7. POWER SERIES

7.1 The Disc and Radius of Convergence

Definition 7.1 By a power series we will mean a series of the form
o0
>
n=0

where (a,)g is a complex sequence and z € C. We consider (ay,) as fived for this series, and z
as a variable. Clearly the series might converge for some values of z and not for others.

Remark 7.2 The above power series is a power series centred at the origin. Given zy € C
then we can also consider power series centred at zy, which take the form

o0
Z an(z — z)".
n=0

Though we will not consider such power series in this chapter, the theory we will develop literally
translates to an identical theory for power series centred at zg # 0.

Example 7.3 e a,=1:%72": Geometric series : as we have already seen (Example

6.6), this series is convergent when |z| < 1 and divergent when |z| > 1.

e a, =1/n!:> 7 2"/n! : Exponential series : we have shown (Example 6.26) that this
series is convergent for all z € C.

e a,=1/n:%> 2"/n: Logarithmic series : convergent for |z| < 1. This follows from
the ratio test as

zn+1/<n+1>‘ ol

2" /n _n+1_>|z|'

The series converges at z = —1 (Leibniz test and Sheet 6, Exercise 6) and diverges at
z =1 (as it’s the harmonic series). What about for other values where |z| = 12 Well at
z =1 we have

iNyn— I +<_1)N cifi=t4d +(_1)N71
n {72717 % N ! 375 ON — 1

and we see that both real and imaginary parts converge by the Leibniz test. In fact we
know the above partial sums to converge to —% log 2 + % (Sheet 6, Exercise 6 and Sheet 5,
Ezercise 6). More generally it can be shown that the logarithmic series converges on the
circle |z| = 1 except at z = —1.
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° 2?" : Cosine series : convergent for all z by the

am = (~1)"/ (2n)! } e

a1 = 0 (2n)!
ratio test.
— N
o azji’; _ (()—1)”/(271—1— ! } : Zﬁz%“: Sine series : convergent for all z

by the ratio test again.

Definition 7.4 Given a power series ) a,z" the set
S = {z eC| Zanzn com)erges} cC

18 either bounded or unbounded. Note also, that S is non-empty as 0 € S. We define the power
series’ radius of convergence R as

n_ sup{|z| | z € S}  when S is bounded,
N 00 when S is unbounded.

Lemma 7.5 Suppose that the power series Y a, (20)" converges. Then Y a,z™ converges ab-
solutely when |z| < |zo|.

Proof. As Y a, (20)" converges then a, (zp)" — 0 and in particular the sequence a,, (z)" is

bounded; say |a, (20)"| < M for all n. Then, for |z| < |2/,

n

<M

n
z

|anz"] = lan (20)"]

Z0

and so Y |a,2"| converges by comparison with the convergent geometric series Y M |z/z|".
m

Theorem 7.6 Given a power series »  a,z" with radius of convergence R,
o > a,2" is AC when |z| < R,
e > a,z" diverges when |z| > R.

Note that when R = oo then Y a,z" converges absolutely for all z € C.

Proof. If |z| < R then, by the approximation property, |z| < |z0| < R for some z; € S and
hence > a,2" is AC by the previous lemma. On the other hand if |z2| > R then z ¢ S and
hence ) a,2" diverges. m

Definition 7.7 The set S is called the disc of convergence.

Remark 7.8 So a power series is AC strictly within its radus of convergence and diverges
strictly beyond the disc of convergence. For z on the boundary |z| = R the series may converge
or diverge. It’s quite easy to construct power series that converge at only finitely many points
of the boundary, or power series that converge everywhere on the boundary except finitely many
points. The general question — for which subsets of |z| = R is there a power series which
converges exactly on that subset? — remains an open problem.
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Remark 7.9 Commonly we will use the ratio test to determine the radius of convergence, but
1t is not hard to produce examples where the ratio test can not be employed, or at least has to
be used more subtly. See the third example below.

