Geometric Group Theory

Cornelia Druţu

University of Oxford

Part C course HT 2025

Theorem

 $H = \pi_1(G, Y, a_0)$ acts on a tree T without inversions and such that

- The quotient graph $H \setminus T$ can be identified with Y;
- 2 Let $q: T \rightarrow Y$ be the quotient map:
 - **1** For all $v \in V(T)$, $\operatorname{Stab}_H(v)$ is a conjugate in H of $G_{q(v)}$;
 - **5** For all $e \in E(T)$, $Stab_H(e)$ is a conjugate in H of $G_{q(e)}$.

Conversely, if a group Γ acts on a tree T with quotient Y then there exists a graph of groups (G,Y) such that $\Gamma \simeq \pi_1(G,Y,a_0)$.

Conversely, if a group Γ acts on a tree T with quotient Y then there exists a graph of groups (G,Y) such that $\Gamma \simeq \pi_1(G,Y,a_0)$.

Indeed, suppose $\Gamma \curvearrowright T$, $Y = \Gamma \backslash T$ and $p : T \to Y$.

Let $X \subset S \subset T$ be such that p(X) is a maximal tree of Y, p(S) = Y and $p \mid_{\text{edges of } S}$ is 1-to-1.

Notation: If v is a vertex of Y and e is an edge of Y, let

- v^X be the vertex of X such that $p(v^X) = v$;
- e^S be the edge of S such that $p(e^S) = e$.

We define a graph of groups with graph Y:

- The map G:
 - Let $G_v = \operatorname{Stab}_{\Gamma}(v^X)$;
 - Let $G_e = \operatorname{Stab}_{\Gamma}(e^{S})$.

- The map G:
 - Let $G_v = \operatorname{Stab}_{\Gamma}(v^X)$;
 - Let $G_e = \operatorname{Stab}_{\Gamma}(e^S)$.
- ② For each edge e, we define $\alpha_e : G_e \to G_{t(e)}$: For all $x \in V(S)$, define

$$g_x = \begin{cases} 1 & \text{if } x \in V(X) \\ \text{some } g_x \text{ such that } g_x x \in V(X) & \textit{otherwise}. \end{cases}$$

Define
$$\alpha_e: G_e \to G_{t(e)}, \alpha_e(g) = g_{t(e)}gg_{t(e)}^{-1}$$
.

We can define a homomorphism $\varphi : F(G, Y) \to \Gamma$ by:

- $\forall a \in V(Y), \varphi |_{G_a} = \operatorname{incl}_{G_a};$
- $\forall e \in E(Y)$, e = [y, x], $\varphi(e) = g_y g_x^{-1}$.

We can define a homomorphism $\varphi : F(G, Y) \to \Gamma$ by:

- $\forall a \in V(Y), \varphi |_{G_a} = \operatorname{incl}_{G_a};$
- $\forall e \in E(Y)$, e = [y, x], $\varphi(e) = g_y g_x^{-1}$.

It satisfies the relations:

$$\varphi(\bar{e}) = g_x g_y^{-1} = (g_y g_x^{-1})^{-1} = \varphi(e)^{-1}$$

$$\varphi(e\alpha_{e}(g)e^{-1}) = (g_{y}g_{x}^{-1})(g_{x}gg_{x}^{-1})(g_{x}g_{y}^{-1}) = g_{y}gg_{y}^{-1} = \varphi(\alpha_{\bar{e}}(g))$$

Also, $\forall e \in p(X)$, $\varphi(e) = 1$. Hence, φ defines a homomorphism

$$\bar{\varphi}:\pi_1(G,Y,p(X))\simeq\pi_1(G,Y,a_0)\to\Gamma$$

Hence, φ defines a homomorphism

$$\bar{\varphi}:\pi_1(G,Y,p(X))\simeq\pi_1(G,Y,a_0)\to\Gamma$$

Theorem

The homomorphism $\bar{\varphi}$ is an isomorphism. If $\widetilde{T} = \mathcal{T}(G, Y, a_0)$ is the universal covering tree of (G, Y) then there exists a graph isomorphism $f: \widetilde{T} \to T$ such that $\forall g \in \pi_1(G, Y, a_0), \ \forall v \in V(\widetilde{T})$,

$$f(g \cdot v) = \bar{\varphi}(g) \cdot f(v).$$

Proof: Not provided and non-examinable.

