2. COUNTABILITY

In this section we introduce some of the simplest ideas about the size or cardinality of a set.
(You should probably note, but not be too concerned, that we have not rigorously defined what
a set is. Most (but by no means all) mathematicians agree on what a set is, but you will have
to wait till the third year B1.2 option Set Theory to find out what the current consensus is.)

Almost all the results in this section are due to the German mathematician Georg Cantor (1845-
1918). The lectures will focus mainly on the notion of countability and in particular that the
real numbers are uncountable. The cardinality of finite sets was discussed in the Introduction
to University Mathematics course.

Definition 2.1 Let A and B be sets. We say A and B are equinumerous, and write A ~ B,
if there is a bijection f: A — B.

Note that for any sets A, B, C,

A= A;
A~ B < B=x A
AxB, Br(C = A=xC.

These properties rely on the identity map being a bijection, bijections being invertible and the
composition of two bijections being a bijection.

Example 2.2 The sets A = {0,1,2,3,...} and B = {1,2,3,4,...} are equinumerous despite
B being a proper subset of A; we can see this by considering the bijection f: A — B given by
f(n)=n+1.

Definition 2.3 A set A is called finite if either A = & or we have that A~ {1,2,...,k} for
some non-zero natural number k. In the former case we say that A has cardinality 0, in the
latter has cardinality k. We denote the cardinality of A by |A|.

Remark 2.4 Note that the cardinality of a finite set is well-defined. There would be issues
with the above definition if it were possible to find a set A and distinct k, [ such that

Ax~A{1,2,...,k}, and A= {1,2,... 1}

To sketch a ‘least criminal’ proof, consider the smallest k for which A ~ {1,2,...,k} and
distinct | with A ~ {1,2,...,1}. We could then construct a bijection f from {1,...,k} to
{1,...,1l}. Remove k and f(k), and (with some adjustment) we’d get two equinumerous sets of
sizesk —1 and l — 1. But k — 1 # | — 1 which contradicts the minimality of k.

Exercise 2.5 How would you prove the following for finite sets A and B?
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e If AC B then |A| < |B|.
o If f: A— Bisal-1map then |A| < |B].
o If g: A— B is an onto map then |A| > |B|.

Remark 2.6 (Off-syllabus) More generally given two (possibly infinite) sets A and B we write
|A| < |B| if there is a 1-1 map from A to B. The Cantor-Bernstein-Schroder Theorem
states that

if |A| < |B| and |B| < |A| then A~ B,

i.e. if there is a 1-1 maps A — B and B — A then there is a bijection from A to B.

Cantor was the first to publish this result, without proof, in 1887. A later proof by Cantor
relied on the Axiom of Choice, which is a non-stand axiom of set theory, and unnecessary to
this theorem. In 1887 Dedekind proved the theorem, without reference to the Axiom of Choice
but did not publish his result. In 1897 Bernstein and Schréder independently published proofs.

Definition 2.7 A set which is not finite is called infinite.

Remark 2.8 An equivalent definition for a set to be infinite is that the set has an equinumerous
proper subset.

Example 2.9 The sets N, Z, Q, R, and C are all infinite.
Somewhat surprisingly, we will see that the above sets are not all equinumerous.

Definition 2.10 A set A is called countably infinite (or denumerable) if N =~ A We say
A is countable if A is finite or countably infinite. A set which is not countable is called
uncountable. (Note some authors use ‘countable’ to mean ‘countably infinite’.)

We then have:
Proposition 2.11 A set A is countable if and only if there is a 1-1 map f: A — N.

Corollary 2.12 If B C A and A is countable then B is also countable. Equivalently if B is
uncountable then A is uncountable.

Example 2.13 The set of integers is countably infinite.
Solution. A bijection from N = {0,1,2,...} to Z can be described using the list
0,1,-1,2,-2,3,-3....

or more formally by setting

—n/2  niseven

f(n):{ (n+1)/2 nisodd

[ ]
We can generalise this approach to show:
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Proposition 2.14 Suppose that A; and Ay are disjoint and countably infinite. Then Ay U Ag
18 countably infinite.

