Initial Value Problems: ODEs

Runge-Kutta Schemes

M.Sc. in Mathematical Modelling & Scientific Computing,
Practical Numerical Analysis

Michaelmas Term 2025, Lecture 6

The Problem

We continue to study the scalar first order initial value problem:
find u(t) such that

J(t) = f(t,u), t>0,
u(0) = up. (1)

Recall that in lecture 5, in order to solve (1) numerically over the
time interval [0, T], we defined a set of time points at which we
wish to approximate the solution. We set t, = nAt for
n=0,1,...,N where At = T/N. We then used the §-method to
approximate u(t,) by U, satisfying

Un+1 - Un

- = Of(tos1, Unp1) + (1 = O)F(tn, Un) (2)

for n=20,1,... and with Uy = up.

Modifications of #-Methods

As we have already stated, unless § = 0, the 6-method requires us
to solve a nonlinear equation at each timestep. However, there
exist modified methods to avoid this.

Recall the Crank Nicolson scheme

Un+1 — Uy 1
Uit U L by, Upi) + (10, Un)

We can approximate U,;1 using the explicit Euler scheme. This
leads to the improved Euler method

[y

W = 5 (F(tnrs, Un + Dt (tn, Un)) + F(tn, Up)) -

This has a truncation error T, = O(At?).

Explicit Runge-Kutta Schemes

The improved Euler method is a specific example of an explicit
Runge-Kutta scheme. Such schemes take the general form

U”L Zbk

where
kl = f(t,,, Un)
and
i-1
ki = f(ta+ GAL Uy + ALY ajkj)
j=1
fori=2,...,s. The k;s are known as the stages of the method

and the method is often referred to as an s-stage method.

Runge-Kutta Schemes — Butcher Tableaux

The coefficients of explicit Runge-Kutta schemes are chosen to
make the methods as high order as possible and are often stored as
Butcher tableaux in the form

C | a1
C3 | @31 432

Cs | @51 4ds2 ... dss—1
by by ... bs1 b,

Example: Improved Euler
The improved Euler scheme

Upr1 — U, 1
2t = 2 (F(taga, Up + At (tn, Un)) + F(tn, Un))
At 2
can be written in the form
Un+1 - Un].
_— —(k k
At ACRER
where

ki = f(tn,Un)
and
ky = f(t,+ At, U, + Atky) .

Thus the Butcher tableau takes the form

Example: Modified Euler

Another commonly used 2-stage scheme is the modified Euler
scheme, given by

Upsi1 — U, 1 1
—— = fltat AL U+ AL (L, Un) | -
At <t+2tU—|—2t(t U))

The Butcher tableau for the modified Euler scheme takes the form

NIi= O
O NI

Example: RK4

Finally, a very common 4-stage method is the so-called RK4
scheme, defined by the Butcher tableau

= NI=ENI= O

olH O ONI=
wiH O NI
Wi =

[

Derivation of Explicit Runge-Kutta Schemes

As already stated, the coefficients of explicit Runge-Kutta schemes
are chosen to make the methods as high order as possible. We can
do this using Taylor series expansions of the truncation error.

The truncation error for an explicit Runge-Kutta scheme is given by
t
Ty = —(1) Zbk,,

where

and

i—1
ki = f t,,+c,-At,u(t,,)+AtZa,-,jl?j ,
j=1

fori=2,...,s

Derivation of Explicit Runge-Kutta Schemes: 2-Stage
Example

If s =2 we have
th — ult, ~ ~
T, = M—(blkljtbgkz),

where

ky = f(tn, u(ty)),
/;2 = f(l’n + o At, u(t,,) + Al’3171/;1) .

Performing a Taylor series expansion of u(t,4+1) about the point t,
gives

1 1
u(tar1) = u(ty) + At (t,) + 5At2u”(t,,) + 6Azt3u”’(t,,) +0(AtY) .

Derivation of Explicit Runge-Kutta Schemes: 2-Stage

Example

We also perform a Taylor series expansion of ko about the point
(tn, u(tn)) to get

ke =

f(tn + cAt, u(ty) + Atay 1ki)
f(tn + At u(ty) + Atay 11 (tn, u(tn)))
f(tn, u(tn)) + Atf(ts, u(ts)) + Atay 1 f(tn, u(tn))fu(ts, u(ts))

1
+5 G AL fue(tn, 0(tn)) + 2211 AL (b, u(tn)) fro(tn, u(t))

+%ailAt2(f(tn, u(tn))) fuu(ta, u(ts)) + O(AL®) .

