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Problem sheet classes

* Problem sheet classes will take place on Tuesday of Week 3,5, 7 and 9 at 4-5pm and
5-6pm with Dominic Vella (tutor) and Gabriel Cairns (TA).

 Hand-in time: Monday 9am Weeks 3, 5, 7, and 9.



Similarity solutions

* Consider the position of the front r; as a function of time t

S

* The spreading behaviour is the same for all liquids.

* We see similar kinds of behaviour in other scenarios, e.g., trapping CO, underground or
spreading of honey on porous toast.

 Can we understand the shape this evolves to more easily than solving the full problem?



Spreading of liquid on a vertical liquid-coated wall
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 What type of equation is this?
* First order hyperbolic equation
 What extra conditions do we need to solve this?

* One initial condition and one boundary condition
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* We can solve this problem analytically (see problem sheet 1).

* For any initial condition, we appear to evolve to the same final shape.




Can we extract what this universal shape is?
First, non-dimensionalize:
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There is no natural length or height scale.

We could chose these using the initial conditions, but there is nothing inherent in
the problem to specify these.




* Try a solution of the form
h(z,t) = f(n) n=—
e Substituting in gives
f2 ][‘/ < f/ . O
t
* If we choose a=1 then we turn the equation into one solely in terms of 7]

(f*=n)f =0

= (3)"
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This is precisely the shape that we see all the profiles evolving towards.

However, in getting this solution, we did not use the initial condition to find this similarity
solution. This highlights the fact that our similarity solution ‘forgets’ the initial information.

Although in our case we could obtain an analytic solution, in many cases we cannot.

This similarity solution provides key information about the system behaviour without having
to solve the full equation.

Before we move onto the next example, we will show how we can predict the form of the
similarity variables.



* We approximate derivatives as

Jy Y
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* Thisis called a scaling law approach.

* Substitute this into our partial differential equation:
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Rearranging gives H ~ % / g /
Py 1

This has given us almost as much information as the similarity solution.
* |t gives us the right functional form and parametric dependence.
* |t doesn’t give us the right prefactor.

a7 1/2
The scaling law gives the long time functional (Z/t)1/2 and parametric (N/PQ) /

dependence.
The similarity solution gives the long time solution.
The analytic solution gives the correct behaviour for all time.



Summary of lecture 1

Scaling laws can give the long time functional and parametric dependence

Similarity solutions give the long time solution

Analytic solutions give the correct behaviour for all time

* Hyperbolic first-order PDEs



The heat equation
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What kind of equation is this?

Second order parabolic equation.

What extra conditions do we need to solve this?

* One initial condition and one boundary condition.




* We non-dimensionalize the equation:
A . “~ ;’I\’é
T = Xor, t = —Tt,
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T(x,t) =0 as
T(x,t) =1 as
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* First let’s try the scaling argument:
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* This gives us that our similarity variable is 1) = m but nothing more.
X
» So this time we try a similarity solution of the form T" = T'(n) with 1 = o
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* QOur governing equation and boundary conditions then become:
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T(x,t)—0 as x — —
T'(x,t) > 1 as x — 400

(1 +erf(n/2)) where erf(§) =

1
* This has solution f = 5

* |In terms of dimensional variables, this is
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* Asinthe previous example for flow down a vertical wall, we did not use the initial
condition to obtain this solution, so the result only holds for long time...

* ...unless the initial condition happens to satisfy (%) at t=0
T
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This example was fairly similar to the previous example. However, now let’s
suppose that 7. = Tl

In this case we must non-dimensionalize 7' differently.

The dimensionless equation is the same as before but the boundary conditions are
different:

Question: what happens if we try the same similarity ansatz as before?



* While this is seemingly similar to the previous problem, the similarity solution we
tried before now simply gives the trivial solution.

* We can see why by integrating the equation over the entire domain. This gives

* |f we substitute our similarity ansatz into this result we get



This means we need to seek a more general similarity ansatz if we are to obtain a
non-trivial solution.
I

We try T = f-ﬁf(-n} with 171 = o

Substituting into the governing equation and the energy constraint tells us that we
need a=1/2 and B=1/2.

