

Geometric Group Theory

Problem Sheet 4

Section A

1. i) Show that the relation of quasi-isometry of metric spaces \sim is an equivalence relation.
ii) Let S_1, S_2 be finite generating sets of a group G . Show that $\Gamma(S_1, G) \sim \Gamma(S_2, G)$.

Solution. i) Let $f : X \rightarrow Y$ a (K, A) -quasi-isometry. Define a ‘quasi-inverse’ $g : Y \rightarrow X$ as follows: Given $y \in Y$ pick $x \in X$ such that $d(y, f(x)) \leq A$. Define $g(y) = x$. Then g is also a quasi-isometry: Let $x \in X$ and $y = f(x)$ then $g(y) = x_1$ for some x_1 for which $d(f(x), f(x_1)) \leq A$. So $d(x, x_1) \leq KA + A$.

It is clear that $X \sim Y, Y \sim Z$ implies $X \sim Z$ as the composition of quasi-isometries is a quasi-isometry.

ii) We consider the identity map on the vertices $f : \Gamma(G, S_1) \rightarrow \Gamma(G, S_2)$. We can write each element of S_1 as a word on S_2 and each element of S_2 as a word on S_1 . The maximum length of all these words controls the quasi-isometry constants.

2. Show that the groups \mathbb{Z}^2 and \mathbb{Z}^3 are not quasi-isometric (*hint: growth*)

Solution. Let Γ_1, Γ_2 be respectively the Cayley graphs of $\mathbb{Z}^2, \mathbb{Z}^3$ with respect to the standard generators. Then the ball of radius $n, B^1(n)$ of Γ_1 has less than $4n^2$ vertices while the ball of radius $n, B^2(n)$ of Γ_2 has more than n^3 vertices. Let $f : \Gamma_2 \rightarrow \Gamma_1$ be a quasi-isometry. Without loss of generality we may assume that f maps vertices to vertices.

There is some constant $C > 0$ such that $f(B^2(n))$ is contained in a ball $B^1(Cn)$. Also there is a constant D so that at most D distinct vertices can have the same image under f . It follows that $f(B^2(n))$ has at least n^3/D vertices. On the other hand $B^1(Cn)$ has less than $4Cn^2$ vertices. So we get a contradiction for large n .

Section B

3. Show that the Cayley graph Γ of an infinite finitely generated group G contains a bi-infinite geodesic.

Solution. Let x be a fixed vertex. Consider a sequence of vertices x_n such that $d(x_n, x) \rightarrow \infty$. We pick geodesic paths p_n joining x_n to x . Since Γ is locally finite by passing to a subsequence we may assume that the paths p_n converge to an infinite path p . Let y_n be a sequence of distinct vertices on p . For each n we pick g_n such that $g_n y_n = x$. Since the Γ is locally finite, after passing to a subsequence, the paths $g_n p$ converge to a bi-infinite geodesic.

4. i) Show that any metric space X has a $(1, 1)$ -net.
- ii) Show that if $N \subset X$ is a net then $X \sim N$.
- iii) Show that $X \sim Y$ if and only if there are nets $N_1 \subset X, N_2 \subset Y$ and a bilipschitz map $f : N_1 \rightarrow N_2$.
- iv) Let G be a f.g. group. Show that $H < G$ is a net in G if and only if H is a finite index subgroup of G .

Solution. i) Let N be a maximal subset of X such that for any $a, b \in N$ $d(a, b) \geq 1$. Such an N exists by Zorn's lemma. Now if $x \in X$ and $d(x, a) \geq 1$ for any $a \in N$ then N is not maximal. So there is some $a \in N$ such that $d(a, x) \leq 1$.

ii) If N is a (m, n) -net define $f : X \rightarrow N$ so that $d(f(x), x) \leq m$ for all x . Clearly this is possible. One sees easily that f is a quasi-isometry.

iii) Let $f : X \rightarrow Y$ be a (K, A) -quasi-isometry. Pick N_1 an (n, n) -net in X with $n = 2K(A + 1) + A$ (sufficiently large). Then $d(f(x), f(y)) \geq 1$ for $x \neq y$ so f is injective on N_1 . Also

$$d(f(x), f(y)) \leq Kd(x, y) + A \leq KAd(x, y)$$

and

$$d(f(x), f(y)) \geq \frac{d(x, y)}{K} - A \geq \frac{d(x, y)}{K} - \frac{d(x, y)}{2K} \geq \frac{d(x, y)}{2K}$$

