
Geometric Group Theory

Problem Sheet 4

Section A

1. i) Show that the relation of quasi-isometry of metric spaces ∼ is an
equivalence relation.

ii) Let S1, S2 be finite generating sets of a groupG. Show that Γ(S1, G) ∼
Γ(S2, G).

Solution. i) Let f : X → Y a (K,A)-quasi-isometry. Define a ‘quasi-
inverse’ g : Y → X as follows: Given y ∈ Y pick x ∈ X such that
d(y, f(x)) ≤ A. Define g(y) = x. Then g is also a quasi-isometry: Let x ∈ X
and y = f(x) then g(y) = x1 for some x1 for which d(f(x), f(x1)) ≤ A. So
d(x, x1) ≤ KA+A.

It is clear that X ∼ Y, Y ∼ Z implies X ∼ Z as the composition of
quasi-isometries is a quasi-isometry.

ii) We consider the identity map on the vertices f : Γ(G,S1) → Γ(G,S2).
We can write each element of S1 as a word on S2 and each element of S2 as
a word on S1. The maximum length of all these words controls the quasi-
isometry constants.

2. Show that the groups Z2 and Z3 are not quasi-isometric (hint : growth)

Solution. Let Γ1,Γ2 be respectively the Cayley graphs of Z2, Z3 with
respect to the standard generators. Then the ball or radius n, B1(n) of Γ1

has less than 4n2 vertices while the ball of radius n, B2(n) of Γ2 has more
than n3 vertices. Let f : Γ2 → Γ1 be a quasi-isometry. Without loss of
generality we may assume that f maps vertices to vertices.

There is some constant C > 0 such that f(B2(n)) is contained in a ball
B1(Cn). Also there is a contant D so that at most D distinct vertices can
have the same image under f . It follows that f(B2(n)) has at least n3/D
vertices. On the other hand B1(Cn) has less than 4Cn2 vertices. So we get
a contradiction for large n.

Section B

3. Show that the Cayley graph Γ of an infinite finitely generated group G
contains a bi-infinite geodesic.
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Solution. Let x be a fixed vertex. Consider a sequence of vertices xn
such that d(xn, x) → ∞. We pick geodesic paths pn joining xn to x. Since Γ
is locally finite by passing to a subsequence we may assume that the paths
pn converge to an infinite path p. Let yn be a sequence of distinct vertices
on p. For each n we pick gn such that gnyn = x. Since the Γ is locally
finite, after passing to a subsequence, the paths gnp converge to a bi-infinite
geodesic.

4. i) Show that any metric space X has a (1, 1)-net.
ii) Show that if N ⊂ X is a net then X ∼ N .
iii) Show that X ∼ Y if and only if there are nets N1 ⊂ X,N2 ⊂ Y and

a bilipschitz map f : N1 → N2.
iv) Let G be a f.g. group. Show that H < G is a net in G if and only if

H is a finite index subgroup of G.

Solution. i) Let N be a maximal subset of X such that for any a, b ∈ N
d(a, b) ≥ 1. Such anN exists by Zorn’s lemma. Now if x ∈ X and d(x, a) ≥ 1
for any a ∈ N then N is not maximal. So there is some a ∈ N such that
d(a, x) ≤ 1.

ii) If N is a (m,n)-net define f : X → N so that d(f(x), x) ≤ m for all
x. Clearly this is possible. One sees easily that f is a quasi-isometry.

iii) Let f : X → Y be a (K,A)-quasi-isometry. Pick N1 an (n, n)-net in
X with n = 2K(A+ 1) + A (sufficiently large). Then d(f(x), f(y)) ≥ 1 for
x ̸= y so f is injective on N1. Also

d(f(x), f(y)) ≤ Kd(x, y) +A ≤ KAd(x, y)

and

d(f(x), f(y)) ≥ d(x, y)

K
−A ≥ d(x, y)

K
− d(x, y)

2K
≥ d(x, y)

2K

Finally since for any y ∈ Y there is an x ∈ X such that d(y, f(x)) ≤ A
and there is an a ∈ N1 with d(a, x) ≤ n we have that

d(f(n), y) ≤ A+Kn+A.

so f(N1) = N2 is a net in Y .
iv) Clearly if H is of index n then H is an (n, 1) net in G. Assume that

H is an (n, 1) net in G. Let’s say that there are M words on the generating
set of G of length ≤ n. For every g ∈ G gw ∈ H for some word of length
≤ n. So g ∈ Hw−1. It follows that the index of H in G is bounded by M .

