6. SERIES

6.1 Infinite Series

Looking back at the field axioms, given any pair of real numbers a,b we can form their sum
a + b. By induction, we can form any finite sum > | ax. The associative law means we don’t
have to worry about the order is which the necessary additions are executed.

What our axioms don’t do is licence us to start writing down infinite sums, and behaving
as though the mere act of writing down similar looking signs (D> }°, say) entitles us to assume
that all the properties of finite sums still hold. In fact, we will see that there are conditionally
convergent series that give different sums depending on the order in which the terms are added.
(See Sheet 6, Exercise 8 for the Cauchy Root Test and Dirichlet’s Test.)

Definition 6.1 Let (a,);° be a sequence of (real or complex) numbers. For n > 1, the nth
partial sum of (a,) is the finite sum

n
Sp = E ap = a1+ as + -+ ap.
k=1

By the series
Zak or just Zak,
k=1
we mean the sequence of partial sums (s,).
Example 6.2 (a) The geometric series. Let x € C, and let a,, = ™ Then Y x" is
(1, 14z, 1+a+2% ..., 1+o+a®+-- 42", ...).

(b) The harmonic series. Let a, = +. Then ) 1 is

1 1 1
L1+, 144+ ... .
( g gt )
(¢c) The exponential series. Let x € C and let a, = z"/nl. Then Y z"/n! is

72
<1, 1+ z, 1+x—|—§, )

(d) The cosine series. Let x € C and set

o = %(—l)m if m=2m
" 0 otherwise.
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Then Y a, is

372 X xXr X
<1, Ll-gp 1o g =G+ >

Definition 6.3 Let (a,) be a (real or complex) sequence. We say that the series Y 1" aj con-
verges (resp. diverges) if the sequence (s,) of partial sums converges (resp. diverges). If
s, — L as n — oo then we write

Z Qp — L.

k=1

We refer to L as the sum (or infinite sum) of the series.

Remark 6.4 Our earlier results regarding the tails of sequences still apply — it follows that
> ag converges if and only Y% ai, converges for some K (Proposition 3.13). Consequently it
makes sense to discuss the convergence (or otherwise) of > ay without needing to identify the
initial term. But to determine the sum of a convergent series exactly we do need to specify the
inatial term.

Proposition 6.5 Say that ) a, is convergent. Then a,, — 0 but the converse is not true.
Proof. Let s, denote the nth partial sum; then s, — L for some sum L. By AOL

Ay = Sp — Sp_1 — L — L = 0.
But recall from Example 3.38 that Z% is divergent, yet a,, = % —0. m

Example 6.6 Let a,, = 2™ forn > 0 where x € C.
(a) If x # 1 then
1— :L,nJrl
1—2z
(b) If |x| < 1 then > a™ is convergent noting " — 0 and using the algebra of limits.
(c) If |x| > 1 then Y x™ is divergent as a, = x" - 0.

Example 6.7 Let a, = n—12 Then ) n—12 18 convergent.

Proof. Clearly the partial sums form an increasing sequence. By comparison with a telescoping
sum we note

n n

"1 " 1 1 1 I 1 1
Sn:kzlﬁngzzm:szz{m_E}:szﬁ_kzﬁ:l“_ﬁ<2'

Hence (s,,) is a bounded increasing sequence and so convergent. [In due course we will meet,
with the Integral Test, a systematic way of dealing with such series and won’t have to resort
to such algebraic tricks.] m

Remark 6.8 The exact sum > | n—12 is known to be 72/6. This sum was first found by Euler
in 1734 and is known as the Basel problem, Basel being Fuler’s hometown.
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Applying Cauchy’s criterion for convergence for sequences to series (which, recall, is just a
sequence of partial sums) we have:

Theorem 6.9 (Cauchy’s Criterion for Series) The series Y ai converges if and only if
for all € > 0 there exists N such that for all m,n > N we have

n
>

m—+1

|Sn — Sm| = < €.

Definition 6.10 Let (a,,) be a real or complex sequence. Then we say that . a, is absolutely
convergent or AC if the series ) |a,| converges. A series which is convergent, but not
absolutely convergent, is called conditionally convergent.

Theorem 6.11 An AC (real or complex) series is convergent

Proof. Suppose that Y a, is AC and let ¢ > 0. By Cauchy’s criterion there exists N such

that z
> lan|

k+1

I>k>N— < e.

