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0. INTRODUCTORY MATERIAL

0.1 Syllabus

Real numbers: arithmetic, ordering, suprema, infima; the real numbers as a complete ordered
field. The triangle inequality. [3]

Definition of a countable set. The countability of the rational numbers. The reals are uncount-
able. The complex number system. [1.5]

Sequences of real or complex numbers. Definition of a limit of a sequence of numbers. Limits
and inequalities. The algebra of limits. Order notation: O, o. Bounded monotone sequences
converge. [4]

Subsequences; a proof that every subsequence of a convergent sequence converges to the same
limit. Bolzano—Weierstrass Theorem. Cauchy’s convergence criterion. [2]

Series of real or complex numbers. Convergence of series. Simple examples to include geomet-
ric progressions and some power series. Absolute convergence, Comparison Test, Ratio Test,
Integral Test. Alternating Series Test. [2]

Power series, radius of convergence. Examples to include definition of and relationships between
exponential, trigonometric functions and hyperbolic functions. [2.5]

0.2 Reading list

(1) Introduction to real analysis, Robert Bartle, Donald Sherbert, Wiley 4th ed 2011
(2) Real analysis and infinity, H. Sedghat, OUP 2022
(3) Guide to analysis, Mary Hart, Macmillan 2nd ed 2001
(4) A radical approach to real analysis, David Bressoud, MAA 2007
(5) Mathematical analysis: a straightforward approach, K. G. Binmore, CUP 2nd ed 1982
(6) Mathematical analysis, Tom Apostol, Pearson, 2nd ed 1974

0.3 Further Reading

(1) Understanding analysis, Stephen Abbott, Springer 2nd ed 2015
(2) A very short introduction to mathematical analysis, Richard Earl, OUP 2023
(3) The real numbers: an introduction to set theory and analysis, John Stillwell, Springer 2016
(4) A companion to analysis, T. W. Körner, AMS 2003
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0.4 Introduction and Historical Background

The story of analysis, as a separate subject within mathematics, begins in the nineteenth
century. Three mathematicians, who might reasonably share the title of ‘fathers of analysis’are
Bolzano, Cauchy and Weierstrass, who were working around 1817, 1821 and 1861 respectively.
Their names each arise in this Analysis I course but, however seminal their work, it was around
150 years later than ideal.
During your degree you will see that analysis has ideas and themes of its own —this will

be especially apparent when you meet metric spaces and complex analysis in the second year.
But the biggest need driving a focus on analysis in the nineteenth century was the lack of
rigor in mathematics, particularly with regard to calculus. The origins of calculus are typically
associated with the work of Leibniz and Newton in the 1680s, though their work built on the
work of many others, especially Fermat. Their work was a great leap forward but was definitely
not the final word in the development of the calculus: neither Leibniz nor Newton could frame
their work without reference to infinitesimals, fluxions or other ill-defined terms. At this time
there were still no formal definitions of convergence or limit. Given the widespread impact of
calculus within mathematics and science, there was a desperate need for rigorous foundations;
Newton’s and Leibniz’s methods had been widely applied with success for 100 years or so,
but by the nineteenth century the need for more clarity and careful definitions was becoming
paramount.
Euler, in his seminal Introductio in Analysin Infinitorum of 1748, moved the discussion

forward significantly. Euler placed functions —as defined locally by power series —at the centre
of his work, and during his life calculated an amazing array of infinite sums. But still there was
no formal defintion of a limit. And whilst it was known that the general solution to the wave
equation was

y(x, t) = f(x+ ct) + g(x− ct),
where f and g are arbitrary functions, what did this phrase mean? Certainly, in the case of a
plucked string, something different from Euler’s definition of what a function is. The physical
and mathematical descriptions just didn’t quite match.
Around 1816-17 in Prague, the mathematician and philosopher, Bernard Bolzano, first gave

the modern definition of a limit, introduced so-called ε-δ analysis, defined the notion of ‘great-
est lower bound’and proved the intermediate value theorem (HT) and Bolzano-Weierstrass
theorem. Unfortunately Bolzano’s work would go unrecognized during his lifetime and only
surface some fifty years later. Instead the next (widely recognized) step forward would be
Augustin-Louis Cauchy’s Cours d’Analyse of 1821. The text implicitly involved ε-δ arguments,
and defined continuous functions (HT), but still Cauchy referred to infinitely small quantities
and his proof of the Fundamental Theorem of Calculus (TT) is incomplete through a lack of
appreciation of uniform continuity (HT).
Finally we come to the work of Karl Weierstrass, lecturing in Berlin around 1861. Weier-

strass explicitly employs ε-δ arguments and defines convergence without any reference to infini-
tesimals. He appreciated the difference between pointwise and uniform convergence of functions
(HT), and between continuity and uniform continuity (HT). He proved that a continuous func-
tion is bounded on a closed bounded interval and achieves its bounds —which is often referred
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to as Weierstrass’Theorem (HT) —and he gave an example of a function which is continuous
but nowhere differentiable.
As far as this Analysis I course goes, the above describes the relevant history of the topics

you will meet (and more). But still there would be much work even within real analysis,
especially in the development of theories of integration (TT) (Riemann 1854, Darboux 1875,
Lebesgue 1902).

0.5 Motivation and Pedagogy

Rigour is at the heart of the three Prelims real analysis courses. These courses, more than any
others, instil a care of exposition and proof from foundational axioms. Given that many of the
results proven may seem obvious, some students (not unreasonably) find real analysis rather
dry and pedantic. This is also unfair to the broader subject, analysis, as it has many interesting
ideas of its own and doesn’t merely exist, say, to put calculus on a firmer footing. So why do
we teach real analysis in the first year?
The worth of a mathematics degree boils down to two, equally imporant, aims: the learning

of, understanding of, and facility with a wide range of concepts and method, that provide a
diverse toolkit for addressing physical and logical problems; and the means of exposition to be
able to share those ideas, especially when technical language is necessary, to convince others of
your bulletproof arguments.
A grounding in real analysis, being able to rigorously reason from precisely stated axioms,

and an ability to extend/adapt that thinking to new problems, are key aims of these courses.
The mathematical results you will meet in this course are at least a century old, and these results
are no longer in any doubt, but the technical communication skills and nuance of thought that
you learn will be paramount throughout your degree and beyond. In due course, you will be
proving results that don’t seem obvious, are subtle or even counter-intuitive; hopefully you will
at least appreciate where you originally learnt those skills.
The analysis courses present the axioms of the real numbers — the field, order and com-

pleteness axioms —and seek to build a comprehensive theory of real analysis with each result
building on what has been previously demonstrated. Early we may be proving that every real
square is non-negative, or demonstrating the existence of

√
2, but we will quickly develop an

array of theory that will allow us to deal with infinite series and define the elementary functions.
Whilst we will stick to that creed as much as possible, ultimately it is a pedagogical pipe

dream and there will be good reasons to step off that path on occasion. For example, to have
diverse enough examples of sequences we will early on refer to functions like sine, cosine and
logarithm, even though we won’t define them until the end of the course; the existence of the
real logarithm will rely of results from next term; differentiating power series likewise relies on
Hilary results; and we will introduce the integral test at the end of term, but not develop a
theory of integration till Trinity. But the alternative —leaving the integral test, which is a test
for convergence of infinite series, until Trinity term makes no pedagogical sense.
More disingenuously, the completeness axiom —the fundamental axiom to the real numbers

—states that every non-empty bounded set of real numbers has a least upper bound. Yet you
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won’t find in these notes quite what we mean by a set; that is rather brushed under the carpet.
You can find out more about set theory in the third year, if you wish, but if we insisted on a
treatment of the ZF (Zermelo-Fraenkel) axioms first then the pure mathematics streams would
take even longer to develop.

0.6 Notation

IMPORTANT SETS
N —the set of natural numbers {0, 1, 2, . . .}.
Z —the set of integers {0,±1,±2, . . .}.
Q —the set of rational numbers.
R —the set of real numbers.
C —the set of complex numbers.
Zn —the integers, modulo n > 2.
Rn —n-dimensional real space —the set of all real n-tuples (x1, x2, . . . , xn) .
R [x] —the set of polynomials in x with real coeffi cients.
∅ —the empty set
For a, b ∈ R with a < b we define

(a, b) = {x ∈ R | a < x < b} .
(a, b] = {x ∈ R | a < x 6 b} .
[a, b) = {x ∈ R | a 6 x < b} .
[a, b] = {x ∈ R | a 6 x 6 b} .

SET THEORETIC NOTATION
X ∪ Y —the union of X and Y —{s | s ∈ X or s ∈ Y } .
X ∩ Y —the intersection of X and Y —{s | s ∈ X and s ∈ Y } .
X × Y —the Cartesian product of X and Y —{(x, y) | x ∈ X and y ∈ Y }.
Y c —the complement of a subset Y.
X\Y —the complement of Y in X —{s | s ∈ X and s 6∈ Y } .
P(X) —the power set of a set X, that is the set of subsets of X.
∈ —is an element of, e.g.

√
2 ∈ R and π 6∈ Q.

⊂,⊆ —is a subset of, e.g. N ⊆ Z ⊆ Q ⊆ R ⊆ C.
f : X → Y — f is a function, map, mapping from a set X (the domain) to a set Y (the
codomain).
f : X ↪→ Y —f is a injective function from a set X to a set Y .
f : X � Y —f is a surjective function from a set X to a set Y .
f (X) —the image or range of the function f —i.e. the set {f (x) | x ∈ X} .
g ◦ f —the composition of the maps g and f —apply f first and then g.
|X| —the cardinality (size) of the set X.
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LOGICAL NOTATION

∀ for all =⇒ implies, is suffi cient for, only if
∃ there exists ⇐= is implied by, is necessary for, if
∃! there exists unique ⇐⇒ if and only if, is logically equivalent to
¬ negation, not : or | or s.t. such that
∨ or � or QED found at the end of a proof
∧ and

ANALYTICAL NOTATION
Re z —the real part of a complex number.
Im z —the imaginary part of a complex number.
(xn) , (xn)∞1 —a sequence of elements from a set, usually real or complex numbers
xk —the kth term of a sequence (xn)
xn → L —the sequence (xn) converges to L.
limxn —the limit of the convergent sequence (xn) .
(∃N) (∀n > N) —eventually, or for a tail of the natural numbers
(∀N) (∃n > N) —for infinitely many, or for arbitrarily large, natural numbers
AC —absolutely convergent∑
xn —the infinite series x1 + x2 + x3 + · · · , whether convergent or not.∑∞
1 xn —when denoting a (real or complex) number, the infinite sum of the series.

O(n) —large O notation.
o(n) —small o notation.

The Greek Alphabet

A,α alpha H, η eta N, ν nu T, τ tau
B, β beta Θ, θ theta Ξ, ξ xi Y, υ upsilon
Γ, γ gamma I, ι iota O, o omicron Φ, φ, ϕ phi
∆, δ delta K,κ kappa Π, π pi X,χ chi
E, ε epsilon Λ, λ lambda P, ρ rho Ψ, ψ psi
Z, ζ zeta M,µ mu Σ, σ, ς sigma Ω, ω omega

NOTATION 5



0.7 The Real Number Axioms

The Field Axioms

For every pair of real numbers a, b ∈ R there is a unique real number a+ b, called their ‘sum’.
For every pair of real numbers a, b ∈ R there is a unique real number a×b, called their ‘product’.
For real number a ∈ R there is a unique real number −a, called its ‘negative’ or ‘additive
inverse’.
For real number a ∈ R, with a 6= 0, there is a unique real number a−1, called its ‘reciprocal’or
‘multiplicative inverse’.
There is a special element 0 ∈ R called ‘zero’or ‘the additive identity’.
There is a special element 1 ∈ R called ‘one’or ‘the multiplicative identity’.
The following hold for all real numbers a, b, c:

A1 a+ b = b+ a [+ is commutative]
A2 a+ (b+ c) = (a+ b) + c [+ is associative]
A3 a+ 0 = a [additive identity]
A4 a+ (−a) = 0 [additive inverse]
M1 a× b = b× a [× is commutative]
M2 a× (b× c) = (a× b)× c [× is associative]
M3 a× 1 = a [multiplicative identity]
M4 If a 6= 0 then a× a−1 = 1 [multiplicative inverse]
D a× (b+ c) = a× b+ a× c [× distributes over +]
Z 0 6= 1 [to avoid total collapse]

Notation: We write


ab for a× b
a− b for a+ (−b);
a/b for a× b−1;

The Order Axioms

There exists a subset P of R called the ‘positive numbers’such that for all a, b in R:
P1 If a ∈ P and b ∈ P then a+ b ∈ P. [addition and the order]
P2 If a ∈ P and b ∈ P then a× b ∈ P. [multiplication and the order]
P3 Exactly one of a ∈ P, a = 0, −a ∈ P is true [trichotomy]

Notation: We write


a > b for a− b ∈ P;
a < b for b− a ∈ P;
a > b for a− b ∈ P ∪ {0} ;
a 6 b for b− a ∈ P ∪ {0} .

The Completeness Axiom

Suppose that B ⊆ R, and that k ∈ B is such that b > k for all b ∈ B. We then say that ‘k is
a least (or minimal) element of B. By the trichotomy axiom P3 we can prove that if there is a
least element, there is only one, which we call ‘the least element of B’.
Suppose that S ⊆ R, and that b ∈ R is such that b > s for all s ∈ S. We then say that ‘b is an
upper bound of S’, and that ‘S is bounded above.’

C Let S be a non-empty subset of R which is bounded above; then the set of upper bounds
of S has a least element. [completeness]
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1. THE REAL NUMBERS

1.1 The Field Axioms

What do we mean by the real numbers? Certainly they include the natural numbers, integers
and rational numbers. But you are likely aware of the existence of irrational (= not rational)
numbers, such as

√
2 or π, which are also real numbers. One answer would be that a real

number is a number with a decimal expansion, but then we are getting ahead of ourselves:
what is meant by saying 0.333 . . . is the decimal expansion of 1

3
? Just what details are hiding

behind that ellipsis?
Rather we will simply present a set of axioms —statements we will assume to be true of

the real numbers. We will base all our arguments on these axioms, and develop theorems from
these axioms alone. In Remark 5.34 we will make some brief comments about how the natural
numbers, integers, rationals and reals can be constructed from simpler sets, but the details are
left to more advanced set-theoretic courses.
Unless otherwise made clear, the quantities a, b, x, etc. discussed in the following will be

real numbers. The labelling of these axioms largely follows the convention of Bartle & Sherbert.

Definition 1.1 The real numbers are a set R together with two binary operations

• addition +: R2 → R,

• multiplication × : R2 → R

which satisfy the following axioms

• the field axioms A1-A4, M1-M4, D, Z.

• the order axioms P1-P3.

• the completeness axiom C.

described below. Recall that, as + and × are binary operations, associated with any ordered
pair (a, b) of real numbers are real numbers a+ b and a× b, known as their sum and product
respectively.

The addition axioms A1-A4 require that

(A1) + is commutative, that is a+ b = b+ a for all a, b.

(A2) + is associative, that is a+ (b+ c) = (a+ b) + c for all a, b, c.
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(A3) there is an additive identity 0, called zero, that satisfies a+ 0 = a for all a.

(A4) for each a there is an additive inverse −a such that a+ (−a) = 0.

Remark 1.2 Note that the axioms of addition A1-A4 are equivalent to (R,+) being an abelian
group.

Remark 1.3 Associativity guarantees that the sum of a1, . . . , ak is independent of how the
calculation is executed. For example, four terms can be summed in five ways:

((a+ b) + c)+d, (a+ (b+ c))+d, (a+ b)+(c+ d) , a+((b+ c) + d) , a+(b+ (c+ d)) ,

and more generally there are

Cn =
1

n+ 1

(
2n

n

)
ways to bracket a sum of n terms. (Cn denotes the nth Catalan number.)
It can be shown, say using strong induction, that these Cn calculations lead to the same sum

when the operation is associative.

We now prove some basic first results about addition.

Proposition 1.4 If a+ x = a for all a, then x = 0. Thus the additive identity 0 is unique.

Proof. As a+ x = a is true for all a, then it is in particular true when a = 0. So we have

x = x+ 0 by definition of 0 (A3)
= 0 + x by commutativity (A1)
= 0 by hypothesis with a = 0.

As 0 has the given property, by the above it is the only real number with this property.

Proposition 1.5 If a+ x = a+ y, for some a, then x = y. Thus additive inverses are unique.

Proof.
y = y + 0 by definition of 0 (A3)

= y + (a+ (−a)) by definition of inverses (A4)
= (y + a) + (−a) by associativity (A2)
= (a+ y) + (−a) by commutativity (A1)
= (a+ x) + (−a) by hypothesis
= (x+ a) + (−a) by commutativity (A1)
= x+ (a+ (−a)) by associativity (A2)
= x+ 0 by definition of inverses (A4)
= x by definition of 0 (A3).

It follows that −a is the unique additive inverse of a: if x is an additive inverse of a then

a+ (−a) = 0 = a+ x
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and it follows that x = −a.
I wouldn’t wish to suggest at this point that the previous and following proofs are the only

or even the best proofs. The above proof is reasonably slick, showing in one chain of equalities
that y equals x and applying one axiom at a time. But there are other proofs, some of which are
arguably more natural, and any proof that is logically correct and carefully justfied is adequate
to the task.
A much more natural chain of thought to get from a + x = a + y to x = y would involve

‘subtracting a from both sides’. And we can use the axioms to argue exactly along these lines.

Proof. (Alternative proof of Proposition 1.5) Say

a+ x = a+ y.

Then
(a+ x) + (−a) = (a+ y) + (−a) .

By commutativity (A1) we have

(x+ a) + (−a) = (y + a) + (−a)

and by associativity (A2) we then have

x+ (a+ (−a)) = y + (a+ (−a)) .

By A4 we have x+ 0 = y + 0 and finally by A3 we then have x = y.

Proposition 1.6 − (−a) = a.

Proof.
(−a) + a = a+ (−a) by commutativity (A1)

= 0 by definition of inverses (A4)

and also
(−a) + (− (−a)) = 0 by definition of inverses (A4).

Hence − (−a) = a as additive inverses are unique (Proposition 1.5).

Proposition 1.7 − (a+ b) = (−a) + (−b) .

Proof. This is left as Sheet 1, Exercise 1(iii).

Proposition 1.8 −0 = 0.

Proof. By definition 0+(−0) = 0 and 0+0 = 0. By the uniquness of additive inverses −0 = 0.

The multiplication axioms M1-M4 require that

(M1) × is commutative, that is a× b = b× a for all a, b.
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(M2) × is associative, that is a× (b× c) = (a× b)× c for all a, b, c.

(M3) there is a multiplicative identity 1, called one, that satisfies a× 1 = a for all a.

(M4) for each a 6= 0 there is a multiplicative inverse, denoted a−1, such that a× (a−1) = 1.

Remark 1.9 The axioms of multiplication M1-M4 state that (R\{0},×) is an abelian group.

There are then similar results for × to those proved previously for +.

Proposition 1.10 If a× x = a for all a then x = 1. So the multiplicative identity is unique.

Proposition 1.11 If a 6= 0 and a×x = a×y then x = y. So multiplicative inverses are unique.

Proposition 1.12 If a 6= 0 then (a−1)−1 = a.

Proposition 1.13 If a 6= 0 6= b and ab 6= 0 and (ab)−1 = a−1 × b−1.

These results are left as exercises for the reader. Their proofs are very similar to the
corresponding results for addition. Further, we will soon see that if a 6= 0 6= b then ab 6= 0
(Proposition 1.16) so the hypothesis that ab 6= 0 is in fact unnecessary in the last proposition.

There are two remaining field axioms to introduce.

(D) The distributive law states that × distributes over +. That is,

a× (b+ c) = (a× b) + (a× c)

for all a, b, c.

(Z) 0 6= 1.

The importance of axiom Z may not be immediately obvious. If it were the case that 1 = 0,
we would have (by M3 and Proposition 1.15 below) that

x = x× 1 = x× 0 = 0 for all x.

So the singleton set {0} satisfies all the other field axioms and we need axiom Z above to make
clear we are not discussing this example. We will also find axiom Z, or rather its negation,
a useful conclusion for proofs by contradiction — should an initial assumption lead to the
conclusion that 0 = 1, we would know the initial assumption to be incorrect.
Some important consequences of the distributive law appear below.

Proposition 1.14 (a+ b)× c = a× c+ b× c.

Proof.
(a+ b)× c = c× (a+ b) by commutativity (M1)

= c× a+ c× b by distributivity (D)
= a× c+ b× c by commutativity (M1) twice.
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Proposition 1.15 a× 0 = 0.

Proof.
a× 0 + 0 = a× 0 by definition of 0 (A3)

= a× (0 + 0) by definition of 0 (A3)
= a× 0 + a× 0 by distributivity (D).

Hence a× 0 = 0 by Proposition 1.5.

Proposition 1.16 If a× b = 0 then either a = 0 or b = 0 (or both).

Proof. If a 6= 0 then we have

0 = a−1 × 0 by Proposition 1.15
= a−1 × (a× b) by hypothesis
= (a−1 × a)× b by associativity of × (M2)
= 1× b by definition of inverse (M4)
= b× 1 by commutativity of × (M1)
= b by definition of 1 (M3).

(Note the above proof amounts to carefully showing that if a 6= 0 then we can divide by a to
show b = 0.) Thus b = 0 if a 6= 0, or if a 6= 0 does not hold then a = 0 as required.

Proposition 1.17
(−b)× a = −(b× a).

In particular (−1)× a = −a.

Proof.

(b× a) + ((−b)× a) = (b+ (−b))× a by Proposition 1.14
= 0× a by definition of inverse (A4)
= 0 by Proposition 1.15 and M1

and
(b× a) + (−(b× a)) = 0 by definition of inverse (A4).

As additive inverses are unique then (−b) × a = −(b × a). The final part follows from setting
b = 1 and applying M3 and M1.

Proposition 1.18
(−1)× (−1) = 1.

Proof.
(−1)× (−1) = −(−1) by Proposition 1.17

= 1 by Proposition 1.6.
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Notation 1.19 From now on we will instead write

ab for a× b
a− b for a+ (−b)

a/b or a
b

for a× b−1.

Also, we define integer powers for a 6= 0 by

a0 = 1
ak+1 = ak × a for all k = 0, 1, 2, 3, . . .

a−l =
(
al
)−1

for all l = 1, 2, 3, . . . .

Remark 1.20 Note that we have only defined integer powers of a here. For a > 0 and rational
q = m/n we will, in due course (Theorem 1.72 et seq.), define

aq = n
√
am.

