B2.2 Commutative Algebra
Sheet 5 — HT26

Section 11 (for the interested readers)

Section C

1. Let A, B be integral domains and suppose that A C B. Suppose that A is integrally
closed and that B is integral over A. Let

PoOP1O D Pa

be a descending chain of prime ideals in A. Let k € {0,...,n — 1} and let

o O 91 O - Dk

be a descending chain of prime ideals in B, such that q; N A = p; for all i € {0, ..., k}.

Then there is a descending chain of prime ideals

Gk O qk+1 O " Dl

such that ;N A =yp, forall: € {k+1,...,n}. This is the “Going-down Theorem”, see
AT, Th. 5.16, p. 64.

Let L (resp. K) be the fraction field of B (resp. A). Prove the Going-down Theorem

when L is a (finite) Galois extension of K.

Solution: One immediately reduces the question to n = 1 and k = 0. Let A be the
integral closure of A in L. Note that by assumption we have B C A and that A is
integral over B (since it is integral over A). Let qj be a prime ideal of A such that
4y N B = qo (this exists by the Going-up Theorem). Let a be a prime ideal of A such
that a M A = p; (again this exists by the Going-up Theorem). According to Q6 of
sheet 2, there is a prime ideal b in A such that b O a and such that b N A = p,.
According to Proposition 12.10, there is an element o € Gal(L|K) such that o(b) = qj.
We have o(a) N A = p; and o(a) C o(b) = qj. Hence o(a) N B C q; N B = q¢ and
(c(a)Nn B)NA=o0(a)NA=p;. Sowe may set q; = o(a)N B.

2. Let R be a Dedekind domain. Let I be a non zero ideal in R. Show that every ideal in
R/I is principal. Deduce that every ideal in a Dedekind domain can be generated by

two elements.
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Solution: We first prove the first statement. Since R is a Dedekind domain, we have

a primary decomposition
k
I=(p/"
i=1

for some prime ideals p;. Using Lemma 12.2 and the Chinese remainder theorem, we

see that we have

k
R/I~ @D R/p".
=1

Now an ideal J of @le R/p;"" is of the form @le J;, where J; is an ideal of R/p;".
This follows from the fact that if e € J and e = ®F_;e; then e; = e-(0,...,1,...,0) € J,
where 1 appears in the i-th place in the expression (0,...,1,...,0). Hence, if we can

m

find generators ¢g; € J; for J; in R/p;", then (gi,...,gx) will be a generator of J. We

proceed to show that any ideal in R/p;"

;' can be generated by one element.

Consider the exact sequence
0—p"™ — R— R/p]" — 0.
Localising this sequence at R \ p;, we get the exact sequence of R,,-modules
0= (p;")p; = Ry, = (B/pi" )y, = 0.

Now the R, ,-submodule (p;*),, of Ry, is the ideal generated by the image of p;" in R,,
(see the beginning of the proof of Lemma 5.6). If we let m be the maximal ideal of R,,,
this is also m™i. On the other hand, p; is contained in the nilradical of R/p;"" and since
p; is maximal (by Lemma 12.1) it coincides with the radical of R/p;". Hence R/p;"
has only one maximal ideal, namely p; mod p;"*. Since the image of R\ p; in R/p;" lies
outside p; mod p;", we see that this image consists of units. Hence (R/p;"),, >~ R/p;".

All in all, there is thus an isomorphism

Now by Proposition 12.4, every ideal in R,,/m™ is principal, and so we have proven the

first statement.

For the second one, let e € I be any non-zero element. Then the ideal I mod (e) C R/(e)
is generated by one element, say g. Let ¢’ € R be a preimage of g. Then I = (e, ¢').
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3. Let R be a PID. Suppose that 2 =1+ 1 is a unit in R. Let ¢1,...,¢ € R be distinct
irreducible elements with ¢ > 1, and let ¢ = ¢; - - - ¢;. Show that the ring R[z]/(z* —c) is
a Dedekind domain. Use this to show that R[x,y]/(2? + y* — 1) is a Dedekind domain.

Solution: Let K = Frac(R). Notice first that ¢ is not a square in K.

Indeed, suppose for contradiction that there is an element e € K such that e? = c.
Write e = f/g, with f,g € R and f and g coprime. We then have f?/g? = ¢ and hence
f? = g*c. In particular, ¢; divides f and thus ¢? divides gc. Since (f, g) = 1, we deduce

that ¢ divides ¢, which contradicts our assumptions.