Finally since for any $y \in Y$ there is an $x \in X$ such that $d(y, f(x)) \leq A$ and there is an $a \in N_1$ with $d(a, x) \leq n$ we have that

$$d(f(n), y) \leq A + Kn + A.$$

so $f(N_1) = N_2$ is a net in Y .

iv) Clearly if H is of index n then H is an $(n, 1)$ net in G . Assume that H is an $(n, 1)$ net in G . Let's say that there are M words on the generating set of G of length $\leq n$. For every $g \in G$ $gw \in H$ for some word of length $\leq n$. So $g \in Hw^{-1}$. It follows that the index of H in G is bounded by M .

5. Show that $\mathbb{F}_2 \times \mathbb{Z}$ has one end (where \mathbb{F}_2 is the free group of rank 2).

Solution.

Let a, b be a generating set of \mathbb{F}_2 . Then $S = (a, 0), (b, 0), (0, 1)$ is a generating set of $G = \mathbb{F}_2 \times \mathbb{Z}$. If $X = \Gamma(S, G)$ has more than one end then there is a finite set of vertices, K , of X such that $X - K$ has more than 1

unbounded component. If $p_2 : \mathbb{F}_2 \times \mathbb{Z} \rightarrow \mathbb{Z}$ is the projection map then there is some n such that $p_2(K) \subset [-n, n]$. Let $p_1 : \mathbb{F}_2 \times \mathbb{Z} \rightarrow \mathbb{F}_2$ be the projection to \mathbb{F}_2 and let $K' = p_1(X) \times [-n, n]$. Then K' is finite and contains K . We claim that any two vertices of $X - K'$ can be connected by a path, hence X is 1 ended. Indeed let (v_1, n_1) be a vertex of $X - K'$ and let $v \notin p_1(K)$. If $N > n$ then we join (v_1, n_1) to (v_1, N) or to $(v_1, -N)$ by a path in $v_1 \times \mathbb{Z}$ that does not meet K' . It is clear that this is possible. Then we join $(v, 0)$ to (v, N) and to $(v, -N)$ by a path in $v \times \mathbb{Z}$. Finally if q is a path joining v_1, v is the Cayley graph of \mathbb{F}_2 we may join (v_1, N) and $(v_1, -N)$ to (v, N) resp. $(v, -N)$ by $q \times \{N\}$, resp $q \times \{-N\}$. So (v_1, n_1) can be joined to $(v, 0)$. It follows that $X - K'$ is connected and $X - K$ is one ended.

6. Let X be a δ -hyperbolic geodesic metric space. If L is a geodesic in X and $a \in X$ we say that $b \in L$ is a projection of a to L if

$$d(a, b) = \inf\{d(a, x) : x \in L\}.$$

Show that if b_1, b_2 are projections of a to L then $d(b_1, b_2) \leq 2\delta$.

Solution. This follows easily considering the geodesic triangle $[a, b_1, b_2]$.

7. Let $G = \langle S | R \rangle$ be a torsion free δ -hyperbolic group. Show that if $g^3 = h^3$ then $g = h$.

Solution. Clearly g, h lie in the centralizer C of g^3 . But the centralizer is virtually cyclic so by Stallings theorem it splits over a finite group. So either $C = A * B$ or $C = A *_{e_1}$. In the second case $C = A * \mathbb{Z}$. In the first case A, B are infinite so C has exponential growth by normal forms- which is impossible. In the second case if A is non-trivial then C has again exponential growth so in fact $A = \{e\}$ and $C = \mathbb{Z}$. Since $g, h \in C$ we have $g = h$.

8. Let $G = \langle S | R \rangle$ be δ -hyperbolic group. Show that G has no subgroup isomorphic to $\langle x, t | txt^{-1} = x^2 \rangle$.

Solution. $t^n xt^{-n} = x^{2^n}$ which contradicts the fact that x^n is a quasi-geodesic.

9. Let $G = \langle S | R \rangle$ be a Dehn presentation of a δ -hyperbolic group. Show that we can decide whether a word w on S represents an infinite order element.

Solution. To clarify, our input for the algorithm is the finite presentation $\langle S | R \rangle$ and δ .