For general real x and a > 0, we will not be able to define

ax = ex log a

until we meet the exponential (Definition 7.17) and logartihm functions (Definition 7.18).

Remark 1.21 Other number systems also satisfy A1—A4, M1—M4, D, Z. Such systems are
called fields. Fields are important algebraic structures in mathematics, and all the linear algebra
and matrix theory you are meeting in Linear Algebra I extends naturally over any given field.
The notion of a field was introduced by Richard Dedekind in 1871.
The rational numbers Q, the real numbers R and the complex numbers C are all examples

of fields. Other examples include Zp, that is the integers modulo a prime number p, and the
field with four elements. See extension exercises 7, 8 and 9 on Sheet 1.
Z is not a field as it does not meet M4 (multiplicative inverses) though it does satisfy the

remainder of the field axioms. N further fails to meet A4 (additive inverses).

1.2 The Order Axioms

As there are many systems, fields, that satisfy the field axioms, we clearly require some further
axioms to fully characterize the real numbers. The real numbers are commonly represented by
a number line with the numbers increasing in a left-to-right fashion. So it is clear that the real
numbers have other properties which we need to capture, including notions of ‘being greater
than’or ‘being to the right of’, together with other geometric notions such as distance.
There are various (ultimately equivalent) ways of introducing the notion of ‘greater than’.

We will again follow Bartle & Sherbert and address this by introducing axioms for what it is
to be positive.
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Definition 1.22 (Order Axioms) There is a subset P of R, of positive real numbers, that
satisfies the following three axioms.

(P1) If a and b are positive, then their sum a+ b is positive.

(P2) If a and b are positive, then their product ab is positive.

(P3) For any a precisely one of the following is true:

a is positive; a = 0; − a is positive.

So to say ‘a is positive’means a ∈ P. Written as an interval, P = (0,∞).
The third axiom P3 is called the trichotomy axiom. By this axiom, 0 is not positive.

Remark 1.23 Any structure satisfying the field and order axioms is called an ordered field.
Q and R are ordered fields, and any subfield of R is an ordered field (see Sheet 1, Exercise
7 for such an example). However there is no subset P of C which makes it an ordered field
(Proposition 1.79).

Proposition 1.24 1 is positive.

Proof. By P3 precisely one of

1 ∈ P, 1 = 0, −1 ∈ P

must hold. Axiom Z discounts the second possibility. The third option, −1 ∈ P, leads to a
contradiction as follows:

−1 ∈ P =⇒ (−1)(−1) ∈ P by P2
=⇒ 1 ∈ P by Proposition 1.18
=⇒ −1 ∈ P and 1 ∈ P

which contradicts P3. By elimination, it follows that 1 ∈ P.
There are alternative, equivalent, means of introducing order to the real numbers by defining

binary relations 6 or < with appropriate properties. The equivalence of the two approaches is
left to Sheet 1, Exercise 10. For now we introduce the following notation and definitions.

Notation 1.25 (a) We write

a > b for a− b ∈ P .
a < b for b− a ∈ P .
a > b for a− b ∈ P ∪ {0}.
a 6 b for b− a ∈ P ∪ {0}.

In this notation the trichotomy axiom, P3, reads as: ‘precisely one of a > 0, a = 0, a < 0
holds’.
(b) Elements of P ∪ {0} = [0,∞) are referred to as non-negative, of Pc = (−∞, 0] are

called non-positive and of (P ∪ {0})c = (−∞, 0) are called negative.
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Proposition 1.26 a > b if and only if −a < −b. In particular, x > 0 if and only if −x < 0.

Proof.
a > b

⇐⇒ a− b ∈ P by definition
⇐⇒ − (−a)− b ∈ P by Proposition 1.6
⇐⇒ −b− (−a) ∈ P by commutativity of + (A1)
⇐⇒ −b > −a by definition
⇐⇒ −a < −b by definition.

The last claim follows as −0 = 0 (Proposition 1.8).

Proposition 1.27 For all a, b, c

a 6 a; (1.1)

a 6 b and b 6 a =⇒ a = b; (1.2)

a 6 b and b 6 c =⇒ a 6 c. (1.3)

either a 6 b or b 6 a (1.4)

Proof. You may recognize (1.1), (1.2), (1.3) as being the reflexivity, anti-symmetry and tran-
sitivity properties of a partial order. Combined with (1.4), this means 6 is a total order.

(a) By A4 we have a− a = 0 ∈ P ∪ {0} and so a 6 a.

(b) By definition a 6 b and b 6 a mean

b− a ∈ P ∪ {0} and a− b = − (b− a) ∈ P ∪ {0}.

There are then two cases to consider:

(i) b− a ∈ P and − (b− a) ∈ P. This contradicts trichotomy (P3).

(ii) if b− a = 0 then a = b; similarly if a− b = 0.

(c) If a = b or b = c this is trivial, so we need only consider the case where b − a ∈ P and
c− b ∈ P. We then have

c− a = (c− b) + (b− a) ∈ P,
by P1 as required.

(d) For a, b ∈ R, precisely one of the following holds

b− a ∈ P =⇒ a 6 b;

b− a = 0 =⇒ a 6 b and b 6 a;

− (b− a) = a− b ∈ P =⇒ b 6 a.
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Proposition 1.28 For a, b, c with a 6 b, then a+ c 6 b+ c.

Proof. Note (b+ c)− (a+ c) = b− a ∈ P ∪ {0}.

Proposition 1.29 For a, b, c with a 6 b and 0 6 c, then ca 6 cb.

Proof. If c = 0 or a = b then the result holds immediately. Otherwise b− a ∈ P and c ∈ P so
that, by P2, c (b− a) ∈ P. By D and Proposition 1.17 we see

c (b− a) = cb+ c (−a) = cb− ca ∈ P

and so ca < cb as required.

Corollary 1.30 For a, b, c with a 6 b and c 6 0. Then ca > cb.

Proof. This is left as Sheet 1, Exercise 1(v).

Corollary 1.31 a2 > 0 for any real a.

Proof. By the trichotomy axiom we have a > 0 or a = 0 or a < 0. If a > 0 then a2 ∈ P by P1
and so a2 > 0. If a < 0 then a2 > a0 = 0 by Corollary 1.30 and Proposition 1.15. If a = 0 then
a2 = 0 > 0 again.

Proposition 1.32 If a > 0 then a−1 > 0.

Proof. Certainly a−1 6= 0 and if a−1 < 0 then −a−1 > 0 giving the contradiction

−1 =
(
−a−1

)
a > 0

by P2.

Corollary 1.33 If 0 < a < b then b−1 < a−1.

Proof. By the previous proposition and P2

a−1 − b−1 = a−1b−1 (b− a) > 0.

Using the order axioms we may define the maximum and minimum of two numbers.

Definition 1.34 Define max: R2 → R and min: R2 → R by

max(x, y) =

{
x if x > y;
y if y > x.

min(x, y) =

{
y if x > y;
x if y > x.

By the trichotomy axiom, these are well-defined functions.
We can extend these to functions of finitely many variables. For example, recursively we

can define
max (a1, . . . , an, an+1) = max (max (a1, . . . , an) , an+1) .
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Example 1.35 max (x, y) = −min (−x,−y) for any x, y.

Solution. We argue by cases, recalling that if x < y then −x > −y by Proposition 1.26.

max(x, y) −min(−x,−y)
x > y x −x < −y − (−x) = x
x = y x x = y − (−x) = x
x < y y −y < −x − (−y) = y

Definition 1.36 We define the modulus function | | : R→ R by

|x| =
{

x if x > 0;
−x if x < 0.

These cases are disjoint and cover all possibilities by the trichotomy axiom, so we obtain a
well-defined function. |x| is read as ‘mod x’or ‘the modulus of x’, and also referred to as ‘the
absolute value of x’.

Remark 1.37 As the maximum, minimum and modulus functions are defined in terms of
different cases, proofs involving them commonly need to demonstrate the result in a case-by-
case manner.

Proposition 1.38 For any x:
(a) 0 6 |x|.
(b) x 6 |x| .
(c) |−x| = |x| .
(d) |x|2 = x2.

Proof. (a) For x > 0 this is obvious. If x < 0 then |x| = −x > 0 by definition of >.
(b) If x > 0 then x = |x| and so x 6 |x|. If x < 0 then x < 0 6 |x| from (a).
(c) If x > 0 then by Proposition 1.26 we have −x 6 −0 = 0. So by definition

|−x| = −(−x) = x = |x|.

If x < 0 then −x > 0. So |−x| = −x = |x| by definition.
(d) In either case we have |x|2 = x2 or |x|2 = (−x)2 = x2 by Proposition 1.17.

Proposition 1.39 (Modulus of a product) |ab| = |a| |b| .

Proof. If either a = 0 or b = 0 then the LHS and RHS are both zero. If a, b > 0 then there is
nothing to prove. If a > 0 > b then ab < 0 and

|ab| = − (ab) = a (−b) = |a| |b|

by Proposition 1.17. Any if a, b < 0 then ab > 0 and

|ab| = ab = (−a) (−b) = |a| |b|

by Proposition 1.17.
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Definition 1.40 Let S ⊆ R and f : S → R. Then f is said to be:

• increasing if f(x) 6 f(y) whenever x 6 y.

• decreasing if f(x) > f(y) whenever x 6 y.

• strictly increasing if f(x) < f(y) whenever x < y.

• strictly decreasing if f(x) > f(y) whenever x < y.

Proposition 1.41 The function f(x) = x2 is strictly increasing on [0,∞).

Proof. Given 0 6 a < b,

f(b)− f(a) = b2 − a2 = (b− a)(b+ a).

As b− a ∈ P and b+ a ∈ P then f(b)− f(a) ∈ P and so f(b) > f(a), showing that f is strictly
increasing.

Theorem 1.42 (Triangle Inequality) For any real numbers a, b,

|a+ b| 6 |a|+ |b| ,

with equality if and only if (a > 0 and b > 0) or (a 6 0 and b 6 0).

Proof. Note that

|a+ b|2 = (a+ b)2 by Proposition 1.38(d)
= a2 + 2ab+ b2

= |a|2 + 2ab+ |b|2 by Proposition 1.38(d)
6 |a|2 + 2 |ab|+ |b|2 by Proposition 1.38(b)
= |a|2 + 2 |a| |b|+ |b|2 by Proposition 1.39
= (|a|+ |b|)2 .

As f(x) = x2 is strictly increasing on [0,∞), then |a|+ |b| < |a+ b| is impossible and the result
follows. The cases when equality holds are left to Sheet 1, Exercise 3(i).

See Remark 1.84 for an explanation of the inequality’s name.

Corollary 1.43 (Reverse triangle inequality) For any real numbers a, b,

|a− b| > ||a| − |b|| .

Proof. Note by the triangle inequality that

|a− b|+ |b| > |a| =⇒ |a− b| > |a| − |b| ,
|b− a|+ |a| > |b| =⇒ |a− b| > |b| − |a| ,

and as ||a| − |b|| equals |a| − |b| or |b| − |a| then the reverse triangle inequality follows.

We can use the modulus function to define distance on the real line (which is the same as
difference).
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Definition 1.44 Given real numbers x, y, the distance d(x, y) between x and y is defined to
be

d(x, y) = |x− y| .
The function d : R2 → R satisfies the properties of a metric, namely, for any real x, y, z:

(M1) d(x, y) > 0 and d(x, y) = 0 if and only if x = y.

(M2) d(x, y) = d(y, x).

(M3) d(x, z) 6 d(x, y) + d(y, z).

Property M3 is equivalent to the triangle inequality. Properties M1 and M2 follow readily
from properties of the modulus function.

We conclude with two useful inequalities.

Theorem 1.45 (Bernoulli’s inequality1) Let x be a real number with x > −1 and let n be
a positive integer. Then

(1 + x)n > 1 + nx.

Proof. We shall prove the inequality by induction —note that the inequality is immediate
when n = 1. Suppose that

(1 + x)N > 1 +Nx

holds for all real x > −1 and a particular N > 1. Then 1 + x > 0 and Nx2 > 0 as N > 0 and
x2 > 0. Hence

(1 + x)N+1 = (1 + x) (1 + x)N by definition
> (1 + x) (1 +Nx) by hypothesis and Proposition 1.29
= 1 + (N + 1)x+Nx2 by A1—A4
> 1 + (N + 1)x by Proposition 1.28.

The result follows by induction.

Proposition 1.46 (Powers dominate polynomials) Let a be a real number with a > 1, and
k be a positive integer. Then there exists c > 0 such that

an > cnk for n = 1, 2, 3, . . .

Proof. Let a = 1 + b, so that b > 0, and take n > k. Then

n > k + 1 =⇒ n− k
n

= 1− k

n
> 1− k

k + 1
=

1

k + 1
.

1Named after Jacob Bernoulli (1655-1705) who applied the inequality frequently in a text of 1689.
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By the binomial theorem,

an = 1 +

(
n

1

)
b+

(
n

2

)
b2 + · · ·+

(
n

k

)
bk + · · ·+ bn

>
(
n

k

)
bk [as all other terms are positive]

=
n (n− 1) · · · (n− k + 1)

k!
bk

>
(n− k)k

k!
bk

=
bk

k!

(
n− k
n

)k
nk

>
(

bk

k! (k + 1)k

)
nk,

with the last line following from the previous inequalities. We have thus

c =
bk

k! (k + 1)k

is such that an/nk > c for n > k. If instead we set

c = min

{
a,
a2

2k
, . . . ,

ak

kk
,

bk

k! (k + 1)k

}
> 0

then an/nk > c holds for n > 1. (It’s important to note that the above choice of c is independent
of n, depending only on a and k.)

Example 1.47 In each of the cases (a) and (b),

(a) x(n) =
3n + n3

2n
, y(n) = n4 + 3n2;

(b) x(n) =
2n + n5

n2
, y(n) =

(−3)n

n3 + 1
,

determine
(i) whether there exists c > 0 such that x(n) > cy(n) for all n;
(ii) whether there exists c > 0 such that x(n) 6 cy(n) for all n;
(iii) whether neither (i) nor (ii) applies.

Thoughts: This example now has genuine flavours of analysis; we are no longer simply applying
axioms. First thoughts are often qualitative, appreciating which terms in the sequences are
significant and which are relatively negligible. For example, in answering (a) we will ultimately
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ignore the n3 term in the numerator; it is helpful, in the sense its presence increases x(n), but
it is inconsequential by comparison with 3n, so we simply do not need to make any use of it.
It’s also important to note that the example requires us to find a positive c, if it exists, and not
in any sense a minimum such c. The existence of any such c is suffi cient to answer the question;
see Sheet 1, Exercise 11 for further comment.

Solution. (a) Note that n3/2n > 0 for all n. By Proposition 1.46, there exist c1, c2 > 0 such
that (

3

2

)n
> c1n

4 and
(

3

2

)n
> c2n

2

for all n. Hence

3n + n3

2n
>

(
3

2

)n
=

1

2

(
3

2

)n
+

1

2

(
3

2

)n
> c1

2
n4 +

c2
6

(
3n2
)

> min
(c1

2
,
c2
6

) (
n4 + 3n2

)
.

Hence (i) holds in this case by setting c = min (c1/2, c2/6) .
(b) Note immediately that (ii) cannot hold as x(n) is always positive and y(n) is negative

when n is odd. So (i) can only apply if x(n) exceeds some cy(n) for all even n. For even n the
inequality x(n) > cy(n) is equivalent to

(
n3 + 1

)(2

3

)n
+

(
n8 + n5

3n

)
> cn2.

By Proposition 1.46, there exists a number K which exceeds the LHS for all n, whilst the RHS
increases without bound as n increases. So no such c exists. To appreciate this in detail, note
that:

• There exists c1 > 0 such that (3/2)n > c1n
3 and hence n3 (2/3)n 6 1/c1.

• (2/3)n < 1.

• There exists c2 > 0 such that 3n > c2n
8 and hence n8/3n 6 1/c2.

• There exists c3 > 0 such that 3n > c3n
5 and hence n5/3n 6 1/c3.

Thus we require there to be c > 0 such that

1

c

(
1

c1
+ 1 +

1

c2
+

1

c3

)
> n2 > n

for all positive integers n. The LHS would then be an upper bound for the unbounded N which
does not exist. (See Corollary 1.55.)
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1.3 The Completeness Axiom

At this stage we can surely persuade ourselves that we could write down proofs of all the usual
algebraic properties of R, and all the usual order properties of 6.
Many structures share these properties —the ordered fields —and in particular both Q and

R are ordered fields. So why won’t Q suffi ce? Why do mathematicians not settle for working
with this rather nice field of easily understood ratios of integers; countable, too, so that we can
list the elements?
The ancient Greeks had at least one reason —in Q we can’t find an element to measure the

length of the hypotenuse of a right-angled isosceles triangle with two short sides of length 1.
Here is the proof of that fact.

Theorem 1.48 There is no element α ∈ Q such that α2 = 2

Proof. If there were such an α, then we could write α = m/n for some m,n ∈ Z, n 6= 0.
Further we could assume that this fraction is in lowest terms, so that m and n are coprime.
Then 2n2 = m2. As m2 is even then m is also even as a product of odd numbers is odd. We
can then write m = 2k and hence n2 = 2k2. But then n, too, is even by the same reasoning
and m/n wasn’t in lowest terms after all. This is the required contradiction.

So Q is lacking in some ways, certainly if we wish to discuss distances, and we look to
describe the way(s) R is different from Q.

Definition 1.49 Let B ⊆ R.
We say that b1 is a least element or minimum of B if (i) b1 ∈ B and (ii) b1 6 b for all

b ∈ B. In this case we write b1 = minB.
We say that b2 is a greatest element or maximum of B if (i) b2 ∈ B and (ii) b 6 b2 for

all b ∈ B. In this case we write b2 = maxB.

Example 1.50 1 is the minimum of [1, 2) but there is no maximum for this set. If x ∈ [1, 2)
were a maximum then x < 2 and so 1 + x/2 is a greater element of the set.

Proposition 1.51 A maximum (if it exists) is unique. Similarly a minimum is unique.

Proof. Suppose that b and c are both maxima of B. Then as b ∈ B and c is a maximum,
b 6 c; as c ∈ B and b is a maximum then c 6 b. By anti-symmetry b = c. Similarly minima
are unique if defined.

Proposition 1.52 Every non-empty subset of N has a minimum.

Proof. Suppose, for a contradiction, that S is a non-empty subset of N with no minimum and
define

S∗ = {n ∈ N | none of 0, 1, . . . , n is in S} .
We shall show that S∗ = N and conclude that S is empty, a contradiction.
Note that 0 ∈ S∗. If not then 0 is in S and S has a minimum (namely 0). Now suppose

that n is in S∗. This means that none of 0, 1, . . . , n is in S. It follows that n+ 1 is not in S, or
else n + 1 would be the minimum of S. Hence none of 0, 1, . . . , n, n + 1 is in S or equivalently
n+ 1 is in S∗. By induction S∗ = N and so S is empty.
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Definition 1.53 Let B ⊆ R.
We say that l is a lower bound of B if l 6 b for all b ∈ B and that B is bounded below.
We say that u is an upper bound of B if b 6 u for all b ∈ B and that B is bounded

above.
We say that B ⊆ R is bounded if it is bounded above and below.

Example 1.54 (a) 23 and π are both upper bounds of [1, 2). And 1 is a lower bound as is −37.
The set of upper bounds is [2,∞) and the set of lower bounds is (−∞, 1].
(b) Q is neither bounded above nor below, N is bounded below, (−∞, e] is bounded above.
(c) ∅ is bounded. The set of upper bounds for ∅ is R as is the set of lower bounds.

The below results follow from Proposition 1.52 or can be similarly proved.

Corollary 1.55 (a) A non-empty subset of Z which is bounded below has a minimum.
(b) A non-empty subset of Z or N which is bounded above has a maximum.
(c) N has no maximal element.

We are now ready to give our final axiom which characterises the real numbers.

Definition 1.56 (Completeness Axiom)

(C) Let S ⊆ R be a non-empty set which is bounded above. Then the set of upper bounds of
S has a least element.

Remark 1.57 (Equivalent axioms) There are various alternative axioms that are equivalent
to the completeness axiom as stated in C. One such is:

• Let A and B be non-empty bounded sets such that a 6 b for all a ∈ A and b ∈ B. Show
that there exists c such that a 6 c 6 b for all a ∈ A and b ∈ B.

This is shown to be equivalent to C in Sheet 2, Exercise 10.

In this course we will meet further equivalent assumptions:

• Bounded, monotone sequences converge (Theorem 5.3, Sheet 4, Exercise 6).

• Cauchy completeness (Theorem 5.29) and the Archimedean property.

• The Nested Intervals Theorem (Theorem 5.7) and the Archimedean property.

• The Bolzano-Weierstrass Theorem (Theorem 5.20).

Another famous equivalent axiom is Dedekind completeness (which is off-syllabus):

• A Dedekind cut is a set ∅ 6= A  Q satisfying (i) if x < y, x ∈ Q, y ∈ A then x ∈ A
and (ii) if x ∈ A then there exists y ∈ A with y > x. Dedekind completeness states that
A = (−∞, z) ∩Q for a unique real number z.
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Remark 1.58 (Uniqueness of the real numbers) The completeness axiom is the last axiom
we will introduce in defining the real numbers. Two natural questions arise: do the real numbers
exist and is the set of real numbers unique?
The first question is not meant ontologically. But, rather than just assuming that there is

a set R which satisfies the field axioms, the order axiom and completeness axiom, can such a
set be constructed with those properties from more concrete sets such as N, Z or Q? We will
address this aspect of the existence of R when we meet Cauchy sequences (Remark 5.34).
The second question — the uniqueness of R — is also a subtle one. What does uniqueness

mean here? It is true that, up to order isomorphism, there is a unique complete ordered field.
For those wishing to understand the details of this statement see Körner pp.359-360.

Definition 1.59 We call this least element the least upper bound or supremum of S, writ-
ten as supS. Note that we can refer to supE as the least upper bound as we have already shown
in Proposition 1.51 that minima are unique.

Example 1.60 2 is the supremum of [1, 2).

Proof. For all x ∈ [1, 2), 1 6 x < 2 by definition, so clearly 2 is an upper bound. Now suppose
that there was a smaller upper bound, t. So t < 2, and as t is an upper bound, t > 1. Then
3
2
6 t+2

2
< 2. So t+2

2
∈ [1, 2) but t < t+2

2
contradicting the fact that t was an upper bound.

Example 1.61 The set of upper bounds of ∅ is R which has no minimum element.

