
B2.2 Commutative Algebra

Sheet 5 — HT26

Section 11 (for the interested readers)

Section C

1. Let A,B be integral domains and suppose that A ⊆ B. Suppose that A is integrally

closed and that B is integral over A. Let

p0 ⊃ p1 ⊃ · · · ⊃ pn

be a descending chain of prime ideals in A. Let k ∈ {0, . . . , n− 1} and let

q0 ⊃ q1 ⊃ · · · ⊃ qk

be a descending chain of prime ideals in B, such that qi ∩ A = pi for all i ∈ {0, . . . , k}.
Then there is a descending chain of prime ideals

qk ⊃ qk+1 ⊃ · · · ⊃ qn

such that qi ∩A = pi for all i ∈ {k+1, . . . , n}. This is the “Going-down Theorem”, see

AT, Th. 5.16, p. 64.

Let L (resp. K) be the fraction field of B (resp. A). Prove the Going-down Theorem

when L is a (finite) Galois extension of K.

Solution: One immediately reduces the question to n = 1 and k = 0. Let Ā be the

integral closure of A in L. Note that by assumption we have B ⊆ Ā and that Ā is

integral over B (since it is integral over A). Let q′0 be a prime ideal of Ā such that

q′0 ∩ B = q0 (this exists by the Going-up Theorem). Let a be a prime ideal of Ā such

that a ∩ A = p1 (again this exists by the Going-up Theorem). According to Q6 of

sheet 2, there is a prime ideal b in Ā such that b ⊃ a and such that b ∩ A = p0.

According to Proposition 12.10, there is an element σ ∈ Gal(L|K) such that σ(b) = q′0.

We have σ(a) ∩ A = p1 and σ(a) ⊂ σ(b) = q′0. Hence σ(a) ∩ B ⊆ q′0 ∩ B = q0 and

(σ(a) ∩B) ∩ A = σ(a) ∩ A = p1. So we may set q1 = σ(a) ∩B.

2. Let R be a Dedekind domain. Let I be a non zero ideal in R. Show that every ideal in

R/I is principal. Deduce that every ideal in a Dedekind domain can be generated by

two elements.
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Solution: We first prove the first statement. Since R is a Dedekind domain, we have

a primary decomposition

I =
k⋂

i=1

pmi
i

for some prime ideals pi. Using Lemma 12.2 and the Chinese remainder theorem, we

see that we have

R/I ≃
k⊕

i=1

R/pmi
i .

Now an ideal J of
⊕k

i=1R/pmi
i is of the form

⊕k
i=1 Ji, where Ji is an ideal of R/pmi

i .

This follows from the fact that if e ∈ J and e = ⊕k
i=1ei then ei = e · (0, . . . , 1, . . . , 0) ∈ J ,

where 1 appears in the i-th place in the expression (0, . . . , 1, . . . , 0). Hence, if we can

find generators gi ∈ Ji for Ji in R/pmi
i , then (g1, . . . , gk) will be a generator of J . We

proceed to show that any ideal in R/pmi
i can be generated by one element.

Consider the exact sequence

0 → pmi
i → R → R/pmi

i → 0.

Localising this sequence at R∖ pi, we get the exact sequence of Rpi-modules

0 → (pmi
i )pi → Rpi → (R/pmi

i )pi → 0.

Now the Rpi-submodule (pmi
i )pi of Rpi is the ideal generated by the image of pmi

i in Rpi

(see the beginning of the proof of Lemma 5.6). If we let m be the maximal ideal of Rpi ,

this is also mmi . On the other hand, pi is contained in the nilradical of R/pmi
i and since

pi is maximal (by Lemma 12.1) it coincides with the radical of R/pmi
i . Hence R/pmi

i

has only one maximal ideal, namely pi mod pmi
i . Since the image of R∖pi in R/pmi

i lies

outside pi mod pmi
i , we see that this image consists of units. Hence (R/pmi

i )pi ≃ R/pmi
i .

All in all, there is thus an isomorphism

Rpi/m
mi ≃ R/pmi

i .

Now by Proposition 12.4, every ideal in Rpi/m
mi is principal, and so we have proven the

first statement.

For the second one, let e ∈ I be any non-zero element. Then the ideal I mod (e) ⊆ R/(e)

is generated by one element, say g. Let g′ ∈ R be a preimage of g. Then I = (e, g′).
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3. Let R be a PID. Suppose that 2 = 1 + 1 is a unit in R. Let c1, . . . , ct ∈ R be distinct

irreducible elements with t ⩾ 1, and let c = c1 · · · ct. Show that the ring R[x]/(x2− c) is

a Dedekind domain. Use this to show that R[x, y]/(x2 + y2 − 1) is a Dedekind domain.

Solution: Let K = Frac(R). Notice first that c is not a square in K.

Indeed, suppose for contradiction that there is an element e ∈ K such that e2 = c.

Write e = f/g, with f, g ∈ R and f and g coprime. We then have f 2/g2 = c and hence

f 2 = g2c. In particular, c1 divides f and thus c21 divides g
2c. Since (f, g) = 1, we deduce

that c21 divides c, which contradicts our assumptions.