1st solution: We use a Dehn presentation and using the solution to the conjugacy problem we check successively for the powers of w, w^k , whether

they are conjugate to an element of length $\leq \max\{|r| + 2\}$ where r ranges over all relations of the Dehn presentation. Eventually we will either find that $w^k = 1$ or we will find two powers w^k, w^m which are conjugate to the same element a . It follows that these are conjugate so there is some t such that $tw^kt^{-1} = w^m$. However this contradicts the fact that $\langle w \rangle$ is a quasi-geodesic as in exercise 8. So either some power is equal to 1 or some power is not conjugate to any element of length $\leq \max\{|r| + 2\}$ (and hence w is of infinite order).

2nd solution: Enumerate powers w^n and check if they are equal to 1. In parallel try to find a vertex m of the Cayley graph and a power w^k such that $d(w^{2k}m, w^k m) > 2d(m, w^k m) - 12\delta$ and $d(e, w^k) > 100\delta$. If w is of finite order the first procedure will terminate. If w is of infinite order then by the proof of the proposition 6.4 in the notes showing that $\langle w \rangle$ is a quasi-geodesic w^k and m with the above properties exist and we can detect them since the word problem is solvable in G .

Section C

10. Let $G = \langle S|R \rangle$ be a Dehn presentation of a δ -hyperbolic group. Show that we can decide whether a word w on S lies in the subgroup $\langle v \rangle$.

Solution. To clarify, our input for the algorithm is the finite presentation $\langle S|R \rangle$, δ and the words v, w .

The proof shows of proposition 6.4 that there is some vertex m in the Cayley graph and some power v^k such that $d(v^{2k}m, v^k m) \geq 2d(v^k m, m) - 12\delta$. However since we can solve the word problem we can find v^k, m just by calculating multiplication tables for larger and larger balls and powers of v . Once those are found we get an estimate, as in proposition 6.4, of the form $d(v^n, e) \geq cn - d$ for some $c, d > 0$. So it is enough to check whether $c^n = w$ for all n for which $cn - d \leq |w|$.

11. (Ends of Groups.) i. Show that if a finitely generated group G splits over a finite group then G has more than 1 end.

(*Hint:* This can be done either by constructing the Cayley graph Γ or by normal forms. If e.g. $G = A *_C B$ note that words of the form $(ab)^n$ and $(ba)^n$ lie in different components of $\Gamma \setminus C$.)

ii. Show that two quasi-isometric locally finite graphs have the same number of ends. Deduce that the number of ends of a finitely generated group is well defined (ie it does not depend on the Cayley graph that we pick).

iii. Show that a finitely generated group has 0,1,2 or ∞ ends.

Solution. Let's say that $G = A *_C B$ with C finite. Pick generating sets $S_A = \{s_1, \dots, s_n\}$, $S_B = \{t_1, \dots, t_k\}$ of A, B respectively. If $S = S_A \cup S_B$

consider the Cayley graph X of G with respect to S . We claim that $X - C$ has 2 unbounded components. Let $a \in S_A - C, b \in S_B - C$ Consider reduced words of the form $w_n = (ab)^n$ with and $v_n = (ba)^n$. w_n, v_n are vertices of X and any path joining w_n, v_n has to go through C . Indeed a path from v_n to w_n corresponds to a word $p = x_1 \dots x_s$ with $x_i \in S_A \cup S_B$. Let k be maximal such that the reduced word corresponding to $w_n x_1 \dots x_k$ starts with an element of A . Say $w_n x_1 \dots x_k = a' y_1 \dots y_r$ where $a' y_1 \dots y_r$ is reduced word. Then $w_n x_1 \dots x_k x_{k+1} = a' y_1 \dots y_r x_{k+1}$. If $r \geq 1$ then after reducing still we get a word starting with an element of A . It follows that $w_n x_1 \dots x_k = a'$ and in fact $a' \in C$, so the path p goes through C . Also $d(w_n, C), d(v_n, C) \geq 2n$. A single connected component Y_1 of $X - C$ contains all w_n and a different connected component Y_2 of $X - C$ contains all v_n so Y_1, Y_2 are unbounded. One can argue similarly in the HNN-extension case using again normal forms. Then C separates t^n from t^{-n} where t is the stable letter of the HNN-extension.