Proof. As A; is countably infinite then there is a bijection f;: N — A;. We define the map
g: N— A; U A, by
B fi (%) if n is even

g(n)= { f2(%52) if nis odd
This map can be readily checked to be a bijection onto A; U A;. m

Remark 2.15 The above proposition still holds even if Ay and Ay are not disjoint; essentially
the same g can be used to list Ay and Ay but skipping over any repetitions as they occur.

Proposition 2.16 Suppose that A and B are countably infinite. Then the Cartesian prodcut
A x B is countably infinite.

Proof. As both sets are countably infinite then they can be listed as
Qp, a1, A2, - - - bOablaan"'

The elements (a;, b;) of A x B can be put into a grid as below

(ao, bg) — (al, bg) (CLQ, bo) — (ag, bo) (CL4, bo)
e / e /

(ao, b1) (01, bl) (az, bl) (a3, b1) (a4, bl)
! / e / e

(CLO, bz) (CLl, bz) (a2, bz) (CL3, 52) (a4, 52)
e / e /

(ao, bs) (al, bs) (02, bs) (as, b3) (G47 b3)
! / e / e

(CLO, b4) (CLl, 54) (a2, 54) (CL3, b4) (a4, b4)

and then can themselves be listed, in accordance with the arrows, as
(ap,bo) , (a1,bo), (ag,b1), (aop,bs), (a1,b1), (az,bo), (as, bo),...
]
Corollary 2.17 If Ao, A1, As, ... are countable sets then so is their union |2, A;.
Proof. As each set A; is countable then it can be listed as
50, Q51 , A2, - - -

By placing the a;; into a square grid as in the previous proof then these can be counted in a
similar fashion, omitting any repetitions of elements that arise. m

Remark 2.18 For those with a particular interest in set theory, note that the above proof relies
on the Axiom of Choice in a subtle way. In listing each set A; we are effectively choosing a
bijection f;: N — A; and to do so for each i requires the Axiom of Choice.
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Notation 2.19 The symbol Ry is used to denote the cardinality |N| of N, or any countably
infinite set. N is aleph, the first letter of the Hebrew alphabet and Wy is read as ‘aleph-null’ or
‘aleph-nought’.

Example 2.20 The set N> = N x N is countable as we have seen. An explicit example of an
injection f: N? — N is the map
f(m,n)=2m3".

Example 2.21 The set Q1 of positive rationals is countable as the map taking a rational m/n
in its lowest form to (m,n) is an injection from Q* toN? ~ N. So Q = {0}UQTU{—¢q | ¢ € QT}
18 also countable.

However it turns out that not all infinite sets are countable. In particular it is a fact
of considerable importance that R is uncountable. This was first shown in 1874 by Cantor,
producing a second more intuitive proof using his diagonal argument in 1891. Below we give
two proofs. The second is Cantor’s diagonal argument which makes use of decimal expansions
— something we are yet to define and construct (see Example 5.12) — whilst the first proof uses
results we have so far demonstrated.

Theorem 2.22 R is uncountable.

Proof. Proof 1: If R were countable, then so too would be [0, 1]. Clearly [0, 1] is not finite as
it contains all ¢ where k > 1. We proceed now with a proof by contradiction to show that [0, 1]
is not countably infinite. Suppose f : N — [0, 1] is a bijection and we write z = f(k).

e We choose distinct ag, by so that xo ¢ [ag, bo]. If 29 # 1 then we can find ay and by such
that xo < ap < bp < 1 and if g = 1 then we can take the interval [0,1/2].

e Having chosen ag, by we then select a1, by so that ag < a1 < by < by and z1 ¢ [a1,b1]. In a
similar fashion to the above if 1 < by we can find a; and b; so that

max (ag, r1) < a; < by < by

and if 77 > by then we can take the interval [(2ag + bo) /3, (ao + 2by) /3], i.e. the middle
third of the previous interval.

e We repeat this process producing reals a; and b; such that
O0<agp<a<ag<---<by<b <by<1
and z; ¢ [a;, b;] for each i.