Proposition 1.62 If S ⊆ R has a maximum then maxS = supS.

Proof. Note maxS > x for all x ∈ S by definition of being a maximum. Further if u is an
upper bound for S then u > maxS by virtue of maxS being an element of S. Hence maxS is
the least upper bound.

Proposition 1.63 (The Approximation Property) Let S be bounded above and non-empty
and let ε > 0. Then there exists s ∈ S such that

supS − ε < s 6 supS.

Proof. If this were not the case, then supS − ε is an upper bound of S less than the least
upper bound, which is a contradiction.

Remark 1.64 To prove that a real number M is the supremum of a set S ⊆ R it is enough
to show that (i) s 6 M for all s ∈ S and either (ii) for any upper bound M ′ of S we have
M 6M ′ or alternatively (ii)’for any ε > 0 there is s ∈ S such that M − ε < s 6M.

Corollary 1.65 Let S be bounded above and non-empty. There is a function a : N→ R, such
that

supS − 1

n
< a(n) 6 supS for all n > 1.

In due course, we will see that this means there is a sequence (a (n)) in S which converges to
supS.
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We would like to make the symmetric definition for the maximum (if it exists) of the lower
bounds of a set which is bounded below. One way would be to introduce yet another axiom
guaranteeing its existence. But we don’t need to do this; we now have suffi cient axioms to
prove this as a theorem.

Theorem 1.66 Let T be a non-empty set which is bounded below. Then the set of lower bounds
of T has a greatest element.

Proof. Let S = {−t | t ∈ T}. As T is non-empty then S is also non-empty.
In Proposition 1.26 we showed that x 6 y ⇐⇒ −y 6 −x. Let l be a lower bound of T .

Then l 6 t for all x ∈ T and so −t 6 −l for all t ∈ T. That is s 6 −l for all s ∈ S. Hence S is
bounded above, and non-empty, so by the completeness axiom, supS exists.
We shall prove (i) − supS is a lower bound of T, (ii) if l is a lower bound of T then

l 6 − supS.
(i) If t ∈ T then −t ∈ S and so −t 6 supS. Hence t > − supS and we see − supS is a

lower bound of T .
(ii) If l 6 t for all t ∈ T then −l > −t for all t ∈ T. Hence −l > supS by virtue of supS

being the least upper bound of S. Finally l 6 − supS.

Definition 1.67 This element is known as the greatest lower bound or infimum of T and
is written inf T.

• By an argument similar to Proposition 1.51 we can show easily show that infima are
unique.

• Note if T has a minimum element then minT = inf T.

Example 1.68 sup[1, 2) = 2 and inf[1, 2) = 1. Also min[1, 2) = 1 whilst max[1, 2) does not
exist.

Corollary 1.69 (The Approximation Property for infima) Let T be bounded below and
non-empty and let ε > 0. Then there exists t ∈ T such that

inf T 6 t < inf T + ε.

Corollary 1.70 Let T be bounded below and non-empty. There is a function a : N→ R, such
that for all n we have

inf T 6 a(n) < inf T +
1

n
.

Again we will shortly see that this means there is a sequence (a (n)) in T which converges to
inf T.

Example 1.71 Let S be a bounded subset of R. Let c < 0 and set cS = {cs | s ∈ S}. Show
that cS bounded above, and that sup(cS) = c inf S.
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Solution. (i) As S is bounded below then s > inf S for all s ∈ S. As c < 0 then cs 6 c inf S
for all s ∈ S and hence c inf S is an upper bound for cS. We now have to show that c inf S is
the least upper bound of cS and there are two ways of showing this:
(ii) Suppose that u is an upper bound of cS. Then cs 6 u for all s ∈ S and hence s > u/c

for all s ∈ S. This means that u/c is a lower bound of S and in particular inf S > u/c as inf S
is the greatest lower bound of S. Then c inf S 6 u and we finally see that c inf S is less than or
equal to any other upper bound of cS.
(ii)’Alternatively let ε > 0 and then, as inf S is the greatest lower bound for S, there is

s ∈ S such that

inf S 6 s < inf S − ε/c =⇒ c inf S − ε < cs 6 c inf S,

verifying the supremum approximation property.

Theorem 1.72 (
√

2 exists) There exists a unique positive number α such that α2 = 2.

Proof. Let S = {x ∈ R | x2 < 2}. Note that 12 = 1 < 2, so that 1 ∈ S and in particular S is
non-empty. Further if x > 2 then

x2 = xx > 2x > 4 > 2.

Hence 2 is an upper bound for S and so we may define

α = supS.

Note further that α > 1 > 0 is positive. We split the remainder of the proof into showing that
α2 < 2 and α2 > 2 both lead to contradictions. By the trichotomy axiom it then follows that
α2 = 2.

• Suppose for a contradiction that α2 < 2. Our aim is to show that (α + h)2 < 2 for some
h > 0 which would give a contradiction. Let 0 < h < 1 so that h2 < h in particular.
Then

(α + h)2 = α2 + 2hα + h2 < α2 + 2hα + h = α2 + (2α + 1)h.

We will have α2 + (2α + 1)h < 2, and hence (α + h)2 < 2, if further

h <
2− α2
2α + 1

,

noting the RHS is positive. So we set

0 < h < min

(
1,

2− α2
2α + 1

)
,

then α + h ∈ S. But this contradicts α = supS.
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• Suppose instead that α2 > 2. Our aim is to show that (α− h)2 > 2 for some h > 0 which
again gives a contradiction. Note

(α− h)2 = α2 − 2hα + h2 > α2 − 2hα.

So if further

0 < h <
α2 − 2

2α
,

then (α− h)2 > 2. As x 7→ x2 is an increasing function for x > 0 then no element of S
lies in the interval (α− h, α) which contradicts the approximation property.

Finally, by trichotomy, α2 = 2 is the only remaining possibility. To show uniqueness of α
suppose that β is a positive number such that β2 = 2. Then

α2 = β2 =⇒ α2 − β2 = (α + β) (α− β) = 0.

It follows that β = α or β = −α. As α > 0 then −α < 0 and so α is the only positive
solution of x2 = 2.

Remark 1.73 Note that this result shows that Q does not satisfy the completeness axiom as
the set {x ∈ Q | x2 < 2} does not have a supremum in Q.

Notation 1.74 We write
√

2 for α.

Theorem 1.75 Let a be any positive real number. Then there exists a unique real number —
denoted by

√
a —whose square is a.

Proof. This just involves a refining of the previous argument. See also Example 5.9.

We’ve already noted (Corollary 1.55) that N has no maximal element. This is something
that can be proved within the axioms for N. Situating N within R we now note:

Theorem 1.76 (Archimedean Property) N is not bounded within R. That is, for any x ∈ R
there exists n ∈ N such that x < n.

Proof. If not, N is bounded above and not empty. Set α = supN. Then so α− 1 < k for some
k ∈ N by the approximation property. But as k + 1 ∈ N and α < k + 1, contradicting α being
an upper bound for N.

Corollary 1.77 Let ε > 0. Then 0 < 1
n
< ε for some n ∈ N.

Proof. Apply the Archimedean Property to 1/ε.

Corollary 1.78 Given reals a, b with a < b then there exists a rational number q and an
irrational number r such that a < q < b and a < r < b.

Proof. Left as Sheet 2, Exercises 5ii and 5iii.
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1.4 Complex numbers

[This section is by way of recap from the Introduction to Complex Numbers course. and will
not be lectured.]
We can define C from R by taking the set C to be R2, the set of real ordered pairs and

defining addition + and multiplication × by

(a1, b1) + (a2, b2) = (a1 + a2, b1 + b2)

(a1, b1)× (a2, b2) = (a1a2 − b1b2, a2b1 + a1b2) .

So that, for example

(0, 1)2 = (0, 1)× (0, 1) =
(
02 − 12, 0× 1 + 0× 1

)
= (−1, 0) .

We more commonly write i for (0, 1) and write a + bi for (a, b) , so that the above equation
states i2 = −1. Further we identify each real number r with r+ 0i and so can think of the reals
as a subset of the complex numbers.

It is not hard to check that the field axioms A1-A4, M1-M4, D, Z are all true of the complex
numbers.

Proposition 1.79 There is no subset P of C which satisfies the order axioms P1—P3.

Proof. Suppose for a contradiction that such P ⊆ C exists. By P3, precisely one of the
following holds:

i ∈ P; i = 0; − i ∈ P.
If i = 0 then 1 = i4 = 04 = 0 which contradicts Z. If i ∈ P then by P2 we have −i = i3 ∈ P,
but then ±i ∈ P which contradicts P3. Assuming −i ∈ P leads to the same contradiction.
Hence not one of the the possibilities required by P3 holds and no subset P ⊆ C exists with
the requisite properties.

So the complex numbers cannot be made into an ordered field. There is, though, the
complex modulus function, that we can use to determine the ‘size’of complex numbers. Let
z = x+ yi, where x = Re z and y = Im z, throughout the following.

Definition 1.80 The modulus of z, written |z|, is given by

|z| =
√
x2 + y2

This makes sense as x2 + y2 > 0.

Definition 1.81 The conjugate of z, written z̄ (or z∗ in some texts), is given by

z̄ = x− yi.

None of the following properties is at all diffi cult to prove —they are algebra, not analysis.
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1. If z is real (i.e. z = x + 0i) then |z| = |x|; that is the definitions of real and complex
modulus agree where applicable.

2. |z| = |z̄| .

3. |z|2 = zz̄.

4. |Re z| 6 |z|, |Im z| 6 |z| .

5. z + z̄ = 2 Re z.

6. z − z̄ = 2i Im z.

7. z1 + z2 = z1 + z2.

8. z1z2 = z1 z2.

Theorem 1.82 For z, w ∈ C,
|zw| = |z| |w| .

Proof. Let z = x+ yi and w = u+ vi. Then all we need is the factorisation

(xv + yu)2 + (xu− yv)2 = (x2 + y2)(u2 + v2)

and the existence of unique non-negative square roots.

Theorem 1.83 (Triangle Inequality) For complex numbers z, w,

|z + w| 6 |z|+ |w| .

Proof. Using the above properties.

|z + w|2 = (z + w) (z + w)

= (z + w) (z̄ + w̄)

= zz̄ + (zw + z̄w) + ww

= zz̄ + 2 Re (zw) + ww

6 zz̄ + 2|zw|+ ww

= |z|2 + 2|z| |w|+ |w|2

= (|z|+ |w|)2.

Remark 1.84 The name ‘triangle inequality’ is clearer to explain in C rather than in R.
Consider the triangle in C with vertices A = 0, B = z and C = z + w. Then |z + w| = |AC| ,
|z| = |AB| and |BC| = |(z + w)− z| = |w| . So the triangle inequality states that the length of
one edge is less than the sum of the lenghts of the other two edges.
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2. COUNTABILITY

In this section we introduce some of the simplest ideas about the size or cardinality of a set.
(You should probably note, but not be too concerned, that we have not rigorously defined what
a set is. Most (but by no means all) mathematicians agree on what a set is, but you will have
to wait till the third year B1.2 option Set Theory to find out what the current consensus is.)

Almost all the results in this section are due to the German mathematician Georg Cantor (1845-
1918). The lectures will focus mainly on the notion of countability and in particular that the
real numbers are uncountable. The cardinality of finite sets was discussed in the Introduction
to University Mathematics course.

Definition 2.1 Let A and B be sets. We say A and B are equinumerous, and write A ≈ B,
if there is a bijection f : A→ B.

Note that for any sets A,B,C,

A ≈ A;

A ≈ B ⇐⇒ B ≈ A;

A ≈ B, B ≈ C =⇒ A ≈ C.

These properties rely on the identity map being a bijection, bijections being invertible and the
composition of two bijections being a bijection.

Example 2.2 The sets A = {0, 1, 2, 3, . . .} and B = {1, 2, 3, 4, . . .} are equinumerous despite
B being a proper subset of A; we can see this by considering the bijection f : A → B given by
f (n) = n+ 1.

Definition 2.3 A set A is called finite if either A = ∅ or we have that A ≈ {1, 2, . . . , k} for
some non-zero natural number k. In the former case we say that A has cardinality 0, in the
latter has cardinality k. We denote the cardinality of A by |A|.

Remark 2.4 Note that the cardinality of a finite set is well-defined. There would be issues
with the above definition if it were possible to find a set A and distinct k, l such that

A ≈ {1, 2, . . . , k}, and A ≈ {1, 2, . . . , l}.

To sketch a ‘least criminal’ proof, consider the smallest k for which A ≈ {1, 2, . . . , k} and
distinct l with A ≈ {1, 2, . . . , l}. We could then construct a bijection f from {1, . . . , k} to
{1, . . . , l}. Remove k and f(k), and (with some adjustment) we’d get two equinumerous sets of
sizes k − 1 and l − 1. But k − 1 6= l − 1 which contradicts the minimality of k.

Exercise 2.5 How would you prove the following for finite sets A and B?
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• If A ⊆ B then |A| 6 |B| .

• If f : A→ B is a 1-1 map then |A| 6 |B| .

• If g : A→ B is an onto map then |A| > |B| .

Remark 2.6 (Off-syllabus) More generally given two (possibly infinite) sets A and B we write
|A| 6 |B| if there is a 1-1 map from A to B. The Cantor-Bernstein-Schröder Theorem
states that

if |A| 6 |B| and |B| 6 |A| then A ≈ B,

i.e. if there is a 1-1 maps A→ B and B → A then there is a bijection from A to B.
Cantor was the first to publish this result, without proof, in 1887. A later proof by Cantor

relied on the Axiom of Choice, which is a non-stand axiom of set theory, and unnecessary to
this theorem. In 1887 Dedekind proved the theorem, without reference to the Axiom of Choice
but did not publish his result. In 1897 Bernstein and Schröder independently published proofs.

Definition 2.7 A set which is not finite is called infinite.

Remark 2.8 An equivalent definition for a set to be infinite is that the set has an equinumerous
proper subset.

Example 2.9 The sets N, Z, Q, R, and C are all infinite.

Somewhat surprisingly, we will see that the above sets are not all equinumerous.

Definition 2.10 A set A is called countably infinite (or denumerable) if N ≈ A We say
A is countable if A is finite or countably infinite. A set which is not countable is called
uncountable. (Note some authors use ‘countable’to mean ‘countably infinite’.)

We then have:

Proposition 2.11 A set A is countable if and only if there is a 1-1 map f : A→ N.

Corollary 2.12 If B ⊆ A and A is countable then B is also countable. Equivalently if B is
uncountable then A is uncountable.

Example 2.13 The set of integers is countably infinite.

Solution. A bijection from N = {0, 1, 2, . . .} to Z can be described using the list

0, 1,−1, 2,−2, 3,−3, . . .

or more formally by setting

f (n) =

{
(n+ 1) /2 n is odd
−n/2 n is even

We can generalise this approach to show:
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Proposition 2.14 Suppose that A1 and A2 are disjoint and countably infinite. Then A1 ∪ A2
is countably infinite.

Proof. As Ai is countably infinite then there is a bijection fi : N → Ai. We define the map
g : N→ A1 ∪ A2 by

g (n) =

{
f1
(
n
2

)
if n is even

f2
(
n−1
2

)
if n is odd

This map can be readily checked to be a bijection onto A1 ∪ A2.

Remark 2.15 The above proposition still holds even if A1 and A2 are not disjoint; essentially
the same g can be used to list A1 and A2 but skipping over any repetitions as they occur.

Proposition 2.16 Suppose that A and B are countably infinite. Then the Cartesian prodcut
A×B is countably infinite.

Proof. As both sets are countably infinite then they can be listed as

a0, a1, a2, . . . b0, b1, b2, . . .

The elements (ai, bj) of A×B can be put into a grid as below

(a0, b0) → (a1, b0) (a2, b0) → (a3, b0) (a4, b0)
↙ ↗ ↙ ↗

(a0, b1) (a1, b1) (a2, b1) (a3, b1) (a4, b1)
↓ ↗ ↙ ↗ ↙

(a0, b2) (a1, b2) (a2, b2) (a3, b2) (a4, b2)
↙ ↗ ↙ ↗

(a0, b3) (a1, b3) (a2, b3) (a3, b3) (a4, b3)
↓ ↗ ↙ ↗ ↙

(a0, b4) (a1, b4) (a2, b4) (a3, b4) (a4, b4)

and then can themselves be listed, in accordance with the arrows, as

(a0, b0) , (a1, b0) , (a0, b1) , (a0, b2) , (a1, b1) , (a2, b0) , (a3, b0) , . . .

Corollary 2.17 If A0, A1, A2, . . . are countable sets then so is their union
⋃∞

i=0Ai.

Proof. As each set Ai is countable then it can be listed as

ai0, ai1, ai2, . . .

By placing the aij into a square grid as in the previous proof then these can be counted in a
similar fashion, omitting any repetitions of elements that arise.

Remark 2.18 For those with a particular interest in set theory, note that the above proof relies
on the Axiom of Choice in a subtle way. In listing each set Ai we are effectively choosing a
bijection fi : N→ Ai and to do so for each i requires the Axiom of Choice.
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Notation 2.19 The symbol ℵ0 is used to denote the cardinality |N| of N, or any countably
infinite set. ℵ is aleph, the first letter of the Hebrew alphabet and ℵ0 is read as ‘aleph-null’or
‘aleph-nought’.

Example 2.20 The set N2 = N × N is countable as we have seen. An explicit example of an
injection f : N2 → N is the map

f (m,n) = 2m3n.

Example 2.21 The set Q+ of positive rationals is countable as the map taking a rational m/n
in its lowest form to (m,n) is an injection from Q+ to N2 ≈ N. So Q = {0}∪Q+∪{−q | q ∈ Q+}
is also countable.

However it turns out that not all infinite sets are countable. In particular it is a fact
of considerable importance that R is uncountable. This was first shown in 1874 by Cantor,
producing a second more intuitive proof using his diagonal argument in 1891. Below we give
two proofs. The second is Cantor’s diagonal argument which makes use of decimal expansions
—something we are yet to define and construct (see Example 5.12) —whilst the first proof uses
results we have so far demonstrated.

Theorem 2.22 R is uncountable.

Proof. Proof 1: If R were countable, then so too would be [0, 1]. Clearly [0, 1] is not finite as
it contains all 1

k
where k > 1. We proceed now with a proof by contradiction to show that [0, 1]

is not countably infinite. Suppose f : N→ [0, 1] is a bijection and we write xk = f(k).

• We choose distinct a0, b0 so that x0 /∈ [a0, b0]. If x0 6= 1 then we can find a0 and b0 such
that x0 < a0 < b0 < 1 and if x0 = 1 then we can take the interval [0, 1/2].

• Having chosen a0, b0 we then select a1, b1 so that a0 < a1 < b1 < b0 and x1 /∈ [a1, b1]. In a
similar fashion to the above if x1 < b0 we can find a1 and b1 so that

max (a0, x1) < a1 < b1 < b0

and if x1 > b0 then we can take the interval [(2a0 + b0) /3, (a0 + 2b0) /3] , i.e. the middle
third of the previous interval.

• We repeat this process producing reals ai and bj such that

0 6 a0 < a1 < a2 < · · · < b2 < b1 < b0 6 1

and xi /∈ [ai, bi] for each i.

Now set S = {aj | j ∈ N} which is bounded above by 1 and T = {bj | j ∈ N} is bounded below
by 0. So we may define

λ = supS and µ = inf T.
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For all m,n we have am 6 bn. In particular, each bn is an upper bound of S and so λ 6 bn for
all n as λ is the least upper bound of S. So λ is lower bound of T which means λ 6 µ as µ is
the greatest lower bound of T . Then

an 6 λ 6 µ 6 bn for all n.

For all n we have λ ∈ [an, bn] and xn /∈ [an, bn] and so λ 6= xn for all n which contradicts the
fact that f is a bijection.

Proof. Proof 2 (diagonal argument): We will prove R is uncountable by showing that the
interval (0, 1] is uncountable. To each x in this interval corresponds a unique decimal expansion
0.a1a2a3 . . . which does not end in a string of zeros.
Suppose for a contradiction that f : N→ (0, 1] is a bijection. Then we may uniquely write

out the decimal expansions of f (1) , f (2) , . . . . Say:

f (1) = 0.r11r12r13r14 . . .

f (2) = 0.r21r22r23r24 . . .

f (3) = 0.r31r32r33r34 . . .

Cantor then created a real α not on the list by setting

α = 0.a1a2a3 . . .

where

ak =

{
6 if rkk 6= 6
7 if rkk = 6

The decimal expansion of α is allowed (in that it doesn’t conclude in a string of 0s) and we see,
for any k, that α 6= f (k) as α and f (k) disagree in the kth decimal position. This contradicts
the surjectivity of f .

Notation 2.23 The symbol c, which stands for ‘continuum’(an old name for the real line),
denotes the cardinality of R.

Corollary 2.24 C is uncountable. (In fact, C ≈ R, which can be proved using the Cantor-
Bernstein-Schröder theorem )

The following result, known as Cantor’s Theorem. It shows that any set has more subsets
than elements. It further proves that there are ever increasingly large sets that can be formed.

Theorem 2.25 (Cantor’s Theorem, 1891) Let A be a set, and let P (A) be the power set
of A, that is the set of subsets of A. Then

|A| < |P (A)| .

This means there is an injection from A to P (A) but there is no bijection from A to P (A).
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Proof. The map A→ P (A) given by a 7→ {a} is an injection.
Suppose we have a map f : A → P (A). We show that f cannot be a surjection, and so

cannot be a bijection. We consider the set

X = {a ∈ A | a 6∈ f(a)},

and will show that X /∈ f(A). Hence f is not onto.
Suppose to the contrary that X = f(x) for some x ∈ A. Then either x ∈ X or x /∈ X. From

the definition of X, we know that x ∈ X if and only if x /∈ f(x) = X. This is the required
contradiction and so X /∈ f(A), as claimed.

Example 2.26 Let A = {1, 2, 3} and define f : A→ P (A) by

f(1) = ∅, f(2) = A, f(3) = {1, 2} .

Find the set X ⊆ A guaranteed by Cantor’s theorem not to be in f(A).

Solution. As 1 6∈ f(1), 2 ∈ f(2), 3 6∈ f(3) then X = {1, 3} .

Example 2.27 P (N) ≈ R. (This can be proved using the Cantor-Bernstein-Schröder theorem.)