Remark 7.10 (Off-syllabus) As a consequence of Cauchy’s root test (Sheet 6, Ezercise 8(i))
an exact formula for the radius of convergence is

R= (lim sup m)l . (7.1)

Example 7.11 Find the radius of convergence of the following examples, and consider the
series’ convergence on the disc’s boundary.

o > 7z"/n?. If we set a, = z"/n? then

n+1 2 2
+1 1

2" /n?

Ap+t1
Qn,

Hence, by the ratio test the series converges absolutely when |z| < 1 but diverges when
|z| > 1. In fact, by comparison with >_ n~2 we see that the series is AC when |z| = 1.

e > z"/n. If we set a, = 2" /n we can argue as above to see R = 1. This is the logarithmic
series and we have commented that it diverges at z = 1 and otherwise converges on |z| = 1.

e > 2P where the sum is taken over all primes p. Then R = 1. To see this we can note
2P does not tend to 0 when |z| > 1. On the other hand ) 2P is AC when |z] < 1 by
comparison with the geometric series Y 2".

o Cosine series: Y " (—1)" z*"/ (2n)! If we set a,, = (—1)" 2"/ (2n)! then, for all z € C,

2"/ (2n + 2)! |2*
— - = — 0 asn — oo.
|z|™" / (2n)! (2n+2)(2n +1)

Qp41
Qn,

Hence by the ratio test the cosine series is AC for all z.

o Sine series: Y o (—1)" 2*"™/ (2n 4+ 1)! If we set a, = (—1)" 22"+ / (2n + 1)! then, for all
z € C,

ania| [/ (204 3) |2*
2"/ 2n+ 1)1 (2n+2) (20 +3)

Hence by the ratio test the sine series is AC for all z.

— 0 asn — oo.

Qn,

Example 7.12 Use (7.1) to determine the radii of convergence of the series

o0 o0

2" » 2"
DDt N DI B s
1 0 ’

prime p

Solution.
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e a, = 1. Now n'/" — 1 (Sheet 3, Exercise 3) and so

lim sup {/|a,| = lim (C/ﬁ)_l =1
so that R = 1.

e a, = 1. As there are infinitely many primes then limsup {/|a,| = limsup1 = 1 and so
R=1.

e a, = 1/n!. By Stirling’s formula
n! ~V2mn (E)
e

and hence ] ]
e
limsup v/|a,| = limsup —= = lim — (—) =0,
p 3/ |an| p Ul %/omn
giving R = oo.
[
The following theorem is beyond the scope of this course, but will be proved in Hilary term.

This theorem will prove very useful when proving various properties of the elementary functions
in the next section.

Theorem 7.13 (Term-by-term differentiation) Suppose the (real or complex) power series
Yoo anz™ has radius of convergence R. Then the power series defines a differentiable function
on |z| < R.

Term-by-term differentiation is valid within |z| < R so that

% (i anz”> = inanznl = f: (n+1)aps12".
0 1 0

The power series Y o (n+ 1) ans12" is called the derived series and also has radius of con-
vergence R.

Remark 7.14 (Uniqueness of Coefficients) Say that a function f(z) = o a,a” is defined
on the interval || < R. By repeated differentiation we see that

_ £(0)

n!

ap, :
So, if a function is locally defined by a power series, that is f(x) is analytic, then the coefficients
a, are unique.

As a corollary to this, if an analytic function satisfies f'(x) = 0 for all x then a, = 0 for
alln > 1, and f(x) = ag is constant.
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Remark 7.15 (Existence of Coefficients) A real function is said to be analytic (at 0) if it
can be locally defined by a power series on some (—R, R) . As we may differentiate term-by-term,
then f(x) is necessarily smooth — that is, f(x) has derivatives of all orders. Unfortunately
smoothness is not a sufficient condition though. For example, the function

[ exp(=1/2%) x#0,
f(x)—{ ’ 0 r =0,

can be shown to have derivatives of all orders at x = 0 with f™(0) = 0 for all n > 0. So if
f(z) could be defined by a power series on some (—R, R) then we’d have

> f£(n)
fay =3 L0 g

n!

but f(x) # 0 except at x = 0. So f(x) is smooth, but isn’t analytic.