Then, we get
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This has solution [ =



* |n original dimensional terms, this solution is
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* Again, we have not imposed an initial condition to obtain this result, but if our
initial condition satisfied (k) for t=0 then this would be the solution for all time.
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* But where did the similarity form 1" = t_1/2f (m) come from?
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e |f we make a transformation
T = ar. t — bt. T = ¢T.

and substitute into the equation and boundary condition then we find that if

r I T1/2 _ pil/2
+1/2 7 41/2

then the equations in terms of the new variables are identical.

4
* This indicates that m and Tt1/2 are invariants of the system.

e This tells us that the solution depends on :‘.‘-:‘./tlﬂ = 77 and has the form

f(n) = tY2T(x,t) which is exactly what we have seen.



Spreading of liquid on a horizontal plate h
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e What extra conditions do we need to solve this?

* One initial condition and two boundary conditions

 One boundary condition is h(:f:f(f), f) =0 (A



. zp(t)
e Volume conservation: V(t) :/ h(i‘jt) dr (B)
0

| . _ »20h .
* The final condition to close the systemis h »0 asxT —Tyr (C)
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For numerics it can be easier to work with boundary conditions rather than integral
constraints like (B) and regularity conditions like (C).

But we can transform (B) and (C) into boundary conditions.

We integrate (1) over 0 < Z < Iy and apply (B) and (C) to get




Now rescale into a local region near the moving front:
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And rescale the height:
N~ A 1 AA
h(i,t) = e'PH(E, )
Then (1) becomes
OH dz;0H Apg O Hgaﬁ 0
or  d7 9¢ 3 9 O

At leading order this gives
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Integrating gives

In terms of the original variables this gives

8;1 B ?);L dff?f
0T Apg dt
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(B1) and (C1) are easier boundary conditions for numerics than (B) and (C).
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e Here we will study just V' = constant

* Analytical solutions are not possible so we proceed directly to the similarity solution.

* Ascaling law analysis gives

* This scaling law gives the parametric dependence.



Now consider the full similarity solution.

First, non-dimensionalize:
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 Dimensionless problem:
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Dimensionless problem:

(FF) + 2 (F+nf') =0,

f =0,
nf
fdn =1,
0
FAf e~ —ny
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with 75 = R

on n=mny,
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* Afinal change of variable decouples the spreading domain:

s = i, k(s) = f(Z;j)
nf ur

* This leads to the system
|
(KK) + = (k+sk) =0,
k(l) — Y
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K’k = —1 as

s — 1.



* The solution to this system is
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* |n dimensional terms:

* The scaling analysis provided the time dependence and the parametric dependence
but lacked the shape that this similarity solution provides.



In all the examples we have considered so far we have been able to determine the
form of the required solution by a scaling argument.

Examples of this kind are called similarity solutions of the first kind.

We will now consider an example where scaling analysis alone does not determine
the solution.

These are called similarity solutions of the second kind.



Summary of lecture 3

e Spreading of liquid on a horizontal plate.

* We use the governing equation and mass conservation to determine the similarity
solution.

* The position of the front is also an unknown we must solve for.

* We can transform the mass-conservation integral relation into a boundary
condition.

* We can transform the regularity condition at the moving front into a boundary
condition.

* We scale the variables so that we solve for the height of the profile first and
determine the position of the front afterwards.



Spreading of a groundwater mound

* Now let’s consider the spreading in a porous medium rather than in air:

e Suppose that the liquid leaves behind a residue.



Spreading of a groundwater mound

* Now let’s consider the spreading in a porous medium rather than in air:

e Suppose that the liquid leaves behind a residue.



 We now split up the problem into two regions.

* Region 1: Liquid invading dry porous medium 8?@/@5 > ()

* Here the flow is governed by the porous medium equation
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* Region 2: Liquid draining 83/85 < 0

* Here the flow is governed by a modified porous medium equation due to the
partially saturated residue region:

(1—s) 8h (';i) 0. O— ApgK Oh

1 6’3:

* s =fraction of space occupied by liquid in drained region.
s = 0 recovers the original porous medium equation. As s increases, 8h/8t gets
larger due to the liquid in the drained region pushing down.



 Denote the position of the front by ;’z‘:f(f) and the position of the joint separating

S

Regions 1 and 2 by Z4(t).

 We have two second-order partial differential equations with two additional
unknowns (2 and,) so we require initial conditions for the two regions plus six
boundary conditions (four for the two equations and two for the unknowns).