5. Show that F2 × Z has one end (where F2 is the free group of rank 2).

Solution.
Let a, b be a generating set of F2. Then S = (a, 0), (b, 0), (0, 1) is a

generating set of G = F2 × Z. If X = Γ(S,G) has more than one end then
there is a finite set of vertices, K, of X such that X −K has more than 1
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unbounded component. If p2 : F2 ×Z → Z is the projection map then there
is some n such that p2(K) ⊂ [−n, n]. Let p1 : F2×Z → F2 be the projection
to F2 and let K ′ = p1(X)× [−n, n]. Then K ′ is finite and contains K. We
claim that any two vertices of X −K ′ can be connected by a path, hence X
is 1 ended. Indeed let (v1, n1) be a vertex of X −K ′ and let v /∈ p1(K). If
N > n then we join (v1, n1) to (v1, N) or to (v1,−N) by a path in v1 × Z
that does not meet K ′. It is clear that this is possible. Then we join (v, 0)
to (v,N) and to (v,−N) by a path in v×Z. Finally if q is a path joing v1, v
is the Cayley graph of F2 we may join (v1, N) and (v1,−N) to (v,N) resp.
(v,−N) by q × {N}, resp q × {−N}. So (v1, n1) can be joined to (v, 0). It
follows that X −K ′ is connected and X −K is one ended.

6. Let X be a δ-hyperbolic geodesic metric space. If L is a geodesic in X
and a ∈ X we say that b ∈ L is a projection of a to L if

d(a, b) = inf{d(a, x) : x ∈ L}.

Show that if b1, b2 are projections of a to L then d(b1, b2) ≤ 2δ.
Solution. This follows easily considering the geodesic triangle [a, b1, b2].

7. Let G =< S|R > be a torsion free δ-hyperbolic group. Show that if
g3 = h3 then g = h.

Solution. Clearly g, h lie in the centralizer C of g3. But the centralizer
is virtually cyclic so by Stallings theorem it splits over a finite group. So
either C = A ∗ B or C = A∗e. In the second case C = A ∗ Z. In the
first case A,B are infinite so C has exponential growth by normal forms-
which is impossible. In the second case if A is non-trivial then C has again
exponential growth so in fact A = {e} and C = Z. Since g, h ∈ C we have
g = h.
8. Let G =< S|R > be δ-hyperbolic group. Show that G has no subgroup
isomorphic to < x, t|txt−1 = x2 >.

Solution. tnxt−n = x2
n
which contradicts the fact that xn is a quasi-

geodesic.

9. Let G =< S|R > be a be a Dehn presentation of a of a δ-hyperbolic
group. Show that we can decide whether a word w on S represents an
infinite order element.

Solution. To clarify, our input for the algorithm is the finite presentation
< S|R > and δ.

1st solution: We use a Dehn presentation and using the solution to the
conjugacy problem we check successively for the powers of w, wk, whether
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they are conjugate to an element of length ≤ max{|r| + 2} where r ranges
over all relations of the Dehn presentation. Eventually we will either find
that wk = 1 or we will find two powers wk, wm which are conjugate to the
same element a. It follows that these are conjugate so there is some t such
that twkt−1 = wm. However this contradicts the fact that < w > is a quasi-
geodesic as in exercise 8. So either some power is equal to 1 or some power
is not conjugate to any element of length ≤ max{|r|+2} (and hence w is of
infinite order).

2nd solution: Enumerate powers wn and check if they are equal to 1.
In parallel try to find a vertex m of the Cayley graph and a power wk such
that d(w2km,wkm) > 2d(m,wkm) − 12δ and d(e, wk) > 100δ. If w is of
finite order the first procedure will terminate. If w is of infinite order then
by the proof of the proposition 6.4 in the notes showing that < w > is a
quasi-geodesic wk and m with the above properties exist and we can detect
them since the word problem is solvable in G.

Section C

10. Let G =< S|R > be a Dehn presentation of a δ-hyperbolic group.
Show that we can decide whether a word w on S lies in the subgroup < v >.

Solution. To clarify, our input for the algorithm is the finite presentation
< S|R >, δ and the words v, w.

The proof shows of proposition 6.4 that there is some vertex m in the
Cayley graph and some power vk such that d(v2km, vkm) ≥ 2d(vkm,m) −
12δ. However since we can solve the word problem we can find vk,m just
by calculating multiplication tables for larger and larger balls and powers
of v. Once those are found we get an estimate, as in proposition 6.4, of the
form d(vn, e) ≥ cn − d for some c, d > 0. So it is enough to check whether
cn = w for all n for which cn− d ≤ |w|.
11. (Ends of Groups.) i. Show that if a finitely generated group G splits
over a finite group then G has more than 1 end.

(Hint : This can be done either by constructing the Cayley graph Γ or
by normal forms. If e.g. G = A ∗C B note that words of the form (ab)n and
(ba)n lie in different components of Γ \ C.)

ii. Show that two quasi-isometric locally finite graphs have the same
number of ends. Deduce that the number of ends of a finitely generated
group is well defined (ie it does not depend on the Cayley graph that we
pick).

iii. Show that a finitely generated group has 0,1,2 or ∞ ends.