In the Part A Complex Analysis course, you will see that the situation is very different for
complex functions. A complex function which is differentiable (just once!) on an open disc
about the origin will be analytic.

Proposition 7.16 Let f(z) =Y ;" a,a™ converge on (—R, R).
(a) f(z) is an even function if and only if az,i1 = 0 for each n > 0.
(b) f(x) is an odd function if and only if as, = 0 for each n > 0.

Proof. (a) If as,1 = 0 for each n > 0, then

o0 [ee]

f@) =Y aza® = 3 ag,(—a)" = f(~a)

n=0 n=0

is even. Conversely say that f(z) is even. Then f((x) is even when n is even and odd
when n is odd — these facts follow from the chain rule. So f®"+1)(x) is odd and in particular
f@+(0) = 0. Hence

f(2n+1)<0)
(2n +1)!

as required. The proof of (b) is almost identical. m

=0

Aon+1 =

7.2 The Elementary Functions

The elementary functions include polynomials, rational functions, exponentials, logarithms and
trigonometric functions. In contrast there are special functions such as Bessel functions (Sheet
7, Exercise 4), Gauss’s error function, the gamma function, etc. and there are deep theorems
showing the special functions cannot be expressed in terms of the elementary functions.

In this section we give rigorous definitions for exponentials, logarithms, general exponents
and the trigonometric and hyperbolic functions.
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Definition 7.17 (Exponential Function) The exponential function exp: C — C is defined

by the infinite series
o0 Zn
exp(z) = Z -
- n!

1. For all z € C, > 2" /n! is convergent by the ratio test (Example 6.26): so R = co.
2. exp(0) =1
3.exp(l)=e

4. exp’ (z) =exp(z).
Proof. We use Theorem 7.13 for this. Note

d Cd (") (D)2 R
&QXPZ—&(EO:m)—EOZ—(n—Fl)' —EOZH—QXPZ.
|

5. exp(z +y) = exp(z) exp(y)-
Proof. We proved this in Example 6.19. We can also use Theorem 7.13 to show this: for
fixed ¢ € C we define
F(z)=exp(z+c)exp(—2z).

By the product rule
F'(z) =exp(z+c)exp(—2) —exp(z +¢)exp (—=2) = 0.
So F'(z) is constant by Remark 7.14 and, as F'(0) = exp (¢), then
exp (z + c¢)exp (—z) = exp(c) for all z € C.
Set ¢ = x + y and z = —y for the required result. m

6. exp(z) # 0. (In fact we will see below that the image of exp is C\ {0} .)

Proof. For any z € C we have
exp (z) exp (—z) = exp (0) = 1.
|

7. exp (q) = e? for rational q.
Proof. Say ¢ = m/n then

(exp (%))n = exp (n%) =exp(mx1)=(expl)" =e™.

By the uniqueness of positive nth roots, we have exp (¢) = exp (m/n) = {/em =el. m
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It seems appropriate to make the following definitions here, though some of what follows
requires theory from Hilary Term. We now restrict our attention to the real exponential
exp: R — R. It is clear from the power series definition of exp that expx > 0 if x > 0.

Further if z < 0 then ]
=—>0
exp () oxp (—7)

also. So exp (R) C (0, c0).

Now exp’z = expx > 0 and so exp is an increasing function; in particular this means that
exp: R — (0,00) is injective. Also for z > 0, expx > z and so exp takes arbitrarily large
values of x and similarly exp (—z) = 1/exp (z) takes arbitrarily small positive values. So, by
the Intermediate Value Theorem (proved in HT'), we have

e exp: R — (0,00) is a bijection and hence invertible.
e The inverse is denoted as log: (0,00) — R, and by a HT result log is differentiable.

Definition 7.18 The natural logarithm logx, or Inx, is the inverse of the real exponential
function exp: R — (0,00).