We apply:

fz(:vf, =0 Definition of Zf
(‘W} (30, 8) = 0 Definition of Zs
t
- 8? —0 at =0, No flux at the centre
oL
~ Oh —0 at & =@y, No flux at the front

0%

Continuity in i and hdh /O at the joint & = &,



As for the case of a spreading liquid, (D) doesn’t look like it gives any more information
than (A). However, it does enforce a regularity condition on A at the front.

We can transform this into a stronger condition by performing a local analysis near the
front. We rescale:

F=ap(P) €, F=%, bz D) =eH(E )

Substituting into (1) and considering the result at leading order gives

OH  p¢ diy
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which in terms of the original variables gives
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e We non-dimensionalize via

L = oL, Lsg — LoLg, £Lf = LoLf,

* The resulting dimensionless system is then

oh 1, oh
= e — | = < x<
5 %833 (hax) 0, 0 <z < a4(t),
oh %, oh
- _ = — | = <<
5~ oa (hax) 0, rs(t) <z < xp(t),
h(:Bf,t) =0,
Oh
§($3,t) —_ 0,
oh
%(O,t) 0,
dh dx

plus continuity in h and hoh/Ox at x = x4 (E)

(1)
(2)
(A)
(B)
(C)

(D)



* Since the liquid leaves behind a residue we can’t apply a simple global conservation
law like in previous cases.

* We try a similarity solution of the form

3 - v
h=1"f(n) with 7= .
This gives
(L) +anf = (2a-1)f =0, 0<n<ns,
(ff) +anf' —(2a—1)f =0, ns <1 <1y,

where 0y = x¢/t% and 7 = x,/t* are defined by



We also apply
f(0) =0,
f,(nf) — _04773“;

as well as continuity in fand f” at 7)s.

Unlike in our previous examples, we have no further information to determine a.
So, we press on.



* Make a change of variable z = 7/7; and k(z) = f(?’]fz)/n?c.

m(kk’)’—kazk’—(?a—l)kzo, 0 <2< zg,
k) + azk — (2a— 1)k = 0, 2s < 2 < 1,
k(1) =0,
(2c — 1)k(zs) — azk'(z5) = 0,
K'(0) =0,
(1) = —a,

And continuity in k and kK’ at z=z..

* This is two second-order ordinary differential equations plus one unknown (z).

e How many boundary conditions does this require?



We have six boundary conditions. The sixth condition determines a.

This is an eigenvalue problem.

For a given value of k there is an associated a that gives a solution.

The natural similarity variables did not emerge from a scaling argument but instead
as part of the solution.

Such problems are called similarity solutions of the second kind.



* Importantly, in this case, the similarity solution only provides the shape of the
interface up to a constant. Our final scaling moved the unknown n, to determine a so
we are still missing one pieced of information. (In our previous example of spreading
liquid on a horizontal plate, this came from mass conservation.)

 To determine the appropriate scaling we must compare our similarity solution with
the full numerical solution at one point in time.



Summary

* Scaling laws can provide a significant amount of information about the solution of a
partial differential equation system.

e Similarity solutions of the first kind provide the full behaviour for long time but does
not (always) capture the early-time behaviour (unless this happens to satisfy the
initial condition).

e Similarity solutions of the second kind arise when we cannot fully determine the
form of the similarity solution from the governing equation and boundary conditions.
This forms an eigenvalue problem. The similarity solution provides the shape up to a
scaling constant.



Summary of lecture 4

e Similarity solutions of the second kind arise when we cannot fully determine the
form of the similarity solution from the governing equation and boundary conditions.

e This forms an eigenvalue problem.

* The similarity solutions provides the shape up to a scaling constant.



Free boundary problems

ndary problem occurs when the region in which the problem is to be
dvance and must be found as par

wthe solution.
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 The shape of a free boundary as it is formed can be qui

re exotic.



Masaru Emoto

Mount Cook Glacier,

Shimanto River, Japan New Zealand



Playing Imagine by John Showing the water a
Lennon to the water photo of an elephant



Industrial problem: electric welding

» Steel plates are welded together by attaching
electrodes to the edges and then passing a
current through.

* This heats the metal, causing the plates to
melt. When the current is switched off, the
liquid metal solidifies and the two plates are
welded together.

* How long should the current be applied to ensure the metal melts without melting
the entire plates?

* How long should the plates be left once the current has been switched off to ensure
that they have solidified completely?



