
Initial Value Problems: ODEs
Runge-Kutta Schemes

M.Sc. in Mathematical Modelling & Scientific Computing,
Practical Numerical Analysis

Michaelmas Term 2025, Lecture 6

The Problem

We continue to study the scalar first order initial value problem:
find u(t) such that

u′(t) = f (t, u) , t > 0 ,
u(0) = u0 .

(1)

Recall that in lecture 5, in order to solve (1) numerically over the
time interval [0,T], we defined a set of time points at which we
wish to approximate the solution. We set tn = n∆t for
n = 0, 1, . . . ,N where ∆t = T/N. We then used the θ-method to
approximate u(tn) by Un satisfying

Un+1 − Un

∆t
= θf (tn+1,Un+1) + (1− θ)f (tn,Un) (2)

for n = 0, 1, . . . and with U0 = u0.

Modifications of θ-Methods

As we have already stated, unless θ = 0, the θ-method requires us
to solve a nonlinear equation at each timestep. However, there
exist modified methods to avoid this.

Recall the Crank Nicolson scheme

Un+1 − Un

∆t
=

1

2
(f (tn+1,Un+1) + f (tn,Un)) .

We can approximate Un+1 using the explicit Euler scheme. This
leads to the improved Euler method

Un+1 − Un

∆t
=

1

2
(f (tn+1,Un +∆tf (tn,Un)) + f (tn,Un)) .

This has a truncation error Tn = O(∆t2).

Explicit Runge-Kutta Schemes

The improved Euler method is a specific example of an explicit
Runge-Kutta scheme. Such schemes take the general form

Un+1 − Un

∆t
=

s∑
i=1

biki

where

k1 = f (tn,Un)

and

ki = f (tn + ci∆t,Un +∆t
i−1∑
j=1

ai ,jkj) ,

for i = 2, . . . , s. The ki s are known as the stages of the method
and the method is often referred to as an s-stage method.

Runge-Kutta Schemes — Butcher Tableaux

The coefficients of explicit Runge-Kutta schemes are chosen to
make the methods as high order as possible and are often stored as
Butcher tableaux in the form

0
c2 a2,1
c3 a3,1 a3,2
...

...
...

. . .

cs as,1 as,2 . . . as,s−1

b1 b2 . . . bs−1 bs

Example: Improved Euler
The improved Euler scheme

Un+1 − Un

∆t
=

1

2
(f (tn+1,Un +∆tf (tn,Un)) + f (tn,Un)) ,

can be written in the form

Un+1 − Un

∆t
=

1

2
(k1 + k2) ,

where

k1 = f (tn,Un)

and

k2 = f (tn +∆t,Un +∆tk1) .

Thus the Butcher tableau takes the form

0
1 1

1
2

1
2

Example: Modified Euler

Another commonly used 2-stage scheme is the modified Euler
scheme, given by

Un+1 − Un

∆t
= f

(
tn +

1

2
∆t,Un +

1

2
∆tf (tn,Un)

)
.

The Butcher tableau for the modified Euler scheme takes the form

0
1
2

1
2

0 1

Example: RK4

Finally, a very common 4-stage method is the so-called RK4
scheme, defined by the Butcher tableau

0
1
2

1
2

1
2 0 1

2
1 0 0 1

1
6

1
3

1
3

1
6

Derivation of Explicit Runge-Kutta Schemes
As already stated, the coefficients of explicit Runge-Kutta schemes
are chosen to make the methods as high order as possible. We can
do this using Taylor series expansions of the truncation error.

The truncation error for an explicit Runge-Kutta scheme is given by

Tn =
u(tn+1)− u(tn)

∆t
−

s∑
i=1

bi k̃i ,

where

k̃1 = f (tn, u(tn))

and

k̃i = f

tn + ci∆t, u(tn) + ∆t
i−1∑
j=1

ai ,j k̃j

 ,

for i = 2, . . . , s.

