4. THE ALGEBRA OF LIMITS

Reassuringly limits respect important relations and algebraic operations that mean we can
don’t need to go back to first principle definitions of convergence and divergence to analyze
more complicated sequences.

Theorem 4.1 (Limits respect weak inequalities) Let (a,) and (b,) be real sequences such
that (a,) — L and (b,) — M. If a,, < b, for all n, then L < M.

Thoughts: A proof by contradiction. If L > M then there would be a tail of the a, in a
neighbourhood of L and a tail of the b, near M. If these neighbourhoods are small enough to
be disjoint, then a,, > b, in the tails’ intersection. Note ¢ is chosen in the proof below so that
(L —¢€, L+ ¢) is disjoint from and to the right of (M —e, M +¢).

Proof. Suppose, for a contradiction, that L > M. Set ¢ = (L — M) /2 > 0.

As a,, — L then there exists Ny such that n > Ny — la, — L| <¢;
as b, — M then there exists Ny such that n > Ny = |b, — M| < e.
So
L
n > N = —; =L—-e<a,
L+ M

Hence for n > max(Ny, Ny) we have

L+ M
Ay >

which contradicts a,, < b,, for all n. =
Remark 4.2 Note lim does not respect strict inequalities: e.g. % > 0 for all n > 1 but
0= lim% > 1lim 0 = 0 s false.

Note in the above proof that n > max(Ny, No) is the intersection of both tails, so both

inequalities hold there.

A second important result that helps us ignore or bound unimportant expressions in a
sequence is the following. This result is also referred to as the ‘squeeze theorem’.

Theorem 4.3 (Sandwich Rule) Suppose that x, < a, < yp for all n and that
L =limx, = limy,.

Then a, — L asn — oo.
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Thoughts: Given any neighbourhood of L, there will be tails of (z,) and (y,) in that neigh-
bourhood. These tails bound a tail of (a,,) .

Proof. Let ¢ > 0. Then there exist N; and Ny such that

N17
N,

Ty, — L > —¢c foralln >
yp — L < e foralln >

So for n > max (N7, N2) we have
—e<xz,—L<a,—L<y,—L<es,
which shows that a,, — L also. m

Example 4.4 Show that the sequence

2n + cos(n?)
Un = 55 7 3\
3n? — sin(n?)
converges.
Solution. We note for all n > 1,
— 2
i:n<2n 1< :2n+cos(n)<2n+1<3n_i

3n 302 S3n2+1 ST 32 —sin(nd) S8n2—1 S2n2 o’
As the LHS and RHS both tend to 0 then a,, — 0 by sandwiching. m

Most sequences can be built up from simpler ones using addition, multiplication, etc. The
algebra of limits (AOL) tells us how the corresponding limits behave. Throughout the following
(a,) and (b,) denote real or complex sequences.

Proposition 4.5 (AOL: Constants) If a,, = a for all n, then a, — a.
Proof. For any ¢ > 0,take N=1;n >N = |a, —a|=0<ec. m

Proposition 4.6 (AOL: Sums) If a, — a and b, — b then a, + b, — a + b.

Thoughts: We need to show that |(a,, + b,) — (a + b)| is eventually small given that |a, — a
and |b, — b| are each eventually small. The triangle inequality helps here by noting

|(an + b,) — (a+b)| < |an, — a| + |b, — b|

In the following proof we use two standard techniques of analysis. We know two facts which
hold in two tails of a sequence, so we take the tails’ intersection where both are true — we’ve
employed this idea before. The second issue is that we need a final inequality to hold within a
margin of €. But the final inequality relies on two previous inequalities. The idea is to achieve
each of the first two inequalities with margins of €/2 and then the triangle inequality, within
the tails’ intersection, shows the final inequality holds with a margin of /2 +¢/2 = «.
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Proof. Let € > 0. Then /2 > 0 and so

Ny n > Ny = |a,—a| <g/2,
ANy n > Ny — ‘bn—b‘<€/2

Put N3 = max(N;, N2). Then

< lan—al  + b, —b] by the A law
< £/2 +  €/2

£

Proposition 4.7 (AOL: Scalar Products) If a,, — a asn — oo and A € R (or C) then
Aa,, — Aa.

Proof. Let £ > 0. Then ¢/ (J]\| + 1) > 0 and so there exists N such that |a, —a| <&/ (|]\| + 1)

for all n > N. Hence
[Ale

Al +1
for all n > N. (Note that we use ¢/ (J]A\| + 1) rather than ¢/|\| to avoid the possibility of
dividing by zero.) m

|Aa, — Aa| = |A||a, —a| < <e

Corollary 4.8 (AOL: Differences) If a,, — a and b, — b then a,, — b, — a — b.
Corollary 4.9 (AOL: Translations) If a,, — a and ¢ € R (or C) then a, + ¢ — a +c.
Lemma 4.10 If x,, — 0 and y,, — 0 then x,y, — 0.