One-dimensional Stefan problem

* Consider a slab of initially solid material occupying the region 0 < x < a. The
temperature T(x,t) in the slab satisfies the heat equation:

or_ o (0T
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* Suppose the slab is initially at a uniform temperature T, and the face x=a is
insulated, while the temperature of the face at x = 0 is suddenly increased to a
temperature 7, > T

oT

T(x,0) =Ty, 0<z<a; T0,t) =Ty, t>0; 8—$(ajt):0j t > 0.

* If T, is high enough the solid will melt and become liquid in some neighbourhood of
x =0.



If the slab melts, we must seek a solution in which the slab is liquid in 0 < x < s(t) and
solid in s(t) < x < a, where x = s(t) is the free boundary separating the liquid and solid

phases.

s(t) is unknown in advance and must be found as part of the solution.

We have to solve the heat equation in both solid and liquid phases, with different
values of the parameters p, c and k in each phase.

We also need to impose conditions at the free boundary x = s(t).



* First we assume that the phase change happens at a known melting temperature so
T(s(t),t) = T

* Since the temperature is continuous, this applies on both sides of the free boundary.



The second condition comes from an energy balance. At a fixed boundary, the heat
flux coming in from one side must equal the heat flux exiting from the other side, i.e.,
qg = —koT /0x must be continuous.

However, at a moving interface, we must also consider the energy associated with the
phase change, known as the latent heat L.

The latent heat acts as an energy source or sink at a moving solid—liquid interface,
and the resulting boundary condition

oT
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r=s(t)+

This is called the Stefan condition.



Assumptions

* We assumed that the heat flux is purely due to thermal conductivity. If the liquid
flows at all, then there will also be a contribution due to convection.

 We assumed that the solid and liquid have the same density. If there is a change in
density as the material melts, this would induce a velocity.



Summary of lecture 5

A free boundary problem occurs when the region in which the problem is to be
solved is unknown in advance and must be found as part of the solution.

e Stefan problems describe melting or freezing. At the interface we apply a Stefan
condition:

T T
Ox r=s(t)+ Ox x=s(t)— dt
Jozef Stefan

(1835-1893)
Slovene physicist



One-phase Stefan problem

* Assume that p, ¢ and k are all constant on either side of the solid—liquid interface.

* Suppose that the initial temperature T, is equal to the melting temperature T_.. This
means that the solid region s(t) < x < a is always at temperature T_ and we only need
to solve the heat equation in the liquid phase 0 < x < s(t).

* This is a one-phase Stefan problem.



* Non-dimensionalize:

La?
T =ax, t( P )t", T =T, + (17 —Ty)u.
k(Tl_Tm) ( )
St@—&?—u 0<ax<s(t), t>0
ot Ox2 A ’
Ju ds

x=s(t), t>0



Seek a similarity solution:

S(t) = BV and u(z, 1) = f(n), where 7=
d?°f St d
(]_7}2 Qndfrf)o 0<”7<5:
f= =
f—o. df _ B — 3



e The solutionis

erf (n\/§/2) ST eS8 /4 erf (ﬁ\/§/2)
fln)=1- =1
crf (ﬁ@/ﬁ) 2v/St
B
T (V2 as o5t — 0,
_ B~ 9 St
0.50 k \/g\/log (ﬁ) as St — oo
0.05—— - - - - - ' St

102 1 100 104



* The entire slab has melted when s(t) = 1, and the dimensionless time taken is thus
given by 1/B2.

* By reversing the non-dimensionalization we find approximations for the melting time

L.
( 2
pLa
St < 1
tm ~ 4 2T~ Tn) 5
. pea” St > 1
|4k log (St/\/7) -

* When St<<1, the melting of the slab is limited by the latent heat required.

* When St>>1, the main barrier is the energy needed to heat up the slab, and the
melting time depends only weakly on the latent heat L.



Two-phase Stefan problem

ou  O%u
t— = — t), t>0
S 5 = 52 0<x<s(t), :
St ou  O0%u
— = t 1, t>0
k Ot  Ox2 s(t) <z <1, ’
U = xr=0, t>0,
ou
— = =1, t>0,
ox o
oul™ oul ds
u=—60, s= t =0,
c1ks ks T — To
— K = = f =
coky’ ki’ Ty — Ty



e When St<<1:

£z
1-— O<z<s(t) <1

u(x,t) = s(t)
0 0<s(t) <x<l1

()

ds _ 1 = s0)=va.