Derivation of Explicit Runge-Kutta Schemes: 2-Stage
Example

If s = 2 we have

Tn =
u(tn+1)− u(tn)

∆t
− (b1k̃1 + b2k̃2) ,

where

k̃1 = f (tn, u(tn)) ,

k̃2 = f (tn + c2∆t, u(tn) + ∆ta1,1k̃1) .

Performing a Taylor series expansion of u(tn+1) about the point tn
gives

u(tn+1) = u(tn) + ∆tu′(tn) +
1

2
∆t2u′′(tn) +

1

6
∆t3u′′′(tn) +O(∆t4) .

Derivation of Explicit Runge-Kutta Schemes: 2-Stage
Example

We also perform a Taylor series expansion of k̃2 about the point
(tn, u(tn)) to get

k̃2 = f (tn + c2∆t, u(tn) + ∆ta1,1k̃1)

= f (tn + c2∆t, u(tn) + ∆ta1,1f (tn, u(tn)))

= f (tn, u(tn)) + c2∆tft(tn, u(tn)) + ∆ta1,1f (tn, u(tn))fu(tn, u(tn))

+
1

2
c22∆t2ftt(tn, u(tn)) + c2a1,1∆t2f (tn, u(tn))ftu(tn, u(tn))

+
1

2
a21,1∆t2(f (tn, u(tn)))

2fuu(tn, u(tn)) +O(∆t3) .

To simplify the notation, we will suppress the arguments so that u
represents u(tn) and f represents f (tn, u(tn)) (and similarly for all
(partial) derivatives).

Derivation of Explicit Runge-Kutta Schemes: 2-Stage
Example

Now we substitute these expansions into the expression for the
truncation error

Tn =
u(tn+1)− u(tn)

∆t
− (b1f (tn, u(tn))

+b2f (tn + c2∆t, u(tn) + ∆ta1,1f (tn, u(tn)))) ,

simplify and reorder to get

Tn =
(
u′ − (b1 + b2)f

)
+∆t

[
1

2
u′′ − b2(c2ft + a1,1f fu)

]
+∆t2

[
1

6
u′′′ − b2

2

(
c22 ftt + 2c2a1,1f ftu + a21,1f

2fuu
)]

+O(∆t3) .

Derivation of Explicit Runge-Kutta Schemes: 2-Stage
Example

Now recall that

u′(t) = f (t, u(t)) ,

so that the chain rule gives

u′′(t) = ft + f fu ,

u′′′(t) = ftt + 2f ftu + ft fu + f f 2u + f 2fuu .

Then we have

Tn = (1− (b1 + b2)) f +∆t

[(
1

2
− b2c2

)
ft +

(
1

2
− b2a1,1

)
f fu

]
+∆t2

[(
1

6
− b2

2
c22

)
ftt +

(
1

3
− b2c2a1,1

)
f ftu

+

(
1

6
− b2

2
a21,1

)
f 2fuu +

1

6

(
fuft + f f 2u

)]
+O(∆t3) .

Derivation of Explicit Runge-Kutta Schemes: 2-Stage
Example

We can make the method 2nd order (i.e. Tn = O(∆t2)) by picking

1− (b1 + b2) = 0

1

2
− b2c2 = 0

1

2
− b2a1,1 = 0 .

Note improved Euler is the particular choice b1 = b2 = 1/2,
c2 = a1,1 = 1 and modified Euler is the particular choice b1 = 0,
b2 = 1, c2 = a1,1 = 1/2.

However, we cannot make the method 3rd order because we
cannot eliminate the fuft and f f 2u terms.

Order of Runge-Kutta Schemes

Theorem
The order p of an explicit s-stage Runge-Kutta method is bounded
by p ≤ s.

It is possible to construct Runge-Kutta methods that achieve this
maximal order.

Example 1

We revisit Example 1 from lecture 5, namely

u′(t) = λu , t > 0 ,

u(0) = 1 .

Numerical schemes for this are:

▶ Explicit Euler:

Un+1 = Un + λ∆tUn = (1 + λ∆t)Un .

▶ Improved Euler:

Un+1 =

(
1 + λ∆t +

1

2
(λ∆t)2

)
Un .

for n = 0, 1, . . . ,N − 1 and with U0 = 1.