Remark 2.28 In the remainder of the course there will be very few explicit references to the
uncountability of the real numbers. Having said that, it is the uncountability of R that charac-
terises how we describe real numbers and impacts the nature of analysis.
The integers, rational numbers, algebraic numbers (Sheet 2, Exercise 6) are all countable

sets. Further the computable numbers can be shown to be countable.
A real number is said to be computable if there is a finite length computer program, written

in a finite alphabet, that can (in principle) calculate that real number to any required accuracy.
Essentially the set of computable numbers comprises all real numbers that can be described by
finite means. However Cantor’s proofs can be readily adapted to show that there are countably
many such programs and so countably many computable numbers. This means, to describe the
uncountably many real numbers, some infinite description is necessary —such as infinite decimal
expansions.
Quite what this means is somewhat contentious. In this course we will consider arbitrary

decimal expansions involving 0, 1, . . . , 9, but some logicians and mathematical philosophers take
issue with this. In particular, ‘intuitionists’would be content only with a decimal expansion
that is defined constructively.
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3. SEQUENCES AND CONVERGENCE

How do we handle a specific real number in practice? One option is to look at successive
approximations. For example, we could have the following approximations for

√
2:

1,
14

10
,

141

100
,

1414

1000
, . . .

—namely the truncated decimal expansions for
√

2 —or we could approaximate π with the
sequence

3,
22

7
,

333

106
,

103993

33102
, . . .

which are the ‘continued fraction convergents’of π. Our first task is to make precise the idea
that these approximations approach the real numbers that they represent.

Definition 3.1 A sequence of real numbers or, more simply, a real sequence is a function
a : N→ R.

Definition 3.2 A sequence of complex numbers or, more simply, a complex sequence
is a function a : N→ C.

In these definitions we typically take N to be the set {0, 1, 2, . . .} or {1, 2, 3, . . .}.

Definition 3.3 Given a natural number n, the nth term of the sequence a is a (n) and we
denote this an.

Example 3.4 Here are some sequences:

• n 7→ α (n) = (−1)n ,

• n 7→ β (n) = 0,

• n 7→ γ (n) = n.

Note, in practice, we often just give the sequence’s values, and say ‘the sequence 1, 1
2
, 1
3
, . . . ’if

it is clear what the function ‘must be’. Or we may be more explicit and write ‘the sequence
(an)∞n=1’or ‘the sequence (an)’where an is a formula in n.

Note also that although n determines the nth value of a sequence, the nth value does not
determine n because the defining function need not be injective. Consider the sequences α and
β above for example.

The space of real (or complex) sequences is naturally a vector space; in fact it is naturally
an algebra where elements can be multiplied. Suppose that (an) and (bn) are sequences of real
(or complex) numbers and c ∈ R (or C). We define the sequences

(an + bn), (can), (anbn), (an/bn)

in the obvious, termwise way. All are well defined except possibly the quotient, where we must
insist on all the terms of (bn) being non-zero.
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Example 3.5 an = (−1)n and bn = 1 for all n > 0.

(an + bn) = (0, 2, 0, 2, 0, 2, 0, . . .) ; (−an) = (−1)n+1 ;
(anbn) = (an) ; (a2n) = (bn) .

3.1 Convergence

Definition 3.6 Let (an) be a real sequence and L ∈ R. We say that (an) converges to L if

∀ε > 0 ∃N ∈ N ∀n > N |an − L| < ε.

We also say that (an) tends to L. We write this as

(an)→ L or an → L as n→∞ or just an → L.

Note than N can, and typically will, depend on ε. The smaller ε is, the larger N will typically
need to be.

Definition 3.7 If (an)→ L then we say that L is a limit of (an) and we write

L = lim
n→∞

an or just L = lim an.

Definition 3.8 We say that (an) converges or is convergent if there exists L ∈ R such that
(an)→ L. In full

(an) converges ⇐⇒ ∃L ∈ R ∀ε > 0 ∃N ∈ N ∀n > N |an − L| < ε.

Definition 3.9 We say that (an) diverges or is divergent if it does not converge. In full

(an) diverges ⇐⇒ ∀L ∈ R ∃ε > 0 ∀N ∈ N ∃n > N |an − L| > ε.

Remark 3.10 In the above, ε is an arbitrary positive number though instinctively we usually
think of ε as being very small. The smaller the value of ε the further into the sequence we will
usually have to look to find a value of N that will suffi ce.

Fig. 3.1 —Graphing a Real Sequence
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In Figure 3.1 we have L = 2 and ε = 0.5. Note that a2 lies in the range (L− ε, L+ ε) though 2
cannot act as N here as a3 is not in the required range. It seems, from the figure, that N = 4
would suffi ce as each of x4, x5, x6, . . . appears to lie in (L− ε, L+ ε) . In fact any N > 4 would
be satisfactory, it doesn’t have to be first such N. For ε much smaller than 0.5 then the larger
N will need to be.
Looking then at the definition of an → L, we need to find some N , not necessarily the

smallest, such that aN , aN+1, aN+2, . . . lies in (L− ε, L+ ε) and we need to be able to do this
for all ε > 0.
The definition of ‘(an) converges’makes no specific mention of the limit L, and so to demon-

strate this the first task is to determine the candidate limit L and then to show an → L.

Remark 3.11 We also note from the above that showing

∃L ∈ R ∀ε ∈ (0, 1) ∃N ∈ N ∀n > N |an − L| < ε

is suffi cient to show convergence. That is, WLOG, we can assume 0 < ε < 1. Previously
we had to concern ourselves with, say, finding the sequence eventually in (L− 2, L+ 2) . But
as we can find the sequence eventually in (L− 0.5, L+ 0.5) then the sequence is eventually in
(L− 2, L+ 2) as well.
And there’s nothing special about assuming ε < 1 here. If it suited us we could assume

0 < ε < ε0 for any positive ε0.

Definition 3.12 (Tails and Neighbourhoods) Let (an) be a sequence, and let k be a natural
number. Then the kth tail of (an) is the sequence n 7→ an+k i.e. it equals the sequence

(ak, ak+1, ak+2, ak+3, . . .)

which we will also write as (an+k)
∞
n=0 or (an)∞k .

For L ∈ R and ε > 0, we refer to the set (L− ε, L+ ε) as a neighbourhood of L (or
sometimes a basic neighbourhood of L).
So we can rephrase ‘(an) converges to L’as ‘any neighbourhood of L contains a tail of (an) .’

In practice, we will not be interested in a specific kth tail so much as in some (unspecified)
tail or all tails past a certain point in the sequence. The tails give a way of focusing on the
long-term behaviour of a sequence ignoring any short-term aberrant behaviour at the start of
a sequence. Whether or not a sequence converges purely depends on the long-term behaviour
of the sequence as we see in the next proposition.

Proposition 3.13 Let (an) be a real sequence and let L ∈ R. Then the following three state-
ments are equivalent.
(a) (an) converges (to L);
(b) some tail of (an) converges (to L);
(c) all tails of (an) converge (to L).

Proof. We shall demonstrate the implications as (a) implies (c), (c) implies (b) and (b) implies
(a).
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(a) =⇒ (c): Suppose that (an) converges to L and let k ∈ N, ε > 0. As (an) → L then
there exists N such that

∀n > N |an − L| < ε.

For such n, we have n+ k > n > N and so

∀n > N |an+k − L| < ε.

Hence, for any k ∈ N, the kth tail of (an) converges to L.
(c) =⇒ (b): (c) clearly implies (b).
(b) =⇒ (a) : Suppose that the kth tail of (an) converges to L. Let ε > 0. Then there

exists N such that
∀n > N |an+k − L| < ε.

Hence
∀n > N + k |an − L| < ε

and we see that (an) converges to L.

Remark 3.14 (Intersection of tails) We will often find ourselves in a situation where we know
something is true of a sequence (an) for n > N1 and a second thing is true for n > N2. Note
that both facts will apply for the tails’ intersection, which is when n > max(N1, N2), which is
itself a tail of the sequence.
This argument can be applied finitely many times, but only finitely many. The intersection

of infinitely many tails can be empty —e.g. when Nk = k2 say.

Before giving some examples, we show that a limit, if it exists, is unique. So we are justified
in the use of the language ‘the limit’.

Theorem 3.15 (Uniqueness of Limits) Let (an) be a real sequence and suppose that an →
L1 and an → L2 as n→∞. Then L1 = L2.

Thoughts: Proofs of uniqueness usually begin by assuming non-uniqueness and obtaining a
contradiction or assuming there are two such elements and showing they’re equal. Our proof
is by contractions. If there were two limits, L1 6= L2, then the would be tails of the sequence
in a neighbourhood of each. Provided these neighbourhoods are disjoint, there is nowhere for
the tails’intersection to be.

Proof. Suppose not and set ε = |L1 − L2| > 0. Then ε/2 > 0 and there exists N1 such that

n > N1 =⇒ |an − L1| < ε/2

Likewise there exists N2 such that

n > N2 =⇒ |an − L2| < ε/2.

Then for n > max(N1, N2) both inequalities hold and

|L1 − L2| = |(L1 − an) + (an − L2)|
6 |L1 − an|+ |an − L2| by the triangle law

< ε/2 + ε/2

= |L1 − L2|
which is the required contradiction.

CONVERGENCE 38



Example 3.16 Let

an =
2n − 1

2n
for n > 1.

Then (an)→ 1.

Thoughts: Here the limit is given, namely L = 1, so we don’t have to put any thought into
deciding what the limit is (as in the next example). The statement of (an)→ 1 is

∀ε > 0 ∃N ∈ N ∀n > N |an − L| < ε.

To address the first quantifier all we need do is introduce a positive ε. Given this ε, our task
is to find a suitable N. In the example below we include the necessary ‘back of the envelop’
calculation as part of the proof.

Solution. Note
|an − 1| =

∣∣1− 2−n − 1
∣∣ = 2−n.

Let ε > 0. We need to find N such that

n > N =⇒ 2−n < ε.

But note that 2n > n for all n ∈ N and so if N > 1/ε (which we know to exist by the
Archimedean Property) and n > N we have

|an − 1| = 2−n =
1

2n
<

1

n
6 1

N
< ε.

Example 3.17 The sequence

an =
n2 + n+ 1

3n2 + 4
(n > 1)

is convergent.

Thoughts: Because the statement for convergence is

∃L ∈ R ∀ε > 0 ∃N ∈ N ∀n > N |an − L| < ε

our first work is in deciding what the limit L is. Note the limit was given to us in the previous
example. Our ‘back of the envelop’argument might go: l for large positive n,

an =
n2 + n+ 1

3n2 + 4
=

1 + 1
n

+ 1
n2

3 + 4
n2

≈ 1

3

We give no exact definition of ≈ (approximately equal to) but none of the above is part of our,
rather informal first thoughts. So 1

3
seems the obvious candidate for our limit. To begin the

proof then, looking at the quantifiers we need to address:
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Solution. Let ε > 0. Note ∣∣∣∣an − 1

3

∣∣∣∣ =

∣∣∣∣n2 + n+ 1

3n2 + 4
− 1

3

∣∣∣∣
=

3n− 1

3(3n2 + 4)

6 3n

3(3n2 + 4)

6 3n

3× 3n2

<
1

n
.

By the Archimedean Property, there exists N ∈ N such that N > 1
ε
. Then, for any n > N, we

have ∣∣∣∣an − 1

3

∣∣∣∣ < 1

n
6 1

N
< ε

to complete the proof.

Example 3.18 Let

an =
(−1)nn2

n2 + 1
(n > 1) .

Then (an) diverges.

Thoughts: The quantified definition of divergence is

∀L ∈ R ∃ε > 0 ∀N ∈ N ∃n > N |an − L| > ε,

so we need to show that any limit real L cannot be a limit.
Looking at the sequence we can see that for large even n

an =
(−1)nn2

n2 + 1
=

1

1 + n−2
≈ 1,

whilst for large odd n we have

an =
(−1)nn2

n2 + 1
=

−1

1 + n−2
≈ −1.

A natural way forward seems to be to suppose, for a contradiction, that a limit exists and argue
(carefully!) that this limit would need to be both near 1 and −1; this would be the required
contradiction. In fact, if we look in more detail at the sequence we see that a2n > 4

5
for all n

and a2n−1 6 −1
2
, so we will take ε in such a way that 2ε < 4

5
+ 1

2
= 13

10
which is the closest the

even and odd terms get. Our proof thus begins:

Solution. Suppose, for a contradiction, that a limit L exists and set ε = 1
2
. Then there exists

N such that for n > N ∣∣∣∣(−1)nn2

n2 + 1
− L

∣∣∣∣ < 1

2
.
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In particular, for even n > N we have

n2

n2 + 1
− L < 1

2
,

=⇒ L >
1

1 + n−2
− 1

2
> 1

5/4
− 1

2
=

3

10
.

Similarly, for odd n > N we have

L+
n2

n2 + 1
<

1

2
,

=⇒ L <
1

2
− 1

1 + n−2
6 1

2
− 1

2
= 0.

The necessary inequalities L > 3
10
and L < 0 give us our required contradiction.

Corollary 3.19 Let a be a real number with a > 1, and k be a positive integer. Then

nk

an
→ 0 as n→∞.

Proof. This is a corollary to Proposition 1.46. There we showed that There is some c > 0 such
that

an

nk
> c

for all n > 1. Replacing k with k + 1 there exists c > 0 such that an/nk+1 > c for all n > 1;
hence

0 <
nk

an
6 1

cn
.

Given ε > 0, by the Archimedean property there exists N such that
∣∣nk/an∣∣ < ε for all n > N.

That is nk/an → 0 as n→∞.

Proposition 3.20 (Convergent sequences are bounded) Let (an) be a real convergent se-
quence. Then (an) is bounded.

Thoughts: Pick any neighbourhood of the limit and a tail of the sequence of the sequence will
be in that neighbourhood. Only finitely many terms of the sequence aren’t in that tail.

Proof. Say that (an) → L and set ε = 1. Then |an − L| < 1 for some tail n > N and, in
particular, |an| < |L|+ 1 by the triangle inequality. Then |an| < M for all n where

M = max {|a0| , |a1| , . . . , |aN−1| , |L|+ 1}+ 1.
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3.2 Complex Sequences

Definition 3.21 Let (zn) be a sequence of complex numbers and let w ∈ C. We say that (zn)
converges L and write (zn)→ L or lim zn = L if

∀ε > 0 ∃N ∈ N ∀n > N |zn − L| < ε.

That is |zn − L| → 0 as n→∞.

Corollary 3.22 (Uniqueness of Limits) Let (an) be a complex sequence and suppose that
an → L1 and an → L2 as n→∞. Then L1 = L2.

Proof. The proof of uniqueness is identical to the previous proof for real sequences.

Corollary 3.23 Let (an) be a convergent complex sequence. Then the sequence is bounded.

Proof. The proof of boundedness is identical to the previous proof for real sequences.

Remark 3.24 (Graphing complex sequences) We can represent the behaviour of complex
sequences in C by plotting the terms in the Argand diagram. In Figure 3.2 below, the sequence’s
limit is L = 1+i and ε = 0.3. Rather than an open interval (L− ε, L+ ε) , the region |z − L| < ε
is an open disc with centre L and radius ε. That is the (basic) neighbourhoods of L are discs
centred at L. Again zn → L if every neighbourhood of L contains a tail of (zn) . In the figure it
appears that any tail of the sequence from N > 5 is inside the sketched disc.

Fig 3.2 —graphing convergence in C

Theorem 3.25 Let zn = xn + iyn. Then (zn) converges if and only if (xn) and (yn) both
converge.
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Thoughts: Visually this result is not surprising. For zn to be within a radius ε disc of L1+ iL2
means xn + iyn is within a square of side 2ε. For a tail of xn to be within ε/2 of L1 and a tail
of yn to be within ε/2 of L2 means the tails’interection of xn + iyn is within a quare of side ε
which itself is within a radius ε disc of L1 + iL2.

Proof. Suppose that xn and yn both converge and that ε > 0. Set x = lim xn, y = lim yn and
L = x+ iy. By the Triangle Inequality

|zn − L| = |(xn − x) + i (yn − y)| 6 |xn − x|+ |yn − y| .

As xn → x and yn → y then we can find N1 and N2 such that

|xn − x| < ε/2 whenever n > N1,

|yn − y| < ε/2 whenever n > N2.

So if n > max (N1, N2) we have |zn − L| < ε/2 + ε/2 = ε and we see that zn → L.
Conversely suppose that zn converges to L and let ε > 0. Then there exists N ∈ N such

that |zn − L| < ε whenever n > N . As |Rew| 6 |w| and |Imw| 6 |w| for any w ∈ C then

|xn − x| = |Re (zn − L)| 6 |zn − L| < ε whenever n > N,

|yn − y| = |Im (zn − L)| 6 |zn − L| < ε whenever n > N.

Hence xn → x and yn → y as required.

Example 3.26 Let

zn =

(
1

1 + ı

)n
.

Then zn → 0.

Proof. Let ε > 0. Note

|zn − 0| =
∣∣∣∣( 1

1 + ı

)n∣∣∣∣ =

∣∣∣∣ 1

1 + ı

∣∣∣∣n =
1

|1 + ı|n =

(
1√
2

)n
.

We have already shown that 2−k < ε for k > 1/ε and so
(√

2
)n
< ε for n > 2/ε.

Remark 3.27 Note that in the above example Theorem 3.25 is not particularly useful. It is
often simpler to work with a complex sequence as such rather than as a sequence made up of
its real and complex parts. By De Moivre’s Theorem, the real and imaginary parts of zn are

xn = Re

(
cos (π/4)− i sin (π/4)√

2

)n
=

1

2n/2
cos
(nπ

4

)
;

yn = Im

(
cos (π/4)− i sin (π/4)√

2

)n
=

(−1)n

2n/2
sin
(nπ

4

)
,

and it only makes for more work to show that both of these tend to 0.
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Notation 3.28 (Asymptotic notation) Let an, bn be sequences.
(a) We write an = O(bn) if there exist c such that for some N

n > N =⇒ |an| < cbn.

This is referred to as big O.
(b) We write an = o(bn) if an/bn is defined and

an
bn
→ 0.

This is referred to as little o.
(c) We write

an ∼ bn

if an/bn → 1 as n→∞. We say that an and bn are asymptotically equal.

Example 3.29 As examples

• n = O (n2)

• n = o (n2)

• sinn = O (1)

• sinn = o (n)

• (n+ 1)2 = n2 +O(n)

• (n+ 1)2 ∼ n2.

3.3 Infinity

Definition 3.30 (Real Infinities) Let an be a sequence of real numbers. We say ‘an tends to
infinity’and write an →∞ as n→∞ to mean

∀M ∈ R ∃N ∈ N ∀n > N an > M.

Similarly we write bn → −∞ if

∀M ∈ R ∃N ∈ N ∀n > N bn < M.

(Here we tend to think of M as being a very large positive/negative number.)

Definition 3.31 (Complex Infinity) Let zn be a complex sequence. We say that zn →∞ if

∀M ∈ R ∃N ∈ N ∀n > N |zn| > M.

That is |zn| → ∞ as a real sequence.
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• Note that the real infinities ±∞ are not real numbers and complex infinity ∞
is not a complex number and should not be treated as such.

• Certainly you should never be writing anything like the following:

lim
n→∞

n

n+ 1
=
∞
∞ = 1, or lim

n→∞

n

n2
=
∞
∞ = 1.

The first limit, by a fluke, is correct and the second is false; if properly argued it would
be seen that the second limit exists and equals 0.

Remark 3.32 (Indeterminate forms) If an → ∞ and bn → ∞ then there is nothing that
can be said about the long term behaviour of an/bn as seen from the examples above. This can
be expressed as ‘∞∞ is an indeterminate form’. The other indeterminate forms are

∞
∞ ,

0

0
, 0×∞, ∞−∞, 00, 1∞, ∞0.

It can be useful to talk about ‘∞∞’type limits but this is only informal, shorthand language to
describe a family of such sequences. For a specific example, a limit might be found using careful
analysis, but there is no single answer for limits of such sequences.
Note that ∞+∞ and ∞×∞ are not on the list of indeterminates because if an →∞ and

bn →∞ then an + bn →∞ and anbn →∞.
Below is a list of examples to show that the other examples above are indeed indeterminates.

Type an bn form long term Type an bn form long term
0
0

1
n

1
n

1 → 1 00 1
n

1
n

1/ n
√
n → 1

0
0

1
n

(−1)n
n

(−1)n no limit 00 2−n 1
n

1/2 → 1
2

0×∞ 1
n

n 1 → 1 1∞ 1 + 1
n

n
(
1 + 1

n

)n → e

0×∞ 1
n

n2 n →∞ 1∞ 1 + 1
n2

n
(
1 + 1

n2

)n → 1

0×∞ (−2)−n 2n (−1)n no limit 1∞ 1 + 1
n

n2
(
1 + 1

n

)n2 →∞
∞−∞ n 2n −n → −∞ ∞0 n 1

n
n
√
n → 1

∞−∞ n n+ sinn − sinn no limit ∞0 2n 1
n

2 → 2

Remark 3.33 (Hyperreals —off-syllabus) There are ways to formally treat infinities and
infinitesimals. One such approach is the hyperreals which were first studied by Edwin Hewitt
in 1948 and greatly extended by Abraham Robinson in 1966. The use of hyperreals is called
‘non-standard analysis’. For more see Sheet 3, Exercises 10 and 11.

Remark 3.34 (Neighbourhoods of Infinity —off-syllabus) Note that a real sequence (an)
converges to L ∈ R if every (L− ε, L+ ε) contains a tail of (an) . The interval (L− ε, L+ ε)
is called a neighbourhood of L.
Now (an) → ∞ if every interval (M,∞) contains a tail of (an) and we call (M,∞) a

neighbourhood of ∞. Note that an 6=∞ for all n as (an) is a sequence of real numbers.
By comparison, when we have a real sequence (an) in the interal (−∞, r] with an 6= r for

all n, then (an)→ r if every interval (M, r) contains a tail of (an) .
So when we include ∞ and −∞ to make an ‘extended real line’ then we essentially make

the closed interval [−∞,∞] .
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The situation is rather different with the ‘extended complex plane’. There is only one complex
infinity which is ‘out there’in all directions. A neighbourhood of ∞ is a set

{z ∈ C | |z| > M} .

Effectively we are wrapping up the complex plane with a single point at infinity and, topologically,
this creates a sphere, commonly known as the Riemann sphere. There are actually quite
detailed connections between the geometry of the sphere and that of the extended complex plane,
which can be made explicit via stereographic projection.