* This is equivalent to the one-phase small St Stefan problem (8 = v2.)



 The approximate solution (*) does not satisfy the initial condition
(except in the special case when 8 =0, i.e., T,=T,).

* We resolve this by considering a small-t boundary layer in which u adjusts from the
initial value -6 to the outer solution.



MMSC project: Mathematical modelling to improve tumble-dryer filters beko
lan Griffiths and Yixuan Sun /

* How can we design and manufacture the tumble-dryer filter to maximize removal
efficiency while minimizing energy usage?



Two-dimensional Stefan problem

y
LIQUID
S M = V2U1
us =1
X=0 ﬁ:ree boundary X=1

e We study the small Stefan number limit again: St<<1.

 We then have a Hele-Shaw problem.




We examine the linear stability.
For simplicity, consider the one-phase Stefan problem again so u,=0.

Assume that the interface is moving at speed V and there is a temperature gradient -A.
(We expect A>0 if the left region is liquid and the right is solid.) The solution is then

u(z,y,t) = —Ax — Vi) x =Vt
Consider a small perturbation about this solution

u(z,y,t) = —ANx — Vt) + eu(x,y,t) r=Vt+e(y,t) e 1



e Substitute into the Stefan condition:

e Substitute into the governing equations

Vi =0
L—XN=0
du  Of

Or Ot

r < Vi,
r = VL.
r = Vt.



Try a wave-like solution:
i(z,y,t) = AeTtHikv (V1) E(y, 1) = BeotHiky,

Here, k is the wavenumber and o is the linear growth rate.

Substituting into the governing equations gives the linear system

(k 7)(5)=0

Non-trivial solutions require the determinant of the matrix to be zero, giving

oc=—\k=-Vk



o=k =-Vk
If V>0

* The solid is melting.

 0<0 and so the perturbations decay with time — the interface is stable.

If V<O
* The liquid is freezing.

 0>0and so the perturbations grow with time — the interface is unstable.
* The smallest wavelength modes grow the fastest — this is an ill-posed problem.
* The solution does not depend continuously on the data.

e an arbitrarily small perturbation of the initial conditions may cause an arbitrarily
large change in the solution.

* This is physically unacceptable, and such ill posed problems are also effectively
impossible to solve numerically.

* A<O0 which means that the temperature in the liquid is lower than the melting
temperature. The liquid is supercooled.






It is reasonable for a freezing boundary to be unstable, but it is not acceptable for the
problem to be ill posed.

Some additional physics must become important to regularize the problem by
suppressing arbitrarily high wavenumbers, e.g.,:

» Surface energy effects penalise high curvature variations in the free boundary.

* Kinetic undercooling —the temperature need not be continuous if the free

boundary evolves rapidly enough to be out of thermodynamic equilibrium.
* Model the complex dendrites. -

But we shall choose a simpler strategy |
— to model the dendritic region as a “mushy region” p




One-dimensional welding problem -
m
m
= 3 |8
S5 |3
oT ", oT J2 o
pC—— = k— — m

ot~ Oz \ Ox X

T=T<T, I=T,<T,,
0

* Assume that the parameters p, ¢, k and o are constant and the same in both phases.

* Assume symmetry about x=0.



e Let’s draw how we expect the temperature to evolve:



* Thisis anill-posed problem.



Summary of lecture 6

Two-dimensional Stefan problem

* Linear stability demonstrates that:

* solid melting is stable

* liquid freezing is unstable — this is an ill-posed problem.

* We need a model for liquid freezing.



What happens instead?
There is not a simple free boundary between pure liquid and pure solid phases.

Instead, there is a “mushy region” in which both solid and liquid phases coexist,
with the solid existing in a very fine dendritic crystalline structure.

Rather than try to resolve this highly complicated structure, we construct a
homogenised model that describes the net macroscopic behaviour of the mixture
as a whole.



SOLID

LQUID : MUSH
6=1 . 0<@<1 . B=0

* We have two free boundaries x = s,(t) and x = s,(t),
with solid material in s; <x<a,
mushins,<x<s,
liquidin0<x<s,.

* |t just remains to construct a model for the mush.



* The first observation is that, for both phases to coexist, the temperature must
everywhere be close to the melting temperature, so we may set T=T_ in the mush.