Solution. Let’s say that G = A ∗C B with C finite. Pick generating
sets SA = {s1, ..., sn}, SB = {t1, ..., tk} of A,B respectively. If S = SA ∪ SB
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consider the Cayley graph X of G with respect to S. We claim that X −C
has 2 unbounded components. Let a ∈ SA−C, b ∈ SB−C Consider reduced
words of the form wn = (ab)n with and vn = (ba)n. wn, vn are vertices of
X and any path joining wn, vn has to go through C. Indeed a path from
vn to wn corresponds to a word p = x1...xs with xi ∈ SA ∪ SB. Let k be
maximal such that the reduced word corresponding to wnx1...xk starts with
an element of A. Say wnx1...xk = a′y1...yr where a′y1...yr is reduced word.
Then wnx1...xkxk+1 = a′y1...yrxk+1. If r ≥ 1 then after reducing still we
get a word starting with an element of A. It follows that wnx1...xk = a′

and in fact a′ ∈ C, so the path p goes through C. Also d(wn, C), d(vn, C) ≥
2n. A single connected component Y1 of X − C contains all wn and a
different connected component Y2 of X − C contains all vn so Y1, Y2 are
unbounded. One can argue similarly in the HNN-extension case using again
normal forms. Then C separates tn from t−n where t is the stable letter of
the HNN-extension.

A more geometric argument runs as follows:
If G = A∗H B or G = A∗H we may pick a finite generating set S of G so

that, in the first case, all generators lie in A ∪B or, in the second case, the
generators are given by the stable letter t and a finite set of elements of A.
To see this take any finite set of generators of G, S′ and write each element of
S′ in normal form with respect to the amalgam or the HNN-extension. Now
take as new generating set S of G the set of all elements of A,B (and t in the
HNN-extension case) that appear in these normal form expressions. Let Γ
be the Cayley graph of G with respect to S and let T be the Bass-Serre tree
of G for the splitting G = A∗H B or G = A∗H . We consider the barycentric
subdivisions Γ′ of Γ and T ′ of T . We define now a simplicial map p : Γ′ → T ′.
Let e be the edge of T with stabilizer H. Let v be the midpoint of e. So v
is a vertex of T ′. We recall that the vertices of Γ are the elements of G. If g
is a vertex of Γ define p(g) = gv. If (g, gs) is an edge of Γ (so g ∈ G, s ∈ S)
then d(sv, v) is either 2 or 0. So d(gv, gsv) is 2 or 0 and we can extend p to
(g, gs) either by mapping it to the 2 consecutive edges joining gv, gsv or by
collapsing it to the vertex gv. This shows that the map p can be extended
from the set of vertices of Γ to a simplicial map p : Γ′ → T ′. Since the
map p′ is simplicial we have that d(p(a), p(b)) ≤ d(a, b) for all vertices of
Γ. Further p is clearly onto. By our choice of v, p−1(v) = H. Let n ∈ N
and let v1, v2 be vertices of T ′−T lying in distinct connected components of
T ′ − v such that d(v1, v) ≥ n, d(v2, v) ≥ n. Let g1 ∈ p−1(v1), g2 ∈ p−1(v2).
Then if α is a path in Γ′ joining g1 to g2, v lies in p(α). It follows that α
interects p−1(v) = H. Further if h is the first vertex of α lying in H and
α1 = [g1, h] the subpath of α with endpoints g1, h, then p(α1) joins v1 to
v. It follows that length(p(α1)) ≥ n. Since p is distance non increasing we
conclude that d(g1, H) ≥ n. Similarly d(g2, H) ≥ n. Since this is true for
any n we conclude that H coarsely separates Γ. Here H is finite so it is a
compact subset of the Cayley graph.
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ii. Let f : X → Y be a quasi-isometry between two locally finite graphs.
Let K be a compact subset of X such that X −K has n ends. Let r1, ..., rn
be geodesic rays representing these ends, i.e. d(ri(t),K) ≥ t for all t and
there is no path joining ri(t) to rj(t) in X −K for any t > 0.

If f is an (A,B)-quasi-isometry

d(f(ri(t)), f(K)) ≥ t/A−B

so for t big enough f(ri(t)) is at least at distance A + B from f(K). It
follows that we can join the images of successive vertices of f(ri) and obtain
a path pi(t) such that

d(pi(t), f(K)) ≥ t/A− 2B −A

for all t.
Assume that for any D > 0 there is a path q = (v1, ...., vr) (vi vertices)

joining some vertices f(ri(s)), f(rj(t)) (i ̸= j) outside ND(f(K)). We set
u1 = ri(s), ur = rj(t) and pick ui such that d(f(ui), vi) ≤ B. Then, for D
big enough, the geodesic segments joining ui, ui+1, (i = 1, ..., r − 1) do no
intersect K and we obtain thus is a path in X \ K joining ri(t) to rj(t) a
contradiction.

