1. THE REAL NUMBERS

1.1 The Field Axioms

What do we mean by the real numbers? Certainly they include the natural numbers, integers
and rational numbers. But you are likely aware of the existence of irrational (= not rational)
numbers, such as /2 or 7, which are also real numbers. One answer would be that a real
number is a number with a decimal expansion, but then we are getting ahead of ourselves:
what is meant by saying 0.333... is the decimal expansion of %? Just what details are hiding
behind that ellipsis?

Rather we will simply present a set of axzioms — statements we will assume to be true of
the real numbers. We will base all our arguments on these axioms, and develop theorems from
these axioms alone. In Remark 5.34 we will make some brief comments about how the natural
numbers, integers, rationals and reals can be constructed from simpler sets, but the details are
left to more advanced set-theoretic courses.

Unless otherwise made clear, the quantities a, b, x, etc. discussed in the following will be
real numbers. The labelling of these axioms largely follows the convention of Bartle & Sherbert.

Definition 1.1 The real numbers are a set R together with two binary operations

e addition +: R*> — R,

o multiplication x: R? - R
which satisfy the following axioms

e the field axioms A1-A4, M1-M}, D, Z.
e the order axioms P1-P35.

e the completeness axiom C.
described below. Recall that, as + and x are binary operations, associated with any ordered

pair (a,b) of real numbers are real numbers a +b and a X b, known as their sum and product
respectively.

The addition axioms Al-A4 require that

(A1) + is commutative, that is a + b= b+ a for all a, b.

(A2) + is associative, that is a + (b+¢) = (a + b) + ¢ for all a, b, c.
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(A3) there is an additive identity 0, called zero, that satisfies a + 0 = a for all a.

(A4) for each a there is an additive inverse —a such that a 4+ (—a) = 0.

Remark 1.2 Note that the axioms of addition A1-A4 are equivalent to (R, +) being an abelian
group.

Remark 1.3 Associativity guarantees that the sum of ai,...,ay is independent of how the
calculation is executed. For example, four terms can be summed in five ways:

((a+b)+c)+d, (a+(b+c)+d, (a+b)+(c+d), a+((b+c)+d), a+(b+(c+d)),

= 1 <2n>
n+1\n
ways to bracket a sum of n terms. (C, denotes the nth Catalan number.)

It can be shown, say using strong induction, that these C,, calculations lead to the same sum
when the operation is associative.

and more generally there are

We now prove some basic first results about addition.
Proposition 1.4 If a +x = a for all a, then x = 0. Thus the additive identity 0 is unique.

Proof. As a + x = a is true for all a, then it is in particular true when a = 0. So we have

x = x+0 by definition of 0 (A3)
= 0+ by commutativity (A1)
=0 by hypothesis with a = 0.

As 0 has the given property, by the above it is the only real number with this property. =

Proposition 1.5 If a+x = a+ vy, for some a, then x = y. Thus additive inverses are unique.

Proof.

y = y+0 by definition of 0 (A3)
= y+ (a+ (—a)) by definition of inverses (A4)
= (y+a)+ (—a) by associativity (A2)
= (a+y)+ (—a) by commutativity (A1)
= (a+x)+ (—a) by hypothesis
= (z+a)+ (—a) by commutativity (Al)
= 2+ (a+(—a)) by associativity (A2)
= 240 by definition of inverses (A4)
= x by definition of 0 (A3).

It follows that —a is the unique additive inverse of a: if x is an additive inverse of a then

a+(—a)=0=a+x
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and it follows that x = —a. =

I wouldn’t wish to suggest at this point that the previous and following proofs are the only
or even the best proofs. The above proof is reasonably slick, showing in one chain of equalities
that y equals x and applying one axiom at a time. But there are other proofs, some of which are
arguably more natural, and any proof that is logically correct and carefully justfied is adequate
to the task.

A much more natural chain of thought to get from a + z = a + y to x = y would involve
‘subtracting a from both sides’. And we can use the axioms to argue exactly along these lines.

Proof. (Alternative proof of Proposition 1.5) Say
a+r=a+y.

Then
(a+z)+(=a) =(a+y)+(—a).

By commutativity (A1) we have

(z+a)+ (—a) = (y+a)+(—a)
and by associativity (A2) we then have

z+(a+(=a)) =y+(a+(-a)).

By A4 we have x + 0 = y + 0 and finally by A3 we then have z = y. m

Proposition 1.6 —(—a) = a.
Proof.

(—a)+a = a+(—a) by commutativity (Al)
=0 by definition of inverses (A4)

and also
(—a)+ (= (—a)) = 0 by definition of inverses (A4).

Hence — (—a) = a as additive inverses are unique (Proposition 1.5). m
Proposition 1.7 —(a +b) = (—a) + (—b) .

Proof. This is left as Sheet 1, Exercise 1(iii). m

Proposition 1.8 —0 = 0.