Subgroups

Theorem

Let $\Gamma = \pi_1(G, Y, a_0)$. If $B \leq \Gamma$ then there exists (H, Z) a graph of groups such that $B = \pi_1(H, Z, b_0)$ and

- for all $v \in V(Z)$, $H_v \leq gG_ag^{-1}$ for some $a \in V(Y)$, $g \in \Gamma$;
- for all $e \in E(Z)$, $H_e \le \gamma G_y \gamma^{-1}$, for some $y \in E(Y)$, $\gamma \in \Gamma$.

Proof.

 Γ acts on a tree T with quotient a graph of groups (G,Y). The subgroup B acts on T, $\operatorname{Stab}_B(v) \leq \operatorname{Stab}_\Gamma(v)$ for all $v \in V(T)$ and $\operatorname{Stab}_B(e) \leq \operatorname{Stab}_\Gamma(e)$ for all $e \in E(T)$.

NB It may be that, while Y is finite, Z is infinite.

Subgroups

Theorem (Kurosh)

Suppose $G = G_1 * ... * G_n$. If $H \le G$ then

$$H = (*_{i \in I}H_i) * F$$

where I is finite or countable, F is a free group and the H_i are subgroups of conjugates of G_i .

Unique decomposition I

We say that G is indecomposable if $G \neq A * B$.

Theorem (Grushko)

Suppose G is finitely generated. There exists indecomposable $G_1, ..., G_k$ such that

$$G = G_1 * \dots * G_k * F_n$$

Moreover, if there exist other indecomposable $H_1, ..., H_m$ such that

$$G = H_1 * ... * H_m * F_r$$

then m = k, r = n and, after reordering, H_i is conjugate to G_i for all i.

Unique decomposition II

Theorem (Dunwoody)

Suppose Γ is finitely presented. Then Γ can be written as $\pi_1(G,Y,a_0)$ where (G,Y) is a finite graph of groups such that all edge groups are finite and all the G_V do not split over finite groups.

Theorem (Stallings)

A group Γ does not split over finite groups if and only if it is one-ended.

A group Γ is one-ended if any (every) Cayley graph cannot be disconnected by removing a compact subset.

Quasi-isometry

Definition

Let $f: X \to Y$ be a map between metric spaces.

• We say that f is an (L, A)-quasi-isometric embedding if for some constants $L \ge 1$, $A \ge 0$ and for all $x_1, x_2 \in X$ we have

$$\frac{1}{L}d(x_1,x_2) - A \le d(f(x_1),f(x_2)) \le Ld(x_1,x_2) + A$$

It is called a quasi-isometry if moreover we have that for all $y \in Y$, there exists some $x \in X$ such that $d(y, f(x)) \le A$.

- ② If $I \subseteq \mathbb{R}$ is an interval, then an (L, A)-quasi-isometric embedding $\gamma: I \to X$ is called an (L, A)-quasi-geodesic.
- **3** If there exists a quasi-isometry $f: X \to Y$ between two metric spaces then we say that X and Y are quasi-isometric.

Quasi-isometry

Examples

- ullet \mathbb{Z}^2 and \mathbb{R}^2 are quasi-isometric.
- ② If G is a finitely generated group with finite generating sets S, S' then the Cayley graphs $\Gamma(S, G)$, $\Gamma(S', G)$ are quasi-isometric.
- **3** If T_n is the n-valent tree, then $T_n \sim T_3$ for all $n \in \mathbb{N}$.

The following theorem implies the first example above and is our main source of quasi-isometries.

Quasi-isometry

The following theorem implies the first example above and is our main source of quasi-isometries.

Theorem (Milnor-Švarc)

Suppose G acts by isometries on a metric space X such that

- ① a X is geodesic;
 - X is proper (closed balls are compact);
- 2 the action is
 - properly discontinuous: i.e. given a compact $K \subseteq X$, the set $\{g \in G : g(K) \cap K \neq \emptyset\}$ is finite;
 - **6** cocompact: i.e. there exists a compact $K' \subseteq X$ such that GK' = X;

then G is finitely generated and every orbit map $G \to X$, $g \mapsto g \cdot x_0$ is a quasi-isometry when G is endowed with a word metric.

Proof is non-examinable.