3. SEQUENCES AND CONVERGENCE

How do we handle a specific real number in practice? One option is to look at successive
approximations. For example, we could have the following approximations for v/2:
14 141 1414
’107 100° 1000° "
— namely the truncated decimal expansions for v/2 — or we could approaximate 7 with the

sequence
22 333 103993

771067 331027 7
which are the ‘continued fraction convergents’ of w. Our first task is to make precise the idea
that these approximations approach the real numbers that they represent.

Definition 3.1 A sequence of real numbers or, more simply, a real sequence is a function
a: N —R.

Definition 3.2 A sequence of complex numbers or, more simply, a complex sequence
s a function a: N — C.

In these definitions we typically take N to be the set {0,1,2,...} or {1,2,3,...}.

Definition 3.3 Given a natural number n, the nth term of the sequence a is a(n) and we
denote this a,,.

Example 3.4 Here are some sequences:

o« nisan)=(-1)",

e ni— [(n)=0,

e n—y(n)=n.
Note, in practice, we often just give the sequence’s values, and say ‘the sequence 1, %, %, o if
it is clear what the function ‘must be’. Or we may be more explicit and write ‘the sequence
(an)22, or ‘the sequence (a,)’ where a,, is a formula in n.

Note also that although n determines the nth value of a sequence, the nth value does not
determine n because the defining function need not be injective. Consider the sequences a and
[ above for example.

The space of real (or complex) sequences is naturally a vector space; in fact it is naturally
an algebra where elements can be multiplied. Suppose that (a,) and (b,) are sequences of real
(or complex) numbers and ¢ € R (or C). We define the sequences

(an + b)), (can), (anbn), (an/bn)

in the obvious, termwise way. All are well defined except possibly the quotient, where we must
insist on all the terms of (b,,) being non-zero.
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Example 3.5 a, = (—1)" and b, =1 for alln > 0.

(G 4 by) = (0,2,0,2,0,2,0,...); (—ay) = (=1)";
(anbn) = (an); (a2) = (ba) -

3.1 Convergence

Definition 3.6 Let (a,) be a real sequence and L € R. We say that (a,) converges to L if
Ve>0 INeN VYn>N Ja,—L|<e.
We also say that (a,) tends to L. We write this as
(an) — L or a, — L as n — oo or just a, — L.

Note than N can, and typically will, depend on €. The smaller ¢ is, the larger N will typically
need to be.

Definition 3.7 If (a,) — L then we say that L is a limit of (a,) and we write

L = lim aq, or just L =lima,.

n—oo

Definition 3.8 We say that (a,,) converges or is convergent if there exists L € R such that
(an) — L. In full

(a,) converges <= JLER Ve>0 INeN VYn>=N Ja,—L|<e.
Definition 3.9 We say that (a,) diverges or is divergent if it does not converge. In full
(a,) diverges <= VLeR Fe>0 VYNeN In>=N |a,—L|>c.

Remark 3.10 In the above, € is an arbitrary positive number though instinctively we usually
think of € as being very small. The smaller the value of € the further into the sequence we will
usually have to look to find a value of N that will suffice.

n

3.0¢

25¢

L2.0;~ ~~~~~~~~~~~~~~~~~ o--®

1.5F
1.0F

0.5F L]

Fig. 3.1 — Graphing a Real Sequence
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In Figure 3.1 we have L = 2 and € = 0.5. Note that as lies in the range (L — e, L + €) though 2
cannot act as N here as as is not in the required range. It seems, from the figure, that N = 4
would suffice as each of x4, x5, x¢, ... appears to lie in (L — e, L +¢). In fact any N > 4 would
be satisfactory, it doesn’t have to be first such N. For € much smaller than 0.5 then the larger
N will need to be.

Looking then at the definition of a, — L, we need to find some N, not necessarily the
smallest, such that ay,ani1,aN+2, ... lies in (L —e, L+ ¢) and we need to be able to do this
for all e > 0.

The definition of {a,) converges’ makes no specific mention of the limit L, and so to demon-
strate this the first task is to determine the candidate limit L and then to show a, — L.