Proposition 7.19 For z > 0,
1
log'z = —.
x
Proof. As exp (logz) =z on (0.00) then, by the chain rule,
log’ (z) x exp (logz) =1
and the result follows. m
Example 7.20 The image of exp: C — C is C\ {0}.

Solution. We previously showed 0 is not in the image. Take z = re®® # 0. We need to find
w = z + iy € C such that exp (w) = 2. This means e%e¥ = ret’. Setting

x =logr and y =20,
gives one solution to exp (w) = z. m
Definition 7.21 (General Exponents) Given a > 0 and x € R, we define
a® =exp (zloga).

Note, with this definition,
e’ =expx forx € R,

Proposition 7.22 Let a,b > 0 and x € R. Then

log (ab) = log a + log b, log (a®) = zlog a.
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Proof. Note
exp (loga + logb) = exp (log a) exp (log b) = ab = exp (log (ab))
and then take the log of both sides. Also
log (a®) = log (exp (zloga)) = zloga.
|

Proposition 7.23 Let a > 0 and x,y € R. Then

a’t = a"a?, (a®)! = a™¥).
Proof. Note
a*t = exp((x +y)loga)
= exp((zloga) + (yloga))
= exp (zloga)exp (yloga)
= a“a’.
Also

log (a”)? = ylog (a”) = y (xloga) = (zy)loga = log (a(‘ry))
and apply the expoential to both sides. m

Proposition 7.24 For x > 0 and real a,

d

a@):am

a—1

Proof. By the chain rule

d
dx

1 1

a d a -1 a a—
(:1;)—a(exp(aloga;))—;exp(alogm)—am % =ax® .

[
Definition 7.25 (The Trigonometric and Hyperbolic Functions)
1. For all z € C we define cosine and sine by

exp (iz) — exp (—iz2)
21

cosy = XD (1z) + exp (—zz)7 Gin s —

2
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2. Then
n.2n e (_1)n22n+1

N (2D N
COSZ—ZO:W and sz’—zo:m

with these series converging for all z € C.

Proof.
exp (iz) + exp (—iz L= (" + (=0)") ,
p(i2) + exp >:§;< i),
B e e Y G VSR N G D
B 5; (2k)! _20: (2k)!
exp(iz) —exp(=i2) _ L= (<)),
21 21 n!

3. cos0 =1, sin0 = 0.

* exp (iz) = cos z + isin z.
Proof.
082+ isinz — (exp (iz) + exp (—iz)) g (exp (iz) — exp (—iz)) _ exp (i2).
2 21
u
5. cosz = cos(—z) and sin z = — sin(—z).

Proof. The powers series of cos (resp. sin) involves only even (resp. odd) powers. ®

cos'(z) = —sinz  and sin’(2) = cos 2.

Proof. Using exp’ z = exp z then

d d <exp (iz)+exp(—iz)) d (iexp (iz)—iexp(—iz))

3 (cos2) = o 2 T4z 2

— (sinz) =

dz dz 2 T dz 2

or we can just calculate the derived series of cosz and sinz. m
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sin(z +w) = sinzcosw + cos z sin w,

cos(z+w) = coszcosw — sin z sin w.

Proof. By definition sin z cosw + cos z sinw equals

<exp (iz) — exp (—iZ)) (exp (iw) + exp (—iw))

21 2

N (exp (i2) + exp (—iZ)) (exp (iw) — exp (—iw))

2 21

which rearranges to

% [2exp (iz) exp (iw) — 2 exp (—iz) exp (—iw)]

exp (iz + iw) — exp (—iz — iw)
a 2i
= sin(z+w).