We deduce that the polynomial 22 — ¢ is irreducible over K, since it has no roots in
K. Let L = K[z]/(2* — ¢). Note that L is a field, since 2 — ¢ is irreducible. Now
let ¢: R[z] — L be the obvious homomorphism of R-algebras. We have ¢(Q(x)) = 0
if and only if 2? — ¢ divides Q(z) in K[z]. On the other hand, if 2? — ¢ divides Q(x)
in K[z|, then 2? — ¢ divides Q(x) in R[z] by the unicity statement in the Euclidean
algorithm (see preamble). Hence ker(¢) = (2% — ¢). We thus see that R[z]/(z* — ¢) can
be identified with the sub-R-algebra of L generated by x. Under this identification, the
elements of R[z]/(x? — ¢) correspond to the elements of the form A+ pz, with A\, u € R,
whereas the elements of L can all be written as A + px, with A\, u € K.

We claim that that L is the fraction field of R[x]/(2? — ¢). Note first that the fraction
field of R[x]/(x? — ¢) naturally embeds in L, since L is a field containing R[z]/(z* — c).
To prove the claim, we only have to show that every element of L can be written as
a fraction in L of elements of R[z]/(z? —

fyg,h,j € Rand f/g+ (h/j)x € L, then

¢). This simply follows from the fact that if

fj+hgx

flg+ (h/j)x= pr

Now to prove that R[z]/(z* — ¢) is a Dedekind domain, we have to show that it is

noetherian, that is has dimension 1 and that it is integrally closed.
Since R contains an irreducible element ¢y, it cannot be a field.

The ring R[z]/(z* — ¢) is clearly noetherian (by the Hilbert basis theorem and stability
of noetherianity under quotients). Also, the ring R[z]/(2? — ¢) is integral over R since
every element of R[x]/(x? — ¢) squared can be expressed as a linear polynomial in
R[z]/(x* — ¢) with coefficients in R. Also, R has dimension one by Question 2. We
deduce from Lemma 11.29 that R[z]/(z* — ¢) also has dimension 1.

To show that R[z]/(z*—c) is integrally closed, we have to show that the integral closure
of R[z]/(z* —¢) in L is R[z]/(z* — ¢). The integral closure of R[z]/(z? —¢) in L is also

the integral closure of R in L, since R[x]/(z* — ¢) consists of elements that are integral
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over R. Furthermore, by Question 4, an element A\ + ux € L is integral over R if and
only if its minimal polynomial P(t) € K[t] has coefficients in R. Thus we have to show
that if A + pz € L has a minimal polynomial P(t) € R[t] then A, € R. We prove this

statement.

If 4 =0 then A 4+ px € K and thus the minimal polynomial of A 4+ pux is ¢ — A. So the

statement certainly holds in this situation.

If u # 0, we note that the polynomial
(t— A+ px))(t— (N —px)) =1 =20+ X2 — p®2® =7 — 20 + \? — cp?

annihilates A + py and has coefficients in K. It must thus coincide with the minimal

polynomial P(t) of A\ + py, since we know that deg(P(t)) > 1.

Thus we have to show that if —2\ € R and A\? — cu® € R, then \,u € R. So suppose
that —2\ € R and A\? —cu? € R. We have A € R, since —2 is a unit in R by assumption.
Hence cu? € R. We claim that y € R. Indeed, let u = f/g, where f,g € R and f and
g are coprime. Then cf? = ¢?r for some r € R. Let ¢ € {1,...,¢} and suppose first
that ¢; divides g. Then ¢? divides r¢g? and since ¢; appears with multiplicity one in ¢ by
assumption, we thus see that ¢; divides f, which is a contradiction (because (f,g) = 1).
Hence ¢; does not divide g and thus ¢; divides r. Since all the ¢; are distinct, we thus
see that ¢ divides r and thus (f/g)?> = r/c =: d € R. Hence f? = gd. Since f and g are
coprime, we see that f? divides d and hence d/f* € R. Since ¢g*(d/f?) = 1, we conclude
that ¢ is a unit and hence u = f/g € R.

To see that R[z, y]/(2* +y*—1) is a Dedekind domain, note that Rz, y]/(x* +y*—1) ~
(R[z))[y]/(y*> — (1 — 2?)) and apply the first statement of the question with R = R[z]
and c=1—2%=(1—2)(1 +z).

4. Let R be a Dedekind domain. Show that R is a PID if and only if it is a UFD.

Solution: Every PID is a UFD.

For the converse, first note that it is enough to prove that all prime ideals are principal,

since every non-trivial proper ideal in a Dedekind domain is a product of prime ideals.

Let p be a non-trivial prime ideal in R. Since R is a UFD, there is a prime element

p € p. Hence we have the inclusions

(0) C (p) Cp,

and since dim R = 1 we must have p = (p).

Mathematical Institute, University of Oxford Page 4 of 4
Dawid Kielak: kielak@maths.ox.ac.uk