Remark 3.11 We also note from the above that showing
dLeR Vee(0,1) INeN VYn>N Ja,—L|<e

18 sufficient to show convergence. That is, WLOG, we can assume 0 < ¢ < 1. Previously
we had to concern ourselves with, say, finding the sequence eventually in (L —2,L + 2). But
as we can find the sequence eventually in (L — 0.5, L + 0.5) then the sequence is eventually in
(L —2,L+2) as well.

And there’s nothing special about assuming € < 1 here. If it suited us we could assume
0 < € < gg for any positive g.

Definition 3.12 (Tails and Neighbourhoods) Let (a,,) be a sequence, and let k be a natural
number. Then the kth tail of (a,) is the sequence n +— any i.e. it equals the sequence

(ak7 Qk41, Ak+2, Q43 - - )

which we will also write as (antx)reqy or (an);, -

For L € R and € > 0, we refer to the set (L —e,L +¢) as a neighbourhood of L (or
sometimes a basic neighbourhood of L).

So we can rephrase (a,) converges to L’ as ‘any neighbourhood of L contains a tail of (ay) .’

In practice, we will not be interested in a specific kth tail so much as in some (unspecified)
tail or all tails past a certain point in the sequence. The tails give a way of focusing on the
long-term behaviour of a sequence ignoring any short-term aberrant behaviour at the start of
a sequence. Whether or not a sequence converges purely depends on the long-term behaviour
of the sequence as we see in the next proposition.

Proposition 3.13 Let (a,) be a real sequence and let L € R. Then the following three state-
ments are equivalent.

(a) (a,) converges (to L);

(b) some tail of (a,) converges (to L);

(c) all tails of (a,) converge (to L).

Proof. We shall demonstrate the implications as (a) implies (c), (c) implies (b) and (b) implies

(a).

CONVERGENCE 37



(a) = (c): Suppose that (a,) converges to L and let k € N, ¢ > 0. As (a,) — L then
there exists IV such that
Vn>N |a,— L| <e.
For such n, we have n + k > n > N and so
Vn> N |apx — L] <e.

Hence, for any k € N, the kth tail of (a,) converges to L.
(¢) = (b): (c) clearly implies (b).
(b) = (a) : Suppose that the kth tail of (a,) converges to L. Let ¢ > 0. Then there
exists IV such that
Vn>= N |apx — L] <e.
Hence
Yn>2N+k |a,—L|<e
and we see that (a,) converges to L. m

Remark 3.14 (Intersection of tails) We will often find ourselves in a situation where we know
something is true of a sequence (a,) for n = Ny and a second thing is true for n > N,. Note
that both facts will apply for the tails’ intersection, which is when n > max(Ny, Na), which is
itself a tail of the sequence.

This argument can be applied finitely many times, but only finitely many. The intersection
of infinitely many tails can be empty — e.g. when N, = k? say.

Before giving some examples, we show that a limit, if it exists, is unique. So we are justified
in the use of the language ‘the limit’.

Theorem 3.15 (Uniqueness of Limits) Let (a,,) be a real sequence and suppose that a,, —
L,y and a,, — Ly asn — oo. Then Ly = Lo.

Thoughts: Proofs of uniqueness usually begin by assuming non-uniqueness and obtaining a
contradiction or assuming there are two such elements and showing they’re equal. Our proof
is by contractions. If there were two limits, L; # Lo, then the would be tails of the sequence
in a neighbourhood of each. Provided these neighbourhoods are disjoint, there is nowhere for
the tails’ intersection to be.

Proof. Suppose not and set € = |L; — Ly| > 0. Then £/2 > 0 and there exists N; such that
n>N = |a,— Li| <¢/2

Likewise there exists Ny such that
n>=Ny = |a,— La| <eg/2.

Then for n > max(Ny, N2) both inequalities hold and

Ly = Lo| = [(Ly = an) + (an — Lo
< |Ly — an| + |an, — Lo by the triangle law
< ¢/24¢/2
= |L1 — Ly|

which is the required contradiction. m
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Example 3.16 Let

forn > 1.

Then (ay) — 1.

Thoughts: Here the limit is given, namely L = 1, so we don’t have to put any thought into
deciding what the limit is (as in the next example). The statement of (a,) — 1 is

Ve>0 INeN VYn>=N |a,—L|<e.

