5. MORE ON SEQUENCES

5.1 Monotone Sequences

We now turn to a crucially important kind of sequence.

Definition 5.1 Let (a,) be a real sequence.
We say (a,,) is increasing if a,, < a,, whenever n < m.
We say (a,) is decreasing if a, > a,, whenever n < m.
We say (a,,) is strictly increasing if a,, < a,, whenever n < m.
We say (a,) is strictly decreasing if a,, > a,, whenever n < m.
We say (a,,) is monotone if it is either decreasing or increasing.

Example 5.2 Let a, = n. Then (ay) is increasing. So is a, = (2n +1)°.
The sequence a,, = (—1)" is not monotone as a; < az and ay > as.

Theorem 5.3 Let (a,) be an increasing, bounded above sequence. Then (a,) converges.

Proof. Let L = sup{a, | n € N}; this exists by the completeness axiom as the set is bounded
above and non-empty. Let € > 0. By the approximation property there exists N € N such that

L—e<ay <L
As the sequence is increasing then for any n > N
L—e<ay<a, <L,

and so
Vn>=N |a,—L|<e.

That isa, — L. m

Corollary 5.4 An increasing real sequence either converges or tends to infinity.

Proof. Let (a,) be an increasing real sequence. If it is bounded above, then (a,) converges.
Otherwise for any M > 0 then M is not an upper bound to (a,). Hence there exists N € N
such that ay > M. Now as (a,) is increasing a,, > M for all n > N. That is a,, — c0. =

Corollary 5.5 Let (a,) be a decreasing, bounded below sequence. Then (a,) converges.

Proof. (—a,) is increasing and bounded above so —a,, — L by the previous result. Hence
a, — —L by AOL. m
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Remark 5.6 Theorem 5.3 is in fact equivalent to the completeness axiom. That is, the axioms
of an ordered field together with Theorem 5.3 characterize the real numbers. Details are left to
Sheet 4, Fxercise 6.

The next theorem, the Nested Intervals Theorem, together with the Archimedean property,
form another alternative to the completeness axiom.

Theorem 5.7 (Nested Intervals Theorem — Cantor, 1872) Let I, = [a,,b,| be a nested
sequence of closed bounded intervals. (That is I,,.1 C I,, for alln > 1.)

(a) Then O{° 1, # @.

(b) If (I,)) = b,, — ap, — 0 as n — oo then (), I, is a singleton.

(c) Note the theorem need not hold if the intervals are bounded but not closed, e.g. I, =
(0,1/n), or closed but not bounded, e.g. I, = [n,oc0).

Proof. (a) As [ay+1,bn41] C [an,by] then a, < apy1 < byyy < b, So (a,) is an increasing
sequence which is bounded above, and (b,) is a decreasing sequence bounded below. This
means both sequences converge and set o = lima,, and g = limb,,.
As a,, < o < B < b, for all m,n, then [a, §] C I, for all n and so (" I,, # .
(b) As b, —a,, > § — a for each n and b, — a, — 0 then a = . Certainly o € (;" I,,. And
if v,y € N I, with z <y then
O<y—xz<b,—ay,

for all n, a contradiction as b, — a, — 0. Hence ()" I, = {a}. =

Example 5.8 (a) Let x € R. Show that 2" /n! — 0.
(b) Deduce that 2" /n! — 0 for z € C.

Solution. (a) If = 0 this is clear. Otherwise set a, = |z|" /n! and note

an oo™ gl
= 7= — 0 asn— oo.
an (n+1)!|z] n+1

So in some tail a,1/a, < 1 and (a,) is eventually decreasing and bounded below by 0. Hence

a, converges to some limit L.
Apt+1 = |$’ a
nt n+1/)"

We have
Letting n — oo and applying AOL, we have

L=0xL=0,

as required.
(b) Now take z € C. By (a) |2"/n!| = |z|" /n! — 0 and hence 2"/n! — 0. =

Example 5.9 (a) Let a > 1. By considering the iteration

1 a
To = a, mn+1:§ $n+:c_ forn >0,

n

show the existence and uniqueness of \/a.
(b) Deduce the existence and uniqueness of \/a for 0 < a < 1.
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Remark 5.10 This iteration was known to the Babylonians for finding square roots. From a
modern perspective it is an instance of the Newton- Raphson method applied to the function

f(x) =2* —a.

