Exercises for Practical 3

In this practical, you will practice more advanced plotting with Matplotlib in a Jupyter Notebook. Remember to enable an interactive backend (e.g., %matplotlib widget) to be able to rotate your 3D plots.

- 1. Plotting Algorithm Convergence: Modify your bisection algorithm from Practical 2 to solve for the root of $f(x) = x^{10} 1/10$ on the interval [0,1]. Your function should now also return a list or NumPy array of the error at each iteration (i.e., the width of the interval, $|b_n a_n|$).
 - Create a plot of the error versus the iteration number. Use a logarithmic scale for the y-axis (semilogy) to show the linear convergence of the method. Properly label your axes and give the plot a title.
- 3D Surface Plots: Make interactive 3D surface plots of the following functions over the given ranges. Use np.meshgrid to create your coordinate matrices and ax.plot_surface to plot. Remember to label your axes.
 - (a) $f(x,y) = (x^2 + 3y^2)e^{-x^2 y^2}, \quad -3 \le x \le 3, -3 \le y \le 3$
 - (b) $f(x,y) = \frac{-3y}{x^2+y^2+1}$, $|x| \le 3, |y| \le 4$
 - (c) $f(x,y) = |x| + |y|, |x| \le 1, |y| \le 1$
 - (d) $f(x,y) = \sin(x)\cos(y)$ for all points (x,y) inside a circle of radius 1 centered at the origin. (Hint: Create a grid from -1 to 1 for both x and y. Then, for any points where $x^2 + y^2 > 1$, set the function's value to np.nan so they are not plotted.)
- 3. Contour and Wireframe Plots: For the function from question 2(a), create a new figure with two subplots side-by-side.
 - In the left subplot, create a 2D contour plot of the function using plt.contour.
 - In the right subplot, create a 3D wireframe plot using ax.plot_wireframe.

Ensure both plots have appropriate titles.