Re

z

P1P2

Q1

Q2

N

S

Fig. 3.3 —Stereographic Projection

Let S denote the unit sphere in R3. Thinking of C as the xy-plane, every complex number
P = X + Y I can be identified with a point Q on S by drawing a line from (X, Y, 0) in the
xy-plane to the sphere’s north pole N = (0, 0, 1); this line intersects the sphere at two points Q
and N . We define a map π from the sphere S\{N} to C by setting π(Q)) = P . The points Q
that are near N are mapped to P with large moduli, so it makes sense to extend π by setting
π(N) =∞ and then we have a bijection from S to C∞ = C∪{∞} which is called stereographic
projection.
Specifically this defines

π(x, y, z) =

{
x+yi
1−z z 6= 1

∞ z = 1

with inverse

π−1 (X + iY ) =

(
2X

1 +X2 + Y 2
,

2Y

1 +X2 + Y 2
,
X2 + Y 2 − 1

1 +X2 + Y 2

)
But π is much more than a simple bijection. It has important geometric properties.

• Under stereographic projection, circles on S which pass through Ncorrespond to lines in
C, and circles on S which don’t pass through N correspond to circles in C.

• The map π is conformal, meaning it is angle-preserving.
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• The Möbius transformations z → (az + b)/(cz + d), where ad 6= bc, are bijections of C∞,
which correspond to the conformal bijections of the sphere.

Returning now to real and complex sequences:

Proposition 3.35 (a) Let (an) be a sequence of positive real numbers. The following are
equivalent:
(i) an →∞ as n→∞;
(ii) 1/an → 0 as n→∞.
The equivalence fails if the (an) are simply non-zero.
(b) Let (an) be a sequence of non-zero complex numbers. The following are equivalent:
(i) an →∞ as n→∞;
(ii) 1/an → 0 as n→∞.

Proof. (a): (i) =⇒ (ii) Let ε > 0 and set M = 1/ε. As an →∞ then there exists N such that
an > M for all n > N . But then 0 < 1/an < ε for all n > N and 1/an → 0.
(a): (ii) =⇒ (i): Let M > 0 and ε = 1/M . As 1/an → 0 then there exists N such that

1/an < ε for all n > N . But then an > 1/ε = M for all n > N and an →∞.
(a): If we set an = (−1)n n then 1/an = (−1)n /n → 0 but an 9 ∞ as a2n → ∞ yet

a2n+1 → −∞.
(b) : (i) =⇒ (ii) Let ε > 0 and set M = 1/ε. As an → ∞ then there exists N such that

|an| > M for all n > N . But then |1/an| < ε for all n > N and 1/an → 0.
(b): (ii) =⇒ (i): Let M > 0 and ε = 1/M . As 1/an → 0 then there exists N such that

|1/an| < ε for all n > N . But then |an| > 1/ε = M for all n > N and an →∞.

Example 3.36 Let (an) be a real sequence such that an → ∞ as n → ∞. Prove, or disprove
with a counter-example, each of the following statements.
(a) If (bn) is a bounded, non-zero sequence then an/bn →∞.
(b) If (bn) is a bounded, positive sequence then an/bn →∞.
(c) If bn is a non-zero sequence which converges to L > 0 then an/bn →∞.

Solution. (a) False. We can see this by taking an = n and bn = (−1)n. Then an/bn = (−1)n n
does not tend to ∞. [Note that part (a) is a trivial consequence of (b) and so it would have
made for an odd question if (a) had been true.]
(b) True. As bn is bounded then there exists K > 0 such that 0 < bn < K for all n. Let

M ∈ R. As an → ∞ then there exists N ∈ N such that for all n > N we have an > MK. So
for all n > N we have an/bn > (MK) /K = M and we see an/bn →∞.
(c) True. Taking ε = L/2 > 0 we see that there exists N with |bn − L| < L/2 for all n > N .

In particular, 0 < L/2 < bn < 3L/2 for n > N . By the previous part, the tail of (an/bn)∞N
tends to ∞ and hence so does the whole sequence (an/bn) .

Example 3.37 Let (an) be a real sequence.
(a) If an →∞ as a real sequence, need an →∞ as a complex sequence?
(b) If an →∞ as a complex sequence, need an →∞ as a real sequence?
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Solution. (a) True: As an →∞ then |an| → ∞ which is equivalent to an →∞ as a complex
sequence.
(b) False: A counter-example is an = (−1)n n.

Example 3.38 (Harmonic numbers) The nth harmonic number is

Hn = 1 +
1

2
+

1

3
+ · · ·+ 1

n

where n > 1. Show that Hn →∞ as n→∞.

Solution. Note that

H2k = 1 +
1

2
+

(
1

3
+

1

4

)
+

(
1

5
+ · · ·+ 1

8

)
+ · · ·+

(
1

2k−1
+ · · ·+ 1

2k

)
> 1 +

1

2
+

(
1

4
+

1

4

)
+

(
1

8
+ · · ·+ 1

8

)
+ · · ·+

(
1

2k
+ · · ·+ 1

2k

)
= 1 +

1

2
+

1

2
+

1

2
+ · · ·+ 1

2

= 1 +
k

2
.

Given M > 0 there is a positive integer k such that H2k > 1 + k/2 > M. Hence Hn > M for
all n > 2k as Hn is increasing.
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4. THE ALGEBRA OF LIMITS

Reassuringly limits respect important relations and algebraic operations that mean we can
don’t need to go back to first principle definitions of convergence and divergence to analyze
more complicated sequences.

Theorem 4.1 (Limits respect weak inequalities) Let (an) and (bn) be real sequences such
that (an)→ L and (bn)→M . If an 6 bn for all n, then L 6M .

Thoughts: A proof by contradiction. If L > M then there would be a tail of the an in a
neighbourhood of L and a tail of the bn near M. If these neighbourhoods are small enough to
be disjoint, then an > bn in the tails’intersection. Note ε is chosen in the proof below so that
(L− ε, L+ ε) is disjoint from and to the right of (M − ε,M + ε) .

Proof. Suppose, for a contradiction, that L > M . Set ε = (L−M) /2 > 0.

As an → L then there exists N1 such that n > N1 =⇒ |an − L| < ε;

as bn →M then there exists N2 such that n > N2 =⇒ |bn −M | < ε.

So

n > N1 =⇒ L+M

2
= L− ε < an

n > N2 =⇒ bn < M + ε =
L+M

2
.

Hence for n > max(N1, N2) we have

an >
L+M

2
> bn

which contradicts an 6 bn for all n.

Remark 4.2 Note lim does not respect strict inequalities: e.g. 1
n
> 0 for all n > 1 but

0 = lim 1
n
> lim 0 = 0 is false.

Note in the above proof that n > max(N1, N2) is the intersection of both tails, so both
inequalities hold there.

A second important result that helps us ignore or bound unimportant expressions in a
sequence is the following. This result is also referred to as the ‘squeeze theorem’.

Theorem 4.3 (Sandwich Rule) Suppose that xn 6 an 6 yn for all n and that

L = limxn = lim yn.

Then an → L as n→∞.
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Thoughts: Given any neighbourhood of L, there will be tails of (xn) and (yn) in that neigh-
bourhood. These tails bound a tail of (an) .

Proof. Let ε > 0. Then there exist N1 and N2 such that

xn − L > −ε for all n > N1,

yn − L < ε for all n > N2.

So for n > max (N1, N2) we have

−ε < xn − L 6 an − L 6 yn − L < ε,

which shows that an → L also.

Example 4.4 Show that the sequence

an =
2n+ cos(n2)

3n2 − sin(n3)

converges.

Solution. We note for all n > 1,

1

3n
=

n

3n2
6 2n− 1

3n2 + 1
6 an =

2n+ cos(n2)

3n2 − sin(n3)
6 2n+ 1

3n2 − 1
6 3n

2n2
=

3

2n
.

As the LHS and RHS both tend to 0 then an → 0 by sandwiching.

Most sequences can be built up from simpler ones using addition, multiplication, etc. The
algebra of limits (AOL) tells us how the corresponding limits behave. Throughout the following
(an) and (bn) denote real or complex sequences.

Proposition 4.5 (AOL: Constants) If an = a for all n, then an → a.

Proof. For any ε > 0, take N = 1; n > N =⇒ |an − a| = 0 < ε.

Proposition 4.6 (AOL: Sums) If an → a and bn → b then an + bn → a+ b.

Thoughts: We need to show that |(an + bn)− (a+ b)| is eventually small given that |an − a|
and |bn − b| are each eventually small. The triangle inequality helps here by noting

|(an + bn)− (a+ b)| 6 |an − a|+ |bn − b|

In the following proof we use two standard techniques of analysis. We know two facts which
hold in two tails of a sequence, so we take the tails’intersection where both are true —we’ve
employed this idea before. The second issue is that we need a final inequality to hold within a
margin of ε. But the final inequality relies on two previous inequalities. The idea is to achieve
each of the first two inequalities with margins of ε/2 and then the triangle inequality, within
the tails’intersection, shows the final inequality holds with a margin of ε/2 + ε/2 = ε.
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Proof. Let ε > 0. Then ε/2 > 0 and so

∃N1 n > N1 =⇒ |an − a| < ε/2,

∃N2 n > N2 =⇒ |bn − b| < ε/2.

Put N3 = max(N1, N2). Then

n > N3 =⇒ |(an + bn) − (a+ b)|
6 |an − a| + |bn − b| by the ∆ law
< ε/2 + ε/2
= ε

Proposition 4.7 (AOL: Scalar Products) If an → a as n → ∞ and λ ∈ R (or C) then
λan → λa.

Proof. Let ε > 0. Then ε/ (|λ|+ 1) > 0 and so there exists N such that |an − a| < ε/ (|λ|+ 1)
for all n > N . Hence

|λan − λa| = |λ| |an − a| 6
|λ| ε
|λ|+ 1

< ε

for all n > N . (Note that we use ε/ (|λ|+ 1) rather than ε/ |λ| to avoid the possibility of
dividing by zero.)

Corollary 4.8 (AOL: Differences) If an → a and bn → b then an − bn → a− b.

Corollary 4.9 (AOL: Translations) If an → a and c ∈ R (or C) then an + c→ a+ c.

Lemma 4.10 If xn → 0 and yn → 0 then xnyn → 0.

Proof. Let ε > 0. By Remark 3.11, WLOG we can further assume that ε < 1. Then

∃N1 n > N1 =⇒ |xn| < ε1,

∃N2 n > N2 =⇒ |yn| < ε1.

So if n > max(N1, N2) we have

|xnyn| 6 |xn| |yn| < ε2 < ε,

which completes the proof.

Proposition 4.11 (AOL: Products) If an → a and bn → b then anbn → ab.

Proof. Note that

anbn − ab = (an − a)(bn − b) + b(an − a) + a(bn − b),

that (an − a) (bn − b) → 0 by the previous lemma, that b (an − a) → 0 and a (bn − b) → 0 by
Proposition 4.7. Hence anbn → ab by Proposition 4.6.
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Proposition 4.12 (AOL: Reciprocals) If an → a 6= 0 and an 6= 0 for all n, then 1/an → 1/a.

Thoughts: Our aim is to show ∣∣∣∣ 1

an
− 1

a

∣∣∣∣ =
|an − a|
|an||a|

is arbitrary small in a tail, and we know |an−a| is small. The |a| in the denominator is non-zero
and constant and so is not problematic. At first glance though, whilst |an| is non-zero it might
be arbitrarily small, which would be problematic. But remembering an → a 6= 0 then we can
focus on a tail of an suitably close to a. If an is within |a| /2 of a, then an will be at least |a| /2
away from zero.

Proof. Let ε > 0. As a 6= 0 then |a| /2 > 0. So there exists N1 such that for n > N1 we have
|an − a| < |a| /2. By the triangle inequality

|a| 6 |an|+ |a− an| = |an|+ |an − a|

and so |an| > |a| /2 and |1/an| < 2/ |a| .
Further, as |a|2 ε/2 > 0 then there exists N2 such that for n > N2

|an − a| < |a|2
ε

2
.

For n > max(N1, N2) we have∣∣∣∣ 1

an
− 1

a

∣∣∣∣ =
|an − a|
|an||a|

<
(
|a|2 ε

2

) 2

|a|
1

|a| = ε.

Corollary 4.13 (AOL: Quotients) If an → a, bn → b, and bn 6= 0 for all n and b 6= 0, then
an/bn → a/b.

Proof. This follows from Propositions 4.11 and 4.12.

Proposition 4.14 (AOL: Modulus) If an → a then |an| → |a| .

Proof. By the reverse triangle inequality

0 6 ||an| − |a|| 6 |an − a| → 0

So ||an| − |a|| → 0 by sandwiching.

Example 4.15 Show

an =
n2 + n+ 1

3n2 + 4
→ 1

3
.

Solution. We write
n2 + n+ 1

3n2 + 4
=

1 + 1
n

+ 1
n2

3 + 4 1
n2

→ 1 + 0 + 0

3 + 0
=

1

3

by the algebra of limits, specifically noting
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• 1
n
→ 0 by the Archimedean property;

• 1
n2
→ 0 by Proposition 4.11;

• 1→ 1 by Proposition 4.5;

• 1 + 1
n

+ 1
n2
→ 1 by Proposition 4.6;

• 3 + 4
n2
→ 3 by Proposition 4.6;

• 1
3+ 4

n2
→ 1

3
by Corollary 4.13;

• an → 1
3
by Proposition 4.11.

Example 4.16 (Fibonacci numbers) Suppose F1 = 1, F2 = 1, and we recuresively define

Fn+2 = Fn+1 + Fn, for n > 1.

It is easy to prove by induction on n that there is then a unique sequence of natural numbers
satisfying these requirements. They are called the Fibonacci numbers.

Proposition 4.17 Fn+1/Fn is convergent.

Proof. By induction, Fn > 1 for all n. So for n > 1(
Fn+2
Fn+1

)
= 1 +

(
Fn+1
Fn

)−1
.

Write xn = Fn+1/Fn for n > 1. Note that Fn > 0 for all n. Then

x1 = 2 and xn+1 = 1 + 1/xn.

Suppose that we did have convergence and that xn → L so that xn+1 → L. Note L > 1 > 0 as
Fn+1 > Fn and so 1 + 1

xn
→ 1 + 1

L
by AOL. So

L = 1 +
1

L

by the uniqueness of limits. Hence L2 − L− 1 = 0 giving L = 1±
√
5

2
. But L > 1 giving

L =
1 +
√

5

2
> 1.

All the above was based on the assumption that xn converged. We will show that xn is
convergent to 1+

√
5

2
, which we will denote ϕ, and is called the golden ratio.

xn+1 − ϕ = 1 +
1

xn
− ϕ = 1 +

1

xn
− 1− 1

ϕ
=

1

xn
− 1

ϕ
=
xn − ϕ
xnϕ
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as ϕ2 = ϕ+ 1. So ∣∣∣∣xn+1 − ϕxn − ϕ

∣∣∣∣ =
1

|xn||ϕ|
=

1

ϕxn
6 1

ϕ

as xn > 1 for all n. By induction we get

− 1

ϕn
6 xn − ϕ 6

1

ϕn

and are done by the sandwich rule, since ϕ > 1 and so ± 1

ϕn
→ 0.

Example 4.18 Which of the following statements are true of the given non-zero real or complex
sequence (an)? Provide a proof or a counter-example.
(a) If (an) converges then an+1 − an → 0.
(b) If an+1 − an → 0 then (an) converges.
(c) If (an) converges then an+1/an → 1.
(d) If an → L 6= 0 then an+1/an → 1.
(e) If an+1/an → 1 then (an) converges.
(f) If an+1/an → 1 and (an) is bounded then (an) converges.

Solution. Let Hn denote the nth harmonic number.
(a) True: If an → L then by the algebra of limits an+1 − an → L− L = 0.
(b) False: Let an = Hn. Then an+1− an = (n+ 1)−1 → 0 yet Hn →∞ (see Example 3.38).
(c) False: Let an = (−1)n /n so that an → 0. However an+1/an = − n

n+1
→ −1.

(d) True: If an → L 6= 0 then by the algebra of limits an+1/an → L/L = 1.
(e) False: Let an = n. Then an+1/an = 1 + n−1 → 1 but an →∞.
(f) False: Let an = eiHn . Then

an+1/an = ei(Hn+1−Hn) = ei/(n+1) → e0 = 1,

as n→∞ but eiHn does not converge as Hn →∞.

Remark 4.19 The necessary AOL properties to justify the answer to (f) won’t be proven until
Analysis II in Hilary Term. The notion of a continuous function will be defined there and we
will see that if an → L and f is continuous then f(an) → f(L). In fact, this property is an
alternative definition of f being continuous.

As was commented in Remark 3.32, there are several indeterminate forms including ∞, so
we cannot expect any AOL results re

∞−∞, ∞
∞ , 0×∞.

But there are some cases where AOL-like results are true.
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Proposition 4.20 (AOL: Infinity) Let (an) and (bn) be real sequences.
(a) If an →∞ and bn →∞ then an + bn →∞.
(b) If an →∞ and bn →∞ then anbn →∞.
(c) If an →∞ and bn → −∞ then anbn → −∞.
(d) If an →∞ and and (bn) is bounded then an + bn →∞.
(e) If an →∞ and and (bn) is bounded then bn/an → 0.
(f) If an →∞ and bn → L > 0 then anbn →∞.

Solution. These are left as exercises.

Proposition 4.21 (AOL: Asymptotics) Let (an) , (αn) , (bn) and (βn) be real sequences.
(a) If an = O (αn) and bn = O (βn) then anbn = O(αnβn).
(b) If an = O (αn) and bn = O (βn) then an + bn = O(max(|αn| , |βn|)).
(c) If an ∼ αn and bn ∼ βn then anbn ∼ αnβn.
(d) If an ∼ αn and bn ∼ βn then an/bn ∼ αn/βn.

Solution. These are left as exercises.

Remark 4.22 (The Relative Orders of Terms) Our first thoughts, when considering the
long term behaviour of a sequence which has various components to it, should be on which terms
dictate the sequence’s behaviour in the long term. Usually, for this, we need to appreciate the
relative magnitudes of the terms as n becomes large. As a rule of thumb, when it comes to the
long term behaviour of functions

bounded trig functions and constants < logarithms < polynomials < exponentials.

More precisely:

• |cosn| 6 1 and |sinn| 6 1 for all n.

• For any rational q > 0, log n/nq → 0 as n→∞.

• For any a > 1 and polynomial p then p (n) /an → 0 as n→∞.

The third bullet point is a consequence of Corollary 3.19. The second bullet point is essen-
tially the same result. If we write n = et then

lim
n→∞

log n

nq
= lim

t→∞

t

(eq)t
= 0

as eq > 1.

Example 4.23 Qualitatively describe the long-term behaviour of the following sequences.

•
(−1)n

(
n6 + 7n2

2n

)
This will tend to 0 (albeit in an oscillatory way) as the dominant term is 2n.
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• (
2n+ 3

3n+ 8

)
cosn.

At first glance the polynomial terms seem dominant. But being of the same degree, and
working to counter one another, we see (2n+ 3) / (3n+ 8) → 2/3. So actually it is the
oscillating behaviour of cosn which stops the sequence from converging.

•
log n√
n

cos

(
2n − n

n2 + 3n− 6

)
.

As |cos θ| 6 1 for all θ then the cosine takes the sting out of the term (2n − n) / (n2 + 3n− 6)
which is just a red herring. In the long term

√
n dominates log n and log n/

√
n→ 0. The

messy cosine term has no crucial effect on this behaviour.

• How would you make these first thoughts into rigourous proofs using the algebra of limits,
sandwich rule, etc.?
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5. MORE ON SEQUENCES

5.1 Monotone Sequences

We now turn to a crucially important kind of sequence.

Definition 5.1 Let (an) be a real sequence.
We say (an) is increasing if an 6 am whenever n < m.
We say (an) is decreasing if an > am whenever n < m.
We say (an) is strictly increasing if an < am whenever n < m.
We say (an) is strictly decreasing if an > am whenever n < m.
We say (an) is monotone if it is either decreasing or increasing.

Example 5.2 Let an = n. Then (an) is increasing. So is an = (2n+ 1)2 .
The sequence an = (−1)n is not monotone as a1 < a2 and a2 > a3.

Theorem 5.3 Let (an) be an increasing, bounded above sequence. Then (an) converges.

Proof. Let L = sup{an | n ∈ N}; this exists by the completeness axiom as the set is bounded
above and non-empty. Let ε > 0. By the approximation property there exists N ∈ N such that

L− ε < aN 6 L.

As the sequence is increasing then for any n > N

L− ε < aN 6 an 6 L,

and so
∀n > N |an − L| < ε.

That is an → L.

Corollary 5.4 An increasing real sequence either converges or tends to infinity.

Proof. Let (an) be an increasing real sequence. If it is bounded above, then (an) converges.
Otherwise for any M > 0 then M is not an upper bound to (an) . Hence there exists N ∈ N
such that aN >M . Now as (an) is increasing an >M for all n > N. That is an →∞.

Corollary 5.5 Let (an) be a decreasing, bounded below sequence. Then (an) converges.

Proof. (−an) is increasing and bounded above so −an → L by the previous result. Hence
an → −L by AOL.
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Remark 5.6 Theorem 5.3 is in fact equivalent to the completeness axiom. That is, the axioms
of an ordered field together with Theorem 5.3 characterize the real numbers. Details are left to
Sheet 4, Exercise 6.
The next theorem, the Nested Intervals Theorem, together with the Archimedean property,

form another alternative to the completeness axiom.

Theorem 5.7 (Nested Intervals Theorem —Cantor, 1872) Let In = [an, bn] be a nested
sequence of closed bounded intervals. (That is In+1 ⊆ In for all n > 1.)
(a) Then

⋂∞
1 In 6= ∅.

(b) If l(In) = bn − an → 0 as n→∞ then
⋂∞
1 In is a singleton.

(c) Note the theorem need not hold if the intervals are bounded but not closed, e.g. In =
(0, 1/n) , or closed but not bounded, e.g. In = [n,∞).

Proof. (a) As [an+1, bn+1] ⊆ [an, bn] then an 6 an+1 6 bn+1 6 bn. So (an) is an increasing
sequence which is bounded above, and (bn) is a decreasing sequence bounded below. This
means both sequences converge and set α = lim an and β = lim bn.
As am 6 α 6 β 6 bn for all m,n, then [α, β] ⊆ In for all n and so

⋂∞
1 In 6= ∅.

(b) As bn − an > β − α for each n and bn − an → 0 then α = β. Certainly α ∈
⋂∞
1 In. And

if x, y ∈
⋂∞
1 In with x < y then

0 < y − x < bn − an
for all n, a contradiction as bn − an → 0. Hence

⋂∞
1 In = {α} .