By the triangle inequality

l
2 oo

k+1

l
<Z|an| =

k+1

l
2

k+1

I >k>N— <e,

and hence  a,, is Cauchy and so converges. ®

Example 6.12 (a) Y " z" is ACif |x| < 1 and diverges for |z| > 1.
(b) Sor S s AC.
(c) Y7722 s AC.

(d) > # is conditionally convergent.

Solution. (a) See Example 6.6.
(b) See Example 6.7.
(c) Note that the partial sums

form an increasing bounded sequence. Hence they converge.
(d) See Examples 5.32 and 3.38 =

Definition 6.13 Let p: N — N be a bijection and set b, = ayu). Then > b, is called a
rearrangement of the series > ay,.
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Example 6.14 (See also Sheet 6, Ezercise 6) If we rearrange the log?2 series from Example
5.82 then we can change the sum:—

111
22 2. — 1002
53 1" 8
11 01 1 1 3
D I S ST § Sy
t3Tg Tyt 5 08

Theorem 6.15 (Dirichlet, 1837) (Off-syllabus) If > a, is AC then ) ayw is AC for any
rearrangement p and
D=y
1 1

Theorem 6.16 (Riemann Rearrangment Theorem, 1853) (Off-syllabus) If > 1° a, is a
real conditionally convergent series and —oo < L < oo then there exists a bijection p: N — N

such that -
Z apmy = L.
1

Hence a real series is AC if and only if it unconditionally convergent.

Theorem 6.17 (Cauchy Multiplication of Series, 1821) (Off-syllabus) Suppose Y " an
and ZSO b, are AC. For each n € N we set

n
Cp = E akbn,k.
k=0

Son (3 (5)

Proof. See Sheet 6, Exercise 7. m

Then > " ¢, is AC and

Remark 6.18 Mertens, in 1875, showed that if just one of Yo" a, and Y o b, is AC and the
other convergent, then Y o ¢, converges. (See Apostol, Theorem 12-46.)

(55) ($5) -2

0

Example 6.19 For z,y € C

Proof. Let a, = &, b, = %,l Then the series > a, and > b, are absolutely convergent (see

n!’

Example 6.26). Then

_ xrys_ ]‘ - n rnfr_(a:—l_y)n
= X = as ()=
r=l

r+s=n

by the binomial theorem. m
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6.2 Some Tests for Convergence

Here we discuss some classic tests for convergence and divergence. The idea that there are
‘tests’ is very attractive, but in practice (for problems arising from real-word situations) these
tests may not apply. However the tests do give us clues, suggest ways of thinking about series,
what sort of estimates need to be made, and a sense of the relative magnitude of terms.

Proposition 6.20 (A Simple Test for Divergence) If > a, converges then a, — 0. The
converse 18 not true.

As the converse is not true then, in practice, the contrapositive is used more: if a, does not
tend to 0 then Y a, diverges.

Proof. We already noted this in Proposition 6.5. m

Theorem 6.21 (The Comparison Test) Let (ay,), (b,) be real sequences with 0 < a,, < by,.
Then

® > b, is convergent => > _ a, is convergent;
® > a, is divergent = Y b, is divergent.

Proof. Note that the second statement is just the contrapositive of the first, and so it is enough
to just prove the first. Suppose that > by converges. Then the partial sums > | ay satisfy

n n o0
E ap < E by, < E b,
1 1 1
and hence form an increasing bounded sequence which converges. m

Remark 6.22 At first glance, the comparison test seems limited as it only applies to non-
negative terms. In practice, however, it is often used to show a series is AC and hence conver-
gent. (See Example 6.23 (d).)

And as with the sandwich test for sequences, the comparison test can be used to take care of
expresssions that are awkward without being impactful. For example, the term (2 + cos n)f1 n
Ezample 6.23 (b) lies between 1/3 and 1.

Example 6.23 The following sequences

o0 o0 1
—5/2 b
(@) zl:n ) zl:n(n—l—1)(2—1—(:os.n)7
= " =, sinn
— wh 1 d —_—
(€ ST where o<1 (@) Y St

1 1

all converge.
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Solution. (a) This converges by comparison with Y n~2.

(b) This converges by comparison with > n=2.

(c) Even though the terms are not non-negative, this is AC by comparison with > |z|" and
hence is convergent.

(d) Even though the terms are not non-negative, this is AC by comparison with Y n~2 and
hence is convergent. m

Theorem 6.24 (The Ratio Test) Let (a,) be a real or complex sequence with a, # 0 for all
n. Suppose that

. Ap41
lim

n—oo

=1L

Qn,

exists.
o IfL <1 then ) a, converges absolutely;
o If L >1 then ) a, diverges;
o [fL =1 then ) a, may converge or diverge (that is, the test is inconclusive).