Example 1 Results

0 0.2 0.4 0.6 0.8 1

t

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

u

Solution with N=10 and lambda=1

exact solution

explicit Euler

improved Euler

0 0.2 0.4 0.6 0.8 1

t

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

e
rr

o
r

Error with N=10 and lambda=1

error in explicit Euler

error in improved Euler

Example 1 Results

0 0.2 0.4 0.6 0.8 1

t

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

u

Solution with N=20 and lambda=1

exact solution

explicit Euler

improved Euler

0 0.2 0.4 0.6 0.8 1

t

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

e
rr

o
r

Error with N=20 and lambda=1

error in explicit Euler

error in improved Euler

Example 1 Results

0 0.2 0.4 0.6 0.8 1

t

-20

0

20

40

60

80

100

120

u

Solution with N=10 and lambda=-25

exact solution

explicit Euler

improved Euler

0 0.2 0.4 0.6 0.8 1

t

-40

-20

0

20

40

60

80

100

120

140

e
rr

o
r

Error with N=10 and lambda=-25

error in explicit Euler

error in improved Euler

Example 1 Results

0 0.2 0.4 0.6 0.8 1

t

-0.2

0

0.2

0.4

0.6

0.8

1

u

Solution with N=20 and lambda=-25

exact solution

explicit Euler

improved Euler

0 0.2 0.4 0.6 0.8 1

t

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

e
rr

o
r

Error with N=20 and lambda=-25

error in explicit Euler

error in improved Euler

Explanation — Stability

We are solving

u′(t) = λu , t > 0 ,

u(0) = 1 ,

which has exact solution u(t) = eλt .

If λ < 0 the exact solution satisfies

lim
t→∞

u(t) = 0 .

We would like our numerical scheme to mimic this behaviour.

Explanation — Stability
The explicit Euler scheme for this problem is

Un+1 = (1 + λ∆t)Un ,

for n = 0, 1, . . . ,N − 1 and with U0 = 1.

Thus the explicit Euler solution is

Un = (1 + λ∆t)n .

For λ < 0 we require

lim
n→∞

Un = 0 .

This holds if

−1 < 1 + λ∆t < 1 ,

or equivalently if

∆t <
2

|λ|
.

Explanation — Stability
We can perform a similar analysis for the improved Euler scheme.

Improved Euler:

Un+1 =

(
1 + λ∆t +

1

2
(λ∆t)2

)
Un ,

for n = 0, 1, . . . ,N − 1 and with U0 = 1. Then

Un =

(
1 + λ∆t +

1

2
(λ∆t)2

)n

so that

lim
n→∞

Un = 0 ,

if

−1 < 1 + λ∆t +
1

2
(λ∆t)2 < 1 ,

or equivalently if

∆t <
2

|λ|
.

Example 1 Results Revisited

0 0.2 0.4 0.6 0.8 1

t

-20

0

20

40

60

80

100

120

u

Solution with N=10 and lambda=-25

exact solution

explicit Euler

improved Euler

0 0.2 0.4 0.6 0.8 1

t

-40

-20

0

20

40

60

80

100

120

140

e
rr

o
r

Error with N=10 and lambda=-25

error in explicit Euler

error in improved Euler

Here λ = −25 and ∆t = 0.1 so ∆t > 2/|λ|.

For explicit Euler we have Un = (1 + λ∆t)n = (−1.5)n.

For improved Euler we have
Un = (1 + λ∆t + (λ∆t)2/2)n = 1.625n.

Example 1 Results Revisited

0 0.2 0.4 0.6 0.8 1

t

-0.2

0

0.2

0.4

0.6

0.8

1

u
Solution with N=20 and lambda=-25

exact solution

explicit Euler

improved Euler

0 0.2 0.4 0.6 0.8 1

t

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

e
rr

o
r

Error with N=20 and lambda=-25

error in explicit Euler

error in improved Euler

Here λ = −25 and ∆t = 0.05 so ∆t < 2/|λ|.