To address the first quantifier all we need do is introduce a positive . Given this ¢, our task
is to find a suitable N. In the example below we include the necessary ‘back of the envelop’
calculation as part of the proof.

Solution. Note
a, — 1| =1 —-27"—1| =2""

Let € > 0. We need to find N such that
n>N =— 2 "<e.

But note that 2* > n for all n € N and so if N > 1/¢ (which we know to exist by the
Archimedean Property) and n > N we have

1 1 1
n—1=2"=—<-< = <e¢
o | 2n n N c
[
Example 3.17 The sequence
n?+n+1
= ety (n21)

18 convergent.

Thoughts: Because the statement for convergence is
dLeR Ve>0 INeN Vn>=2N |a,—L|<e

our first work is in deciding what the limit L is. Note the limit was given to us in the previous
example. Our ‘back of the envelop’ argument might go: 1 for large positive n,
CnP4nt+l 141445 1

=Ty 3+% 3

We give no exact definition of ~ (approximately equal to) but none of the above is part of our,
rather informal first thoughts. So % seems the obvious candidate for our limit. To begin the

proof then, looking at the quantifiers we need to address:
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Solution. Let € > 0. Note

n+n+1 1
3n2+4 3‘
3n—1

3(3n2% +4)

3n
3(3n2% +4)
3n

3 x 3n2

< —.
n

By the Archimedean Property, there exists N € N such that N > % Then, for any n > N, we
have

1 - 1 < 1 -
p — 5 — X R7
3| S SN TF
to complete the proof. m
Example 3.18 Let
(~1)n?
n= "5 =2 1).
“ n?+1 (n )

Then (a,) diverges.
Thoughts: The quantified definition of divergence is
VLeER >0 VNeN dIn>N |a,—L|>c¢,

so we need to show that any limit real L cannot be a limit.
Looking at the sequence we can see that for large even n

(-1 1
n2+1 1+n-2

~1,

Ay =

whilst for large odd n we have

(- -1
n2+1 14+n2

a, = ~ —1.

A natural way forward seems to be to suppose, for a contradiction, that a limit exists and argue
(carefully!) that this limit would need to be both near 1 and —1; this would be the required
contradiction. In fact, if we look in more detail at the sequence we see that as, > % for all n
and ag,_1 < —%, so we will take ¢ in such a way that 2¢ < % + % = % which is the closest the
even and odd terms get. Our proof thus begins:

Solution. Suppose, for a contradiction, that a limit L exists and set € = % Then there exists

N such that for n > N
1

(v |1
2

n?+1

~1]<
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In particular, for even n > N we have

Similarly, for odd n > N we have

n? 1

L < =

+n2+1 2’
1 1 1 1

- L<-— <z—-=0
2 14 n2 2 2

The necessary inequalities L > % and L < 0 give us our required contradiction. m

Corollary 3.19 Let a be a real number with a > 1, and k be a positive integer. Then

nk

— — 0 as n— oo.

an
Proof. This is a corollary to Proposition 1.46. There we showed that There is some ¢ > 0 such
that

an

k2
for all n > 1. Replacing k with k + 1 there exists ¢ > 0 such that a"/n**! > ¢ for all n > 1;
hence

nk 1

0<—< —.

a™ cn
Given € > 0, by the Archimedean property there exists NV such that |nk / a”| < gforalln > N.
That is n*/a® — 0 asn — co. m

Proposition 3.20 (Convergent sequences are bounded) Let (a,) be a real convergent se-
quence. Then (a,) is bounded.

Thoughts: Pick any neighbourhood of the limit and a tail of the sequence of the sequence will
be in that neighbourhood. Only finitely many terms of the sequence aren’t in that tail.

Proof. Say that (a,) — L and set ¢ = 1. Then |a, — L| < 1 for some tail n > N and, in
particular, |a,| < |L|+ 1 by the triangle inequality. Then |a,| < M for all n where

M =max{|ag|,|a1],...,|lan-1],|L]|+ 1} + 1.
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3.2 Complex Sequences

Definition 3.21 Let (z,) be a sequence of complex numbers and let w € C. We say that (zy,)
converges L and write (z,) — L orlimz, = L if

Ve>0 INeN Vn>2N |z, —Ll<e
That is |z, — L| — 0 as n — 0.