Proof. Let ¢ > 0. By Remark 3.11, WLOG we can further assume that ¢ < 1. Then

Ny n > N — |.7)n|<81,
ANy, n > Ny — |yn|<€1.

So if n > max(Ny, Ny) we have
|2yl < loal lyal < € <,
which completes the proof. m
Proposition 4.11 (AOL: Products) If a, — a and b, — b then a,b, — ab.
Proof. Note that
anby, — ab = (a, — a)(b, —b) + b(a, — a) + a(b, —b),

that (a, — a) (b, —b) — 0 by the previous lemma, that b(a, —a) — 0 and a (b, —b) — 0 by
Proposition 4.7. Hence a,,b,, — ab by Proposition 4.6. m
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Proposition 4.12 (AOL: Reciprocals) If a,, — a # 0 and a,, # 0 for alln, then 1/a, — 1/a.

Thoughts: Our aim is to show
1 1

an, G

. |an—a|

 lan|la]

is arbitrary small in a tail, and we know |a,, —a| is small. The |a| in the denominator is non-zero
and constant and so is not problematic. At first glance though, whilst |a,| is non-zero it might
be arbitrarily small, which would be problematic. But remembering a,, — a # 0 then we can
focus on a tail of a,, suitably close to a. If a,, is within |a| /2 of a, then a,, will be at least |a| /2
away from zero.

Proof. Let ¢ > 0. As a # 0 then |a| /2 > 0. So there exists N; such that for n > N; we have
la, — a| < |a| /2. By the triangle inequality

la| < an| + |a — an| = [an| + |an — a
and so |a,| > |a| /2 and |1/a,| < 2/ |a|.
Further, as |a|?¢/2 > 0 then there exists N, such that for n > N,

5
|, —a| < |af® 5

For n > max(Ny, Ny) we have

1 1

an, a

la, — al 2€\ 2 1
- < (|a| —) 2.
|an||al 2/ |alal

Corollary 4.13 (AOL: Quotients) If a, — a, b, — b, and b, # 0 for all n and b # 0, then
an /by, — a/b.

Proof. This follows from Propositions 4.11 and 4.12. m
Proposition 4.14 (AOL: Modulus) If a,, — a then |a,| — |a|.
Proof. By the reverse triangle inequality

0 < flan| —lal| < lan —af —0
So ||a,| — |a|]| — 0 by sandwiching. =

Example 4.15 Show

n®>+n+1 1
ap = ———— — —.
3n2+4 3

Solution. We write
n?4+n+1 1+++% 14040 1

= e =
3n% +4 3+4-; 3+0 3
by the algebra of limits, specifically noting

THE ALGEBRA OF LIMITS 52



% — 0 by the Archimedean property;

n_12 — 0 by Proposition 4.11;

1 — 1 by Proposition 4.5;

1+ % + n—12 — 1 by Proposition 4.6;

e 3+ % — 3 by Proposition 4.6;

3+1i — 1 by Corollary 4.13;
n2

Gy — % by Proposition 4.11.

[ ]
Example 4.16 (Fibonacci numbers) Suppose Fy = 1, F» = 1, and we recuresively define
Foio=F, 1+ F,, forn>1.

It is easy to prove by induction on n that there is then a unique sequence of natural numbers
satisfying these requirements. They are called the Fibonacci numbers.

Proposition 4.17 F,/F, is convergent.
Proof. By induction, F,, > 1 for all n. So for n > 1
(B} o (Ban)
Fn+1 Fn
Write z,, = F,,11/F,, for n > 1. Note that F,, > 0 for all n. Then

ry =2 and T4 =1+ 1/,

Suppose that we did have convergence and that x,, — L so that z,,; — L. Note L > 1 > 0 as
Fop1 > Fyand so 1+ - — 1+ 1 by AOL. So

1
L=1+—
+L

by the uniqueness of limits. Hence L? — L — 1 = 0 giving L = %5 But L > 1 giving

14++5

L= > 1.
2
All the above was based on the assumption that z, converged. We will show that z, is
convergent to %5, which we will denote ¢, and is called the golden ratio.
1 1 1 1 1 x,—
Tpi1—p=14——-—p=14—-1—-—-=— —— = Ld
Iy Ty 2 Ip 2 Tn@p
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as p? =+ 1. So

a1 — 90‘ R N
o=@ | lwallel  oza o

as x,, > 1 for all n. By induction we get
1 1
_E STh— @< E

1
and are done by the sandwich rule, since ¢ > 1 andso £+— — 0. =
(1077,

Example 4.18 Which of the following statements are true of the given non-zero real or complex
sequence (a,)? Provide a proof or a counter-example.