Fig. 5.1 — Newton-Raphson method

The Newton-Raphson iteration seeks to solve an equation f(x) = 0. It takes an estimate x,, for
a root and replaces it with
f(xn)

n

This estimate x4, is achieved (as in Figure 5.1) by drawing the tangent to the curve y = f(x)
at the point (x,, f(x,)) and intersecting it with the x-axis.
In this particular case f(x) = 2?> — a and so

B 2 —a 1 +a
Tnt1 = In 2x, 2 n T )

Solution. (a) I claim the following to be true of the sequence (z,):
(i) a < 22 for all n;
(ii) () is decreasing;
(iii) L = lim z,, satisfies L? = a.

(i) As 29 = a then (i) is true forn =0as a> —a=a(a—1) > 0. If a < 22 then

2
9 1 a
Tpog—a = k(mn—l-ﬁ—)} —a

— é [(xi—i—a)Q —4azi}
= é [mi - 2axi+a2]
= -’20
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Hence (i) follows by induction.

(ii) Note that

1 a 2 —a
mn_$n+1:$n_§ 'I'n"i_x_ = 2 =0
by (i).

(ili) So (z,) is decreasing and bounded below and therefore converges. Let L = limux,.
Letting n — oo in the iteration
1 a
Tn+1 = 5 (xn + ZE_n)

-0+

by AOL and the uniqueness of limits. This rearranges to L? = a. As z,, > 0 for all n then
L = /a (as opposed to —+/a).

Now L is a root of 22 = a. As 22 —a = (z — L)(z + L) then we see that the two roots of
x? — a are = L. From this we also see that the two square roots of a are ++/a, showing there is

a unique positive square root of a.

we get

(b) Clearly 0 is the only square root of 0. Say now that 0 < a < 1 so that a=! > 1. By (a)

2 1) ~1 1
rr=a <= -] =a — —=+Val,
x x

—1
only one root of which is positive. Hence /a is uniquely defined with \/a = ( a*1> .

Remark 5.11 (Cobwebbing) The previous iteration can also be achieved via cobwebbing which
aims to solve equations of the form x = f(x). The previous Newton-Raphson iteration took the

form
1 a
Tnt1 = 5 | Tn + -

which, if it converges, leads to a solution of v = f(x) where

=3 (+2)
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Fig. 5.2 — Cobwebbing

We sketch y = x and y = f(x) on the same axes. Given an initial estimate xo we draw a
vertical line to the curve to get to (xg,x1) and then move horizontally to (x1,x1) and so on to
(x1,29), (2, x2) , (T2, x3),.... If the sequence (z,) converges to «, say, then « is a fixed point.
That is o = f(«); this essentially follows by AOL.

We can see from Figure 5.2 how any sequence beginning with xo = \/a will monotonically
decrease to \/a. Any sequence beginning with 0 < xg < \/a will jump to x; > \/a and then
decrease again to v/a. Of course, the figure itself proves nothing but provides useful qualitative
information for what needs proving.

In this particular case the iteration converges quickly. As f(a) = « then

Tpy1r — QRN f/<a)(xn - Oz),

and for this particular iteration —1 < f'(a) <1 as

When |f' ()| < 1 the the fized point « is said to be an attracting fized point.

The convergence will be monotonic if 0 < f'(a) < 1 and will be oscillatory if —1 < f'(a) <
0. When |f' ()| > 1 the fized point is called repelling and the iteration will not generally
converge.

We conclude this section by defining the decimal expansion (and more generally base expan-
sions) for a real number. For uniqueness we do this in such a way that the truncated decimal
expansions form a strictly convergent sequence converging to the real number in question.

Example 5.12 (Decimal Expansions) Let 0 < x < 1. Then there is a unique sequence of
integers ay, as, as, ... such that
(a) 0 < a, <9 for each n;
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(b) for each n,
(c)

Solution. We will proceed inductively. The integer a; needs to satisfy

1 a1
_ _ -1 .
T 10 10<m — 10z — 1 < a; < 10x

The interval [10x — 1,10zx) contains a unique integer a; and further, as
—1<10z—1<a; <10x <10

then 0 < a7 < 9.
Suppose now, as our inductive hypothesis, that ai,as,...,ay have been uniquely found
satisfying (i) and (ii). Then

which rearranges to

1 ay, AN+1 ay
xr = 10N +1 _21_0’“ < 10N +1 <x_21_0k
k=1
and then to

( 0N+1 210N+1 k > -1 < ans1 < ( 0N+1 ZloN-i-l k > ]

There is a unique integer in this range, and we set ayy; to be thls integer. Further, by
hypothesis,

aver = 1M (2= 3N 107) — 1> -1,
_ 1
ansy < 10N (a; ~Y N0 kak) <10V X o = 10,
So 0 < any1 <9 as required. Finally, letting n — oo and applying the sandwich rule to

we find

This sequence is called the decimal expansion of x and we write
r = 0.a1a0a5. ...
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Remark 5.13 In the sense of the above example % would have decimal expansion 0.1999. ..
rather than 0.200 . ..To avoid any ambiguity for those reals with two different decimal expansions
(in the usual sense) the above example chooses decimal expansions whose terminating decimal
expansions never equal the real in question.