The second identity can be proved in a similar manner or by differentiating the first
identity with respect to z. m

8.
cos? z +sin®z =1
Proof. Set z = —w in the previous identity for cos(z + w). Alternatively, differentiating
gives
d . . .
Ep (COSQZ + sin? z) = —2coszsinz + 2sinzcos z = 0.
z

So cos? z + sin® 7 is constant by Remark 7.14 and takes value 12 +0%2 = 1 at z = 0. Or we
can argue

cos? z +sin? z = (cos z + isin z) (cos z — isin z) = exp (iz) exp (—iz) = exp (iz — iz) = 1.
[
9. It is easy to note that cos(0 =1 and that

L (—1)"m 2%
cos2 = 202%

BT T T TR

2 26 22 210 22
= 1-2+--=(1- ~Z (1- —
3 0! 7x8 10! 11 x 12
—— N

7

'

<0 >0 >0

< 0.

It follows from theorems we will meet in Hilary Term that there exists a smallest positive
root to the equation cosz = 0. We will define 7/2 as the smallest root of cosine.
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10. As cos? z + sin? z = 1 then sin (7/2) = £1 (in fact it equals 1 as we know) and
exp (mi/2) = cos (m/2) +isin (7/2) =

Then
exp (z + 2mi) = expz (exp %) = (exp2) (£i)* = exp 2.

Hence exp has period 27¢ and cosine and sine have period 27 — i.e.

cos(z +2m) = cos(z) and sin(z + 27) = sin(z).

11. For the other trigonometric functions we define

1 sin x
secr = , tanx =
cos T COST
CcoST
cscxr = —, cotr = ——.
sin x sinx

12. We define hyperbolic cosine and and hyperbolic sine by

2n

b exp (z )—|— exp ( i z
coshz = = ,
5 (2n)!
0 2n+1
ex —ex
sinhz = p(z ) p( = Z
5 (2n + 1)!
where these series converge for all z € C. Note that
cosiz = coshz, coshiz = cos z,
sintz = 1tsinhz, sinh¢z = 4 sin z,
cosh(—z) = coshz, sinh (—z) = —sinh z,
cosh’z = sinhz, sinh’ z = cosh z,
sin (z +1dy) = sinxcoshy +icoszsinhy,
cos (x +1iy) = cosxcoshy — isinxsinhy,

cosh? z —sinh®*z = 1.
13. (Inverse hyperbolic functions) (a) Let x € R. Then
sinh ™'z = log (1’ + Va?+ 1) .

(b) Let > 1

cosh™! z = log (:C +Va? — 1)

(c) Let —1 < & < 1. Then
1 1
tanhlx:§log( +:1c).

11—z
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Proof. (a) We need to solve

5 =1 <= ¥ _2peY—-1=0 <— e'=z+Vr2+1.

Only one of the options on the RHS (the plus option) is positive, so
y =sinh™'z = log (x +Va? 4 1) :
Both (b) and (c) can be solved similarly by creating a quadratic in ¢/. =

Example 7.26 (See also Sheet 7, Ezercise 9.) Find the power series for tanz up to the 2°
term.

Solution. As tan z is odd then we only have to calculate coefficients for z, 2% and 2° (Propo-
sition 7.16). One approach would involve differentiating repeatedly, but we would then need to
calculate the fifth derivative of tan z. Instead we will use the binomial theorem.

Recall that

3 2’5 2’2 24

sinz:z—g—i—l—zo—l—O(zU, cosz:l—E—i—ﬁ—i—O(zG),
so that . .
z— 2+ 5 +0(2)

tanz = 5 T .
1—2 4+ 2 +0(z5)

By the binomial theorem, (1 —y) ' = S"¢°y" for |y| < 1, for suitably small z,

22 2t 22 2 ?
= 1 -z _Z 6 oz 6 6
+<2 24+O(z)>+(2 24—1—0(2)) +0(2%
22 2t 24 6
= 1+<3—ﬁ)+<z)+0<z)
2?2 bzt 6
= 1+E+§+O<Z)
So
220 7 z2 bzt 6
tanz = (Z—gﬁ—m-‘r()(z)) <1+3+g+0(2)>
(LY (L5 s
- Z+(2 6) (120 12+24)Z+O(Z)
2
— 13, 45 7
= 2—1—32 +15Z + O(z2")
|
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Remark 7.27 Note that many of the properties of complex sine and cosine differ significantly
from their real counterparts. Whilst

cos® z+sin’z =1

is true for all z, this does not mean that |cosz| < 1 or |sinz| < 1. In fact, cos: C — C and
sin: C — C are onto, and so in, particular, are unbounded.
Given w € C then
exp (1z) — e —1z
sinz = w = X (i2) 2,Xp( ):w
i
= exp (iz)* — 2iwexp (iz) —1 =0

