(3

(G

Using the 8-method to solve ODEs

Kathryn Gillow

29th October 2025

1 Introduction

In this report we use the #-method to solve ODE’s. We begin by introducing the
method and deriving it’s truncation error. We use this to derive an expression for the
local error. We then show an example to confirm that the correct rates of convergence
are achieve.

In what follows we consider initial value problems of the form

L~) (1)
for t > 0 with an initial condition u(0) = ug. Here, we assume that f(t,u) satisfies a
Lipschitz condition in its second argument and that f(u,t) is bounded.

It is also possible to use the -method to solve problems with spacial dependence.

For example we could consider the heat equation of the form

Ou 0%u

ot Oa?

for (z,t) € (—1,1)z(0,T] with boundary and initial conditions

u(z,0) = wp(z) for —l<z<1,
u(—1,t) = q(t

) fort>0,
u(1,t) (t) fort>O0.

g1
g2
However, we don’t consider such problems here. Instead, we refer the interested

reader to Ref. [1].

®) 2 The #-method

Q? For a general introduction to the § method see Ref. [2]. We summarise the key points
here.
In the §-method we approximate the solution to Equation (1) at a set of discrete
time points t, = nAt for n =0,...,N where N > 2 and NAt = T, where T is the
final time. We let U,, be the numerical approximation to u(t,).
G The #-method for Equation 1 is

QE) Un+1 - Un
At

(9 @GO Where 6 is between 0 and 1. We require this equation to hold for n =10,...,N — 1

= af(t'n+1; Un + 1) < (]- - e)f(tn; Un)

@7; and we apply the initial condition via Uy = ug. 3 values of 6 lead to methods with a

specific name:

@2) e 0 =0 is the explicit Euler scheme(also known as ”forward Euler”)
e 0 =1 is the implicit Euler scheme(also known as ”backward Euler”)
@3 e 0 = 7 is the Crank Nicolson scheme.

& @172.0.1 Truncation Error

The truncation error for the f-method is defined as

Up4+1 — U

Ty = B Of s, tng) — (1)ty) @)

Q\b where u,, = u(t,) is the exact solution at the point ¢,. The truncation error can be
computed using Taylor series expansions about an appropriately chosen time point.
@ i For § = 0 (i.e. explicit Euler), the expansions are usually performed about ¢ = t,,
while for § = 1 (i.e. implicit Euler), the expansions are usually performed about
Qg t = tp41. For general values of 6 it is standard to expand about t,.1/2 = (tn +
tnt1)/2 =t, + 1/2At.
Note that since v/(t,) = f(tn, u(tn)), we may re-write the expression for the trun-

cation error

Up+1 — U

Tn = Tn - Hf(tn+1)un+1) - (1 - H)f(tn:un)
= G (tn) — (1 - O (t) 3)

We have

(20

utn) = u(tntrjz —At/2)

At 1 (At
= ultniij2) = 5 U (tnrrye) + 5 (—) ' (tns1/2) + O(AE)

2\ 2
Similarly,
Qi At 1 /At\°
U(tny1) = u(tngrye) + jul(tn+1/2) \ 3 5 <7> U (tayry2) + O(AL?)

We can also expand the first derivatives in Equation (3):

At

jull(tnwz) +O(AE%)

At
U(tnt1) = U'(tn+1/2)+7u'(tn+1/2)+0(ﬁt2)-

U (ty) = u(tnga2) —

(33 Substituting these four expansions into (3) gives

1 At 1 At
Gy T = E((U(tn+1/2)+7u (tn+1/2)+§ 7)2“’”(7574+1/2))

At 1 At
—(u(tni1/2) — 7ul(tn+1/2) + 5(7)2U"(tn+1/2)))

Gs —0(w (tay1/2) + %u"(tnﬂﬂ)) — (1= 6)(W(tny1ye) — %u”(tnﬂ/z)) +O(AR))

Many of the terms in (4) cancel so the truncation error simplifies to
At
T, = 7(1 — 20)u" (tny1/2) + O(AL?) .

(’éb‘ It can be shown by writing out the the O(At?) terms in full, that they do not cancel
for any value of 6.

Thus we have shown that for constant 6
T o O(At) for0#1/2
" O(AE?) for 6=1/2

so that the truncation error of the Crank Nicolson scheme converges twice as fast as

(ﬂ that of all other theta-methods.