A similar argument to that above shows the uniqueness for any base b > 2 expansions. As

with the example of% in decimal, in binary, b = 2, we would have % = 0.0111... rather than
1

= =0.1.

2

5.2 Subsequences

Example 5.14 Let a, = n_12 so that

o 111 1
(an) _<1’é_l’§1_6%'”>'

We can get new sequences by selectively looking at

everything after second place (é, %6, 2%,), e )
all odd terms 1,%,2—15,...)
all prime terms %,%,2—15,%,...)

etc.. These are examples of subsequences of (ay) .

Definition 5.15 Let (a,) be a sequence. We say that a sequence (by,) is a subsequence of (a,,)
if there is a strictly increasing sequence of natural numbers (f (n)) that (b,) = (asw)). (There
may be more than one such function f.) Often we write n, for f(r) and write a subsequence

as (an,) or (an,);2; -

Example 5.16 In the previous example n, =+ 2, n, = 2r — 1 and n, = p, (the rth prime)
respectively.

Example 5.17 Let

(an) = (n*)=1(1,4,9,16,...); (
(f(n)) = (2n) =(2,4,6,8,...); (g(n))=(2n—1)=(1,3,5,7,...).

Then

(af(”)) = <a2n) = (47 16736764a .- '); (ag(n)) = (a2n+1) = (1 9 25 49 .. ) )
(bf(”)) = <b2n) = (07070707 ‘. '); (bg(n)) (b2n+1) (0 0 0 0 )

Proposition 5.18 Suppose that the sequence (a,) converges to L. Then every subsequence
(an,) also converges to L.
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Proof. Let € > 0. Then there exist N such that
n=N = |a,—L|<e¢
As r — n, is strictly increasing then n, > r for all r and so
r>=N = n.>N = la, —L|<e
and hence a,,, — L asr — 0co. m

The converse in the form ‘if all subsequences of (a,) converge to L then (a,) — L’ is true
because the whole sequence is a subsequence of itself. However, just one subsequence converging
is clearly not enough to guarantee convergence of the whole sequence. For example a,, = (—1)"
which is divergent despite as, — 1.

Theorem 5.19 Let (a,) be a real sequence. Then (a,) has a montone subsequence.
Proof. We consider the set
V={keN|m>k= a, < a}.

This is the set of ‘scenic viewpoints’ — were we to plot the points (k,ay) in R? then from a
scenic viewpoint we could see all the way to oo with no greater a, getting in the way. There
are two cases to consider: the set V is either finite or infinite.

e V is infinite. Listing the elements of V' in increasing order: k; < ky < ... we see (ay, ) is
a subsequence with
r>s = k.>ks = ai <a

That is (ay,) is strictly decreasing.

e V is finite. Let m; be the last viewpoint and consider a,,, ;1.

As my + 1 is not a viewpoint then there exists my > my + 1 such that a,,, > am,.

1. As my is not a viewpoint then there exists ms > mqy such that a,,, > am,.

Continuing in this way and we can generate an increasing sequence (an, ) -
|

Theorem 5.20 (Bolzano-Weierstrass Theorem, Bolzano 1817, Weierstrass c. 1861)
Let (a,) be a real bounded sequence. Then (a,) has a convergent subsequence.

Proof. By the previous theorem (a,) has a monotone subsequence which is also bounded. By
Theorem 5.3 this subsequence converges. m

Theorem 5.21 (Bolzano-Weierstrass Theorem in C) A bounded sequence in C has a
convergent subsequence.
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Proof. Let (z,) be a bounded sequence in C. If we write z, = x, + iy, then we also have
that (z,) and (y,) are bounded sequences. By the Bolzano-Weierstrass Theorem (x,,) has a
convergent subsequence (z,,) which converges to Li, say. As (y,,) is also bounded then it in
turn has a convergent subsequence (ynkr) which converges to Lo, say.