 The energy source does not heat up the mixture but supplies the latent heat
needed to melt the solid.

(]6'

)LE
* The energy equation in the mushis pL TR (*)
)
where 0 is the liquid fraction in the mixture: 8 =0 in a pure solid and 0 =1 in pure

liquid.



* We have two free boundaries. The equation for conservation of energy at each of
these is

ds; . aT]"

L— + kb — =0 at s=s;(t =

|:‘,ULH gy — Hifj| 0 ats=s,(t) j=1,2

* Finally, we require one initial condition for the PDE (*), namely that 6 is continuous
across the advancing melting boundary x = s,(t) (so that the liquid fraction is zero
when the mush first forms.



ou  O*u
ot ot  Ox2 T4
ou
E‘J_m =0
u=—1
uw=—1
15 r,
u = D:« E q

+h—

ds; | ou]"_
dt ox|

u =0, [

* The dimensionless problem we must work with is thus:

0<x<l,

x = 0,

r=1,

0<x <1,

t >0,

t >0,

t >0,
t =0,

so(t) <z < sy(t), t>0,

at s = s;(t),

t >0



* This modified free boundary problem is well posed.

* |In general, numerical solution is required. A very useful approach is to use the
enthalpy, which measures the total internal energy in the material, including
thermal energy and latent heat.

 However, the initial stages at least may be analysed analytically, and in the quasi-
steady limit St = 0 the problem may be solved completely.



Co-dimension two free boundary problems

* In electrochemical painting, metal objects are coated using electrochemistry.

* The object (“workpiece”) is immersed in
an electrolyte solution, across which a
potential difference V is imposed.

Earth $=0

* This drives a current j of ions which attach
themselves as a layer of paint on the
workpiece.

[ ) « * Amodelis needed to determine when

~¢ Workpiece, ¢ = -V © (and if) the entire surface of the
workpiece is covered in paint, and the
thickness of the paint layer achieved.




Modelling assumptions

* The concentration of ions in solution is sufficiently large that their depletion during the
process is negligible. We may then treat the concentration as a constant.

* The flux of ions in the solution due to the imposed electric field is then given by

J=-0Vo¢

where ¢ is the electric potential and o is the conductivity.

* Conservation of charge then gives
V.-3=0

* We apply boundary conditions ¢=-V on the workpiece and $=0 on the outer surface.



Let h(x,t) denote the thickness of the paint layer (where it exists).

Assume the paint acts as a resistive layer with conductivity @ much lower than that of
the solution. If the layer is thin, then it will act as a classical resistor with surface
conductivity a/h.

We can relate the potential difference across the layer to the current across it:

J@ = E(F +¢) aty=h(z,t)
dy h

It is observed experimentally that, when the current is switched off, the paint dissolves
back into solution at some rate d. So,

h dd
% = —d + fl'ﬂa—; at y = h..(:r., f.)

where a = V,,/F, where V,, is the molar volume of solid paint and F is Faraday’s constant.



e We non-dimensionalize via:

. ~ <~ {-.Lz -
(z,y) =L (z.9). d=-—-V4+Vo h =eLh, t = - t,
aagV
 The boundary conditions then read
- . i - i Ld
99 _ 9 Oh = 9 _ 0 aty=eh(x,t) 0= acVV

dy h' Ot Oy

* We exploit the smallness of € and expand:

| o o6 ,
d(x, eh, t) = ¢(x,0,t) + Eha—y(;}f, 0.t) +0 (Ej)

* We can then replace the boundary condition above to apply on y=0.

e=— <& 1



* |In places where there is no paint (h=0) we apply

dp=0 aty=0



Summary of lecture 7
* Solid melting is stable — a well-posed problem.
* Liquid freezing is unstable — an ill-posed problem.

* To model freezing we introduce a mushy region composed of liquid fraction 8 and solid
fraction 1-0.

* We solve for the temperature T in the solid and liquid regions and for 0 in the mushy
region.



The geometry to solve Laplace’s equation is specified in advance.

But the points x= ¢ where the boundary conditions switch from Dirchlet to Neumann
are not known in advance and must be found as part of the solution.

These points are the free boundaries.

This is called a codimension two free boundary problem because two is the codimension
between the space in which the problem is posed (two dimensions) and the free
boundaries (points, i.e., zero dimensions).