Corollary 3.22 (Uniqueness of Limits) Let (a,) be a complex sequence and suppose that
an, — L1 and a,, — Ly as n — oo. Then Ly = L.

Proof. The proof of uniqueness is identical to the previous proof for real sequences. m
Corollary 3.23 Let (a,) be a convergent complex sequence. Then the sequence is bounded.
Proof. The proof of boundedness is identical to the previous proof for real sequences. m

Remark 3.24 (Graphing complex sequences) We can represent the behaviour of complex
sequences in C by plotting the terms in the Argand diagram. In Figure 3.2 below, the sequence’s
limit is L = 141 and e = 0.3. Rather than an open interval (L — e, L + €) , the region |z — L| < ¢
is an open disc with centre L and radius . That is the (basic) neighbourhoods of L are discs
centred at L. Again z, — L if every neighbourhood of L contains a tail of (z,). In the figure it
appears that any tail of the sequence from N > 5 is inside the sketched disc.

Im

14

12

1.0

0.8

0.6 *Z3 *2

oz, ez,

0.4

0.2

9% 02 0a 06 08 o T2 ) Re

Fig 3.2 — graphing convergence in C

Theorem 3.25 Let z, = x, + iy,. Then (z,) converges if and only if (xz,) and (y,) both
converge.
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Thoughts: Visually this result is not surprising. For z,, to be within a radius € disc of L;+¢Ls
means ,, + 1y, is within a square of side 2¢. For a tail of x,, to be within £/2 of L; and a tail
of y,, to be within €/2 of L, means the tails’ interection of z,, + iy, is within a quare of side ¢
which itself is within a radius ¢ disc of L; + iLs.

Proof. Suppose that x,, and v, both converge and that € > 0. Set x = lim x,,, y = limy,, and
L = x +1y. By the Triangle Inequality

(20 = L] = [(zn — @) + i (yn — Y)| < |20 — 2 + |yn — 9]
As z, — = and y, — y then we can find N; and N, such that

|z, —x| < €/2 whenever Ny,

nz
lyn —y| < ¢€/2 whenever n > N.

So if n > max (N, Na) we have |z, — L| < ¢/2+¢/2 = ¢ and we see that z, — L.
Conversely suppose that z, converges to L and let € > 0. Then there exists N € N such
that |z, — L| < € whenever n > N. As |Rew| < |w| and |Im w| < |w| for any w € C then
|z, —x| = |Re(z, )| < |z, — L| < e whenever n > N,
)| n > N.

~ D)<
lyn —y| = |Im(z, — L)| < |2, — L| <& whenever

Hence z,, — x and y,, — y as required. m

Example 3.26 Let

Then z, — 0.

Proof. Let € > 0. Note

o= () |l = - ()
Zn— = = = _— .
142 114" V2

We have already shown that 2% < ¢ for & > 1/¢ and so (\/5)” <eforn>2/c m

1
|14

Remark 3.27 Note that in the above example Theorem 3.25 is not particularly useful. It is
often simpler to work with a complex sequence as such rather than as a sequence made up of
its real and complex parts. By De Moivre’s Theorem, the real and imaginary parts of z, are

. Re(cos(ﬁ/él)—isin(ﬁ/él))n L (n_W)

NG T o2 4
y = Im (cos (77/4)\—/528111 (7r/4)) _ (;n—l/lsin (71747'('>’

and it only makes for more work to show that both of these tend to 0.
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Notation 3.28 (Asymptotic notation) Let a,, b, be sequences.
(a) We write a,, = O(by,) if there exist ¢ such that for some N

n=N = |a,| < cby.

This is referred to as big O.
(b) We write a,, = o(b,) if a, /by, is defined and

This is referred to as little o.
(c) We write

an ~ by,

if an/b, — 1 as n — oo. We say that a,, and b,, are asymptotically equal.
Example 3.29 As examples

e n=0 (n?

e n=o0(n?)

e sinn=0(1)

3.3 Infinity

Definition 3.30 (Real Infinities) Let a,, be a sequence of real numbers. We say ‘a, tends to
infinity’ and write a,, — oo as n — oo to mean

VMeR INeN Vn>N aqa,> M.

Similarly we write b, — —oco if
YVMeR dANeN Vn>N b, <M.