Example 5.8 (a) Let x ∈ R. Show that xn/n!→ 0.
(b) Deduce that zn/n!→ 0 for z ∈ C.

Solution. (a) If x = 0 this is clear. Otherwise set an = |x|n /n! and note

an+1
an

=
n! |x|n+1

(n+ 1)! |x|n =
|x|
n+ 1

→ 0 as n→∞.

So in some tail an+1/an < 1 and (an) is eventually decreasing and bounded below by 0. Hence
an converges to some limit L.
We have

an+1 =

(
|x|
n+ 1

)
an.

Letting n→∞ and applying AOL, we have

L = 0× L = 0,

as required.
(b) Now take z ∈ C. By (a) |zn/n!| = |z|n /n!→ 0 and hence zn/n!→ 0.

Example 5.9 (a) Let a > 1. By considering the iteration

x0 = a, xn+1 =
1

2

(
xn +

a

xn

)
for n > 0,

show the existence and uniqueness of
√
a.

(b) Deduce the existence and uniqueness of
√
a for 0 6 a < 1.
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Remark 5.10 This iteration was known to the Babylonians for finding square roots. From a
modern perspective it is an instance of the Newton-Raphson method applied to the function
f(x) = x2 − a.

Fig. 5.1 —Newton-Raphson method

The Newton-Raphson iteration seeks to solve an equation f(x) = 0. It takes an estimate xn for
a root and replaces it with

xn+1 = xn −
f(xn)

f ′(xn)
.

This estimate xn+1 is achieved (as in Figure 5.1) by drawing the tangent to the curve y = f(x)
at the point (xn, f(xn)) and intersecting it with the x-axis.
In this particular case f(x) = x2 − a and so

xn+1 = xn −
(
x2n − a

2xn

)
=

1

2

(
xn +

a

xn

)
.

Solution. (a) I claim the following to be true of the sequence (xn):
(i) a 6 x2n for all n;
(ii) (xn) is decreasing;
(iii) L = limxn satisfies L2 = a.

(i) As x0 = a then (i) is true for n = 0 as a2 − a = a (a− 1) > 0. If a 6 x2n then

x2n+1 − a =

[
1

2

(
xn +

a

xn

)]2
− a

=
1

4x2n

[(
x2n + a

)2 − 4ax2n

]
=

1

4x2n

[
x4n − 2ax2n + a2

]
=

1

4x2n

[
x2n − a

]2 > 0
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Hence (i) follows by induction.

(ii) Note that

xn − xn+1 = xn −
1

2

(
xn +

a

xn

)
=
x2n − a

2xn
> 0

by (i).
(iii) So (xn) is decreasing and bounded below and therefore converges. Let L = limxn.

Letting n→∞ in the iteration

xn+1 =
1

2

(
xn +

a

xn

)
we get

L =
1

2

(
L+

a

L

)
by AOL and the uniqueness of limits. This rearranges to L2 = a. As xn > 0 for all n then
L =
√
a (as opposed to −

√
a).

Now L is a root of x2 = a. As x2 − a = (x − L)(x + L) then we see that the two roots of
x2 − a are ±L. From this we also see that the two square roots of a are ±

√
a, showing there is

a unique positive square root of a.

(b) Clearly 0 is the only square root of 0. Say now that 0 < a < 1 so that a−1 > 1. By (a)

x2 = a ⇐⇒
(

1

x

)2
= a−1 ⇐⇒ 1

x
= ±
√
a−1,

only one root of which is positive. Hence
√
a is uniquely defined with

√
a =

(√
a−1
)−1

.

Remark 5.11 (Cobwebbing) The previous iteration can also be achieved via cobwebbing which
aims to solve equations of the form x = f(x). The previous Newton-Raphson iteration took the
form

xn+1 =
1

2

(
xn +

a

xn

)
which, if it converges, leads to a solution of x = f(x) where

f(x) =
1

2

(
x+

a

x

)
.
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Fig. 5.2 —Cobwebbing

We sketch y = x and y = f(x) on the same axes. Given an initial estimate x0 we draw a
vertical line to the curve to get to (x0, x1) and then move horizontally to (x1, x1) and so on to
(x1, x2) , (x2, x2) , (x2, x3) , . . . . If the sequence (xn) converges to α, say, then α is a fixed point.
That is α = f(α); this essentially follows by AOL.
We can see from Figure 5.2 how any sequence beginning with x0 >

√
a will monotonically

decrease to
√
a. Any sequence beginning with 0 < x0 <

√
a will jump to x1 >

√
a and then

decrease again to
√
a. Of course, the figure itself proves nothing but provides useful qualitative

information for what needs proving.
In this particular case the iteration converges quickly. As f(α) = α then

xn+1 − α ≈ f ′(α)(xn − α),

and for this particular iteration −1 < f ′ (α) < 1 as

f ′
(√

a
)

=
1

2

(
1− a

(
√
a)
2

)
= 0.

When |f ′ (α)| < 1 the the fixed point α is said to be an attracting fixed point.
The convergence will be monotonic if 0 < f ′ (α) < 1 and will be oscillatory if −1 < f ′ (α) <

0. When |f ′ (α)| > 1 the fixed point is called repelling and the iteration will not generally
converge.

We conclude this section by defining the decimal expansion (and more generally base expan-
sions) for a real number. For uniqueness we do this in such a way that the truncated decimal
expansions form a strictly convergent sequence converging to the real number in question.

Example 5.12 (Decimal Expansions) Let 0 < x 6 1. Then there is a unique sequence of
integers a1, a2, a3, . . . such that
(a) 0 6 an 6 9 for each n;
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(b) for each n,

x− 1

10n
6

n∑
k=1

ak
10k

< x;

(c)

lim
n→∞

n∑
k=1

ak
10k

= x.

Solution. We will proceed inductively. The integer a1 needs to satisfy

x− 1

10
6 a1

10
< x =⇒ 10x− 1 6 a1 < 10x.

The interval [10x− 1, 10x) contains a unique integer a1 and further, as

−1 < 10x− 1 6 a1 < 10x 6 10

then 0 6 a1 6 9.
Suppose now, as our inductive hypothesis, that a1, a2, . . . , aN have been uniquely found

satisfying (i) and (ii). Then

x− 1

10N+1
6

N+1∑
k=1

ak
10k

< x

which rearranges to

x− 1

10N+1
−

N∑
k=1

ak
10k
6 aN+1

10N+1
< x−

N∑
k=1

ak
10k

and then to(
10N+1x−

N∑
k=1

10N+1−kak

)
− 1 6 aN+1 <

(
10N+1x−

N∑
k=1

10N+1−kak

)
.

There is a unique integer in this range, and we set aN+1 to be this integer. Further, by
hypothesis,

aN+1 > 10N+1
(
x−

∑
N
k=110−kak

)
− 1 > −1,

aN+1 < 10N+1
(
x−

∑
N
k=110−kak

)
6 10N+1 × 1

10N
= 10.

So 0 6 aN+1 6 9 as required. Finally, letting n→∞ and applying the sandwich rule to

x− 1

10n
6

n∑
k=1

ak
10k

< x,

we find

lim
n→∞

n∑
k=1

ak
10k

= x.

This sequence is called the decimal expansion of x and we write

x = 0.a1a2a3 . . . .
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Remark 5.13 In the sense of the above example 1
5
would have decimal expansion 0.1999 . . .

rather than 0.200 . . .To avoid any ambiguity for those reals with two different decimal expansions
(in the usual sense) the above example chooses decimal expansions whose terminating decimal
expansions never equal the real in question.
A similar argument to that above shows the uniqueness for any base b > 2 expansions. As

with the example of 1
5
in decimal, in binary, b = 2, we would have 1

2
= 0.0111 . . . rather than

1
2

= 0.1.

5.2 Subsequences

Example 5.14 Let an = 1
n2
so that

(an)∞1 =

(
1,

1

4
,
1

9
,

1

16
,

1

25
, . . .

)
.

We can get new sequences by selectively looking at

everything after second place
(
1
9
, 1
16
, 1
25
, . . .

)
all odd terms

(
1, 1

9
, 1
25
, . . .

)
all prime terms

(
1
4
, 1
9
, 1
25
, 1
49
, . . .

)
etc.. These are examples of subsequences of (an) .

Definition 5.15 Let (an) be a sequence. We say that a sequence (bn) is a subsequence of (an)
if there is a strictly increasing sequence of natural numbers (f (n)) that (bn) =

(
af(n)

)
. (There

may be more than one such function f.) Often we write nr for f (r) and write a subsequence
as (anr) or (anr)

∞
r=1 .

Example 5.16 In the previous example nr = r + 2, nr = 2r − 1 and nr = pr (the rth prime)
respectively.

Example 5.17 Let

(an) =
(
n2
)

= (1, 4, 9, 16, . . .) ; (bn) = (0) = (0, 0, 0, 0, . . .) ;

(f (n)) = (2n) = (2, 4, 6, 8, . . .) ; (g (n)) = (2n− 1) = (1, 3, 5, 7, . . .) .

Then (
af(n)

)
= (a2n) = (4, 16, 36, 64, . . .) ;

(
ag(n)

)
= (a2n+1) = (1, 9, 25, 49, . . .) ;(

bf(n)
)

= (b2n) = (0, 0, 0, 0, . . .) ;
(
bg(n)

)
= (b2n+1) = (0, 0, 0, 0, . . .) .

Proposition 5.18 Suppose that the sequence (an) converges to L. Then every subsequence
(anr) also converges to L.
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Proof. Let ε > 0. Then there exist N such that

n > N =⇒ |an − L| < ε

As r 7→ nr is strictly increasing then nr > r for all r and so

r > N =⇒ nr > N =⇒ |anr − L| < ε

and hence anr → L as r →∞.

The converse in the form ‘if all subsequences of (an) converge to L then (an) → L’ is true
because the whole sequence is a subsequence of itself. However, just one subsequence converging
is clearly not enough to guarantee convergence of the whole sequence. For example an = (−1)n

which is divergent despite a2n → 1.

Theorem 5.19 Let (an) be a real sequence. Then (an) has a montone subsequence.

Proof. We consider the set

V = {k ∈ N | m > k =⇒ am < ak}.

This is the set of ‘scenic viewpoints’—were we to plot the points (k, ak) in R2 then from a
scenic viewpoint we could see all the way to ∞ with no greater an getting in the way. There
are two cases to consider: the set V is either finite or infinite.

• V is infinite. Listing the elements of V in increasing order: k1 < k2 < . . . we see (akr) is
a subsequence with

r > s =⇒ kr > ks =⇒ akr < aks

That is (akr) is strictly decreasing.

• V is finite. Let m1 be the last viewpoint and consider am1+1.

As m1 + 1 is not a viewpoint then there exists m2 > m1 + 1 such that am2 > am1 .

1. As m2 is not a viewpoint then there exists m3 > m2 such that am3 > am2.

. . .

Continuing in this way and we can generate an increasing sequence (amk
) .

Theorem 5.20 (Bolzano-Weierstrass Theorem, Bolzano 1817, Weierstrass c. 1861)
Let (an) be a real bounded sequence. Then (an) has a convergent subsequence.

Proof. By the previous theorem (an) has a monotone subsequence which is also bounded. By
Theorem 5.3 this subsequence converges.

Theorem 5.21 (Bolzano-Weierstrass Theorem in C) A bounded sequence in C has a
convergent subsequence.
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Proof. Let (zn) be a bounded sequence in C. If we write zn = xn + iyn then we also have
that (xn) and (yn) are bounded sequences. By the Bolzano-Weierstrass Theorem (xn) has a
convergent subsequence (xnk) which converges to L1, say. As (ynk) is also bounded then it in
turn has a convergent subsequence

(
ynkr

)
which converges to L2, say.

As
(
xnkr

)
is a subsequence of (xnk) then it too converges to L1 by Proposition 5.18. We

then have that
(
znkr

)
converges to L1 + iL2 as its real and imaginary parts converge (Theorem

3.25).

Here is alternative way of phrasing the Bolzano-Weierstrass Theorem.

Definition 5.22 Let S ⊆ R We say that x is a limit point or accumulation point of S if
for every ε > 0 there exists y ∈ S, such that

0 < |y − x| < ε.

Note that x itself need not be in the set. The set of limit points of S is denoted S ′.

Example 5.23 The set of limit points of (0, 1) is [0, 1]
The set of limit points of Q is R.
The set of limit points of Z is ∅.
The set of limit points of

{
1, 1

2
, 1
3
, . . .

}
is {0} .

Remark 5.24 The Bolzano-Weierstrass Theorem can be rephrased as: ’An infinite bounded
subset of R or C has a limit point’. Given such a set, S, then we can select a sequence (xn)
of points of S and by the Bolzano-Weierstrass Theorem this sequence has a subsequence (xnr)
which converges to a limit L. It is not hard to show that L is then a limit point of the set
{xn1 , xn2 , xn2 , . . .} ⊆ S and so of the set S.

5.3 The Cauchy Convergence Criterion

A first diffi culty in proving that a sequence converges is in investigating the limit. Cauchy
saw that a (real or complex) sequence would converge if and only if the sequence’s terms got
suffi ciently close. This makes it possible to demonstrate convergence without knowing the limit.
Further, Cauchy’s insight can be used to construct the reals from the rationals so that we could
show the existence of a complete ordered field rather than assuming that a field satisfying all
our axioms exists (see Remark 5.34).

Definition 5.25 Let (an) be a real or complex sequence. We say that (an) is a Cauchy se-
quence, or simply is Cauchy, if

∀ε > 0 ∃N ∈ N ∀m,n > N |am − an| < ε.

Note that the definition makes no mention of a limit, but we shall see that this criterion is in
fact equivalent to convergence in R or C (but not in Q!).
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Proposition 5.26 A convergent sequence is Cauchy.

Proof. Let (an) be a convergent sequence with limit L, and let ε > 0. Then there exists a
natural number N such that

|ak − L| < ε/2 for all k > N.

So for all m,n > N,

|am − an| 6 |am − L|+ |L− an| <
ε

2
+
ε

2
= ε,

by the triangle inequality and hence (an) is Cauchy.

Proposition 5.27 A (real or complex) Cauchy sequence is bounded.

Proof. Let (an) be a real or complex Cauchy sequence. Taking ε = 1, we know there exists N
such that

|an − aN | < 1 whenever n > N.

Hence, by the triangle inequality

|an| < |aN |+ 1 for all n > N.

The above inequality bounds all but finitely many terms. So for all m we have

|am| 6 max {|a1| , |a2| , . . . , |aN−1| , |aN |+ 1}

and we see that the sequence is bounded.

Lemma 5.28 If (an) is a real or complex Cauchy sequence such that a subsequence (ank) con-
verges to L, then (an) converges to L.

Proof. Let ε > 0. So there exists K ∈ N such that

|ank − L| < ε/2 whenever k > K.

As the sequence (an) is Cauchy then there exists N ∈ N such that

|an − am| < ε/2 whenever m,n > N.

If we select take k > max (K,N) so that nk > N then we have, by the triangle inequality

|an − L| 6 |an − ank |+ |ank − L| <
ε

2
+
ε

2
= ε for all n > N

and the proof is complete.

Theorem 5.29 (Cauchy, 1821) A real or complex Cauchy sequence is convergent.
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Proof. Let (an) be a real or complex Cauchy sequence. By Proposition 5.27 (an) is bounded,
and so by the Bolzano-Weierstrass Theorem (an) has a convergent subsequence (ank). By the
previous lemma (an) converges to the same limit.

We have then establishded the Cauchy Convergence Criterion for real and complex
sequences:

(an) is convergent ⇐⇒ (an) is Cauchy.

Remark 5.30 The Cauchy convergence criterion, together with the Archimedean property, is
equivalent to the completeness axiom.

Example 5.31 The terminating decimal expansions of
√

2, namely the sequence (qn):

1, 1.4, 1.41, 1.414, . . .

is a sequence of rational numbers which is Cauchy (for example, because it is a convergent real
sequence) but it is not convergent in the rationals —that is, it does not satisfy

∃L ∈ Q ∀ε > 0 ∃N ∈ N ∀n > N |qn − L| < ε.

Example 5.32 (Mercator’s series) For n ∈ N let

sn = 1− 1

2
+

1

3
+ · · ·+ (−1)n+1

1

n
.

Then with m > n > 0, and m− n even we have

|sm − sn| =

∣∣∣∣∣∣∣∣
>0︷ ︸︸ ︷

1

n+ 1
− 1

n+ 2

>0︷ ︸︸ ︷
+

1

n+ 3
− 1

n+ 4
+ · · ·

>0︷ ︸︸ ︷
+

1

m− 1
− 1

m

∣∣∣∣∣∣∣∣
=

1

n+ 1︸ ︷︷ ︸− 1

n+ 2
+

1

n+ 3︸ ︷︷ ︸
<0

− · · ·− 1

m− 2
+

1

m− 1︸ ︷︷ ︸
<0

− 1

m︸︷︷︸
<0

6 1

n+ 1
.

If m− n is odd, we write

|sm − sn| =

∣∣∣∣∣∣∣∣
>0︷ ︸︸ ︷

1

n+ 1
− 1

n+ 2

>0︷ ︸︸ ︷
+

1

n+ 3
− 1

n+ 4
+ · · ·

>0︷ ︸︸ ︷
+

1

m− 2
− 1

m− 1
+

1

m

∣∣∣∣∣∣∣∣
=

1

n+ 1︸ ︷︷ ︸− 1

n+ 2
+

1

n+ 3︸ ︷︷ ︸
<0

− · · ·− 1

m− 1
+

1

m︸ ︷︷ ︸
<0

6 1

n+ 1
.
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Let ε > 0 and take N > 1
ε
. Then |sn − sm| < ε whenever m,n > N and we see that (sn) is

Cauchy. This shows that the sequence is convergent even though we currently have no idea of
its limit. In due course we shall see that the limit is log 2 (Sheet 6, Exercise 6). The sum was
first published by Mercator in 1668.

Remark 5.33 (Double sequences) A (real) double sequence is a map x : N2 → R and we
write xm,n for x (m,n) . We write that

lim
m,n→∞

xm,n = L

if
∀ε > 0 ∃N ∈ N ∀m,n > N |xm,n − L| < ε.

So we may rewrite the Cauchy convergence criterion as

(an) is Cauchy if |an − am| → 0 as m,n→∞.

Given a double sequence (xm,n) the limits

lim
m,n→∞

xm,n lim
m→∞

(
lim
n→∞

xm,n

)
lim
n→∞

(
lim
m→∞

xm,n

)
are different notions and may independently exist or not as seen in Sheet 5, Exercise 8.

Remark 5.34 (Construction of the real numbers) (Off-syllabus)
We mentioned in Remark 1.58 the matter of existence and uniqueness of the real numbers.

These issues were posed in the sense of ‘can the real numbers be constructed from more concrete
sets such as N, Z or Q?’

Construction of the natural numbers.
One approach to define the natural numbers is due to Peano from 1889. Peano’s description

essentially states:
N is the smallest set such that (i) 0 ∈ N, (ii) if n ∈ N then n+ 1 ∈ N.
A later model, in the style of the Zermelo-Fraenkel axioms for set theory (1908,1922), was

Von Neumann’s model from 1923 where he identified 0 with ∅, 1 with {∅} , 2 with {∅, {∅}}
and in general n with {0, 1, . . . , n− 1}. as a collection of sets meeting Peano’s axioms.
Construction of the integers.
From the set N we can define the set of integers Z from N2. We define the equivalence

relation ∼ on N2 by (m1,m2) ∼ (n1, n2) iff m1 + n2 = n1 + m2. Then Z = N2/ ∼. Essentially
we are identifying an integer with pairs of natural numbers that differ by that integer.

Construction of the rational numbers.
Having defined Z we can define Q as a set of equivalence classes of Z × (N\ {0}). We

set (m1, n1) ∼ (m2, n2) iff m1n2 = n1m2. Then Q = Z × (N\ {0})/ ∼. Essentially we are
identifying an rational with all fractions m

n
which represent that rational.

Construction of the real numbers. Having defined Q we set

S = {(an) | (an) is a rational Cauchy sequence} .
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At this point we have yet to define the real numbers, but we know that a rational Cauchy
sequence converges to some real limit. These limits are what we want as our model of the real
numbers but we can’t refer to such limits, irrational ones in particular, whilst only being able
to refer to the rational numbers. Also many sequences in S will converge to the same limit so
at this stage each real is overrepresented.
We can deal at least with this last point within the context of real numbers: for (an) , (bn) ∈ S

we set
(an) ∼ (bn) ∼ an − bn → 0.

As we see in Sheet 5, Exercise 2, for (an) , (bn) ∈ S and c ∈ R then

(an ± bn) , (can) , (anbn)

are in S and if an 9 0 then 1/an ∈ S.
Further these operation are well-defined in S/ ∼ . So if (an) ∼ (αn) and (an) ∼ (βn) then

(an ± bn) ∼ (αn ± βn) , (cαn) ∼ (cαn) , (anbn) ∼ (αnβn) ,

and if an 9 0 and αn 9 0 then (1/an) ∼ (1/αn) . All these results follow bt AOL.
Regarding order we define (an) 6 (bn) if bn − an > 0 in some tail.
All this gives R = S/ ∼ the structure of an ordered field. It can further be shown that

any non-empty bounded subset of S/ ∼ has a least upper bound; this result is not particularly
diffi cult but is non-trivial (Körner pp. 352-353).

Construction of the complex numbers.
We showed in Section 1.4 how C can be constructed from R by identifying a complex number

with an ordered pair of real numbers and defining addition and multiplication as one would expect
of complex numbers.
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6. SERIES

6.1 Infinite Series

Looking back at the field axioms, given any pair of real numbers a, b we can form their sum
a + b. By induction, we can form any finite sum

∑n
1 ak. The associative law means we don’t

have to worry about the order is which the necessary additions are executed.
What our axioms don’t do is licence us to start writing down infinite sums, and behaving

as though the mere act of writing down similar looking signs (
∑∞

1 , say) entitles us to assume
that all the properties of finite sums still hold. In fact, we will see that there are conditionally
convergent series that give different sums depending on the order in which the terms are added.
(See Sheet 6, Exercise 8 for the Cauchy Root Test and Dirichlet’s Test.)

Definition 6.1 Let (an)∞1 be a sequence of (real or complex) numbers. For n > 1, the nth
partial sum of (an) is the finite sum

sn =
n∑
k=1

ak = a1 + a2 + · · ·+ an.

By the series
∞∑
k=1

ak or just
∑

ak,

we mean the sequence of partial sums (sn).