As (xnkr) is a subsequence of (x,,) then it too converges to L; by Proposition 5.18. We
then have that (anr) converges to Ly 4+ Ly as its real and imaginary parts converge (Theorem
3.25). m

Here is alternative way of phrasing the Bolzano-Weierstrass Theorem.

Definition 5.22 Let S C R We say that x is a limat point or accumulation point of S if
for every € > 0 there exists y € S, such that

0<|y—z|<e.
Note that x itself need not be in the set. The set of limit points of S is denoted S'.

Example 5.23 The set of limit points of (0,1) is [0,1]

The set of limit points of Q is R.

The set of limit points of Z is &.

The set of limit points of {1, 3, %, . } is {0} .
Remark 5.24 The Bolzano-Weierstrass Theorem can be rephrased as: ’An infinite bounded
subset of R or C has a limit point’. Given such a set, S, then we can select a sequence (x,,)
of points of S and by the Bolzano-Weierstrass Theorem this sequence has a subsequence (x, )
which converges to a limit L. It is not hard to show that L is then a limit point of the set
{Tnys Tnys Tny, - ..} €S and so of the set S.

5.3 The Cauchy Convergence Criterion

A first difficulty in proving that a sequence converges is in investigating the limit. Cauchy
saw that a (real or complex) sequence would converge if and only if the sequence’s terms got
sufficiently close. This makes it possible to demonstrate convergence without knowing the limit.
Further, Cauchy’s insight can be used to construct the reals from the rationals so that we could
show the existence of a complete ordered field rather than assuming that a field satisfying all
our axioms exists (see Remark 5.34).

Definition 5.25 Let (a,) be a real or complex sequence. We say that (a,) is a Cauchy se-
quence, or simply is Cauchy, if

Ve>0 INeN Vmn>N |an —a,| <e.

Note that the definition makes no mention of a limit, but we shall see that this criterion is in
fact equivalent to convergence in R or C (but not in Q!).
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Proposition 5.26 A convergent sequence is Cauchy.

Proof. Let (a,) be a convergent sequence with limit L, and let ¢ > 0. Then there exists a
natural number N such that

lap — L| < e/2 for all k > N.

So for all m,n > N,
€

£
]am—an\é\am—L]+]L—an|<§+2

—= 57
by the triangle inequality and hence (a,) is Cauchy. =

Proposition 5.27 A (real or complex) Cauchy sequence is bounded.

Proof. Let (a,) be a real or complex Cauchy sequence. Taking ¢ = 1, we know there exists N
such that
|a, —an| <1 whenever n > N.

Hence, by the triangle inequality
la,| < lay|+1 forall m > N.
The above inequality bounds all but finitely many terms. So for all m we have
|| < max {[a1], |as|, ..., lan-], |an| + 1}
and we see that the sequence is bounded. =

Lemma 5.28 If (a,) is a real or complex Cauchy sequence such that a subsequence (ay, ) con-
verges to L, then (a,) converges to L.

Proof. Let € > 0. So there exists K € N such that
lan, — L| <€/2 whenever k> K.
As the sequence (a,,) is Cauchy then there exists N € N such that
la, — am| < e/2 whenever m,n > N.
If we select take k& > max (K, N) so that ny > N then we have, by the triangle inequality

e €
la, — L| < |an — ap, | + |an, — L| <gtg=c¢ foralln > N
and the proof is complete. m

Theorem 5.29 (Cauchy, 1821) A real or complex Cauchy sequence is convergent.
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Proof. Let (a,) be a real or complex Cauchy sequence. By Proposition 5.27 (a,,) is bounded,
and so by the Bolzano-Weierstrass Theorem (a,) has a convergent subsequence (ay,,). By the
previous lemma (a,) converges to the same limit. m

We have then establishded the Cauchy Convergence Criterion for real and complex
sequences:
(a,) is convergent <= (a,) is Cauchy.

Remark 5.30 The Cauchy convergence criterion, together with the Archimedean property, is
equivalent to the completeness axiom.