We conclude that there is some D > 0 such that Y minus the D-
neighborhood of f(K) has at least n unbounded connected components.

So e(Y ) ≥ e(X). But we have the opposite inequality too using a quasi-
isometry g : Y → X. So e(X) = e(Y ).

Since any two Cayley graphs of the same f.g. group are quasi-isometric
it doesn’t matter which one we pick to define ends.

iii. Z2 has 0 ends, Z has 2 ends, Z2 has 1 end, and F2 has ∞ ends. So
all these are possible.

Let X be the Cayley graph of a f.g. group G. If X has more than 2 ends
then there is a compact K ⊂ X such that X −K has at least 3 ends. We
how now inductively that X has more than n ends for any n ∈ N. Assume
that M is compact and X − M has n unbounded connected components.
Let Y be an unbounded component of X −M . Let v ∈ Y be a vertex such
that d(v,M) > diam(M). If w is a vertex of M (we may assume K contains
vertices) take g ∈ G such that gw = v. Then L = M ∪ gM is compact and
X − L has at least 2n − 1 unbounded components. To see this note that
X−gM has n unbounded connected components. However gM is contained
in Y so at least n−1 of the connected components of X−gM are contained
in Y . Indeed if 2 components C1, C2 intersected X − Y at the points a, b
then we could join a to a point a′ in M and b to a point b′ in M by paths
disjoint from Y . Finally we join a′, b′ by a geodesic which clearly is disjoint
from gM producing a path joining C1, C2 in X − gM , a contradiction. This

6



shows that Y − gM has at least n − 1 unbounded connected components
and X − L has at least 2n− 1 ≥ n+ 1 unbounded connected components.

12. The objective of this exercise is to show that torsion free groups quasi-
isometric to free groups are free.

Assume that a finitely generated group G is quasi-isometric to the free
group Fn (with n ≥ 2)

i. Show that G has infinitely many ends. (You may use the results of
the previous exercise).

ii. Consider the Grusko decomposition of G as a free product: G =
G1 ∗ ... ∗Gk ∗ Fs. Show that none of the Gi’s is 1-ended.

Hint: Note that if Gi is infinite then its Cayley graph contains a bi-
infinite geodesic.

iii. Show that if H is a torsion free 2-ended group then H is isomorphic
to Z.

Hint: Use Stallings Theorem.

iv. Assume now that G is torsion free. Show that all Gi’s are finite (and
hence trivial) to conclude that G ∼= Fs.

v. Deduce that if a f.g. torsion free group K has a finite index free
subgroup then K is free.

Solution.
i. By the result of the previous exercise e(G) = e(Fn) so e(G) = ∞.

ii. If Gi is finite then it has 0 ends. If Gi is infinite then its Cayley
graph contains a bi-infinite geodesic. Let’s pick a finite set of generators for
G which is a union of the finite generating sets of Gi and Fs. Then Gi is
isometrically embedded in G by the normal form theorem for free products.
It follows that the Cayley graph Γ of G contains a bi-infinite geodesic L
and all vertices of L are elements of Gi. Let f : G → Fn be a quasi-
isometry. If ai(i ∈ Z) are the successive vertices of L then if we join for all i
f(ai) to f(ai+1) by a geodesic segment we obtain a quasi-geodesic (as f is a
quasi-isometry). Clearly f(L) is at finite distance from this quasigeodesic.
However any quasi-geodesic in a tree (the Cayley graph of Fn) is at finite
distance from a geodesic. So f(L) is at finite distance from some geodesic
L′ and f(Gi) contains f(L). It follows that a point on L′ separates f(Gi)
to at least 2 infinite components. Since f is a quasi-isometry G has at least
2 ends.

iii. Since e(H) > 1 H splits as A∗C or A ∗C B with C finite. Since it is
torsion free we have C ∼= {e}. But H has 2 ends and A ∗ B has infinitely
many ends so necessarily H ∼= A∗e ∼= A ∗ Z. However if A is infinite H has
infinitely many ends so A ∼= {e} and H ∼= Z.

iv. Since G is torsion free if Gi has infinitely many ends then it splits
as a free product by Stallings theorem. However Gi is indecomposable, a
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contradiction. So Gi has 2 ends. By the previous part Gi
∼= Z. But then Gi

is contained in the free factor Fs (or put it differently there are no Gi’s).

v. K is q.i. to a free group since it has a finite index free subgroup. So
by the previous part it is free.
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