Example 6.2 (a) The geometric series. Let x ∈ C, and let an = xn Then
∑
xn is

(1, 1 + x, 1 + x+ x2, . . . , 1 + x+ x2 + · · ·+ xn, . . . ).

(b) The harmonic series. Let an = 1
n
. Then

∑
1
n
is(

1, 1 +
1

2
, 1 +

1

2
+

1

3
, . . .

)
.

(c) The exponential series. Let x ∈ C and let an = xn/n!. Then
∑
xn/n! is(

1, 1 + x, 1 + x+
x2

2!
, . . .

)
.

(d) The cosine series. Let x ∈ C and set

an =

{
x2m

(2m)!
(−1)m if n = 2m

0 otherwise.
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Then
∑
an is (

1, 1, 1− x2

2!
, 1− x2

2!
, 1− x2

2!
+
x4

4!
, . . .

)
.

Definition 6.3 Let (an) be a (real or complex) sequence. We say that the series
∑∞

1 ak con-
verges (resp. diverges) if the sequence (sn) of partial sums converges (resp. diverges). If
sn → L as n→∞ then we write

∞∑
k=1

ak = L.

We refer to L as the sum (or infinite sum) of the series.

Remark 6.4 Our earlier results regarding the tails of sequences still apply — it follows that∑∞
1 ak converges if and only

∑∞
K ak converges for some K (Proposition 3.13). Consequently it

makes sense to discuss the convergence (or otherwise) of
∑
ak without needing to identify the

initial term. But to determine the sum of a convergent series exactly we do need to specify the
initial term.

Proposition 6.5 Say that
∑
an is convergent. Then an → 0 but the converse is not true.

Proof. Let sn denote the nth partial sum; then sn → L for some sum L. By AOL

an = sn − sn−1 → L− L = 0.

But recall from Example 3.38 that
∑

1
n
is divergent, yet an = 1

n
→ 0.

Example 6.6 Let an = xn for n > 0 where x ∈ C.
(a) If x 6= 1 then

sn = 1 + x+ x2 + · · ·+ xn =
1− xn+1

1− x .

(b) If |x| < 1 then
∑
xn is convergent noting xn → 0 and using the algebra of limits.

(c) If |x| > 1 then
∑
xn is divergent as an = xn 9 0.

Example 6.7 Let an = 1
n2
. Then

∑
1
n2
is convergent.

Proof. Clearly the partial sums form an increasing sequence. By comparison with a telescoping
sum we note

sn =

n∑
k=1

1

k2
6 1 +

n∑
k=2

1

k(k − 1)
= 1 +

n∑
k=2

{
1

k − 1
− 1

k

}
= 1 +

n−1∑
k=1

1

k
−

n∑
k=2

1

k
= 1 + 1− 1

n
6 2.

Hence (sn) is a bounded increasing sequence and so convergent. [In due course we will meet,
with the Integral Test, a systematic way of dealing with such series and won’t have to resort
to such algebraic tricks.]

Remark 6.8 The exact sum
∑∞

1
1
n2
is known to be π2/6. This sum was first found by Euler

in 1734 and is known as the Basel problem, Basel being Euler’s hometown.
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Applying Cauchy’s criterion for convergence for sequences to series (which, recall, is just a
sequence of partial sums) we have:

Theorem 6.9 (Cauchy’s Criterion for Series) The series
∑∞

0 ak converges if and only if
for all ε > 0 there exists N such that for all m,n > N we have

|sn − sm| =
∣∣∣∣∣
n∑

m+1

ak

∣∣∣∣∣ < ε.

Definition 6.10 Let (an) be a real or complex sequence. Then we say that
∑
an is absolutely

convergent or AC if the series
∑
|an| converges. A series which is convergent, but not

absolutely convergent, is called conditionally convergent.

Theorem 6.11 An AC (real or complex) series is convergent

Proof. Suppose that
∑
an is AC and let ε > 0. By Cauchy’s criterion there exists N such

that

l > k > N =⇒
∣∣∣∣∣

l∑
k+1

|an|
∣∣∣∣∣ < ε.

By the triangle inequality

l > k > N =⇒
∣∣∣∣∣

l∑
k+1

an

∣∣∣∣∣ 6
l∑

k+1

|an| =
∣∣∣∣∣

l∑
k+1

|an|
∣∣∣∣∣ < ε,

and hence
∑
an is Cauchy and so converges.

Example 6.12 (a)
∑∞

0 x
n is AC if |x| < 1 and diverges for |x| > 1.

(b)
∑∞

1
(−1)n
n2

is AC.
(c)

∑∞
1

sinn
n3

is AC.

(d)
∑∞

1
(−1)n+1

n
is conditionally convergent.

Solution. (a) See Example 6.6.
(b) See Example 6.7.
(c) Note that the partial sums

sn =
n∑
1

|sin k|
k3

6
n∑
1

1

k3
6

n∑
1

1

k2
6

∞∑
1

1

k2

form an increasing bounded sequence. Hence they converge.
(d) See Examples 5.32 and 3.38

Definition 6.13 Let p : N −→ N be a bijection and set bn = ap(n). Then
∑
bn is called a

rearrangement of the series
∑
an.
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Example 6.14 (See also Sheet 6, Exercise 6) If we rearrange the log 2 series from Example
5.32 then we can change the sum:—

1− 1

2
+

1

3
− 1

4
+ · · · = log 2

1 +
1

3
− 1

2
+

1

5
+

1

7
− 1

4
+ · · · =

3

2
log 2.

Theorem 6.15 (Dirichlet, 1837) (Off-syllabus) If
∑
an is AC then

∑
ap(n) is AC for any

rearrangement p and
∞∑
1

an =

∞∑
1

ap(n)

Theorem 6.16 (Riemann Rearrangment Theorem, 1853) (Off-syllabus) If
∑∞

1 an is a
real conditionally convergent series and −∞ 6 L 6 ∞ then there exists a bijection p : N → N
such that

∞∑
1

ap(n) = L.

Hence a real series is AC if and only if it unconditionally convergent.

Theorem 6.17 (Cauchy Multiplication of Series, 1821) (Off-syllabus) Suppose
∑∞

0 an
and

∑∞
0 bn are AC. For each n ∈ N we set

cn =
n∑
k=0

akbn−k.

Then
∑∞

1 cn is AC and
∞∑
0

cn =

( ∞∑
0

an

)( ∞∑
0

bn

)
Proof. See Sheet 6, Exercise 7.

Remark 6.18 Mertens, in 1875, showed that if just one of
∑∞

0 an and
∑∞

0 bn is AC and the
other convergent, then

∑∞
0 cn converges. (See Apostol, Theorem 12-46.)

Example 6.19 For x, y ∈ C( ∞∑
0

xn

n!

)( ∞∑
0

yn

n!

)
=
∑ (x+ y)n

n!

Proof. Let an = xn

n!
, bn = yn

n!
. Then the series

∑
an and

∑
bn are absolutely convergent (see

Example 6.26). Then

cn =
∑
r+s=n

xr

r!

ys

s!
=

1

n!

n∑
r=0

(
n

r

)
xryn−r =

(x+ y)n

n!

by the binomial theorem.
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6.2 Some Tests for Convergence

Here we discuss some classic tests for convergence and divergence. The idea that there are
‘tests’is very attractive, but in practice (for problems arising from real-word situations) these
tests may not apply. However the tests do give us clues, suggest ways of thinking about series,
what sort of estimates need to be made, and a sense of the relative magnitude of terms.

Proposition 6.20 (A Simple Test for Divergence) If
∑
an converges then an → 0. The

converse is not true.
As the converse is not true then, in practice, the contrapositive is used more: if an does not

tend to 0 then
∑
an diverges.

Proof. We already noted this in Proposition 6.5.

Theorem 6.21 (The Comparison Test) Let (an) , (bn) be real sequences with 0 6 an 6 bn.
Then

•
∑
bn is convergent =⇒

∑
an is convergent;

•
∑
an is divergent =⇒

∑
bn is divergent.

Proof. Note that the second statement is just the contrapositive of the first, and so it is enough
to just prove the first. Suppose that

∑
bk converges. Then the partial sums

∑n
1 ak satisfy

n∑
1

ak 6
n∑
1

bk 6
∞∑
1

bk

and hence form an increasing bounded sequence which converges.

Remark 6.22 At first glance, the comparison test seems limited as it only applies to non-
negative terms. In practice, however, it is often used to show a series is AC and hence conver-
gent. (See Example 6.23 (d).)
And as with the sandwich test for sequences, the comparison test can be used to take care of

expresssions that are awkward without being impactful. For example, the term (2 + cosn)−1 in
Example 6.23 (b) lies between 1/3 and 1.

Example 6.23 The following sequences

(a)
∞∑
1

n−5/2, (b)
∞∑
1

1

n (n+ 1) (2 + cosn)
,

(c)
∞∑
1

xn

n
where |x| < 1, (d)

∞∑
1

sinn

n2 + 1
,

all converge.
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Solution. (a) This converges by comparison with
∑
n−2.

(b) This converges by comparison with
∑
n−2.

(c) Even though the terms are not non-negative, this is AC by comparison with
∑
|x|n and

hence is convergent.
(d) Even though the terms are not non-negative, this is AC by comparison with

∑
n−2 and

hence is convergent.

Theorem 6.24 (The Ratio Test) Let (an) be a real or complex sequence with an 6= 0 for all
n. Suppose that

lim
n→∞

∣∣∣∣an+1an

∣∣∣∣ = L

exists.

• If L < 1 then
∑
an converges absolutely;

• If L > 1 then
∑
an diverges;

• If L = 1 then
∑
an may converge or diverge (that is, the test is inconclusive).

Proof. (a) Choose K such that |L| < K < 1. As ε = K − |L| > 0 there exists N such that

n > N =⇒
∣∣∣∣∣∣∣∣an+1an

∣∣∣∣− L∣∣∣∣ < ε,

so that for n > N ∣∣∣∣an+1an

∣∣∣∣ 6 ε+ |L| = K.

So for k > 0

|aN+k| =
∣∣∣∣ aN+kaN+k−1

∣∣∣∣× ∣∣∣∣aN+k−1aN+k−2

∣∣∣∣× · · · × ∣∣∣∣aN+1aN

∣∣∣∣× |aN | 6 |aN |Kk.

Now
∑
Kk is a convergent geometric series, and so the tail

∑∞
N an is AC by the comparison

test. Hence
∑
an is AC as it has an AC tail.

(b) Choose K such that 1 < K < |L| . Then there exists N such that

n > N =⇒
∣∣∣∣an+1an

∣∣∣∣ > K.

Arguing as in (a), |aN+k| > Kk |aN | and hence we see an does not tend to 0. So
∑
an is

divergent by Proposition 6.20.
(c) For each of the series

∑
n−1 and

∑
n−2 we have L = 1 yet the former diverges and the

latter converges.

Remark 6.25 If an > 0 for all n and
∑
an converges, this does not mean that lim |an+1/an|

exists; for example

1 +
1

3
+

1

2
+

1

9
+

1

4
+

1

27
+

1

8
+

1

81
+ · · ·

converges absolutely whilst |an+1/an| does not have a limit.
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Example 6.26 (Exponential Series) For all x ∈ C, the exponential series
∞∑
0

xn

n!

converges absolutely.

Solution. The case x = 0 is trivial. If x 6= 0 then∣∣∣∣an+1an

∣∣∣∣ =
|x|
n+ 1

→ 0 < 1 as n→∞

and apply the ratio test.

Example 6.27 The series
∞∑
1

(sinhn)xn

converges absolutely for |x| < e−1 and diverges for |x| > e−1.

Solution. By definition sinhn = (en − e−n) /2 and so∣∣∣∣an+1an

∣∣∣∣ =
sinh (n+ 1)

sinhn
|x|

=
en+1 − e−n−1
en − e−n |x|

=
e− e−2n−1
1− e−2n |x|

→ e |x|

as n→∞. If x = e−1 then the ratio test is inconclusive but

an = sinhn× e−n → 1

2
6= 0

and so the series does not converge.

Theorem 6.28 (Leibniz Alternating Series Test, 1676) Let (an) be a non-negative de-
creasing series which tends to 0. Then

∞∑
n=0

(−1)n an

converges.
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Proof. If we consider the partial sums sn =
∑n

k=0 (−1)k ak we see that

s2k = (a0 − a1)︸ ︷︷ ︸
> 0

+ (a2 − a3)︸ ︷︷ ︸
> 0

+ · · ·+ (a2k−2 − a2k−1)︸ ︷︷ ︸
> 0

+ a2k

= a0 + (−a1 + a2)︸ ︷︷ ︸
6 0

+ (−a3 + a4)︸ ︷︷ ︸
6 0

+ · · ·+ (−a3 + a4)︸ ︷︷ ︸
6 0

6 a0.

Hence s2k is an increasing sequence bounded above by a0 and so s2k converges to a limit L. We
also have

s2k+1 = s2k − a2k+1 → L− 0 = L

by AOL. Hence sk converges to L by Sheet 5, Exercise 4(i).

Remark 6.29 Nothing we have done so far lets us tackle series like
∑∞

2
1

n(logn)2
, to evaluate∑∞

1
(−1)n+1

n
or define general exponents. In the remainder of this section we deal with these:

but in order to do so we need to make use of the properties of integration and logarithms. We
will define logarithms and general powers in the next chapter but we will not meet integration
rigorously until Analysis III in Trinity. At the end of the year you will be able to persuade
yourself that these properties which we now use do not depend on any of the results of this
section, and that no circular arguments have been made. Basically, it is just impatience that
forces us to deal with this test now and not wait until Trinity Term.

Theorem 6.30 Let K ∈ N and let f : [K,∞) → [0,∞) be continuous and decreasing. For
n > K we define

δn =
n−1∑
K

f (k)−
∫ n

K

f (x) dx.

Then for n > K
0 6 δn 6 δn+1 6 f (K)

and hence δn converges.

Corollary 6.31 (The Integral Test) With f as above, the series
∑∞

K f (k) is convergent if
and only if

∫ n
K
f (x) dx is convergent.

We postpone the proof for now and instead apply the integral test to a few series.

Example 6.32 an = 1/nα where α ∈ R. (We will not properly define general exponents until
the next chapter.) If α 6 0 then an does not tend to 0 and so

∑
an diverges. Let α > 0.

Consider the function f (x) = x−α > 0 which is continuous and decreasing on (0,∞) . We take
K = 1 and note if α 6= 1 that∫ n

1

f(t) dt =

[
t1−α

1− α

]n
1

=
n1−α − 1

1− α
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which converges as n→∞ if α > 1 and diverges if α < 1. If α = 1 then∫ n

1

f(t) dt = [log t]n1 = log n

which diverges. Hence
∞∑
1

1

nα

converges when α > 1 and diverges for α 6 1.

Example 6.33 an = (n log n)−1 for n > 2. Hence we define f(x) = 1
x log x

on (2,∞), and note
f(x) is decreasing as x and log x are increasing. Then∫ n

2

1

x log x
dx = log log n− log log 2→∞ as n→∞.

Therefore
∑

1
n logn

is divergent.

Proof. (Of Theorem 6.30) We set

δn =
n−1∑
K

f (k)−
∫ n

K

f (x) dx.

In the diagram below, which includes a graph of y = 1/x for x > K = 1 we can see δ4 as the
"excess area" above the graph between 1 6 x 6 4.

y 1 x

4

4

4

1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

Fig. 6.1 —Proving the Integral Test

As f is decreasing,
f(k + 1) 6 f(x) 6 f(k), if k 6 x 6 k + 1

We use the following properties of integration:

•
∫
preserves weak inequalities;
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•
∫ n+1
n

1 dx = 1;

•
∫
is additive:

∫ b
a

=
∫ c
a

+
∫ b
c
;

•
∫
is a linear map on the space of integrable functions.

So we get:

f(k + 1) 6
∫ k+1

k

f(x) dx 6 f(k)

and we can add such equations to get

f(K + 1) + f(K + 2) + · · ·+ f(n) 6
∫ n

K

f(t) dt 6 f(K) + f(K + 1) + · · ·+ f(n− 1).

So using the second inequality above we have

0 6
n−1∑
r=K

f(r)−
∫ n

K

f(t) dt

which shows 0 6 δn. Using the first inequality we have

δn =
n−1∑
r=K

f(r)−
∫ n

K

f(t) dt 6
n−1∑
r=K

f(r)−
n∑

r=K+1

f(r) = f(K)− f(n) 6 f(K).

We also have

δn+1 − δn = f(n)−
∫ n+1

n

f(t) dt > 0.

Hence (δn) is bounded above, increasing and so convergent.
Finally

n−1∑
K

f (k) and
∫ n

K

f (x) dx

differ by a convergent sequence. Therefore they both converge or both diverge by AOL.

Example 6.34 (Euler’s Constant γ, 1734) If we apply Theorem 6.30 to f(x) = 1/x we get

γn = 1 +
1

2
+ · · ·+ 1

n
− log n

= 1 +
1

2
+ · · ·+ 1

n
−
∫ n

1

dx

x

= δn +
1

n

is convergent. This limit is called Euler’s constant, and often denoted as γ:

γ = lim
n→∞

(
n∑
1

1

k
− log n

)
.
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The approximate numerical value of γ is

0.57721566490153286060 . . .

Relatively little is known about γ —for example, it is an open problem still as to whether γ is
irrational.

Example 6.35 We make use of γ in Sheet 6, Exercise 6 to show that

1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+ · · · = log 2.

Example 6.36 (Euler’s Number e) In Sheet 4, Exercise 5, we showed that

e = 1 + 1 +
1

2!
+

1

3!
+

1

4!
+ · · · =

∞∑
r=0

1

r!

converges to an irrational number e. Its approximate numerical value is

2.7182818284590452353 . . .

In fact, the constant e had been studied well before Euler, with some interest in the constant
shown by Napier, Harriot and Huygens. The constant was explicitly defined by Jacob Bernoulli
in 1683 as limn→∞

(
1 + 1

n

)n
while investigating ‘continuous compounding’but it was Euler who

recognized the importance of the constant and its connection with the ‘antilogarithm’function.

Proposition 6.37 (Euler, 1748)

e = lim
n→∞

(
1 +

1

n

)n
.

Proof. Let

αn =

(
1 +

1

n

)n
and βn =

n∑
k=0

1

k!
.

It was shown in Sheet 4, Exercise 5 that lim βn exists and we defined e as this limit. It was
also shown in Sheet 1, Exercise 6, that αn is an increasing sequence bounded above and so also
converges. By the binomial theorem

αn = 1 + n

(
1

n

)
+
n (n− 1)

2!

(
1

n

)2
+
n (n− 1) (n− 2)

3!

(
1

n

)3
+ · · ·+ 1

nn

= 1 + 1 +
1

2!

(
1− 1

n

)
+

1

3!

(
1− 1

n

)(
1− 2

n

)
+ · · ·+ 1

n!

(
1− 1

n

)(
1− 2

n

)
· · · 1

n

6 1 + 1 +
1

2!
+

1

3!
+ · · ·+ 1

n!
= βn.

From this we have limαn 6 e. On the other hand for 1 6 m < n and focusing on the first
m+ 1 terms in the binomial expansion of αn we see

1 + 1 +

(
1− 1

n

)
1

2!
+ · · ·+

(
1− 1

n

)(
1− 2

n

)
· · ·
(

1− m− 1

n

)
1

m!
6 αn.
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Fixing m and letting n → ∞ we have, using AOL and recalling that limits respect weak
inequalities,

1 + 1 +
1

2!
+

1

3!
+ · · ·+ 1

m!
6 limαn.

Finally letting m→∞ we have e 6 limαn and the result follows.

Remark 6.38 It’s important to note why we took the firstm+1 terms in the binomial expansion
of αn earlier. In that expansion there are n+1 terms and so, as n variees, the number of terms
varies. AOL applies to a fixed finite number of terms —fixed in the sense of not depending on
the variable that’s tending. For exampl it’s clear

1 =
1

n
+

1

n
+ · · ·+ 1

n︸ ︷︷ ︸
n times

.

If AOL could be applied to a varying number of terms, letting n→∞ we would find

1 = 0 + 0 + 0 + · · · = 0,

which is false.

Whilst the tests are useful series are not usually met in such a straightforward way that a
single convergence test can be employed. If they can be employed at all, some combination of
the tests may be needed.

Example 6.39 Discuss the convergence or divergence of the following series.

• ∑ cos (n2 + 1)

n2 + log n
.

We note that

0 6
∣∣∣∣cos (n2 + 1)

n2 + log n

∣∣∣∣ 6 1

n2 + log n
6 1

n2

and so the series is AC by comparison with
∑
n−2.

• ∑
(−1)n

log (n2 + 1)√
n+ 2

If y (x) = log (x2 + 1) (x+ 2)−1/2 then

y ′ (x) =
1√
x+ 2

2x

(x2 + 1)
− 1

2 (x+ 2)3/2
log
(
x2 + 1

)
=

1

(x+ 2)3/2

[
2x (x+ 2)

x2 + 1
− 1

2
log
(
x2 + 1

)]
<

1

(x+ 2)3/2

[
4− 1

2
log
(
x2 + 1

)]
< 0 for x > e4.
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So y(n) is eventually decreasing —using a result from Analysis II and by Leibniz’s Test a
tail of the series converges. Hence the whole series converges.

• ∑ 1√
n2 + n

We see
1√

n2 + n
>

1√
2n2

=
1

n
√

2

and so the series diverges by comparison with the harmonic series.

• ∑ √
n+ 1−

√
n√

n2 + n

Note √
n+ 1−

√
n√

n2 + n
=

1√
n
− 1√

n+ 1

and hence ∑
N
1

√
n+ 1−

√
n√

n2 + n
= 1− 1√

N + 1
→ 1 as N →∞.

Proposition 6.40 (Stirling’s Approximation, 1730) (Proof off-syllabus) As n→∞ then

n!√
2πn

(
n
e

)n → 1.

This same result is often written as

n! ∼
√

2πn
(n
e

)n
.

Proof. Firstly we note
log n! = log 2 + log 3 + · · ·+ log n.

We can find a good approximation to the sum on the RHS by applying the trapezium rule to
log x on the interval [1, n]. Let f(x) denote the approximating function to log x whose integral
the trapezium rule determines using n − 1 steps —that is f(x) satisfies f(k) = log k for each
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integer k = 1, 2, . . . , n and is piecewise linear between those values.