A more geometric argument runs as follows:

If $G = A *_H B$ or $G = A *_H$ we may pick a finite generating set S of G so that, in the first case, all generators lie in $A \cup B$ or, in the second case, the generators are given by the stable letter t and a finite set of elements of A . To see this take any finite set of generators of G , S' and write each element of S' in normal form with respect to the amalgam or the HNN-extension. Now take as new generating set S of G the set of all elements of A, B (and t in the HNN-extension case) that appear in these normal form expressions. Let Γ be the Cayley graph of G with respect to S and let T be the Bass-Serre tree of G for the splitting $G = A *_H B$ or $G = A *_H$. We consider the barycentric subdivisions Γ' of Γ and T' of T . We define now a simplicial map $p : \Gamma' \rightarrow T'$. Let e be the edge of T with stabilizer H . Let v be the midpoint of e . So v is a vertex of T' . We recall that the vertices of Γ are the elements of G . If g is a vertex of Γ define $p(g) = gv$. If (g, gs) is an edge of Γ (so $g \in G, s \in S$) then $d(sv, v)$ is either 2 or 0. So $d(gv, gsv)$ is 2 or 0 and we can extend p to (g, gs) either by mapping it to the 2 consecutive edges joining gv, gsv or by collapsing it to the vertex gv . This shows that the map p can be extended from the set of vertices of Γ to a simplicial map $p : \Gamma' \rightarrow T'$. Since the map p' is simplicial we have that $d(p(a), p(b)) \leq d(a, b)$ for all vertices of Γ . Further p is clearly onto. By our choice of v , $p^{-1}(v) = H$. Let $n \in \mathbb{N}$ and let v_1, v_2 be vertices of $T' - T$ lying in distinct connected components of $T' - v$ such that $d(v_1, v) \geq n, d(v_2, v) \geq n$. Let $g_1 \in p^{-1}(v_1), g_2 \in p^{-1}(v_2)$. Then if α is a path in Γ' joining g_1 to g_2 , v lies in $p(\alpha)$. It follows that α intersects $p^{-1}(v) = H$. Further if h is the first vertex of α lying in H and $\alpha_1 = [g_1, h]$ the subpath of α with endpoints g_1, h , then $p(\alpha_1)$ joins v_1 to v . It follows that $\text{length}(p(\alpha_1)) \geq n$. Since p is distance non increasing we conclude that $d(g_1, H) \geq n$. Similarly $d(g_2, H) \geq n$. Since this is true for any n we conclude that H coarsely separates Γ . Here H is finite so it is a compact subset of the Cayley graph.

ii. Let $f : X \rightarrow Y$ be a quasi-isometry between two locally finite graphs. Let K be a compact subset of X such that $X - K$ has n ends. Let r_1, \dots, r_n be geodesic rays representing these ends, i.e. $d(r_i(t), K) \geq t$ for all t and there is no path joining $r_i(t)$ to $r_j(t)$ in $X - K$ for any $t > 0$.

If f is an (A, B) -quasi-isometry

$$d(f(r_i(t)), f(K)) \geq t/A - B$$

so for t big enough $f(r_i(t))$ is at least at distance $A + B$ from $f(K)$. It follows that we can join the images of successive vertices of $f(r_i)$ and obtain a path $p_i(t)$ such that

$$d(p_i(t), f(K)) \geq t/A - 2B - A$$

for all t .

Assume that for any $D > 0$ there is a path $q = (v_1, \dots, v_r)$ (v_i vertices) joining some vertices $f(r_i(s)), f(r_j(t))$ ($i \neq j$) outside $N_D(f(K))$. We set $u_1 = r_i(s), u_r = r_j(t)$ and pick u_i such that $d(f(u_i), v_i) \leq B$. Then, for D big enough, the geodesic segments joining u_i, u_{i+1} , ($i = 1, \dots, r - 1$) do not intersect K and we obtain thus a path in $X \setminus K$ joining $r_i(t)$ to $r_j(t)$ a contradiction.

We conclude that there is some $D > 0$ such that Y minus the D -neighborhood of $f(K)$ has at least n unbounded connected components.

So $e(Y) \geq e(X)$. But we have the opposite inequality too using a quasi-isometry $g : Y \rightarrow X$. So $e(X) = e(Y)$.