Proof. By definition 0+ (—0) = 0 and 0+0 = 0. By the uniquness of additive inverses —0 = 0.

|
The multiplication axioms M1-M4 require that

(M1) x is commutative, that is a X b =b x a for all a,b.
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(M2) x is associative, that is a x (b x ¢) = (a x b) x ¢ for all a, b, c.
(M3) there is a multiplicative identity 1, called one, that satisfies a x 1 = a for all a.
(M4) for each a # 0 there is a multiplicative inverse, denoted ¢!, such that a x (a71) = 1.

Remark 1.9 The axioms of multiplication M1-M} state that (R\{0}, x) is an abelian group.

There are then similar results for x to those proved previously for +.
Proposition 1.10 If a X x = a for all a then x = 1. So the multiplicative identity is unique.
Proposition 1.11 Ifa # 0 and a Xz = a Xy then x = y. So multiplicative inverses are unique.
Proposition 1.12 Ifa # 0 then (a7 !)™! = a.
Proposition 1.13 Ifa # 0 # b and ab # 0 and (ab)™" = a~' x b1,

These results are left as exercises for the reader. Their proofs are very similar to the
corresponding results for addition. Further, we will soon see that if a # 0 # b then ab # 0
(Proposition 1.16) so the hypothesis that ab # 0 is in fact unnecessary in the last proposition.

There are two remaining field axioms to introduce.
(D) The distributive law states that x distributes over +. That is,
ax (b+c)=(axb)+(axc)
for all a, b, c.

(Z) 04 1.

The importance of axiom Z may not be immediately obvious. If it were the case that 1 = 0,
we would have (by M3 and Proposition 1.15 below) that

r=zXx1=2x0=0 for all z.

So the singleton set {0} satisfies all the other field axioms and we need axiom Z above to make
clear we are not discussing this example. We will also find axiom Z, or rather its negation,
a useful conclusion for proofs by contradiction — should an initial assumption lead to the
conclusion that 0 = 1, we would know the initial assumption to be incorrect.

Some important consequences of the distributive law appear below.

Proposition 1.14 (a +b) x c=axc+b X c.

Proof.
(a+b)xc = e¢x(a+b) by commutativity (M1)
= cXxa+cxb by distributivity (D)
= aXxXc+bxc by commutativity (M1) twice.
u
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Proposition 1.15 a x 0 = 0.

Proof.
ax04+0 = ax0 by definition of 0 (A3)

= ax(0+0) by definition of 0 (A3)
= ax0+ax0 by distributivity (D).

Hence a x 0 = 0 by Proposition 1.5. m

Proposition 1.16 Ifa x b =0 then either a =0 or b =0 (or both).

Proof. If a # 0 then we have

0 = a'x0 by Proposition 1.15
= a ' x (axb) by hypothesis
= (a7' xa) x b by associativity of x (M2)
= 1xb by definition of inverse (M4)
= bxl1 by commutativity of x (MI)
= b by definition of 1 (M3).

(Note the above proof amounts to carefully showing that if @ # 0 then we can divide by a to
show b =0.) Thus b=01if a # 0, or if a # 0 does not hold then a = 0 as required. m

Proposition 1.17
(—=b) x a =—(bx a).

In particular (—1) X a = —a.
Proof.

(bxa)+ ((=b) xa) = (b+(=b)) xa by Proposition 1.14
0xa by definition of inverse (A4)
=0 by Proposition 1.15 and M1

and
(bxa)+ (—=(bxa)) = 0 Dby definition of inverse (A4).

As additive inverses are unique then (—b) X a = —(b x a). The final part follows from setting
b =1 and applying M3 and M1. m

Proposition 1.18
(=1) x (-1)=1.

Proof.

(=1) x (=1) = —(—1) by Proposition 1.17
=1 by Proposition 1.6.
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Notation 1.19 From now on we will instead write

ab for axb
a—b  for a-+(-Db)

a/bor% for axbl

Also, we define integer powers for a # 0 by

a® = 1
a"tl = d¥xa forallk=0,1,2,3,...
a’l = (al)fl foralll =1,2,3,....

Remark 1.20 Note that we have only defined integer powers of a here. For a > 0 and rational
q =m/n we will, in due course (Theorem 1.72 et seq.), define

n

a? = Vam.

For general real x and a > 0, we will not be able to define

a® = e® loga

until we meet the exponential (Definition 7.17) and logartihm functions (Definition 7.18).

Remark 1.21 Other number systems also satisfy A1-A4, M1-M4, D, Z. Such systems are
called fields. Fields are important algebraic structures in mathematics, and all the linear algebra
and matrix theory you are meeting in Linear Algebra I extends naturally over any given field.
The notion of a field was introduced by Richard Dedekind in 1871.

The rational numbers Q, the real numbers R and the complex numbers C are all examples
of fields. Other examples include Z,, that is the integers modulo a prime number p, and the
field with four elements. See extension exercises 7, 8§ and 9 on Sheet 1.

Z is not a field as it does not meet M (multiplicative inverses) though it does satisfy the
remainder of the field axioms. N further fails to meet A4 (additive inverses).

1.2 The Order Axioms

As there are many systems, fields, that satisfy the field axioms, we clearly require some further
axioms to fully characterize the real numbers. The real numbers are commonly represented by
a number line with the numbers increasing in a left-to-right fashion. So it is clear that the real
numbers have other properties which we need to capture, including notions of ‘being greater
than’ or ‘being to the right of’, together with other geometric notions such as distance.

