Cayley graph I', w : [0,n] — I", w(0) = w(n) = e. If w contains a subword u of length
< 50 which is not geodesic then there is v with |v| < |u| such that uv € R, so w contains
more than half of a relator and we are done. Otherwise let ¢ € {0,1,2,...,n} be such
that d(w(t), e) is maximum. We consider the triangles:

le,w(t), w(t —5d)],[e, w(t), w(t + 5d)]

Since these two triangles are §-thin and d(w(t),e) > d(w(t—>59),¢e), d(w(t),e) > d(w(t+
5d),e) we have that
d(w(t —20),w(t +20)) <20

so the subword of length 40, [w(t — 20),w(t + 20)] is not geodesic. It follows that w
contains more than half of a word in R.
[

Proposition 6.3. Let G be a hyperbolic group. Then G has finitely many conjugacy
classes of elements of finite order.

Proof. Let (S|R) be a Dehn presentation of G. Let g be an element of finite order and
let w be an element of the conjugacy class of ¢ of minimal length. Then w™ = 1 so the
word w™ contains more than half of a relation r € R. We claim that

\w\§%|+2

Suppose not. We remark that w is cyclically reduced. We have then that r = ryry, with
1| > |72l || < |g—‘ + 2 and w = utwv, r; = vu for some words rq, 72, v, t, u where all the
previous expressions are reduced. Then u~!wu = tvu = tr; is in the conjugacy class of

g. We have that tr; = tr; ' and

[try | < 1t + [ral < [t + [r1] = ]
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which is a contradiction since w is an element of the conjugacy class of ¢ of minimal
length. We remark now that there are finitely many words w of length less than

max{%+2 cr e R}

so there are finitely many conjugacy classes of elements of finite order. O

We turn now our attention to the conjugacy problem. We recall that if g € G = (S)
we denote by |g| the length of a shortest word on S representing g.

Lemma 6.2. Let G = (S|R) be d-hyperbolic (so triangles in I'(S,R) are 0-thin). If

1

g1 € G 1is conjugate to go then there is some x € G such that g, = xgex™" and

|| < (2[S9 + |gi] + |ge]

Proof. Let x be a word of minimal length such that ¢ = zg.z~ .

x1...7, with z; € SU S~!. We have then

Let’s say that x =

(21...2) g1 (2y..m)| <20 + | g1
for all ¢ with |g1| <7 <n—|go|. If
2] > (2S)*H 4 |g1| + [ga| + 1
then there are ¢ < j such that
(z1..2) Lgr (g .ezy) = (w1..25) " Lga (@..x)

SO
(Il....’lfixj+1...l'n)71g1 (I1$1IJ+1ZZ‘”) = g2

which contradicts the minimality of x.

O
Corollary 6.4. The conjugacy problem is solvable for hyperbolic groups.
Proof. Indeed given g1, go € G it suffices to check whether gy = xg12~! for all z with
] < (2IS)* 49+ |g1] + |ge|
O
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Lemma 6.3. Let G = (S) be §-hyperbolic for some § € N, § > 1. Assume that for some
g € G with |g| > 40 we have that |g*| < 2|g| — 25. Then there is some h € G conjugate
to g with |h| < |g|.

Proof. Consider the triangle [1, g, ¢?] in T'(S, G). By d-thinness of this triangle we have
that there are u, s,v € G such that g = usv (where usv is a geodesic word), |u| = |[v| =0
and |vu| <. If we set t = vu we have that

g = usv = ustu™!

and |st| < |g|.
[

Lemma 6.4. Let G = (S) be d-hyperbolic for some § € N, § > 1. Assume that for some
g € G,z € T(S,G) with d(x, gr) > 1000 we have that d(x, g*x) > 2d(z,gx) — 126. Then

d(xz,g"x) > nd(x, gx) — 16nd
for all n € N.
Proof. 1t suffices to show that for all n
d(z,g"z) > d(x,¢g" ') + d(x, gr) — 166

Clearly this holds for n = 1,2. We argue by induction. Assume that it is true for all
k < n. We consider the triangles [z, g"x, "' z], [z, "'z, g"z]. Assume that

d(z,g""'x) < d(z,g"z) + d(z, gr) — 165

By d-thinness of [z, g"x, g" 1] there are vertices u;, uy on the geodesics [¢"z, g" x|, [x, g"]
respectively, such that

d<ulagnx) = d(u2,g"a:) = 89, d(uhuz) <9

n

Similarly by d-thinness of [z, ¢" 'z, g"x] there is a vertex uz € [¢" 'x, g"z] such that

d(us, g"z) = 86 and d(ug, uz) < 6. We have then
d(z, ng) = d(g"_lx, g”“x) < d(g”_lx, ug) + d(uy, us) + d(ug, g"+1x) = 2d(z, gx) — 140

which is a contradiction.
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Proposition 6.4. Let G = (S) be §-hyperbolic for some § € N, § > 1. Assume that g
1s an element of infinite order. Then there are constants ¢ > 0,d > 0 such that

d(1,g") > cn—d
for alln € N.