To simplify the notation, we will suppress the arguments so that u
represents u(t,) and f represents f(tn, u(t,)) (and similarly for all
(partial) derivatives).

Derivation of Explicit Runge-Kutta Schemes: 2-Stage
Example

Now we substitute these expansions into the expression for the
truncation error

r, =) g, un)

+bof (tn + c2At, u(ty) + Atar1f(tn, u(tn)))) ,

simplify and reorder to get

T, = (u/_(bl—i-bg)f)—i-At [2U —b2(C2ft+311ff)]

b

At n
e[-3

(fie + 2csmaf fou + ailﬂfuu)]

+O(A%) .

Derivation of Explicit Runge-Kutta Schemes: 2-Stage

Example
Now recall that

u'(t) = f(tu(t)),
so that the chain rule gives
u'(t) = fi+ffy,
u"(t) = o 2F fuyt fufy + £ £2+ Ffyy .

Then we have

1 1
T, = (1 — (bl + bz)) f+ At |:<2 — b2C2> fy + <2 — b2a171) f fu:|

1 b 1
+A [(6 - ;czz) fre + (3 - bzcgal,l) f fo

1 1
+ (- b23%71> fzfuu + 6 (fuft +f fL,Z):|

Derivation of Explicit Runge-Kutta Schemes: 2-Stage
Example

We can make the method 2nd order (i.e. T, = O(At?)) by picking
1—-(bi+b) = 0
% — b = 0
% —bpa;1 = 0.
Note improved Euler is the particular choice by = b, =1/2,

¢ = a1,1 = 1 and modified Euler is the particular choice b; = 0,
b2 = 1, G =a11 = 1/2.

However, we cannot make the method 3rd order because we
cannot eliminate the f,f; and f f2 terms.

Order of Runge-Kutta Schemes

Theorem

The order p of an explicit s-stage Runge-Kutta method is bounded
by p<s.

It is possible to construct Runge-Kutta methods that achieve this
maximal order.

Example 1

We revisit Example 1 from lecture 5, namely

J(t) = Au, t>0,
u(0) = 1.

Numerical schemes for this are:
> Explicit Euler:

Unt1 = Un+ AAtU, = (1 + N\ADU, .

» Improved Euler:
1 2
U1 = 14+ AAE+ E(/\At) Uy .

forn=20,1,...,N —1 and with Uy = 1.

Example 1 Results

Solution with N=10 and lambda=1 Error with N=10 and lambda=1
%8 rl—exact solution 002
24 rl—explicit Euler
22 |—improved Euler oo
2 + -0.06
S <l
18 B -0.08

—error in explicit Euler
——error in improved Euler

0 0.2 0.4 06 0.8 1 0 0.2 04 0.6 0.8

t t

Example 1 Results

Solution with N=20 and lambda=1 Error with N=20 and lambda=1
%8 rl—exact solution 001
24 rl—explicit Euler
22 |—improved Euler oo
2 6 -0.03
= 18 % -0.04

—error in explicit Euler
——error in improved Euler

0 0.2 0.4 06 0.8 1 0 0.2 04 0.6 0.8

t t

Example 1 Results

Solution with N=10 and lambda=-25 Error with N=10 and lambda=-25
[[—exact solution | 120 | |—error in explicit Euler
10 rl—explicit Euler 100 | |——error in improved Euler
& | —improved Euler 80
60 - 5 60
2w % 2

20

\//\/ i

-40

Example 1 Results

Solution with N=20 and lambda=-25
1

—explicit Euler
——improved Euler

—exact solution

error

IOEarror with N=20 and lambda=-25

A

—error in explicit Euler
——error in improved Euler

0 0.2 0.4 06 0.8

Explanation — Stability

We are solving
J(t) = du, t>0,
u(0) = 1,

)\t.

which has exact solution u(t) =e

If A < 0 the exact solution satisfies

lim u(t) = 0.

t—o00

We would like our numerical scheme to mimic this behaviour.

Explanation — Stability

The explicit Euler scheme for this problem is

U1 = (L+AAL)U,,
forn=0,1,...,N—1 and with Uy = 1.
Thus the explicit Euler solution is

U, = (1+)\A)".
For A < 0 we require
Jm Uy = 0.