(Here we tend to think of M as being a very large positive/negative number.)

Definition 3.31 (Complex Infinity) Let z, be a complex sequence. We say that z, — oo if
VM eR ANeN Vn>=N |z,] > M.

That is |z,| — oo as a real sequence.
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e Note that the real infinities +-00 are not real numbers and complex infinity oo
is not a complex number and should not be treated as such.

e Certainly you should never be writing anything like the following:
n 00 . n o0

lim =— =1, or lim —=—=1.
n—oo M + 1 00

The first limit, by a fluke, is correct and the second is false; if properly argued it would
be seen that the second limit exists and equals 0.

Remark 3.32 (Indeterminate forms) If a, — oo and b, — oo then there is nothing that
can be said about the long term behaviour of a, /b, as seen from the examples above. This can

be expressed as ‘% is an indeterminate form’. The other indeterminate forms are

00 0
—, — 0 X oo, 00 — 00, 0°,

10 0
50 Oa )

00 .

It can be useful to talk about ‘%27 type limits but this is only informal, shorthand language to
describe a family of such sequences. For a specific example, a limit might be found using careful
analysis, but there is no single answer for limits of such sequences.

Note that oo + 0o and oo x oo are not on the list of indeterminates because if a,, — oo and
b, — oo then a, + b, — oo and a,b,, — 00.

Below is a list of examples to show that the other examples above are indeed indeterminates.

Type G, by, form long term | Type | ay, b, | form long term
g % % . 1 — 1 00 % % 1//n —1

g 1 L (=" |notimit [ 0° |2 | 11/2 =3

0 x oo % n 1 — 1 1*° 1+ % n (1 + % —e
Oxoo |1 n? n — 00 1 [1+Ln [(1+5)" ] —1
O0xoo |(=2)" 2" (=1)" | nolimit |1° |1+2 |n?| (1+34)" | -
00— 00 | N 2n —n — —00 ' |n L n —1

00 —00 | N n+sinn | —sinn | no limit | cc® |27 7—11 2 — 2

Remark 3.33 (Hyperreals — off-syllabus) There are ways to formally treat infinities and
infinitesimals. One such approach is the hyperreals which were first studied by FEdwin Hewitt
in 1948 and greatly extended by Abraham Robinson in 1966. The use of hyperreals is called
‘non-standard analysis’. For more see Sheet 3, Exercises 10 and 11.

Remark 3.34 (Neighbourhoods of Infinity — off-syllabus) Note that a real sequence (ay,)
converges to L € R if every (L — e, L +€) contains a tail of (a,). The interval (L — e, L + ¢)
18 called a neitghbourhood of L.

Now (a,) — oo if every interval (M,o0) contains a tail of (a,) and we call (M,0) a
neighbourhood of co. Note that a,, # oo for all n as (a,) is a sequence of real numbers.

By comparison, when we have a real sequence (ay) in the interal (—oo,r] with a, # r for
all n, then (a,) — r if every interval (M,r) contains a tail of (ay) .

So when we include oo and —oo to make an ‘extended real line’ then we essentially make
the closed interval [—oo, 00] .
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The situation is rather different with the ‘extended complex plane’. There is only one complex
infinity which is ‘out there’ in all directions. A neighbourhood of oo is a set

{zeC||z| > M}.

Effectively we are wrapping up the complex plane with a single point at infinity and, topologically,
this creates a sphere, commonly known as the Riemann sphere. There are actually quite
detailed connections between the geometry of the sphere and that of the extended complex plane,
which can be made explicit via stereographic projection.

Fig. 3.8 — Stereographic Projection

Let S denote the unit sphere in R®. Thinking of C as the xy-plane, every complex number
P = X 4+ Y1 can be identified with a point Q on S by drawing a line from (X,Y,0) in the
xy-plane to the sphere’s north pole N = (0,0, 1); this line intersects the sphere at two points @
and N. We define a map 7 from the sphere S\{N} to C by setting m(Q)) = P. The points Q
that are near N are mapped to P with large moduli, so it makes sense to extend w by setting
7(N) = oo and then we have a bijection from S to Co, = CU{o0} which is called stereographic
projection.