Now set S = {a; | j € N} which is bounded above by 1 and 7' = {b; | j € N} is bounded below
by 0. So we may define
A=supS and p=infT.
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For all m,n we have a,, < b,. In particular, each b,, is an upper bound of S and so A < b,, for
all n as A is the least upper bound of S. So A is lower bound of 7" which means A < p as p is
the greatest lower bound of 7. Then

ap <K A< < b, forall n.

For all n we have A € [a,,b,] and =, ¢ [a,,b,| and so A # z,, for all n which contradicts the
fact that f is a bijection. m

Proof. Proof 2 (diagonal argument): We will prove R is uncountable by showing that the
interval (0, 1] is uncountable. To each z in this interval corresponds a unique decimal expansion
0.a1azas . .. which does not end in a string of zeros.

Suppose for a contradiction that f: N — (0, 1] is a bijection. Then we may uniquely write

out the decimal expansions of f (1), f(2),.... Say:
f (1) = 0.7“11’/’127“137"14 e
f (2) = 0.7“21’/’227“237"24 Ce
f (3) = 0.7’317’327”33’)”34 Ce

Cantor then created a real a not on the list by setting
a = 0.a1a0a3. ..
where

. — 6 1frkk7é6
FTY 7 ifr. =6

The decimal expansion of « is allowed (in that it doesn’t conclude in a string of 0s) and we see,
for any k, that o # f (k) as @ and f (k) disagree in the kth decimal position. This contradicts
the surjectivity of f. m

Notation 2.23 The symbol ¢, which stands for ‘continuum’ (an old name for the real line),
denotes the cardinality of R.

Corollary 2.24 C is uncountable. (In fact, C = R, which can be proved using the Cantor-
Bernstein-Schroder theorem )

The following result, known as Cantor’s Theorem. It shows that any set has more subsets
than elements. It further proves that there are ever increasingly large sets that can be formed.

Theorem 2.25 (Cantor’s Theorem, 1891) Let A be a set, and let P (A) be the power set
of A, that is the set of subsets of A. Then

(Al <P (A)].

This means there is an injection from A to P (A) but there is no bijection from A to P (A).
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Proof. The map A — P (A) given by a — {a} is an injection.
Suppose we have a map f: A — P (A). We show that f cannot be a surjection, and so
cannot be a bijection. We consider the set

X={acAlag f(a)},

and will show that X ¢ f(A). Hence f is not onto.

Suppose to the contrary that X = f(x) for some # € A. Then either x € X or z ¢ X. From
the definition of X, we know that x € X if and only if ¢ f(x) = X. This is the required
contradiction and so X ¢ f(A), as claimed. m

Example 2.26 Let A = {1,2,3} and define f: A — P (A) by
=2, f@=A  3)={L2}
Find the set X C A guaranteed by Cantor’s theorem not to be in f(A).
Solution. As 1 ¢ f(1),2 € f(2),3 ¢ f(3) then X ={1,3} . =
Example 2.27 P (N) ~ R. (This can be proved using the Cantor-Bernstein-Schroder theorem.)

Remark 2.28 In the remainder of the course there will be very few explicit references to the
uncountability of the real numbers. Having said that, it is the uncountability of R that charac-
terises how we describe real numbers and impacts the nature of analysis.

The integers, rational numbers, algebraic numbers (Sheet 2, Exercise 6) are all countable
sets. Further the computable numbers can be shown to be countable.

A real number is said to be computable if there is a finite length computer program, written
in a finite alphabet, that can (in principle) calculate that real number to any required accuracy.
Essentially the set of computable numbers comprises all real numbers that can be described by
finite means. However Cantor’s proofs can be readily adapted to show that there are countably
many such programs and so countably many computable numbers. This means, to describe the
uncountably many real numbers, some infinite description is necessary — such as infinite decimal
expansions.

Quite what this means is somewhat contentious. In this course we will consider arbitrary
decimal expansions involving 0,1, ....,9, but some logicians and mathematical philosophers take
issue with this. In particular, “ntuitionists’ would be content only with a decimal expansion
that is defined constructively.
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