Example 5.31 The terminating decimal expansions of \/2, namely the sequence (gn):
1, 1.4, 141, 1.414,...

is a sequence of rational numbers which is Cauchy (for example, because it is a convergent real
sequence) but it is not convergent in the rationals — that is, it does not satisfy

dLeQ Ve>0 INeN Vn>N |¢,—L|<e

Example 5.32 (Mercator’s series) Forn € N let

1 1 1
n=l—c 4o+ (D)=
s 2 3 ( ) n
Then with m > n > 0, and m — n even we have
>0 >0 >0
(1 171 1‘Jr :r 1 1
Sm T Snl = n+1 n+2 n+3 n+4 m—1 m
B 1 1 1 1 n 1 1
 on4+1 n+2 n+3 m—2 m-—1 m
<0 20 <0
1
<
n—+1
If m — n is odd, we write
1 11 1 1 11

Sm =l = n+1_n—|—2+n—|—3_n+4+'” m—-2 m—-1 m

B 1 1 1 1 +1
 n+1 n+2 n+3 m—1 m
~ o —_—
<0 <0
1
< .
n+1
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Let e > 0 and take N > L. Then |s, — s;| < ¢ whenever m,n > N and we see that (s,) is
Cauchy. This shows that the sequence is convergent even though we currently have no idea of
its limit. In due course we shall see that the limit is log2 (Sheet 6, Exercise 6). The sum was
first published by Mercator in 1668.

Remark 5.33 (Double sequences) A (real) double sequence is a map x: N> — R and we
write Ty for x (m,n). We write that

lim z,,=1L
if
Ve>0 INeN Vmn>N |r,,— L] <e.

So we may rewrite the Cauchy convergence criterion as
(an) is Cauchy if |a, —an| — 0 asm,n — oco.

Given a double sequence (x,,) the limits

lim 2, lim ( lim xmn) lim (hm xmn>

m,n—0o0 m—0o0 \nN—0o0 n—oo \m—0oo

are different notions and may independently exist or not as seen in Sheet 5, Exercise 8.

Remark 5.34 (Construction of the real numbers) (Off-syllabus)
We mentioned in Remark 1.58 the matter of existence and uniqueness of the real numbers.

These issues were posed in the sense of ‘can the real numbers be constructed from more concrete
sets such as N, Z or Q?’

Construction of the natural numbers.

One approach to define the natural numbers is due to Peano from 1889. Peano’s description
essentially states:

N is the smallest set such that (i) 0 € N, (ii) if n € N thenn+1 € N.

A later model, in the style of the Zermelo-Fraenkel axioms for set theory (1908,1922), was
Von Neumann’s model from 1923 where he identified 0 with @, 1 with {@}, 2 with {&,{2}}
and in general n with {0,1,...,n — 1}. as a collection of sets meeting Peano’s axioms.

Construction of the integers.

From the set N we can define the set of integers 7 from N2. We define the equivalence
relation ~ on N? by (my, ma) ~ (ny,ny) iff my +ny = ny +my. Then Z = N*/ ~. Essentially
we are identifying an integer with pairs of natural numbers that differ by that integer.

Construction of the rational numbers.

Having defined 7, we can define Q as a set of equivalence classes of Z x (N\{0}). We
set (my,ny) ~ (ma,ng) iff ming = nymy. Then Q =7 x (N\{0})/ ~. FEssentially we are
identifying an rational with all fractions 7 which represent that rational.

Construction of the real numbers. Having defined Q we set

S ={(an) | (an) is a rational Cauchy sequence} .
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At this point we have yet to define the real numbers, but we know that a rational Cauchy
sequence converges to some real limit. These limits are what we want as our model of the real
numbers but we can’t refer to such limits, irrational ones in particular, whilst only being able
to refer to the rational numbers. Also many sequences in S will converge to the same limit so
at this stage each real is overrepresented.

We can deal at least with this last point within the context of real numbers: for (ay), (by) € S
we set

(an) ~ (bn) ~ apn—>b,—0.

As we see in Sheet 5, FExercise 2, for (a,), (by,) € S and ¢ € R then
(an, £b,), (can), (anby)

are in S and if a, -+ 0 then 1/a, € S.
Further these operation are well-defined in S/ ~ . So if (an) ~ (ay,) and (a,) ~ (8,,) then

(an £bp) ~ (0 £8,),  (can) ~ (can), (anbn) ~ (anf3,),

and if a, - 0 and a,, - 0 then (1/a,) ~ (1/a,) . All these results follow bt AOL.
Regarding order we define (a,) < (by) if by, — a, = 0 in some tail.
All this gives R = S/ ~ the structure of an ordered field. It can further be shown that

any non-empty bounded subset of S/ ~ has a least upper bound; this result is not particularly
difficult but is non-trivial (Kérner pp. 352-853).

Construction of the complex numbers.

We showed in Section 1.4 how C can be constructed from R by identifying a complex number
with an ordered pair of real numbers and defining addition and multiplication as one would expect
of complex numbers.

THE CAUCHY CONVERGENCE CRITERION 69