= exp (iz) =i+ V1 — w2

Recall exp takes all values except 0. So unless w? = 1, the RHS represents two distinct complex
numbers, so there is a solution z to at least one of the two equations. And if w?> =1 asi # 0
then exp (iz) =i has a solution. (See also Example 7.28.)

Also, whilst exp(iz) = cosz + isinz is true for all complex z, it’s not generally true that
cos z = Re (exp (i2)) .

Example 7.28 Find all the solutions to sinz = 2.
Solution. Set z = x + iy so that
sin (x 4 iy) = sinx coshy + i cos x sinh y = 2.
Comparing real and imaginary parts, we have
sin z cosh y = 2, cosx sinhy = 0.
If y = 0 then sinz = 2 which has no solutions. Hence cosz = 0 and = = (2n + 1) 5. Then
2 = sin ((2n +1) g) coshy = (—1)" cosh y.
So n must be even and we have y = £ cosh™ 2. So the solutions to sin z = 2 are
z=(2n+1) g + 4 cosh™' 2.
]
Example 7.29 Show that cos z = Re (exp (iz)) holds if and only if z is real.
Solution. We know this is true for real z. To prove the converse, say z = x + iy. Then
cos(x +iy) = cosxcoshy — isinxsinhy,

Re(exp (iz)) = Re(exp(—y+iz)) =e Ycosu.
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Comparing real and imaginary parts we have
e Y cosx = cosxcoshy, sinz sinhy = 0.

If y = 0 then both equations are satisfied and z is real. If y # 0 then sinx = 0 and so = = n7
for some integer n, so that cosz = (—1)" # 0. Finally

eV +e™
coshy =e¢"? <« +T —eV = H=1 == y=0,

and hence z is real. m
Example 7.30 Show that |exp(iz)| = 1 if and only if z is real.
Solution. Let z = = + 1y. Note

1 = [exp(iz)| = |exp (—y +ix)[ = e *
if and only if y = 0 and so z is real. m

Remark 7.31 (Complex Logarithm and Powers) (Off-syllabus) We saw that exp: C — C
has image C\ {0} and has period 2mi. So for any z # 0 there is a solution wy to exp (wy) = z
and for any integer n then

w = wq + 2nmi

will also be a solution — in fact, these will be all the solutions. This can be argued as follows:

1 = & =¢"(cosy+isiny)
— e* =1, cosy=1, siny =0
= r=0 and y=2nmw for somen € Z,

so that if expw = expwy = z then
exp(w—wy) =1 = w—wy=2nmi.

These w are the possible values of logz. So complex logarithm is an example of a multi-
function. Other examples of multifunctions include square root and the inverse trigonomet-
ric functions. We can make a genuine function from a multifunction by specifying certain
principal values on the domain, for example by taking the positive square root or insisting
sin™': [-1.1] — [-7/2,7/2].

Given z = rexp (if) # 0 then the possible values of log z are

log z = log r + 6.

0 here is a choice of argument which needs specifying to define a single-valued function for log.
For z € C\(—o00,0] we can uniquely write z = rexp (i0) where —m < 0 < m. We will denote
this particular choice of log z as L(z) which agrees with the real logarithm on the positive real
azis (see Figure 6.3).
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If we were to take points z, and z_, respectively just above and below the cut (—oo, 0], then
we would have
zy =rexp(ify) where O ~m; z_ =rexp(if_) where§_ ~ —m.
So
L(zy) =~ logr + im; L(z_) =~ logr — im.