Proof. 1t is clear that we may replace g by a power, this will only affect the constants
¢,d in the statement. Further it is enough to show that for some x € T'(S, G) there are
constants ¢, d’ so that

d(z,g"x) > cn—d

for all n. Indeed by the triangle inequality
d(1,9") > d(z,g"x) —d(1,z) — d(¢", g"x)

SO
d(1,g") > d(z,g"z) — 2d(1, z)
as d(1,z) =d(g", g"x).

In what follows we pick n > k > 0,k,n € N. It will be clear from the proof how
k,n are chosen. We consider the geodesic [1, g"]. Let m be a vertex on this geodesic at
distance < 1 from its midpoint. Let’s say that there are R vertices in the ball B(m, 1009).
Then we we may pick k£ < R+ 1 so that

d(m, g"m) > 1000.
Let
M =maz{d(1,¢"):1<i< R+ 1}

and let n be such that d(1, ¢") > 10M.
Now by thinness of the quadrilateral

[1,9", ¢"", "

we have that
d(g"m, [1,9"]) < 26

In particular there is a vertex y on [1, ¢g"] such that d(y,¢*m) < 26. Then ¢*[m,y] is
contained in the geodesic [¢¥, ¢**"] and there is some z € [1, g"] such that d(z, g*y) < 20.
It follows that

d(m, g*m) > d(m, z) — 46
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However d(m, z) = d(m,y) + d(y, z) and by the triangle inequality
d(m,y) > d(m, g*m) — 26

and

d(y,z) > d(g"m, g*y) — 46 = d(m,y) — 46 > d(m, g*m) — 66

SO
d(m, g*m) > 2d(m, g"m) — 126.

The assertion now follows by applying lemma 6.4 to g* and m.

It follows from this proposition that if « is a geodesic from 1 to g then
Ug'a
is a quasi-geodesic.

Proposition 6.5. Let G = (S) be 6-hyperbolic and let g € G be an element of infinite
order. Let C(g) be the centralizer of g. Then the quotient C(g)/{g) is finite.

Proof. Let L > 0 be such that for any n € N the geodesic [1,¢"] is contained in the
L-neighborhood of {1,g,...,¢"}. Let s € C(g) and m € N such that

9™ = 2|s| + 20

We consider the quadrilateral [1,¢™,sg™,s|. By d-thinness there is some vertex p €
[1, g™] such that
d(p, [s, sg™]) < 26

It follows that there are g%, ¢’ such that
d(g',¢’s) < 2L+ 26

SO
d(g"7,s) < 2L+ 26

It follows that s = ¢"Ju with |u| < 2L 4 24. Therefore every coset s(g) has a
representative which has word length < 2L + 2. Hence the quotient C(g)/(g) is finite.
[l

Corollary 6.5. If G is hyperbolic then G has no subgroup isomorphic to Z, X 7.

57



6.5 More results and open problems

There is a number of results on hyperbolic groups that we were not able to present in
this short introduction. We give a list of some results hoping that this will give a better
perspective on the subject. Some of the results below can be proven by the techniques
that we have already presented while others are quite deep requiring a quite different
approach.

Theorem 6.6. Let G be a hyperbolic group which is not finite or virtually Z. Then G
contains a free subgroup of rank 2.

Theorem 6.7. Let G be a hyperbolic group and let gy, ...,9, € G. Then there is some
N > 0 such that the group {gV, ..., gY) is free.

Theorem 6.8. (Gromouv-Delzant) Let G be a hyperbolic group and let H be a fized
one-ended group. Then G contains at most finitely many conjugacy classes of subgroups
1somorphic to H.

Theorem 6.9. (Sela-Guirardel-Dahmani) The isomorphism problem is solvable for hy-
perbolic groups.

Theorem 6.10. (Sela) Torsion free hyperbolic groups are Hopf.

There is a number of open questions about hyperbolic groups:

1. Are hyperbolic groups resudually finite?

2. Let G be hyperbolic. Does G have a torsion free subgroup of finite index?

3. Gromov conjectures that if G is torsion free hyperbolic then G has finitely many
torsion free finite extensions.
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