There are various (ultimately equivalent) ways of introducing the notion of ‘greater than’.
We will again follow Bartle & Sherbert and address this by introducing axioms for what it is
to be positive.
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Definition 1.22 (Order Axioms) There is a subset P of R, of positive real numbers, that
satisfies the following three axioms.

(P1) If a and b are positive, then their sum a + b is positive.
(P2) If a and b are positive, then their product ab is positive.
(P3) For any a precisely one of the following is true:

a 18 positive; a=20; — a 18 positive.

So to say ‘a is positive’ means a € P. Written as an interval, P = (0, 00).
The third axiom P3 s called the trichotomy azxiom. By this axiom, 0 is not positive.

Remark 1.23 Any structure satisfying the field and order axioms is called an ordered field.
Q and R are ordered fields, and any subfield of R is an ordered field (see Sheet 1, Exercise
7 for such an example). However there is no subset P of C which makes it an ordered field
(Proposition 1.79).

Proposition 1.24 1 is positive.
Proof. By P3 precisely one of
1eP, 1=0, —1eP
must hold. Axiom Z discounts the second possibility. The third option, —1 € P, leads to a

contradiction as follows:

—1eP = (-1)(-1)eP by P2
= 1leP by Proposition 1.18
— —-lePandl1elP

which contradicts P3. By elimination, it follows that 1 € P. m

There are alternative, equivalent, means of introducing order to the real numbers by defining
binary relations < or < with appropriate properties. The equivalence of the two approaches is
left to Sheet 1, Exercise 10. For now we introduce the following notation and definitions.

Notation 1.25 (a) We write

for a—belP.
for b—acP.
for  a—bePU{0}.
for  b—aecPU{0}.

Q@ 2 2 9
NN NV

b
b
b
b

In this notation the trichotomy axiom, P83, reads as: ‘precisely one of a > 0,a = 0,a < 0
holds’.

(b) Elements of PU{0} = [0,00) are referred to as non-negative, of P° = (—o0,0] are
called non-positive and of (P U{0})¢ = (—00,0) are called negative.
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Proposition 1.26 a > b if and only if —a < —b. In particular, x > 0 if and only if —x < 0.

Proof.
a > b
<~ a—b € P
— —(-a)—b € P
<~ —-b—(-a) € P
<= b > —a
<= —a < b

by definition

by Proposition 1.6

by commutativity of + (Al)
by definition

by definition.

The last claim follows as —0 = 0 (Proposition 1.8). m

Proposition 1.27 For all a, b, ¢

a < a;

a < b and b<a = a=b;

a < band b<c = a<ec
eithera < borb<a

(
(
(
(

—_ = = =

N N
N e N N

Proof. You may recognize (1.1), (1.2), (1.3) as being the reflexivity, anti-symmetry and tran-

sitivity properties of a partial order. Combined with (1.4), this means < is a total order.

(a) By A4 we have a —a =0 € P U {0} and so a < a.

(b) By definition a < b and b < a mean

b—aecPU{0} and a—b=—(b—a)ec P U{0}.

There are then two cases to consider:

(i) b—a € Pand — (b —a) € P. This contradicts trichotomy (P3).

(ii) if b — a = 0 then a = b; similarly if a — b = 0.

(c) If a = b or b = c this is trivial, so we need only consider the case where b — a € P and

¢ —b & P. We then have

c—a=(c—b)+(b—a)eP,

by P1 as required.

(d) For a,b € R, precisely one of the following holds

b—aclP
b—a=0
—(b—a)=a-beP

THE ORDER AXIOMS
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Proposition 1.28 For a,b,c with a < b, thena+c < b+ c.

Proof. Note (b+¢)—(a+c¢)=b—a€cPU{0}.m

Proposition 1.29 For a,b,c with a < b and 0 < ¢, then ca < cb.

Proof. If ¢ = 0 or a = b then the result holds immediately. Otherwise b —a € P and ¢ € P so
that, by P2, ¢(b —a) € P. By D and Proposition 1.17 we see

clb—a)=cb+c(—a)=cb—caeP

and so ca < cb as required. m

Corollary 1.30 For a,b,c with a < b and ¢ < 0. Then ca > cb.

Proof. This is left as Sheet 1, Exercise 1(v). m

Corollary 1.31 a? > 0 for any real a.

Proof. By the trichotomy axiom we have a > 0 or a = 0 or a < 0. If @ > 0 then a? € P by P1
and so a® > 0. If a < 0 then a® > a0 = 0 by Corollary 1.30 and Proposition 1.15. If a = 0 then
a?=0 >0 again. m
Proposition 1.32 Ifa > 0 then a™! > 0.
Proof. Certainly a! # 0 and if a=! < 0 then —a™! > 0 giving the contradiction

-1 = (—ail) a>0
by P2. m

Corollary 1.33 If0<a <b then b~ <a™!.
Proof. By the previous proposition and P2
al—bt=ab(b—a)>0.

[
Using the order axioms we may define the maximum and minimum of two numbers.