Proof. (a) Choose K such that |L| < K < 1. As e = K — |L| > 0 there exists N such that

(p41
n>N =— LAY L‘ <e,
an
so that forn > N
Ont1
——|<e+|L| =K.
an
Sofor k>0
ANtk AN+k—1 aN+1 k
|an-i| = X |an| < fan| K"
AON+k—1 AON+k—2

Now > K* is a convergent geometric series, and so the tail Y % a, is AC by the comparison
test. Hence > a,, is AC as it has an AC tail.
(b) Choose K such that 1 < K < |L|. Then there exists N such that

Ap+1

n>N — > K.

Qn

Arguing as in (a), |ayix] = K*|ay| and hence we see a, does not tend to 0. So Y a, is
divergent by Proposition 6.20.

(c) For each of the series > n~! and > n~2 we have L = 1 yet the former diverges and the
latter converges. m

Remark 6.25 If a, > 0 for all n and >_ a, converges, this does not mean that lim |a,1/ay,|

exists; for example

TIRUEEE VR SR
3279 4 27 8 8l

converges absolutely whilst |a,+1/a,| does not have a limit.
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Example 6.26 (Exponential Series) For all x € C, the exponential series

o0 n

>

0

converges absolutely.
Solution. The case v = 0 is trivial. If x # 0 then

= =] —0<1 asn—
n—+1

Anp+41

Qn

and apply the ratio test. m

Example 6.27 The series
Z (sinhn) "
1

converges absolutely for |z| < e~ and diverges for |z| > e™1.

Solution. By definition sinhn = (¢" — e™™) /2 and so

_ sinh (n+1) ]
sinh n
et — e~
= e
e — e 2n-1
T ] _em |z

— ez

Qp41
Qp,

n—1

as n — oo. If z = e~! then the ratio test is inconclusive but
. |
a, = sinhn x e —>§7é0
and so the series does not converge. m

Theorem 6.28 (Leibniz Alternating Series Test, 1676) Let (a,) be a non-negative de-
creasing series which tends to 0. Then

[ee]

<_1)n Qn

n

CONVETGES.
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Proof. If we consider the partial sums s, = ;_, (=1)* a;, we see that

sop. = (ao —a1) + (ag —az) + - + (agr—2 — agr—1) + an
—_——— N — ——
>0 >0 >0
= ap+ <—(l1 -+ CLQ) -+ (—a3 + a4) -+ ( as + a4)
w N o ‘#
<0 <0 <0
< ag.

Hence sy, is an increasing sequence bounded above by ag and so so5 converges to a limit L. We
also have
Soky1 = Sok — Gopy1 — L—0=1

by AOL. Hence s; converges to L by Sheet 5, Exercise 4(i). m

Remark 6.29 Nothing we have done so far lets us tackle series like > o m, to evaluate

7 # or define general exponents. In the remainder of this section we deal with these:

but in order to do so we need to make use of the properties of integration and logarithms. We
will define logarithms and general powers in the next chapter but we will not meet integration
rigorously until Analysis III in Trinity. At the end of the year you will be able to persuade
yourself that these properties which we now use do not depend on any of the results of this
section, and that no circular arguments have been made. Basically, it is just impatience that
forces us to deal with this test now and not wait until Trinity Term.

Theorem 6.30 Let K € N and let f: [K,00) — [0,00) be continuous and decreasing. For

n > K we define
n—1 n
0, = k) —
510 |1

Then for n > K
0

N

5n < 5n+1 < f(K)

and hence d,, converges.

Corollary 6.31 (The Integral Test) With f as above, the series Y f (k) is convergent if
and only if [, f x | (x) do is convergent.

We postpone the proof for now and instead apply the integral test to a few series.

Example 6.32 a,, = 1/n® where a € R. (We will not properly define general exponents until
the next chapter.) If a < 0 then a, does not tend to 0 and so Y a, diverges. Let o > 0.
Consider the function f (x) =z~ > 0 which is continuous and decreasing on (0,00). We take
K =1 and note if a # 1 that

n tlfa n 1701_1
/f(t)dtZ{ } -z
1 I—al, 1l-—«a
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which converges as n — oo if a > 1 and diverges if « < 1. If a =1 then

/n f(t)dt = [logt]} =logn
1

which diverges. Hence

converges when o > 1 and diverges for a < 1.