So across the negative real axis there is a jump of £2mi depending on which was the axis is

crossed. The function L satisfies exp (L(z)) = z for all w € C\(—00,0] and L is differentiable
with L'(z) = 271 on C\(—o0, 0].

L[z,] s logr+rti L[1] =0
3 =2 = i 2 3 e

L[z_] = Iogr—njr

P

3L

Fig. 6.3 — a branch L of log

We refer to C\(—o0,0] as a cut-plane and to L as a branch of log. It can be shown that
there is no differentiable branch of log on C\{0}, so some cut to the origin is necessary. The
only other differentiable branches of log on this cut-plane are

L(z) 4 2nmi

for integers n.
In the same way we defined general real exponents, for z € C\(—o0,0] and a € C, we can

define
2% = exp(aL(z)).
This defines a differentiable function on C\(—o0,0] which has derivative az®~*. Considering

the other possible branches of log, we note that z“ takes a unique value if o is an integer, that
2% takes finitely many values if a is rational and otherwise z* takes infinitely many values.

When o = % then

()2 rexp(in/2) = iV (=)' m Vi exp(—im/2) = —iv/F.
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We see this time that there is a sign change as we cross the cut.
The function in Figure 6.4a is z*/* = exp (L(2)/2) and the only other differentiable function
on C\(—o0, 0] which satisfies w? = z is —2'/2, depicted in Figure 6.4b. This is because

L(z)+2nmi| [ 2Y% ifn is even,
eXp 2 T =22 ifnis odd.

| (z+)‘1./2 z‘i\/? 112 _ ¢

)2 ~ —ivr

‘(Z+)1‘/? ~ ‘—i\/—r_ 11/? =1
(@) ~ivVr]

2k 2tk

! Re

-3 -3-

Fig. 6.4a — a branch of \/z Fig. 6.4b — another branch

Definition 7.32 (Logarithmic Series) Consider the power series
o0 Zn

1

The radius of convergence is 1 (by the ratio test) and so converges for |z| < 1.

For —1 < z < 1, by Theorem 7.13,

-1

o0 n oo . 1
X(:L'):zl:nxn zzl:x lzl—x.

Set
p(x) = (1—=z)exp(A(z)).
By the chain and product rules,

p' () =—-1xexpA(z)+ (1 —2) N (z)exp ) (x) = 0.
It follows that u (z) is constant and equals 4 (0) = exp A (0) = exp0 = 1. Hence

1
exp()\(x)):l_x for —1<x<1
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and, with using the definition of real logarithm (Definition 7.18)

A(x) =log (ﬁ) =—log(l—x).
In terms of the branch L for complex logarithm defined earlier we have
AMz)=—-L(1-2) for |z] < 1.
Example 7.33 Let a,z € C with |z| < 1. Find the power series of
B(z,a) = (14 2)" =exp(aL(l+2)).

Solution. The composition of two analytic functions is itself analytic (which I do not prove

here), so we may set
(o)
B(z,a) = Z a,z".
0

By the chain rule
B
B (z,0) =aL (1+ 2)exp(aL (1 + 2)) = W
z

and so
(14 2)B'(z,a) = aB(z,a).

We note ag = 1 and, focusing on the z" term on each side, we obtain the recurrence relation
(n+1)ay41 + na, = aay,

so that
a—n

for n > 0.
n—+1

ag = 1, Ap4+1 =

Hence

<a—n+1
a, =

)
- (=) ()

(oz—n+1)(oz—n+2)-~-(a—1)a
nn—1)x---x2x1
(a—n+1)(a—n+2)---(a—1a
nn—1)x---x2x1

Qo

If we denote this last expression as (z) then we have determined the binomial series for a

general exponent:
= (a
B =(1 ¢ = "
= =3 (1)

n=0
Note that if o is a natural number then this is a finite sum and otherwise the above series is
an infinite sum which converges for |z|] < 1. =
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