Definition 1.34 Define max: R? — R and min: R? — R by

T oif x>y : y ifxzy;
max(x,y):{y 1fy;$ mm(m,y):{x ify;m

By the trichotomy axiom, these are well-defined functions.
We can extend these to functions of finitely many variables. For example, recursively we
can define
max (ay, ..., ay, pp1) = max (max (ay, ..., 0,) , Ani1) -
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Example 1.35 max (z,y) = —min (—z, —y) for any x,y.

Solution. We argue by cases, recalling that if x < y then —z > —y by Proposition 1.26.

‘ maX('Ivy) ‘ ‘ —min(—a:, _y)
x>y x —r<—-y| —(-z)==x
T=y| r=y | —(-2)=2
z <y y —y<-z| —(-y)=y

Definition 1.36 We define the modulus function | |: R — R by
x if >0
o={ 2 7

—x if v < 0.

These cases are disjoint and cover all possibilities by the trichotomy axiom, so we obtain a
well-defined function. |z| is read as ‘mod x’ or ‘the modulus of x’, and also referred to as ‘the
absolute value of x°.

Remark 1.37 As the mazimum, minimum and modulus functions are defined in terms of
different cases, proofs involving them commonly need to demonstrate the result in a case-by-
case manner.

Proposition 1.38 For any x:
(a) 0 < |z].
(b) v < |zl

(c) |-zl = lal.
(d) |af* = 22,

Proof. (a) For x > 0 this is obvious. If z < 0 then |z| = —z > 0 by definition of >.
(b) If x > 0 then z = |z| and so x < |z]. If x < 0 then z < 0 < |z| from (a).
(c) If x > 0 then by Proposition 1.26 we have —x < —0 = 0. So by definition

=] = —(=2) =z = [z].

If x < 0 then —x > 0. So |—x| = —x = |x| by definition.
(d) In either case we have |z|° = 22 or |z|° = (—z)® = 22 by Proposition 1.17. m

Proposition 1.39 (Modulus of a product) |ab| = |al|b|.

Proof. If either a = 0 or b = 0 then the LHS and RHS are both zero. If a,b > 0 then there is
nothing to prove. If a > 0 > b then ab < 0 and

|ab| = — (ab) = a (=b) = |a| [b|
by Proposition 1.17. Any if a,b < 0 then ab > 0 and
|ab] = ab = (—a) (=b) = |a| [b]

by Proposition 1.17. m
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Definition 1.40 Let S CR and f: S — R. Then f is said to be:

e increasing if f(z) < f(y) whenever x < y.

e decreasing if f(x) > f(y) whenever z < y.

e strictly increasing if f(x) < f(y) whenever z < y.

e strictly decreasing if f(z) > f(y) whenever x < y.
Proposition 1.41 The function f(z) = x? is strictly increasing on [0, 00).
Proof. Given 0 < a < b,

F6) - f(a) = B — a* = (b — a) (b + a).

Asb—a€Pand b+a € P then f(b) — f(a) € P and so f(b) > f(a), showing that f is strictly
increasing. m

Theorem 1.42 (Triangle Inequality) For any real numbers a, b,
la+0f < [a| + 6],
with equality if and only if (a >0 and b > 0) or (a <0 and b < 0).

Proof. Note that

la+b° = (a+b)? by Proposition 1.38(d)
= a®+2ab+b?
= |af* + 2ab + |b)? by Proposition 1.38(d)
< af® +2]ab| + b by Proposition 1.38(b)
= |af* +2|a| |b] + |b? by Proposition 1.39
= (Jal +[b])".

As f(z) = x? is strictly increasing on [0, 00), then |a| + |b] < |a + b| is impossible and the result
follows. The cases when equality holds are left to Sheet 1, Exercise 3(i). m

See Remark 1.84 for an explanation of the inequality’s name.

Corollary 1.43 (Reverse triangle inequality) For any real numbers a, b,
la—b| = [|a] — [b]].
Proof. Note by the triangle inequality that

la=bl+ bl = la| = la—bl=>]a -],
b—al+la] > P = Ja—b]=b]-lal,

and as |[|a| — |b|| equals |a| — |b| or |b| — |a|] then the reverse triangle inequality follows. m

We can use the modulus function to define distance on the real line (which is the same as

difference).
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Definition 1.44 Given real numbers x,y, the distance d(z,y) between x and y is defined to
be

d(z,y) = |z —y|.

The function d: R? — R satisfies the properties of a metric, namely, for any real x,v, z:
(M1) d(z,y) >0 and d(x,y) = 0 if and only if z = y.

(M2) d(z,y) = d(y, ).

(M3) d(x,z) < d(z,y) + d(y, z).

Property M3 is equivalent to the triangle inequality. Properties M1 and M2 follow readily
from properties of the modulus function.

We conclude with two useful inequalities.

Theorem 1.45 (Bernoulli’s inequality') Let x be a real number with x > —1 and let n be
a positive integer. Then
(1+2)" >1+nz.