Since any two Cayley graphs of the same f.g. group are quasi-isometric it doesn't matter which one we pick to define ends.

iii. \mathbb{Z}_2 has 0 ends, \mathbb{Z} has 2 ends, \mathbb{Z}^2 has 1 end, and F_2 has ∞ ends. So all these are possible.

Let X be the Cayley graph of a f.g. group G . If X has more than 2 ends then there is a compact $K \subset X$ such that $X - K$ has at least 3 ends. We show now inductively that X has more than n ends for any $n \in \mathbb{N}$. Assume that M is compact and $X - M$ has n unbounded connected components. Let Y be an unbounded component of $X - M$. Let $v \in Y$ be a vertex such that $d(v, M) > \text{diam}(M)$. If w is a vertex of M (we may assume K contains vertices) take $g \in G$ such that $gw = v$. Then $L = M \cup gM$ is compact and $X - L$ has at least $2n - 1$ unbounded components. To see this note that $X - gM$ has n unbounded connected components. However gM is contained in Y so at least $n - 1$ of the connected components of $X - gM$ are contained in Y . Indeed if 2 components C_1, C_2 intersected $X - Y$ at the points a, b then we could join a to a point a' in M and b to a point b' in M by paths disjoint from Y . Finally we join a', b' by a geodesic which clearly is disjoint from gM producing a path joining C_1, C_2 in $X - gM$, a contradiction. This

shows that $Y - gM$ has at least $n - 1$ unbounded connected components and $X - L$ has at least $2n - 1 \geq n + 1$ unbounded connected components.

12. The objective of this exercise is to show that torsion free groups quasi-isometric to free groups are free.

Assume that a finitely generated group G is quasi-isometric to the free group F_n (with $n \geq 2$)

i. Show that G has infinitely many ends. (You may use the results of the previous exercise).

ii. Consider the Grusko decomposition of G as a free product: $G = G_1 * \dots * G_k * F_s$. Show that none of the G_i 's is 1-ended.

Hint: Note that if G_i is infinite then its Cayley graph contains a bi-infinite geodesic.

iii. Show that if H is a torsion free 2-ended group then H is isomorphic to \mathbb{Z} .

Hint: Use Stallings Theorem.

iv. Assume now that G is torsion free. Show that all G_i 's are finite (and hence trivial) to conclude that $G \cong F_s$.

v. Deduce that if a f.g. torsion free group K has a finite index free subgroup then K is free.

Solution.

i. By the result of the previous exercise $e(G) = e(F_n)$ so $e(G) = \infty$.

ii. If G_i is finite then it has 0 ends. If G_i is infinite then its Cayley graph contains a bi-infinite geodesic. Let's pick a finite set of generators for G which is a union of the finite generating sets of G_i and F_s . Then G_i is isometrically embedded in G by the normal form theorem for free products. It follows that the Cayley graph Γ of G contains a bi-infinite geodesic L and all vertices of L are elements of G_i . Let $f : G \rightarrow F_n$ be a quasi-isometry. If $a_i (i \in \mathbb{Z})$ are the successive vertices of L then if we join for all i $f(a_i)$ to $f(a_{i+1})$ by a geodesic segment we obtain a quasi-geodesic (as f is a quasi-isometry). Clearly $f(L)$ is at finite distance from this quasigeodesic. However any quasi-geodesic in a tree (the Cayley graph of F_n) is at finite distance from a geodesic. So $f(L)$ is at finite distance from some geodesic L' and $f(G_i)$ contains $f(L)$. It follows that a point on L' separates $f(G_i)$ to at least 2 infinite components. Since f is a quasi-isometry G has at least 2 ends.

iii. Since $e(H) > 1$ H splits as $A *_C B$ with C finite. Since it is torsion free we have $C \cong \{e\}$. But H has 2 ends and $A * B$ has infinitely many ends so necessarily $H \cong A *_e B \cong A * \mathbb{Z}$. However if A is infinite H has infinitely many ends so $A \cong \{e\}$ and $H \cong \mathbb{Z}$.

iv. Since G is torsion free if G_i has infinitely many ends then it splits as a free product by Stallings theorem. However G_i is indecomposable, a

contradiction. So G_i has 2 ends. By the previous part $G_i \cong \mathbb{Z}$. But then G_i is contained in the free factor F_s (or put it differently there are no G_i 's).

v. K is q.i. to a free group since it has a finite index free subgroup. So by the previous part it is free.