2.1 Pointwise Errors

@’5 Recall the definition of the §-method (??) and the corresponding truncation error (2):

Un+l - Un

At = gf(tn-H; Un+1) =+ (1 - e)f(tm Un) y

Un — Up
To = B 0 f (i, tnrn) = (1~ 0)f (b)

We re-arrange both of these to get

jL; Un+1 =Up+ At (Hf(tn+1a Un+1) + (1 - e)f(tm Un)) (5)
Unt1 = tn + AL (0 (tni1, uns1) + (1= 0) f(tn, un)) + AT, (6)
@(’/ = |tnt1 — Unta| < |un — Un| + 0AE f(tnt1, Unt1) — f(tnta, Unia)l
+(1 = O)AL|f(tn, un) — f(tn, Un)| + At Tn| . (7)
Next suppose that the right-hand side function f(¢,) satisfies a Lipschitz condi-
@y tion in its second argument, with Lipschitz constant L, so that:
&2 ftw) = fEo) < Llu—of, ¥(,uw), @v) €9,

We can use this in (7) to get
|unt1 — Ung1| < |un — Up| + 0AEL|upy1 — Unya| + (1 — 0)AtL|u, — Uy, | + At|T] .
@33 We can re-arrange this to get (for At << 1)

(1 — LOAY)|upt1 — Upya| < (14 L(1 — 0)At)|u, — Up| + At|T|
< (14 L1 - 0)Ab)|up — Up| + AtThax (8)

where
@L* Tnax = ma»’vogngNlTn|

is an upper bound on the absolute value of the truncation error.

Now let e, = u,, — U, denote the error at time ¢,. Then (8) can be written as

1+L(1—0)At| . AtT,
1— oAt "1 Lot

9)

lenta| <

We can show by induction that

1+ L(1—0)At\" AtTpax = (14 L1 —0)At\""
< 1- LOAt > |e°'+1—L9AtZ< 1— LOAt

r=1
14+ L(1—-0)At\" Tiiax 14+ L(1—0)At\"
< L) leo] + + I) -1},
1— LOAt L 1— LOAL

where the final line comes from evaluating the sum and simplifying. This holds for

lea| <

n=20,1,...,N.
In practice, we usually set Uy = uo which means that eg = 0. We also have
1+ L(1-0)At 14 LAt
1—LoAt 1— LOAt

VAN

LAt
FP\T"LoAL)
In turn this means
1+ L(1—0)At\" < LAt "
1— LOAt = \"P\1-1oAt
_nEOE
P T LoAt

LT
FP\T" oAt) -

IA

VAN

Thus we have

@

Tisi LT
& — — =
leal < L [eXp (1—LOAt> 1] ’ (10)

for n = 0,1,...,N. This shows that the pointwise error has the same order as the

truncation error.

3 Implementation
Recall that the #-method is

%,,, PR 0, U+ 1)+ (L= 0)f (V)
43,

@S If @ # 0 then we have an implcit equation to solve for U, + 1 at each timestep. We

can write this equation as
9(Unt1) = Upy1— Up — dtO0f (tny1,Un + 1) —dt(1 — 0)f(t,,Us) = 0.

5

£9)
Q*j We can solve this using the Newton Rhapson method which is summarized in the

code below.

6"\ def mynewt(f, fprime, x0, tol):
o # This function finds a root of f(z) using Newton’s method and a stari

while abs(f(x0)) > tol:
x0 —= f(x0)/fprime (x0)
return x0

4 Numerical Example

Consider the specific problem

@‘f} du
- _ 2
T = loglog(4 + u*)

QL‘ for 0 < ¢t < 1 and with %(0) = 1. The numerical results are shown in Figure (1)

below.

6‘;\ 14 / /

0 02 04 06 08 1
1

Figure 1: Numerical solution to the example problem.

o 02 04 08 o8 1
t

i \
23 Figure 2: ”Exact” solution to the example problem.

{ 5¢

4.1 Convergence results

Since the exact solution to this problem is not known, we use a very accurate solution
generated using the Crank Nicolson scheme with N = 10000 to simulate the exact
solution. We then consider the error at time ¢ = 1. The results are shown in the
figure. We can see that the errors for implicit and explicit Euler are almost the same

and converge like O(At), whereas the implicit Euler scheme is O(At?).

100 1 -
—«—Explicit Euler
§§§§§ —¢— Implicit Euler
2L TTTme—L__ ——Crank Nicolson | 1
107 F L Tl e O(1/N)
X\”\x\, - O(1IN?)
"\/ \\\\\\\
— 10*F \ T
i) \\x
® \
g 10°f \\ 1
o 2
§ \5(\
] 8
@ 107 F > E
® \<\
S
10710 | \\ 1
%
10-12 L i 1 R
10° 102 103 10
N

Figure 3: Convergence to the exact solution of the example problem at time ¢ = 1.
The errors for implicit and explicit Euler are almost the same and have size O(At),
whereas the Crank Nicolson error is O(At?).

5 Conclusion

We have looked at the 8-method for solving initial value ordinary differential equation
problems. The parameter 6 is chosen to lie in the interval [0,1]. If § = 0 then the
numerical method is explicit, otherwise it is implicit and a nonlinear equation must
be solved at each timestep. If § = % the method is second order accurate, other-
wise the method is first oder accurate. These convergence rates were demonstrated

numerically.

References

(\\ [1] K.W. Morton and D.F. Mayers. Numerical Solution of Partial Differential Equa-
bl)
. tions. Cambridge University Press, 1994.

[2] Siili, E. & Mayers, D. F. An Introduction to numerical analysis.