Proof. We shall prove the inequality by induction — note that the inequality is immediate
when n = 1. Suppose that
(1+2)Y >1+4 Nz

holds for all real > —1 and a particular N > 1. Then 1 4+ 2 > 0 and Nz? > 0as N > 0 and
22 > 0. Hence

1+ = (142 Q+2)Y by definition
> (142x)(1+4 Nx) by hypothesis and Proposition 1.29
= 1+ (N+1)z+ Nz? by Al-A4
> 1+(N+ 1)z by Proposition 1.28.

The result follows by induction. m

Proposition 1.46 (Powers dominate polynomials) Let a be a real number with a > 1, and
k be a positive integer. Then there exists ¢ > 0 such that

av>en* for n=1,2,3,...

Proof. Let a =1+ b, so that b > 0, and take n > k. Then

nzk+1 =

n—=k k k 1
S R [ N
n k+1 k+1

'Named after Jacob Bernoulli (1655-1705) who applied the inequality frequently in a text of 1689.

n
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By the binomial theorem,

n pu— n n 2 .« .. n k .« .. i
a" = 1+(1>b+(2>b+ +<k)b+ +b

> (Z) b* [as all other terms are positive]

nn—1)---(n—k+1) ,
EICESSE ),

WV
VRS
S
ol
~_

3

. Bl

k! (k4 1)"
with the last line following from the previous inequalities. We have thus

bk
k! (k+1)"

is such that a"/ nF > ¢ for n > k. If instead we set

a? a” b
¢ = min a’ﬁ7.”’ﬁ7]€!(k—_|_1)k >0

then a”/n* > c holds for n > 1. (It’s important to note that the above choice of ¢ is independent
of n, depending only on @ and k.) =

Example 1.47 In each of the cases (a) and (b),

3" 4+ n?

(@ ) = Ty =t
0) o) = T2y = O

determine

(i) whether there exists ¢ > 0 such that x(n) > cy(n) for all n;
(i1) whether there exists ¢ > 0 such that x(n) < cy(n) for all n;
(iii) whether neither (i) nor (ii) applies.

Thoughts: This example now has genuine flavours of analysis; we are no longer simply applying
axioms. First thoughts are often qualitative, appreciating which terms in the sequences are

significant and which are relatively negligible. For example, in answering (a) we will ultimately
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ignore the n3 term in the numerator; it is helpful, in the sense its presence increases x(n), but
it is inconsequential by comparison with 3", so we simply do not need to make any use of it.
It’s also important to note that the example requires us to find a positive ¢, if it exists, and not
in any sense a minimum such c. The existence of any such c is sufficient to answer the question;
see Sheet 1, Exercise 11 for further comment.

Solution. (a) Note that n3/2" > 0 for all n. By Proposition 1.46, there exist ¢;,cy > 0 such

that ~ ~N
<§> > ent and <§) > con’?

n | .3 n
3—i—n>§
on 2
_ L3\, 1/3Y
21\ 2 2\2

for all n. Hence

\

Gy 2
> 271 + 5 (3 )
> min(;1 662) (n4+3n2).

Hence (i) holds in this case by setting ¢ = min (¢; /2, ¢2/6) .

(b) Note immediately that (ii) cannot hold as m( ) is always positive and y(n) is negative
when n is odd. So (i) can only apply if x(n) exceeds some cy(n) for all even n. For even n the
inequality z(n) > cy(n) is equivalent to

n 8 5
(n3+1) (;) +(n ;;n ) > en?.

By Proposition 1.46, there exists a number K which exceeds the LHS for all n, whilst the RHS
increases without bound as n increases. So no such ¢ exists. To appreciate this in detail, note
that:

There exists ¢; > 0 such that (3/2)" > ¢;n® and hence n? (2/3)" < 1/¢;.
(2/3)" <1

There exists ¢, > 0 such that 3" > con® and hence n8/3" < 1/cs.

There exists c3 > 0 such that 3" > c3n® and hence n°/3" < 1/c3.

Thus we require there to be ¢ > 0 such that

1 /1 1 1 9
—(=4+1+—4+—)2=n*>n
C1 C2 C3

for all positive integers n. The LHS would then be an upper bound for the unbounded N which
does not exist. (See Corollary 1.55.) m
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1.3 The Completeness Axiom

At this stage we can surely persuade ourselves that we could write down proofs of all the usual
algebraic properties of R, and all the usual order properties of <.

Many structures share these properties — the ordered fields — and in particular both Q and
R are ordered fields. So why won’t Q suffice? Why do mathematicians not settle for working
with this rather nice field of easily understood ratios of integers; countable, too, so that we can
list the elements?

The ancient Greeks had at least one reason —in Q we can’t find an element to measure the
length of the hypotenuse of a right-angled isosceles triangle with two short sides of length 1.
Here is the proof of that fact.

Theorem 1.48 There is no element o € Q such that a® = 2

Proof. If there were such an «, then we could write « = m/n for some m,n € Z,n # 0.
Further we could assume that this fraction is in lowest terms, so that m and n are coprime.
Then 2n? = m?. As m? is even then m is also even as a product of odd numbers is odd. We
can then write m = 2k and hence n? = 2k2. But then n, too, is even by the same reasoning
and m/n wasn’t in lowest terms after all. This is the required contradiction. m

So Q is lacking in some ways, certainly if we wish to discuss distances, and we look to
describe the way(s) R is different from Q.