Example 6.33 a, = (nlogn)™' forn > 2. Hence we define f(x) = Zk}gz on (2,00), and note
f(z) is decreasing as x and log x are increasing. Then

o1
/ dr = loglogn —loglog2 — oo as n — oc.
o wlogx

Therefore >

1s divergent.
nlogn

Proof. (Of Theorem 6.30) We set

n—1

5=t [ F @) dr

In the diagram below, which includes a graph of y = 1/x for x > K = 1 we can see J, as the
"excess area" above the graph between 1 < x < 4.

10
08 O

06

. I
04+ |
L I

I

0.0

Fig. 6.1 — Proving the Integral Test

As f is decreasing,
flE+1) < f(z) < f(k), if k<az<k+1

We use the following properties of integration:

e [ preserves weak inequalities;
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° f:+1 1dx =1;
o [ is additive: ff = fac—f—fcb;
e [ is a linear map on the space of integrable functions.

So we get:

fk+1) < : f(z)dz < f(k)

and we can add such equations to get
FUS+ 1)+ F(E 42+t S < [ F0)dt < F00) + S+ 1)+ fln— 1),
K

So using the second inequality above we have

n—1 n
S T)— d
03 0) | s
which shows 0 < d,,. Using the first inequality we have
n—1 n n—1 n
=S 0= [ SO <Y 1) = Y F) = 1) - ) < S,
r=K K r= r=K+1

We also have it
Sust — 60 = F(n) —/ F(#)dt > 0.

Hence (6,,) is bounded above, increasing and so convergent.
Finally

n—1 n

Zf (k) and / f(x) dz

K K
differ by a convergent sequence. Therefore they both converge or both diverge by AOL. m
Example 6.34 (Euler’s Constant v, 1734) If we apply Theorem 6.30 to f(x) = 1/x we get

1 1
Vo = 14+ =-+---+——logn
2 n

1 1 " dx
= 14+ -4+ —— —
2 n 1T

18 convergent. This limit is called Euler’s constant, and often denoted as :

1
’y:nhjﬁlo< E—logn).
1
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The approzimate numerical value of v is
0.57721566490153286060 . . .

Relatively little is known about v — for example, it is an open problem still as to whether 7 is
irrational.
Example 6.35 We make use of v in Sheet 6, Ezxercise 6 to show that
1 1 1 1 1
l—=—4+-—-4=-—=-+---=log2.
5 371 576" o8

Example 6.36 (Euler’s Number e¢) In Sheet 4, Ezercise 5, we showed that

1 1 1 =1
e:Hﬁ+§+§+ﬂ+m=z;J

converges to an irrational number e. Its approximate numerical value is
2.7182818284590452353 . ..

In fact, the constant e had been studied well before Euler, with some interest in the constant
shown by Napier, Harriot and Huygens. The constant was explicitly defined by Jacob Bernoulli
in 1683 as lim,, ., (1 + 1)" while investigating ‘continuous compounding’ but it was Euler who
recognized the importance of the constant and its connection with the ‘antilogarithm’ function.

1 n
e = lim <1 + —) )
n—oo n

1\" "1
o ( + n) and £, go o

It was shown in Sheet 4, Exercise 5 that lim 3, exists and we defined e as this limit. It was
also shown in Sheet 1, Exercise 6, that «, is an increasing sequence bounded above and so also
converges. By the binomial theorem

o) 2R ) e

1 1 1 1 2 1 1 2 1
= 14+1+=(1—-=]+=(1-=- 1——)+--4+—=(1-- | [
2! n 3! n n n! n n n
1 1 1
S Thltgtgt ot — =0,

From this we have lim«,, < e. On the other hand for 1 < m < n and focusing on the first
m + 1 terms in the binomial expansion of «,, we see

14+1+ 1_1 l—l—----l— 1_1 1_2 1_m—1 — < a,.
n /) 2| n n n m)!
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Proof. Let




Fixing m and letting n — oo we have, using AOL and recalling that limits respect weak
inequalities,
141 L ! L <l
+ +5+5+"‘+%\ 1M Q.
Finally letting m — oo we have e < lim «;, and the result follows. m

Remark 6.38 It’s important to note why we took the first m+1 terms in the binomial expansion
of a,, earlier. In that expansion there are n+1 terms and so, as n variees, the number of terms
varies. AOL applies to a fixed finite number of terms — fixed in the sense of not depending on
the variable that’s tending. For exampl it’s clear

1 1

e EREE

1
1=—
n_n n,

Vo
n times

If AOL could be applied to a varying number of terms, letting n — oo we would find
1=04+0+0+---=0,

which is false.