For explicit Euler we have Un = (1 + λ∆t)n = (−0.25)n.

For improved Euler we have
Un = (1 + λ∆t + (λ∆t)2/2)n = 0.53125n.

The exact solution is u(tn) = eλtn = eλn∆t =
(
eλ∆t

)n ≈ 0.2865n.

Interval of Absolute Stability

The interval of absolute stability of a numerical scheme is the
interval of values of λ∆t such that, when applied to the problem

u′(t) = λu , t > 0 ,

u(0) = 1 ,

the numerical solutions satisfy

lim
n→∞

Un = 0 .

Thus the interval of absolute stability of both the explicit Euler
and improved Euler schemes is λ∆t ∈ (−2, 0).

Interval of Absolute Stability
It can be shown that for the RK4 scheme, the numerical solution
satisfies

Un+1 =

(
1 + z +

z2

2
+

z3

6
+

z4

24

)
Un ,

where z = λ∆t.

The Python command polyroots([1,1,1/2,1/6,1/24]) (from
the numpy.polynomial.polynomial module) reveals only complex
roots so

1 + z +
z2

2
+

z3

6
+

z4

24
> 0 .

To find when

1 + z +
z2

2
+

z3

6
+

z4

24
< 1 ,

we can use polyroots([0,1,1/2,1/6,1/24]) which gives real
roots at z = 0 and z = −2.7853 (as well as two complex roots).
Thus the RK4 scheme is stable for λ∆t ∈ (−2.7853, 0).

Aside: Interval of Absolute Stability for θ-Method

We have been talking about explicit Runge-Kutta schemes but the
idea of stability also holds for the θ-method discussed last time.

Recall that the θ-method is

Un+1 − Un

∆t
= θf (tn+1,Un+1) + (1− θ)f (tn,Un) ,

so that for the problem

u′(t) = λu , t > 0 ,

u(0) = 1 ,

we have

Un+1 − Un

∆t
= θλUn+1 + (1− θ)λUn .

Aside: Interval of Absolute Stability for θ-Method
Re-arranging gives

Un+1 =
1 + (1− θ)λ∆t

1− θλ∆t
Un .

Thus the interval of absolute stability is the range of values of λ∆t
for which

−1 <
1 + (1− θ)λ∆t

1− θλ∆t
< 1 .

After some algebra we find that this is satisfied if

2 + (1− 2θ)λ∆t > 0 .

Two cases:

▶ If θ ∈ [1/2, 1], this holds for any negative value of λ∆t.
▶ If θ ∈ [0, 1/2), then we require

λ∆t ∈
(
− 2

1− 2θ
, 0

)
.

Aside: Interval of Absolute Stability for θ-Method

0 0.2 0.4 0.6 0.8 1

t

-30

-20

-10

0

10

20

30

40

50

u

Solution with N=10 and lambda=-25

exact solution

explicit Euler

implicit Euler

Crank Nicolson

0 0.2 0.4 0.6 0.8 1

t

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

u

Solution with N=10 and lambda=-25

exact solution

implicit Euler

Crank Nicolson

Numerical Verification of Convergence Rates
We have already shown that the improved Euler and modified
Euler schemes are second order. A (tedious) truncation error
analysis would show that the RK4 scheme is fourth order. We
verify this numerically as follows:

If a method has order p then we know that

|Un − u(tn)| ≲ C∆tp .

In particular

|UN − u(T)| ≲ C∆tp ,

where N∆t = T . Taking logs

log |UN − u(T)| ≲ p log(∆t) + logC .

Thus on a log-log scale the errors lie on a straight line with
gradient p (or gradient −p if x-axis is N rather than ∆t).

Numerical Verification of Convergence Rates

10 1 10 2 10 3 10 4

N

10 -15

10 -10

10 -5

10 0
e
rr

o
rs

Explicit Euler

Improved Euler

Modified Euler

RK4

O(1/N)

O(1/N
2

)

O(1/N
4

)

Next Time . . .

Adaptive Runge-Kutta schemes which do not use uniform time
steps, and linear multistep methods.