Definition 1.49 Let B C R.

We say that by is a least element or minimum of B if (i) by € B and (ii) by < b for all
b € B. In this case we write by = min B.

We say that by is a greatest element or maximum of B if (i) by € B and (ii) b < by for
all b € B. In this case we write by = max B.

Example 1.50 1 is the minimum of [1,2) but there is no maximum for this set. If x € [1,2)
were a maximum then x < 2 and so 1+ /2 is a greater element of the set.

Proposition 1.51 A mazimum (if it exists) is unique. Similarly a minimum is unique.

Proof. Suppose that b and ¢ are both maxima of B. Then as b € B and c¢ is a maximum,
b<c asc e B andbis amaximum then ¢ < b. By anti-symmetry b = ¢. Similarly minima
are unique if defined. m

Proposition 1.52 FEvery non-empty subset of N has a minimum.

Proof. Suppose, for a contradiction, that S is a non-empty subset of N with no minimum and
define
S*={neN |noneof0,1,...,nisin S}.

We shall show that S* = N and conclude that S is empty, a contradiction.

Note that 0 € S*. If not then 0 is in S and S has a minimum (namely 0). Now suppose
that n is in S*. This means that none of 0,1,...,n is in S. It follows that n + 1 is not in .S, or
else n + 1 would be the minimum of S. Hence none of 0,1,...,n,n + 1 is in .S or equivalently
n 4+ 11is in S*. By induction S* = N and so S is empty. m
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Definition 1.53 Let B C R.
We say that | is a lower bound of B if | < b for allb € B and that B is bounded below.

We say that u is an upper bound of B if b < u for all b € B and that B is bounded
above.

We say that B C R is bounded if it is bounded above and below.

Example 1.54 (a) 23 and m are both upper bounds of [1,2). And 1 is a lower bound as is —37.
The set of upper bounds is [2,00) and the set of lower bounds is (—oo, 1].
(b) Q is neither bounded above nor below, N is bounded below, (—o0, €] is bounded above.
(c) @ is bounded. The set of upper bounds for & is R as is the set of lower bounds.

The below results follow from Proposition 1.52 or can be similarly proved.

Corollary 1.55 (a) A non-empty subset of Z. which is bounded below has a minimum.
(b) A non-empty subset of Z or N which is bounded above has a mazimum.
(¢) N has no mazximal element.

We are now ready to give our final axiom which characterises the real numbers.
Definition 1.56 (Completeness Axiom)

(C) Let S C R be a non-empty set which is bounded above. Then the set of upper bounds of
S has a least element.

Remark 1.57 (Equivalent axioms) There are various alternative axioms that are equivalent
to the completeness axiom as stated in C. One such is:

o Let A and B be non-empty bounded sets such that a < b for alla € A and b € B. Show
that there exists ¢ such that a < c < b for alla € A and b € B.

This is shown to be equivalent to C in Sheet 2, Exercise 10.

In this course we will meet further equivalent assumptions:

e Bounded, monotone sequences converge (Theorem 5.3, Sheet 4, Exercise 6).

o Cauchy completeness (Theorem 5.29) and the Archimedean property.

e The Nested Intervals Theorem (Theorem 5.7) and the Archimedean property.

e The Bolzano-Weierstrass Theorem (Theorem 5.20).

Another famous equivalent axiom is Dedekind completeness (which is off-syllabus):

o A Dedekind cut is a set @ # A G Q satisfying (i) if v < y,x € Q, y € A thenx € A

and (i) if © € A then there exists y € A with y > x. Dedekind completeness states that
A = (—00,2) NQ for a unique real number z.
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Remark 1.58 (Uniqueness of the real numbers) The completeness axiom is the last axiom
we will introduce in defining the real numbers. Two natural questions arise: do the real numbers
exist and is the set of real numbers unique?

The first question is not meant ontologically. But, rather than just assuming that there is
a set R which satisfies the field axioms, the order axiom and completeness axiom, can such a
set be constructed with those properties from more concrete sets such as N, Z or Q? We will
address this aspect of the existence of R when we meet Cauchy sequences (Remark 5.34).

The second question — the uniqueness of R — is also a subtle one. What does uniqueness
mean here? It is true that, up to order isomorphism, there is a unique complete ordered field.
For those wishing to understand the details of this statement see Korner pp.359-360.

Definition 1.59 We call this least element the least upper bound or supremum of S, writ-
ten as sup S. Note that we can refer to sup E as the least upper bound as we have already shown
in Proposition 1.51 that minima are unique.

Example 1.60 2 is the supremum of [1,2).

Proof. For all x € [1,2), 1 < x < 2 by definition, so clearly 2 is an upper bound. Now suppose
that there was a smaller upper bound, t. So t < 2, and as t is an upper bound, ¢ > 1. Then
% < % < 2. 50 % €[1,2) but t < % contradicting the fact that ¢ was an upper bound. m

Example 1.61 The set of upper bounds of @ is R which has no minimum element.
Proposition 1.62 If S C R has a maximum then max .S = sup S.