* Consider the steady problem y

@:Ez + 0
(i):o 1. (IJ:O

* We can solve for ¢ and then determine h after using the remaining boundary condition

h(a) = 220

<
-y

* Note that since h>0 this means that ¢(x,0)=0.



» Suppose that the earth is a single point at (0,1). Then the potential near this point is a
point singularity with unit strength:

(;; ~ _ilﬁgMI!y) _ (D-.l)l _ 1

m B
/|




* We subtract off the singularity, an image at (0,-1) and 8y to satisfy the boundary
condition 0¢/dy=6 on y=h:

1 h:l‘g (T2+(§1_1)2)+ 1

A In ng (;1.?2 — (y + 1)2) + ‘I}(I._ .y)

o(z,y) = 0y —



* The problem then reads:

V2 =0 y >0,
0P .
— — —0 LI?Q—}—yQ—}DG,
dy
0P
=0 — <—f(x) y=0, |z| > ¢,
Jy
0P
(I’an ‘_:_f('r) Yy = :‘I‘{f‘a
Dy
1




* This is a mixed boundary value problem. We expect the solution to have singularities at
(+c,0) where the boundary conditions switch from Dirichlet to Neumann.

e This problem can be solved by taking a Fourier transform in x, in terms of the function &
at the surface of the workpiece, ®,(x)=® (x,0). Doing this, we find that

ob 1 [€ (x—s)Py(s)
— = — ds
dy m)_.(x—s)%+ 2



* Carefully taking the limit y->0 and applying the boundary condition
O
dy

— —f(;{:) Yy = U, ‘I‘ < C

we find that &, satisfies the singular integral equation:

¢ ®(s
—f(x) = l][ 0(s) ds

il _C;E—b

* Here we take the principal value of the integral:
7[. Do da = lim (/ / ) Do
J—c I — e—0 e T —

* We solve for &,(x), and find the value of c such that is differentiable at (*c, 0).

$o(x)
o

* The thickness of the painted layer is then recovered from h(x) =



Solution of problem
* The most elegant way to solve this problem is using complex variable theory.

* We write ®(z.y) +1V¥(x,y) = w(z)
where w(z) is holomorphicin Im(z) > 0.

(The imaginary part U is the harmonic conjugate to & — they are related through the
Cauchy—Riemann equations.)

* We differentiate with respect to z:

ob 0db (s
O lr}'y — Wiz



e QOur task is then to find a w’(z) that is holomorphic on the upper half plane and satisfies
the conditions

w'(z) = 0 z — 00,
Re [-z_{f’r(:)} = (), y=0, |z| > ¢,
Im [-a.v’r(,::)} = f(x) y=0, || <ec.

* The mixed character of the problem is reflected in the fact that we specify the real part
of W' in one place and the imaginary part in another.



* But we can use a trick to transform this into a problem for just the real part by letting

22— c2W(z2)

where /22 — 2 = \/z — ¢z ¥ ¢ = [rirmel1102)/2

22 — 2 is real when x>c and imaginary when x<c as y->0 so W(z)

* The key point is that
stays real everywhere.



* The new function W satisfies a classical Dirichlet problem, satisfying Laplace’s equation
with its real part specified everywhere on the boundary

10

W(z) ~ — z— o0, (A)

x| < c

- 0 lz| > e,
Re [H" ()} = f(x) y=0. (B)

* The solution is given using Poisson’s formula:

W(s) = i /C f(t)dt
(2) = ™ J_, (t — z)Ve? — 12

 Comparing (*) with (A) gives a relation between 6 and c.



* Taking the limit of our integral (*) as z->e= and comparing with (A) gives

1 ; 1 _
a1+ 2 ©= \/dgﬁg -1

)

* This tells us how the size of the painted region, 2¢, depends on the control parameter 6
C
_ Ld

0 =
aocV

14
12|
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* Using our result for W and the definition of W, we can relate back tob, to get

1 _1 c? — 12 c? — 12
Pp(z) = — [‘[anh ( [ ) Vi1 e

* The thickness profile is then given by h(xz) = ®g(x)/0

h(x)

increasing 6




Useful texts for more reading and examples
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2) A.B. Tayler, 2001, Mathematical Models in Applied Mechanics. Oxford University Press.

3) S.C. Gupta, 2017, The Classical Stefan Problem: Basic Concepts, Modelling and Analysis
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