Exercises for Practical 2

In this practical you will work on writing Python functions and scripts in an IDE. Use a new file for each question.

- 1. Write a script to compute the coefficients of the degree n power series expansion of $\cos(x)$. What is the sum of the first 15 coefficients? (Include the zero coefficients in the sum.)
- 2. Write a Python function that returns the nth Fibonacci number. Write a test that only runs when the file is called directly that checks the 17th number.
- 3. Using Newton's method and starting from the initial guess $x_0 = 0$, find a root of $\sin(x) + \cos(x)$. Then, find another root by starting from the initial guess $x_0 = 6$.
- 4. How many prime numbers in the range [10, 100] are 'mirror primes' (in the sense that if a two-digit number mn is prime, its reverse nm is also prime)?
- 5. Find the sum of all the multiples of 3 or 5 below 1000.
- 6. What is the smallest positive number that is exactly divisible by all of the numbers from 1 to 10?
- 7. Implement a bisection algorithm to find the root of a given function f(x) on a given interval [a, b]. Your function should take f, a, and b as inputs.
- 8. Python has a built-in function bin() that converts an integer to its binary representation as a string (e.g., bin(10) returns '0b1010'). Write your own function, my_dec_to_bin() in a new file, which takes an integer and returns a string of only the binary digits (e.g., for an input of 10, it should return '1010').
- 9. Given a function, an interval [a,b], and a parameter N, write your own trap_integral in a new file to compute the N-point trapezoidal rule approximation of the integral of the input function. (Hint: Check Wikipedia for the trapezoidal rule formula.)
- 10. Write a script which imports the functions from questions 7, 8, and 9 and runs them with various inputs.