Proof. Note max S > x for all x € S by definition of being a maximum. Further if u is an
upper bound for S then u > max S by virtue of max S being an element of S. Hence max S' is
the least upper bound. =

Proposition 1.63 (The Approximation Property) Let S be bounded above and non-empty
and let € > 0. Then there exists s € S such that

supS —e < s<supS.

Proof. If this were not the case, then sup.S — ¢ is an upper bound of S less than the least
upper bound, which is a contradiction. m

Remark 1.64 To prove that a real number M is the supremum of a set S C R it is enough
to show that (i) s < M for all s € S and either (ii) for any upper bound M’ of S we have
M < M’ or alternatively (ii)’” for any € > 0 there is s € S such that M —e < s < M.

Corollary 1.65 Let S be bounded above and non-empty. There is a function a: N — R, such
that

1
supS — — < a(n) <supS foralln > 1.
n

In due course, we will see that this means there is a sequence (a(n)) in S which converges to
sup S.
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We would like to make the symmetric definition for the maximum (if it exists) of the lower
bounds of a set which is bounded below. One way would be to introduce yet another axiom
guaranteeing its existence. But we don’t need to do this; we now have sufficient axioms to
prove this as a theorem.

Theorem 1.66 Let T be a non-empty set which is bounded below. Then the set of lower bounds
of T has a greatest element.

Proof. Let S ={—t |t € T}. As T is non-empty then S is also non-empty.

In Proposition 1.26 we showed that v < y <= —y < —=z. Let [ be a lower bound of T'.
Then ! <tforallz € T and so —t < -l forallt € T. That is s < —[ for all s € S. Hence S is
bounded above, and non-empty, so by the completeness axiom, sup S exists.

We shall prove (i) —sup S is a lower bound of T, (ii) if / is a lower bound of 7' then
[ < —supb.

(i) If t € T then —t € S and so —t < sup S. Hence ¢t > —sup S and we see —sup S is a
lower bound of T'.

(i) If I < t for all t € T then — > —t for all t € T. Hence —I > sup S by virtue of sup S
being the least upper bound of S. Finally [ < —supS. m

Definition 1.67 This element is known as the greatest lower bound or infimum of T and
1s written inf T.

e By an argument similar to Proposition 1.51 we can show easily show that infima are
unique.

e Note if T" has a minimum element then min7" = inf 7.

Example 1.68 sup[l,2) = 2 and inf[1,2) = 1. Also min[1,2) = 1 whilst max[1,2) does not
ex1St.

Corollary 1.69 (The Approximation Property for infima) Let T be bounded below and
non-empty and let € > 0. Then there exists t € T such that

inf7T <t <infT +e.

Corollary 1.70 Let T be bounded below and non-empty. There is a function a: N — R, such
that for all n we have

1
inf7 < a(n) <infT + —.
n

Again we will shortly see that this means there is a sequence (a(n)) in T which converges to
inf 7.

Example 1.71 Let S be a bounded subset of R. Let ¢ < 0 and set ¢S = {cs | s € S}. Show
that ¢S bounded above, and that sup(cS) = cinf S.
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Solution. (i) As S is bounded below then s > inf S for all s € S. As ¢ < 0 then ¢s < cinf S
for all s € S and hence cinf S is an upper bound for ¢S. We now have to show that cinf S is
the least upper bound of ¢S and there are two ways of showing this:

(ii) Suppose that u is an upper bound of ¢S. Then c¢s < u for all s € S and hence s > u/c
for all s € S. This means that u/c is a lower bound of S and in particular inf S > u/c as inf S
is the greatest lower bound of S. Then cinf S < u and we finally see that cinf .S is less than or
equal to any other upper bound of ¢S.

(ii)” Alternatively let ¢ > 0 and then, as inf S is the greatest lower bound for S, there is
s € S such that

inf S<s<infS—¢/c — cinf S —e < ¢s < cinf S,
verifying the supremum approximation property. m
Theorem 1.72 (/2 exists) There exists a unique positive number o such that o? = 2.
Proof. Let S={zr € R | 2% < 2}. Note that 12 =1 < 2, so that 1 € S and in particular S is

non-empty. Further if x > 2 then

2 =xr>2>4>2.

Hence 2 is an upper bound for S and so we may define
a=supS.

Note further that a« > 1 > 0 is positive. We split the remainder of the proof into showing that
a? < 2 and a? > 2 both lead to contradictions. By the trichotomy axiom it then follows that
a? = 2.

e Suppose for a contradiction that o < 2. Our aim is to show that (a + h)® < 2 for some
h > 0 which would give a contradiction. Let 0 < h < 1 so that h? < h in particular.
Then

(a+h)? =a*+2ha+ h* < o® + 2ha + h = o® + (2a + 1) h.

We will have o2 + (2a 4 1) h < 2, and hence (o + h)* < 2, if further
< 2 —a?
200+ 1’
noting the RHS is positive. So we set

2 — a?
O0<h<min|l
mm(’2a+1)’

then a4+ h € S. But this contradicts o = sup S.
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e Suppose instead that a? > 2. Our aim is to show that (o — h)2 > 2 for some h > 0 which
again gives a contradiction. Note

(a — h)? = a® — 2ha + h? > o® — 2ha.