This holds if

-1 < 1+)XAt < 1

or equivalently if

Explanation — Stability

We can perform a similar analysis for the improved Euler scheme.
Improved Euler:
U1 = (1+)\At+ (AAY) > U,
forn=0,1,...,N—1 and with Uy = 1. Then
U, = <1+>\At+ (AAL))n
so that

lim U, = 0,

n—oo

-1 < 1+MAt+ (/\At) <1,

or equivalently if

Example 1 Results Revisited

Solution with N=10 and lambda=-25 Error with N=10 and lambda=-25
1 exact solution | 120 | |—error in explicit Euler
10 rl—explicit Euler 100 | |——error in improved Euler
% |——improved Euler | &

60

u
error

40

\/\/ :

0 02 0.4

t t

Here A\ = —25 and At = 0.1 so At > 2/|]|.
For explicit Euler we have U, = (1 + AAt)" = (—1.5)".

For improved Euler we have
Up = (1 4+ MAt + (AAL)?/2)" = 1.625".

Example 1 Results Revisited

Solution with N=20 and lambda=-25 Error with N=20 and lambda=-25
1

—exact solution 02
°¢ ll—explicit Euler o1
06 improved Euler
=
= 04 g
5.
02 -
0 o4 —error in explicit Euler
05 error in improved Euler
-0.2
06

0 02 04 06 08 1 0 02 0.4 06 0.8 1

t t

Here A\ = —25 and At = 0.05 so At < 2/|A|.
For explicit Euler we have U, = (1 + AAt)" = (—0.25)".

For improved Euler we have
Un = (L + M\At + (AAt)?/2)" = 0.53125".

The exact solution is u(t,) = eMr = eAAt = (AA4)" x5 0.2865".

Interval of Absolute Stability

The interval of absolute stability of a numerical scheme is the
interval of values of AAt such that, when applied to the problem

J(t) = du, t>0,

the numerical solutions satisfy

lim U, = 0.

n—o0o

Thus the interval of absolute stability of both the explicit Euler
and improved Euler schemes is AAt € (—2,0).

Interval of Absolute Stability

It can be shown that for the RK4 scheme, the numerical solution
satisfies

Z2 Z3 Z4
= (1
Unt1 <+z+2+6+24)Un,

where z = AAt.

The Python command polyroots([1,1,1/2,1/6,1/24]) (from
the numpy.polynomial.polynomial module) reveals only complex

roots so
22 22 A
1+Z+E+€+ﬂ > 0.
To find when
2 B3 A
ltz+5+5+5, < 1,
we can use polyroots([0,1,1/2,1/6,1/24]) which gives real
roots at z = 0 and z = —2.7853 (as well as two complex roots).

Thus the RK4 scheme is stable for AAt € (—2.7853,0).

Aside: Interval of Absolute Stability for 8-Method

We have been talking about explicit Runge-Kutta schemes but the
idea of stability also holds for the 8-method discussed last time.

Recall that the #-method is

Un+1 - Un

At Hf(thrl» Un+1) + (1 - H)f(tm Un) ;

so that for the problem

J(t) = du, t>0,
u(0) = 1,
we have
Un+1 - Un

= OAUpp1 + (1= O)AU, .

Aside: Interval of Absolute Stability for 8-Method

Re-arranging gives

U 14+ (1-0)\At
i VN
Thus the interval of absolute stability is the range of values of AAt
for which
1+ (1-0) At
-1 i—oar b

After some algebra we find that this is satisfied if
24+ (1—-20)AAt > 0.

Two cases:

> If 6 € [1/2,1], this holds for any negative value of AAt.
> If 6 € [0,1/2), then we require

2
Mt € (—129,0>.

Aside: Interval of Absolute Stability for 8-Method

Solution with N=10 and lambda=-25 Solution with N=10 and lambda=-25
s -[—exact solution 0s —exact solution |
40 |—explicit Euler 08 \ —implicit Euler
a [|——implicit Euler °7 fl—Crank Nicolson

20 ||—Crank Nicolson 06
5 10 /\ 5 05
04

0

Numerical Verification of Convergence Rates

We have already shown that the improved Euler and modified
Euler schemes are second order. A (tedious) truncation error
analysis would show that the RK4 scheme is fourth order. We
verify this numerically as follows:

If a method has order p then we know that
Uy — u(tn)] < CAtP.
In particular
|Uy —u(T)| < CAtP,
where NAt = T. Taking logs
log |Uy —u(T)| < plog(At)+log C .

Thus on a log-log scale the errors lie on a straight line with
gradient p (or gradient —p if x-axis is N rather than At).

Numerical Verification of Convergence Rates

100 T T L T L

errors

10710

—— Explicit Euler
—— |Improved Euler
——<— Modified Euler

—>*— RK4
— — —O(1/N)
— — —0(IIN?)
10715 | == —00UN%) <
10" 102 1083 10%

Next Time . ..

Adaptive Runge-Kutta schemes which do not use uniform time
steps, and linear multistep methods.