Whilst the tests are useful series are not usually met in such a straightforward way that a
single convergence test can be employed. If they can be employed at all, some combination of
the tests may be needed.

Example 6.39 Discuss the convergence or divergence of the following series.

[ ]
Z cos (n? + 1)
n?+logn

We note that
1 1

S n?2+logn | n2

cos (n? +1)
n? 4+ logn

and so the series is AC by comparison with Y n~2.

n log (n* +1)
2V T

Ify () =log (a2 + 1) (x +2)" "/ then
1 2x

! = — 1 og (z?
R IR T el

1 {2:;; (x+2) 1, ($2+1)}

(z+2%* [ 22+1 2
1 1
< ———14—zlo $2+1]
(g;+2)3/2{ 38 )

< 0 forx > e
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So y(n) is eventually decreasing — using a result from Analysis II and by Leibniz’s Test a
tail of the series converges. Hence the whole series converges.

1
By e
N S

VnZHn o V2n2 V2

and so the series diverges by comparison with the harmonic series.

We see

YLy

Vnt+n
Note
Vitl—yn 1 1
S Virtn Vi Vil
and hence

—1 as N — oo.

ZN\/n—F \/__1_#
vn2+n VN +1

Proposition 6.40 (Stirling’s Approximation, 1730) (Proof off-syllabus) As n — oo then

n!

— 1.

This same result is often written as
n n
n! ~ v2mn (—) :
e
Proof. Firstly we note

logn! =log2+log3+--- 4+ logn.

We can find a good approximation to the sum on the RHS by applying the trapezium rule to
log z on the interval [1,n]. Let f(x) denote the approximating function to logz whose integral
the trapezium rule determines using n — 1 steps — that is f(z) satisfies f(k) = logk for each
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integer k =1,2,...,n and is piecewise linear between those values.

Fig. 6.2 — Trapezium Rule for log x

Note for z in the range k < x < k + 1 we have

1 1 1
E+1 "z "k
and so integrating we have
v / dt dt
& k +1

or equivalently

r—k r—k
— | < < — .
logk+(k+1)\logw\logk+( k: )

Now log x is concave (that is, a chord connecting two points of the graph lies under the graph),
and so f(x) < logx on the interval [k, k + 1]. Further as f'(z) > (k+1)~! on the interval (that
being the minimum gradient of log z whilst f’(x) has the average gradient) we have

x—k

logk—i—< ><f(x)<10gm fork<ax<k+1.

So we have the inequalities

1 1

Oglogx—f(x)<<g—k—+1)(:x—k) for k<ax<k+1,

and integrating on the interval [k, k + 1] we find

. 11 1 /1 1
o< | “"g“f“”d“(rm>/k (x—k)dx:§(g—k_+1>.
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Summing up the contributions from the intervals [1,2],[2,3],...,[n — 1,n] we find
n—1
" 1 1 1 1 1
0< | — dr < = ) ==(1-=,
/1 (logz = f(x)) d 2;1(1@ k+1) 2( n>

as most of the terms in the above sum cancel consecutively.
Recalling an antiderivative of log x to be x log x — x and using the formula for the trapezium
rule we then have

L= [ (oge— f) do

log 1 1
= [mlog:v—:c]?—l(%+10g2+10g3+...+log(n—1)+ ogn)
1
= nlogn—n+1—(logn!—§logn)
1
= <n+§)logn—n+1—logn!.
So we have
! 1 1 1
0< (logz — f(z)) do = n—|—§ logn—n+1—10gn!<§ 1——).
1 n

(I,) is an increasing sequence of numbers which we see are bounded above by 1/2 and hence
they converge to some L.
Applying the exponential function we find

el = lim

(n/e)" /i

n!

Whilst in Sheet 6, Exercise 11(ii) , we proved

()5

—_— —) et
n )2 T
We can combine these facts to note

- m()E
(20)! v

nln! 22n

. 2n/! . Vn %n :
= V2 x lim (ﬁ) x lim (#)
= V2x (E1) T x (FY)?

— \/2el!

= lim
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Hence e!~L = /27 and

n! e
— =1.

V@) Vo

]
Remark 6.41 In terms of relative error, Stirling’s formula is a very accurate underestimate.

For n = 10 the relative error is under 1%.
An improvement on the above approximation is

nl = V2 (g)" (1 +0 (%))

and there are yet more accurate approrimations

nl = vV2mn (g)nexp{é%ﬁzl +0 <nim)}’

where By, is the kth Bernoulli number (see Sheet 7, Exercise 9).
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