So if further 2y
O<hed 2
2x

then (a — h)®> > 2. As & — 22 is an increasing function for z > 0 then no element of S
lies in the interval (o — h, ) which contradicts the approximation property.

Finally, by trichotomy, a? = 2 is the only remaining possibility. To show uniqueness of «
suppose that § is a positive number such that 8% = 2. Then

= = - F=(a+h)(a-p=0

It follows that 5 = a or f = —a. As a > 0 then —a < 0 and so « is the only positive
solution of 22 = 2.

Remark 1.73 Note that this result shows that Q does not satisfy the completeness axiom as
the set {x € Q | z* < 2} does not have a supremum in Q.

Notation 1.74 We write \/2 for a.

Theorem 1.75 Let a be any positive real number. Then there exists a unique real number —
denoted by \/a — whose square is a.

Proof. This just involves a refining of the previous argument. See also Example 5.9. m

We've already noted (Corollary 1.55) that N has no maximal element. This is something
that can be proved within the axioms for N. Situating N within R we now note:

Theorem 1.76 (Archimedean Property) N is not bounded within R. That is, for any x € R
there exists n € N such that v < n.

Proof. If not, N is bounded above and not empty. Set &« = sup N. Then so a — 1 < k for some
k € N by the approximation property. But as £+ 1 € N and o < k + 1, contradicting o being
an upper bound for N. m

Corollary 1.77 Lete > 0. Then 0 < 7—11 < ¢ for somen € N.
Proof. Apply the Archimedean Property to 1/¢. m

Corollary 1.78 Given reals a,b with a < b then there exists a rational number q and an
wrrational number r such that a < ¢ < b and a < r < b.

Proof. Left as Sheet 2, Exercises 5ii and 5iii. m
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1.4 Complex numbers

[This section is by way of recap from the Introduction to Complex Numbers course. and will
not be lectured.]

We can define C from R by taking the set C to be R?, the set of real ordered pairs and
defining addition + and multiplication x by

(al, bl) + (CLQ, bg) = (CL1 + ag, bl + bg)
(a1,b1) X (ag,b2) = (araz — bibe, azby + a1be).

So that, for example
(0,1)>=(0,1) x (0,1) = (0>~ 12,0 x 1 + 0 x 1) = (~1,0).

We more commonly write i for (0,1) and write a + bi for (a,b), so that the above equation
states i2 = —1. Further we identify each real number » with r + 0i and so can think of the reals
as a subset of the complex numbers.

It is not hard to check that the field axioms Al1-A4, M1-M4, D, Z are all true of the complex
numbers.

Proposition 1.79 There is no subset P of C which satisfies the order axioms P1-P3.

Proof. Suppose for a contradiction that such P C C exists. By P3, precisely one of the
following holds:
1€ P 1= 0; —1€P.

If i = 0 then 1 = i* = 0* = 0 which contradicts Z. If i € P then by P2 we have —i = i € P,
but then +i € P which contradicts P3. Assuming —i € P leads to the same contradiction.
Hence not one of the the possibilities required by P3 holds and no subset P C C exists with
the requisite properties. m

So the complex numbers cannot be made into an ordered field. There is, though, the
complex modulus function, that we can use to determine the ‘size’ of complex numbers. Let
2z = x + yi, where x = Re z and y = Im z, throughout the following.

Definition 1.80 The modulus of z, written |z|, is given by
o = VaT Ty
This makes sense as x> +y* > 0.
Definition 1.81 The conjugate of z, written zZ (or z* in some texts), is given by
zZ=x—yi.
None of the following properties is at all difficult to prove — they are algebra, not analysis.
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1. If z is real (i.e. z = = + 0i) then |z| = |z|; that is the definitions of real and complex
modulus agree where applicable.

5. z+ZzZ=2Rez.

z—2z=2Imz.

N

21+ 22 =21 + 23.

8. Z1R9 = 21 =2.

Theorem 1.82 For z,w € C,
lzw| = |2] lw].

Proof. Let z = x + yi and w = u + vi. Then all we need is the factorisation
(v + yu)® + (zu — yv)?* = (2 + v (u* + v?)
and the existence of unique non-negative square roots. m
Theorem 1.83 (Triangle Inequality) For complex numbers z,w,
|z +w| < |2] + |w].

Proof. Using the above properties.

|z + w]?

(z+w) (z +w)
= (z4+w)(z+ )

2Z 4+ (20 + Zw) + ww
= zZ+2Re(2w) + ww
< 22+ 2)20| + ww
= |2 + 202 Jw| + |wf?
= (l2] + [w])*.

Remark 1.84 The name ‘triangle inequality’ is clearer to explain in C rather than in R.
Consider the triangle in C with vertices A =0, B =z and C = z +w. Then |z + w| = |AC|,
|z| = |[AB| and |BC| = |(z + w) — z| = |w|. So the triangle inequality states that the length of
one edge is less than the sum of the lenghts of the other two edges.
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