Exercises for Practical #1

In this practical you will learn to construct matrices, solve linear systems, and
and write basic Python code in a Jupyter Notebook.

1.

Create a Juypter Notebook called ‘problemsl.ipynb’ and add a suitable
markdown section at the top. Use the notebook to write down your solu-
tions to the following problems.

. Check the help for np.diag and use it to construct the 16 x 16 matrix,

with h = 2/16:
-2 1 0 0 0 1
1 -2 1 0 0 0
. 0o 1 -2 1 0 0
D2 = 2 - (1)
0 0 1 -2 1 0
0 o ... 0 1 -2 1
1 0 0o ... 0 1 -2

We will be using this matrix to solve ODEs on the interval [-1,1]. In
general, for a matrix of size N x N, we have h = 2/N.

. Close juypter lab, install scipy in your conda environment, and reopen

juypter lab. Read about scipy.linalg.toeplitz. Use it to construct D2
again for N = 16.

. Adapt the code from questions 2 and 3 to allow for an N x N matrix (re-

placing also h by 2/N), where N is a variable which can be easily adjusted.

. For N = 16, create a vector x containing N evenly spaced points in the

interval [—1,1) (including -1 but not 1). Define a function f(x) = sinmz.
Compute D2@f and plot it against x.

. What does the above graph show? (Hint: google “finite difference”.)

Amend your markdown at the start of the notebook accordingly. Plot (on
a subplot) the error in the D2@f approximation.

. Let f(x) = €™, Using the same x as in problem 5 with N = 256,

compute D2@f and plot it on top of a plot of f(z). Now compute the
second derivative of f by hand! Define a lambda function for the second
derivative, fpp = lambda x: Plot fpp(x) on top of the existing
plots. Now plot D2*f - fpp(x) in a new figure.

. With D2, x and f as in problem 5, define

A= (D2 - eye(N))/(1+pi~2)

solve Au = f and plot u against x. (Congratulations!! You have just
solved your first differential equation in Python! — do you know what it
was?)

9. (Advanced) Repeat all of the above using sparse matrices. (Hint: check
out the scipy.sparse sublibrary.)

10. (Advanced) What is the closed-form expression for the eigenvalues of the
matrix D2? Compare with a numerical approach in Python.