We deduce that the polynomial x2 − c is irreducible over K, since it has no roots in

K. Let L = K[x]/(x2 − c). Note that L is a field, since x2 − c is irreducible. Now

let ϕ : R[x] → L be the obvious homomorphism of R-algebras. We have ϕ(Q(x)) = 0

if and only if x2 − c divides Q(x) in K[x]. On the other hand, if x2 − c divides Q(x)

in K[x], then x2 − c divides Q(x) in R[x] by the unicity statement in the Euclidean

algorithm (see preamble). Hence ker(ϕ) = (x2 − c). We thus see that R[x]/(x2 − c) can

be identified with the sub-R-algebra of L generated by x. Under this identification, the

elements of R[x]/(x2 − c) correspond to the elements of the form λ+µx, with λ, µ ∈ R,

whereas the elements of L can all be written as λ+ µx, with λ, µ ∈ K.

We claim that that L is the fraction field of R[x]/(x2 − c). Note first that the fraction

field of R[x]/(x2 − c) naturally embeds in L, since L is a field containing R[x]/(x2 − c).

To prove the claim, we only have to show that every element of L can be written as

a fraction in L of elements of R[x]/(x2 − c). This simply follows from the fact that if

f, g, h, j ∈ R and f/g + (h/j)x ∈ L, then

f/g + (h/j)x =
fj + hgx

gj
.

Now to prove that R[x]/(x2 − c) is a Dedekind domain, we have to show that it is

noetherian, that is has dimension 1 and that it is integrally closed.

Since R contains an irreducible element c1, it cannot be a field.

The ring R[x]/(x2 − c) is clearly noetherian (by the Hilbert basis theorem and stability

of noetherianity under quotients). Also, the ring R[x]/(x2 − c) is integral over R since

every element of R[x]/(x2 − c) squared can be expressed as a linear polynomial in

R[x]/(x2 − c) with coefficients in R. Also, R has dimension one by Question 2. We

deduce from Lemma 11.29 that R[x]/(x2 − c) also has dimension 1.

To show that R[x]/(x2−c) is integrally closed, we have to show that the integral closure

of R[x]/(x2 − c) in L is R[x]/(x2 − c). The integral closure of R[x]/(x2 − c) in L is also

the integral closure of R in L, since R[x]/(x2 − c) consists of elements that are integral
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over R. Furthermore, by Question 4, an element λ + µx ∈ L is integral over R if and

only if its minimal polynomial P (t) ∈ K[t] has coefficients in R. Thus we have to show

that if λ+ µx ∈ L has a minimal polynomial P (t) ∈ R[t] then λ, µ ∈ R. We prove this

statement.

If µ = 0 then λ + µx ∈ K and thus the minimal polynomial of λ + µx is t− λ. So the

statement certainly holds in this situation.

If µ ̸= 0, we note that the polynomial

(t− (λ+ µx))(t− (λ− µx)) = t2 − 2λ+ λ2 − µ2x2 = t2 − 2λt+ λ2 − cµ2

annihilates λ + µy and has coefficients in K. It must thus coincide with the minimal

polynomial P (t) of λ+ µy, since we know that deg(P (t)) > 1.

Thus we have to show that if −2λ ∈ R and λ2 − cµ2 ∈ R, then λ, µ ∈ R. So suppose

that −2λ ∈ R and λ2−cµ2 ∈ R. We have λ ∈ R, since −2 is a unit in R by assumption.

Hence cµ2 ∈ R. We claim that µ ∈ R. Indeed, let µ = f/g, where f, g ∈ R and f and

g are coprime. Then cf 2 = g2r for some r ∈ R. Let i ∈ {1, . . . , t} and suppose first

that ci divides g. Then c2i divides rg
2 and since ci appears with multiplicity one in c by

assumption, we thus see that ci divides f , which is a contradiction (because (f, g) = 1).

Hence ci does not divide g and thus ci divides r. Since all the ci are distinct, we thus

see that c divides r and thus (f/g)2 = r/c =: d ∈ R. Hence f 2 = g2d. Since f and g are

coprime, we see that f 2 divides d and hence d/f 2 ∈ R. Since g2(d/f 2) = 1, we conclude

that g is a unit and hence µ = f/g ∈ R.

To see that R[x, y]/(x2+y2−1) is a Dedekind domain, note that R[x, y]/(x2+y2−1) ≃
(R[x])[y]/(y2 − (1 − x2)) and apply the first statement of the question with R = R[x]
and c = 1− x2 = (1− x)(1 + x).

4. Let R be a Dedekind domain. Show that R is a PID if and only if it is a UFD.

Solution: Every PID is a UFD.

For the converse, first note that it is enough to prove that all prime ideals are principal,

since every non-trivial proper ideal in a Dedekind domain is a product of prime ideals.

Let p be a non-trivial prime ideal in R. Since R is a UFD, there is a prime element

p ∈ p. Hence we have the inclusions

(0) ⊂ (p) ⊆ p,

and since dimR = 1 we must have p = (p).
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