(a) If (a,) converges then a,i1 — a, — 0.

(b) If ap1 — a, — 0 then (a,) converges.

(c) If (ay) converges then a,i1/a, — 1.

(d) If a,, — L # 0 then ayi1/a, — 1.

(e) If api1/a, — 1 then (ay) converges.

(f) If ans1/an — 1 and (a,) is bounded then (a,) converges.

Solution. Let H,, denote the nth harmonic number.
(a) True: If a,, — L then by the algebra of limits a,,.1 — a, — L — L = 0.
(b) False: Let a,, = H,. Then a,,1 —a, = (n+ 1)~ — 0 yet H, — oo (see Example 3.38).
(c) False: Let a, = (—1)" /n so that a,, — 0. However a,1/a, = —t5 — —L
(d) True: If a, — L # 0 then by the algebra of limits a,/a, — L/L = 1.
(e) False: Let a, = n. Then a,1/a, =1+n"! — 1 but a, — .
(f) False: Let a, = e¢f'». Then

anJrl/an _ ez(Hn+1—Hn) — ez/(n+1) N 60 _ 1’

as n — oo but e’ does not converge as H,, — co. m

Remark 4.19 The necessary AOL properties to justify the answer to (f) won’t be proven until
Analysis II in Hilary Term. The notion of a continuous function will be defined there and we
will see that if a,, — L and f is continuous then f(a,) — f(L). In fact, this property is an
alternative definition of f being continuous.

As was commented in Remark 3.32, there are several indeterminate forms including oo, so
we cannot expect any AOL results re

00 — 00, —, 0 X oc.
o0

But there are some cases where AOL-like results are true.
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Proposition 4.20 (AOL: Infinity) Let (a,) and (b,) be real sequences.
(a) If a,, — oo and b, — oo then a, + b, — .
(b) If a,, — oo and b, — oo then a,b, — 0.
(¢) If a,, — o0 and b, — —oo then a,b, — —oo.
(d) If a,, — oo and and (by,) is bounded then a,, + b, — oco.
(e) If a,, — oo and and (b,) is bounded then b, /a, — 0.
(f) If a,, — oo and b, — L > 0 then a,b, — oc.

Solution. These are left as exercises. m

Proposition 4.21 (AOL: Asymptotics) Let (a,), (an,), (by) and (5,,) be real sequences.
(a) If a, = O (av,) and b, = O (B,,) then ayb, = O(a,53,,).
(b) If a,, = O (av,) and b, = O (B,,) then a, + b, = O(max(|a,|,|8,]))-
(¢) If a, ~ av, and b, ~ 3, then ayb, ~ a,f,,.
(d) If a, ~ o, and b, ~ (3, then ay, /b, ~ an/B,,.

Solution. These are left as exercises. m

Remark 4.22 (The Relative Orders of Terms) Our first thoughts, when considering the
long term behaviour of a sequence which has various components to it, should be on which terms
dictate the sequence’s behaviour in the long term. Usually, for this, we need to appreciate the
relative magnitudes of the terms as n becomes large. As a rule of thumb, when it comes to the
long term behaviour of functions

bounded trig functions and constants < logarithms < polynomials < exponentials.
More precisely:
e |cosn| <1 and |sinn| < 1 for all n.
e For any rational ¢ > 0, logn/n? — 0 as n — oo.
e For any a > 1 and polynomial p then p (n) /a™ — 0 as n — oo.

The third bullet point is a consequence of Corollary 3.19. The second bullet point is essen-
tially the same result. If we write n = €' then

as e? > 1.

Example 4.23 Qualitatively describe the long-term behaviour of the following sequences.

o ()

This will tend to 0 (albeit in an oscillatory way) as the dominant term is 2".
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2n+3
cosn.
3n+8
At first glance the polynomial terms seem dominant. But being of the same degree, and

working to counter one another, we see (2n+3)/(3n+8) — 2/3. So actually it is the
oscillating behaviour of cosn which stops the sequence from converging.

logn 2" —n
cos | ——— .
vn n?+3n—6

As|cosf| < 1 for all 0 then the cosine takes the sting out of the term (2" —n) / (n® + 3n — 6)
which is just a red herring. In the long term \/n dominates logn andlogn/\/n — 0. The
messy cosine term has no crucial effect on this behaviour.

e How would you make these first thoughts into rigourous proofs using the algebra of limits,
sandwich rule, etc.?
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