Specifically this defines

T 5 L]
— 1—z
YRR
with inverse
2X 2y X?2+Y?2-1
-1 .
X Y)=

T (X4 (1+X2+Y2’1+X2+Y2’1+X2+Y2)

But 7 s much more than a simple bijection. It has important geometric properties.

o Under stereographic projection, circles on S which pass through N correspond to lines in
C, and circles on S which don’t pass through N correspond to circles in C.

e The map m is conformal, meaning it is angle-preserving.
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o The Mdobius transformations z — (az +b)/(cz + d), where ad # be, are bijections of Cy,
which correspond to the conformal bijections of the sphere.

Returning now to real and complex sequences:

Proposition 3.35 (a) Let (a,) be a sequence of positive real numbers. The following are
equivalent:

(i) a, — 00 asn — oo;

(i) 1/a, — 0 as n — oo.

The equivalence fails if the (a,) are simply non-zero.

(b) Let (a,) be a sequence of non-zero complex numbers. The following are equivalent:

(i) a, — 00 asn — oo;

(ii) 1/a, — 0 as n — oo.

Proof. (a): (i) = (ii) Let ¢ > 0 and set M = 1/e. As a,, — oo then there exists /N such that
a, > M for all n > N. But then 0 < 1/a,, < ¢ for all n > N and 1/a, — 0.

(a): (i) = (i): Let M > 0 and e = 1/M. As 1/a,, — 0 then there exists N such that
1/a, < e for all n > N. But then a, > 1/e¢ = M for all n > N and a,, — c©.

(a): If we set a, = (—1)"n then 1/a, = (=1)" /n — 0 but a,, - 00 as as, — 00 yet
Qop41 — —O0.

(b) : (i) = (ii) Let ¢ > 0 and set M = 1/e. As a,, — oo then there exists N such that
|a,| > M for all n > N. But then |1/a,| < ¢ for all n > N and 1/a, — 0.

(b): (ii) = (i): Let M > 0 and ¢ = 1/M. As 1/a,, — 0 then there exists N such that
|1/a,| < e for all n > N. But then |a,| > 1/ = M for alln > N and a,, — co. m

Example 3.36 Let (a,) be a real sequence such that a, — oo as n — oo. Prove, or disprove
with a counter-example, each of the following statements.

(a) If (b,) is a bounded, non-zero sequence then a, /b, — .

(b) If (b,) is a bounded, positive sequence then a, /b, — oo.

(c) If b, is a non-zero sequence which converges to L > 0 then a, /b, — oc.

Solution. (a) False. We can see this by taking a,, = n and b, = (—1)". Then a, /b, = (—1)"n
does not tend to co. [Note that part (a) is a trivial consequence of (b) and so it would have
made for an odd question if (a) had been true.]

(b) True. As b, is bounded then there exists K > 0 such that 0 < b, < K for all n. Let
M € R. As a, — oo then there exists N € N such that for all n > N we have a,, > M K. So
for all n > N we have a, /b, > (MK) /K = M and we see a,/b, — 0.

(c) True. Taking ¢ = L/2 > 0 we see that there exists N with |b, — L| < L/2 for alln > N.
In particular, 0 < L/2 < b, < 3L/2 for n > N. By the previous part, the tail of (a,/b,)%
tends to oo and hence so does the whole sequence (a,,/b,). =

Example 3.37 Let (a,,) be a real sequence.

(a) If a,, — o0 as a real sequence, need a, — oo as a complex sequence?
(b) If a,, — o0 as a complex sequence, need a, — oo as a real sequence?
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Solution. (a) True: As a, — oo then |a,| — oo which is equivalent to a,, — oo as a complex

sequence.
(b) False: A counter-example is a,, = (—1)"n. ®

Example 3.38 (Harmonic numbers) The nth harmonic number is

1 1 1
H,y=14+ -+ -4t =
to gt

where n > 1. Show that H,, — 00 as n — oo.

Solution. Note that

1 1 1 1 1
sz = 1+§+(§+Z)+(g+ +§)+ +(
> 1+1+<l+1)+<l+ +1)+ +<
2 4 4 8 8
= 1+1+1+1+"+1
z 2 2 2
= 1—1—5.

Given M > 0 there is a positive integer k such that Hy: > 1+ k/2 > M. Hence H,, > M for

all n > 2% as H, is increasing. m
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