Fig. 6.2 —Trapezium Rule for log x

Note for x in the range k 6 x 6 k + 1 we have

1

k + 1
6 1

x
6 1

k

and so integrating we have ∫ x

k

dt

k + 1
6
∫ x

k

dt

t
6
∫ x

k

dt

k

or equivalently

log k +

(
x− k
k + 1

)
6 log x 6 log k +

(
x− k
k

)
.

Now log x is concave (that is, a chord connecting two points of the graph lies under the graph),
and so f(x) 6 log x on the interval [k, k+ 1]. Further as f ′(x) > (k+ 1)−1 on the interval (that
being the minimum gradient of log x whilst f ′(x) has the average gradient) we have

log k +

(
x− k
k + 1

)
6 f(x) 6 log x for k 6 x 6 k + 1.

So we have the inequalities

0 6 log x− f(x) 6
(

1

k
− 1

k + 1

)
(x− k) for k 6 x 6 k + 1,

and integrating on the interval [k, k + 1] we find

0 6
∫ k+1

k

(log x− f(x)) dx 6
(

1

k
− 1

k + 1

)∫ k+1

k

(x− k) dx =
1

2

(
1

k
− 1

k + 1

)
.
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Summing up the contributions from the intervals [1, 2], [2, 3], . . . , [n− 1, n] we find

0 6
∫ n

1

(log x− f(x)) dx 6 1

2

n−1∑
k=1

(
1

k
− 1

k + 1

)
=

1

2

(
1− 1

n

)
,

as most of the terms in the above sum cancel consecutively.
Recalling an antiderivative of log x to be x log x−x and using the formula for the trapezium

rule we then have

In =

∫ n

1

(log x− f(x)) dx

= [x log x− x]n1 − 1

(
log 1

2
+ log 2 + log 3 + · · ·+ log(n− 1) +

log n

2

)
= n log n− n+ 1−

(
log n!− 1

2
log n

)
=

(
n+

1

2

)
log n− n+ 1− log n!.

So we have

0 6
∫ n

1

(log x− f(x)) dx =

(
n+

1

2

)
log n− n+ 1− log n! 6 1

2

(
1− 1

n

)
.

(In) is an increasing sequence of numbers which we see are bounded above by 1/2 and hence
they converge to some L.
Applying the exponential function we find

eL−1 = lim
(n/e)n

√
n

n!
.

Whilst in Sheet 6, Exercise 11(ii) , we proved(
2n

n

)√
n

22n
→ 1√

π
.

We can combine these facts to note

1√
π

= lim

(
2n

n

)√
n

22n

= lim
(2n)!

n!n!

√
n

22n

=
√

2× lim

(
(2n!)

√
2n
(
2n
e

)2n
)
× lim

(√
n
(
n
e

)n
n!

)2
=
√

2×
(
eL−1

)−1 × (eL−1)2
=
√

2eL−1
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Hence e1−L =
√

2π and
n!√

2πn
(
n
e

)n → e1−L√
2π

= 1.

Remark 6.41 In terms of relative error, Stirling’s formula is a very accurate underestimate.
For n = 10 the relative error is under 1%.
An improvement on the above approximation is

n! =
√

2πn
(n
e

)n(
1 +O

(
1

n

))
and there are yet more accurate approximations

n! =
√

2πn
(n
e

)n
exp

{
m∑
k=2

(−1)k Bk

k (k − 1)nk−1
+O

(
1

nm

)}
,

where Bk is the kth Bernoulli number (see Sheet 7, Exercise 9).
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7. POWER SERIES

7.1 The Disc and Radius of Convergence

Definition 7.1 By a power series we will mean a series of the form

∞∑
n=0

anz
n

where (an)∞0 is a complex sequence and z ∈ C. We consider (an) as fixed for this series, and z
as a variable. Clearly the series might converge for some values of z and not for others.

Remark 7.2 The above power series is a power series centred at the origin. Given z0 ∈ C
then we can also consider power series centred at z0, which take the form

∞∑
n=0

an(z − z0)n.

Though we will not consider such power series in this chapter, the theory we will develop literally
translates to an identical theory for power series centred at z0 6= 0.

Example 7.3 • an = 1 :
∑∞

0 z
n : Geometric series : as we have already seen (Example

6.6), this series is convergent when |z| < 1 and divergent when |z| > 1.

• an = 1/n! :
∑∞

0 z
n/n! : Exponential series : we have shown (Example 6.26) that this

series is convergent for all z ∈ C.

• an = 1/n :
∑∞

n=1 z
n/n : Logarithmic series : convergent for |z| < 1. This follows from

the ratio test as ∣∣∣∣zn+1/(n+ 1)

zn/n

∣∣∣∣ =
n |z|
n+ 1

→ |z| .

The series converges at z = −1 (Leibniz test and Sheet 6, Exercise 6) and diverges at
z = 1 (as it’s the harmonic series). What about for other values where |z| = 1? Well at
z = i we have

2N∑
1

in

n
=

(
−1

2
+

1

4
− 1

6
+ · · ·+ (−1)N

2N

)
+ i

(
1− 1

3
+

1

5
− · · ·+ (−1)N−1

2N − 1

)
and we see that both real and imaginary parts converge by the Leibniz test. In fact we
know the above partial sums to converge to −1

2
log 2+ iπ

4
(Sheet 6, Exercise 6 and Sheet 5,

Exercise 6). More generally it can be shown that the logarithmic series converges on the
circle |z| = 1 except at z = −1.
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• a2n = (−1)n/ (2n)!
a2n+1 = 0

}
:
∑ (−1)n

(2n)!
z2n : Cosine series : convergent for all z by the

ratio test.

• a2n = 0
a2n+1 = (−1)n/(2n+ 1)!

}
:
∑ (−1)n

(2n+ 1)!
z2n+1: Sine series : convergent for all z

by the ratio test again.

Definition 7.4 Given a power series
∑
anz

n the set

S =
{
z ∈ C |

∑
anz

n converges
}
⊆ C

is either bounded or unbounded. Note also, that S is non-empty as 0 ∈ S. We define the power
series’radius of convergence R as

R =

{
sup {|z| | z ∈ S} when S is bounded,

∞ when S is unbounded.

Lemma 7.5 Suppose that the power series
∑
an (z0)

n converges. Then
∑
anz

n converges ab-
solutely when |z| < |z0| .

Proof. As
∑
an (z0)

n converges then an (z0)
n → 0 and in particular the sequence an (z0)

n is
bounded; say |an (z0)

n| < M for all n. Then, for |z| < |z0| ,

|anzn| = |an (z0)
n|
∣∣∣∣ zz0
∣∣∣∣n < M

∣∣∣∣ zz0
∣∣∣∣n

and so
∑
|anzn| converges by comparison with the convergent geometric series

∑
M |z/z0|n.

Theorem 7.6 Given a power series
∑
anz

n with radius of convergence R,

•
∑
anz

n is AC when |z| < R,

•
∑
anz

n diverges when |z| > R.

Note that when R =∞ then
∑
anz

n converges absolutely for all z ∈ C.

Proof. If |z| < R then, by the approximation property, |z| < |z0| < R for some z0 ∈ S and
hence

∑
anz

n is AC by the previous lemma. On the other hand if |z| > R then z 6∈ S and
hence

∑
anz

n diverges.

Definition 7.7 The set S is called the disc of convergence.

Remark 7.8 So a power series is AC strictly within its radus of convergence and diverges
strictly beyond the disc of convergence. For z on the boundary |z| = R the series may converge
or diverge. It’s quite easy to construct power series that converge at only finitely many points
of the boundary, or power series that converge everywhere on the boundary except finitely many
points. The general question — for which subsets of |z| = R is there a power series which
converges exactly on that subset? —remains an open problem.
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Remark 7.9 Commonly we will use the ratio test to determine the radius of convergence, but
it is not hard to produce examples where the ratio test can not be employed, or at least has to
be used more subtly. See the third example below.

Remark 7.10 (Off-syllabus) As a consequence of Cauchy’s root test (Sheet 6, Exercise 8(i))
an exact formula for the radius of convergence is

R =
(

lim sup n
√
|an|
)−1

. (7.1)

Example 7.11 Find the radius of convergence of the following examples, and consider the
series’convergence on the disc’s boundary.

•
∑∞

1 z
n/n2. If we set an = zn/n2 then∣∣∣∣an+1an

∣∣∣∣ =
|z|n+1 / (n+ 1)2

|z|n /n2 =

(
1 +

1

n

)2
|z| → |z| .

Hence, by the ratio test the series converges absolutely when |z| < 1 but diverges when
|z| > 1. In fact, by comparison with

∑
n−2 we see that the series is AC when |z| = 1.

•
∑
zn/n. If we set an = zn/n we can argue as above to see R = 1. This is the logarithmic

series and we have commented that it diverges at z = 1 and otherwise converges on |z| = 1.

•
∑
zp where the sum is taken over all primes p. Then R = 1. To see this we can note

zp does not tend to 0 when |z| > 1. On the other hand
∑
zp is AC when |z| < 1 by

comparison with the geometric series
∑
zn.

• Cosine series:
∑∞

0 (−1)n z2n/ (2n)! If we set an = (−1)n z2n/ (2n)! then, for all z ∈ C,∣∣∣∣an+1an

∣∣∣∣ =
|z|2n+2 / (2n+ 2)!

|z|2n / (2n)!
=

|z|2

(2n+ 2) (2n+ 1)
→ 0 as n→∞.

Hence by the ratio test the cosine series is AC for all z.

• Sine series:
∑∞

0 (−1)n z2n+1/ (2n+ 1)! If we set an = (−1)n z2n+1/ (2n+ 1)! then, for all
z ∈ C, ∣∣∣∣an+1an

∣∣∣∣ =
|z|2n+3 / (2n+ 3)!

|z|2n+1 / (2n+ 1)!
=

|z|2

(2n+ 2) (2n+ 3)
→ 0 as n→∞.

Hence by the ratio test the sine series is AC for all z.

Example 7.12 Use (7.1) to determine the radii of convergence of the series

∞∑
1

zn

n
,

∑
prime p

zp,

∞∑
0

zn

n!
.

Solution.
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• an = 1
n
. Now n1/n → 1 (Sheet 3, Exercise 3) and so

lim sup n
√
|an| = lim

(
n
√
n
)−1

= 1

so that R = 1.

• ap = 1. As there are infinitely many primes then lim sup n
√
|an| = lim sup 1 = 1 and so

R = 1.

• an = 1/n!. By Stirling’s formula

n! ∼
√

2πn
(n
e

)n
and hence

lim sup n
√
|an| = lim sup

1
n
√
n!

= lim
1

2n
√

2πn

( e
n

)
= 0,

giving R =∞.

The following theorem is beyond the scope of this course, but will be proved in Hilary term.
This theorem will prove very useful when proving various properties of the elementary functions
in the next section.

Theorem 7.13 (Term-by-term differentiation) Suppose the (real or complex) power series∑∞
0 anz

n has radius of convergence R. Then the power series defines a differentiable function
on |z| < R.
Term-by-term differentiation is valid within |z| < R so that

d

dz

( ∞∑
0

anz
n

)
=
∞∑
1

nanz
n−1 =

∞∑
0

(n+ 1) an+1z
n.

The power series
∑∞

0 (n+ 1) an+1z
n is called the derived series and also has radius of con-

vergence R.

Remark 7.14 (Uniqueness of Coeffi cients) Say that a function f(x) =
∑∞

0 anx
n is defined

on the interval |x| < R. By repeated differentiation we see that

an =
f (n)(0)

n!
.

So, if a function is locally defined by a power series, that is f(x) is analytic, then the coeffi cients
an are unique.
As a corollary to this, if an analytic function satisfies f ′(x) = 0 for all x then an = 0 for

all n > 1, and f(x) = a0 is constant.
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Remark 7.15 (Existence of Coeffi cients) A real function is said to be analytic (at 0) if it
can be locally defined by a power series on some (−R,R) . As we may differentiate term-by-term,
then f(x) is necessarily smooth — that is, f (x) has derivatives of all orders. Unfortunately
smoothness is not a suffi cient condition though. For example, the function

f(x) =

{
exp (−1/x2) x 6= 0,

0 x = 0,

can be shown to have derivatives of all orders at x = 0 with f (n)(0) = 0 for all n > 0. So if
f(x) could be defined by a power series on some (−R,R) then we’d have

f(x) =
∞∑
0

f (n)(0)

n!
xn = 0,

but f(x) 6= 0 except at x = 0. So f(x) is smooth, but isn’t analytic.
In the Part A Complex Analysis course, you will see that the situation is very different for

complex functions. A complex function which is differentiable (just once!) on an open disc
about the origin will be analytic.

Proposition 7.16 Let f(x) =
∑∞

0 anx
n converge on (−R,R) .

(a) f(x) is an even function if and only if a2n+1 = 0 for each n > 0.
(b) f(x) is an odd function if and only if a2n = 0 for each n > 0.

Proof. (a) If a2n+1 = 0 for each n > 0, then

f(x) =
∞∑
n=0

a2nx
2n =

∞∑
n=0

a2n(−x)2n = f(−x)

is even. Conversely say that f(x) is even. Then f (n)(x) is even when n is even and odd
when n is odd —these facts follow from the chain rule. So f (2n+1)(x) is odd and in particular
f (2n+1)(0) = 0. Hence

a2n+1 =
f (2n+1)(0)

(2n+ 1)!
= 0

as required. The proof of (b) is almost identical.

7.2 The Elementary Functions

The elementary functions include polynomials, rational functions, exponentials, logarithms and
trigonometric functions. In contrast there are special functions such as Bessel functions (Sheet
7, Exercise 4), Gauss’s error function, the gamma function, etc. and there are deep theorems
showing the special functions cannot be expressed in terms of the elementary functions.
In this section we give rigorous definitions for exponentials, logarithms, general exponents

and the trigonometric and hyperbolic functions.
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Definition 7.17 (Exponential Function) The exponential function exp: C → C is defined
by the infinite series

exp(z) =
∞∑
0

zn

n!
.

1. For all z ∈ C,
∑
zn/n! is convergent by the ratio test (Example 6.26): so R =∞.

2. exp(0) = 1

3. exp (1) = e

4. exp′ (z) = exp (z) .

Proof. We use Theorem 7.13 for this. Note

d

dz
exp z =

d

dz

( ∞∑
0

zn

n!

)
=

∞∑
0

(n+ 1) zn

(n+ 1)!
=
∞∑
0

zn

n!
= exp z.

5. exp(x+ y) = exp(x) exp(y).

Proof. We proved this in Example 6.19. We can also use Theorem 7.13 to show this: for
fixed c ∈ C we define

F (z) = exp (z + c) exp (−z) .

By the product rule

F ′ (z) = exp (z + c) exp (−z)− exp (z + c) exp (−z) = 0.

So F (z) is constant by Remark 7.14 and, as F (0) = exp (c) , then

exp (z + c) exp (−z) = exp (c) for all z ∈ C.

Set c = x+ y and z = −y for the required result.

6. exp(z) 6= 0. (In fact we will see below that the image of exp is C\ {0} .)
Proof. For any z ∈ C we have

exp (z) exp (−z) = exp (0) = 1.

7. exp (q) = eq for rational q.

Proof. Say q = m/n then(
exp

(m
n

))n
= exp

(
n
m

n

)
= exp (m× 1) = (exp 1)m = em.

By the uniqueness of positive nth roots, we have exp (q) = exp (m/n) = n
√
em = eq.
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It seems appropriate to make the following definitions here, though some of what follows
requires theory from Hilary Term. We now restrict our attention to the real exponential
exp: R → R. It is clear from the power series definition of exp that expx > 0 if x > 0.
Further if x < 0 then

exp (x) =
1

exp (−x)
> 0

also. So exp (R) ⊆ (0,∞).
Now exp′ x = expx > 0 and so exp is an increasing function; in particular this means that

exp: R → (0,∞) is injective. Also for x > 0, expx > x and so exp takes arbitrarily large
values of x and similarly exp (−x) = 1/ exp (x) takes arbitrarily small positive values. So, by
the Intermediate Value Theorem (proved in HT), we have

• exp: R→ (0,∞) is a bijection and hence invertible.

• The inverse is denoted as log : (0,∞)→ R, and by a HT result log is differentiable.

Definition 7.18 The natural logarithm log x, or lnx, is the inverse of the real exponential
function exp: R→ (0,∞) .

Proposition 7.19 For x > 0,

log ′ x =
1

x
.

Proof. As exp (log x) = x on (0.∞) then, by the chain rule,

log ′ (x)× exp (log x) = 1

and the result follows.

Example 7.20 The image of exp: C→ C is C\ {0} .

Solution. We previously showed 0 is not in the image. Take z = reiθ 6= 0. We need to find
w = x+ iy ∈ C such that exp (w) = z. This means exeiy = reiθ. Setting

x = log r and y = θ,

gives one solution to exp (w) = z.

Definition 7.21 (General Exponents) Given a > 0 and x ∈ R, we define

ax = exp (x log a) .

Note, with this definition,
ex = expx for x ∈ R.

Proposition 7.22 Let a, b > 0 and x ∈ R. Then

log (ab) = log a+ log b, log (ax) = x log a.
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Proof. Note

exp (log a+ log b) = exp (log a) exp (log b) = ab = exp (log (ab))

and then take the log of both sides. Also

log (ax) = log (exp (x log a)) = x log a.

Proposition 7.23 Let a > 0 and x, y ∈ R. Then

ax+y = axay, (ax)y = a(xy).

Proof. Note

ax+y = exp ((x+ y) log a)

= exp ((x log a) + (y log a))

= exp (x log a) exp (y log a)

= axay.

Also
log (ax)y = y log (ax) = y (x log a) = (xy) log a = log

(
a(xy)

)
and apply the expoential to both sides.

Proposition 7.24 For x > 0 and real a,

d

dx
(xa) = axa−1.

Proof. By the chain rule

d

dx
(xa) =

d

dx
(exp (a log x)) =

a

x
exp (a log x) = ax−1xa = axa−1.

Definition 7.25 (The Trigonometric and Hyperbolic Functions)

1. For all z ∈ C we define cosine and sine by

cos z =
exp (iz) + exp (−iz)

2
, sin z =

exp (iz)− exp (−iz)

2i
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2. Then

cos z =

∞∑
0

(−1)nz2n

(2n)!
and sin z =

∞∑
0

(−1)nz2n+1

(2n+ 1)!

with these series converging for all z ∈ C.
Proof.

exp (iz) + exp (−iz)

2
=

1

2

∞∑
0

(in + (−i)n)

n!
zn

=
1

2

∞∑
k=0

(−1)k + (−1)k

(2k)!
z2k =

∞∑
0

(−1)k z2k

(2k)!
;

exp (iz)− exp (−iz)

2i
=

1

2i

∞∑
0

(in − (−i)n)

n!
zn

=
1

2i

∞∑
k=0

(−1)k i+ (−1)k i

(2k + 1)!
z2k+1 =

∞∑
0

(−1)k z2k+1

(2k + 1)!
.

3. cos 0 = 1, sin 0 = 0.

4.
exp (iz) = cos z + i sin z.

Proof.

cos z + i sin z =

(
exp (iz) + exp (−iz)

2

)
+ i

(
exp (iz)− exp (−iz)

2i

)
= exp (iz) .

5. cos z = cos(−z) and sin z = − sin(−z).

Proof. The powers series of cos (resp. sin) involves only even (resp. odd) powers.

6.
cos′(z) = − sin z and sin′(z) = cos z.

Proof. Using exp′ z = exp z then

d

dz
(cos z) =

d

dz

(
exp (iz) + exp (−iz)

2

)
=

d

dz

(
i exp (iz)− i exp (−iz)

2

)
= − sin z,

d

dz
(sin z) =

d

dz

(
exp (iz)− exp (−iz)

2i

)
=

d

dz

(
exp (iz) + exp (−iz)

2

)
= cos z.

or we can just calculate the derived series of cos z and sin z.
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7.

sin(z + w) = sin z cosw + cos z sinw,

cos (z + w) = cos z cosw − sin z sinw.

Proof. By definition sin z cosw + cos z sinw equals(
exp (iz)− exp (−iz)

2i

)(
exp (iw) + exp (−iw)

2

)
+

(
exp (iz) + exp (−iz)

2

)(
exp (iw)− exp (−iw)

2i

)
which rearranges to

1

4i
[2 exp (iz) exp (iw)− 2 exp (−iz) exp (−iw)]

=
exp (iz + iw)− exp (−iz − iw)

2i
= sin (z + w) .

The second identity can be proved in a similar manner or by differentiating the first
identity with respect to z.

8.
cos2 z + sin2 z = 1

Proof. Set z = −w in the previous identity for cos(z +w). Alternatively, differentiating
gives

d

dz

(
cos2 z + sin2 z

)
= −2 cos z sin z + 2 sin z cos z = 0.

So cos2 z+ sin2 z is constant by Remark 7.14 and takes value 12 + 02 = 1 at z = 0. Or we
can argue

cos2 z + sin2 z = (cos z + i sin z) (cos z − i sin z) = exp (iz) exp (−iz) = exp (iz − iz) = 1.

9. It is easy to note that cos 0 = 1 and that

cos 2 =
∞∑
0

(−1)n 22n

(2n)!

= 1− 22

2!
+

24

4!
− 26

6!
+

28

8!
− · · ·

= 1− 2 +
2

3︸ ︷︷ ︸
<0

− 26

6!

(
1− 22

7× 8

)
︸ ︷︷ ︸

>0

− 210

10!

(
1− 22

11× 12

)
︸ ︷︷ ︸

>0

− · · ·

< 0.

It follows from theorems we will meet in Hilary Term that there exists a smallest positive
root to the equation cosx = 0. We will define π/2 as the smallest root of cosine.
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10. As cos2 z + sin2 z = 1 then sin (π/2) = ±1 (in fact it equals 1 as we know) and

exp (πi/2) = cos (π/2) + i sin (π/2) = ±i.

Then

exp (z + 2πi) = exp z

(
exp

πi

2

)4
= (exp z) (±i)4 = exp z.

Hence exp has period 2πi and cosine and sine have period 2π —i.e.

cos(z + 2π) = cos(z) and sin(z + 2π) = sin(z).

11. For the other trigonometric functions we define

secx =
1

cosx
, tanx =

sinx

cosx
,

cscx =
1

sinx
, cotx =

cosx

sinx
.

12. We define hyperbolic cosine and and hyperbolic sine by

cosh z =
exp (z) + exp (−z)

2
=
∞∑
0

z2n

(2n)!
,

sinh z =
exp (z)− exp (−z)

2
=
∞∑
0

z2n+1

(2n+ 1)!
,

where these series converge for all z ∈ C. Note that

cos iz = cosh z, cosh iz = cos z,

sin iz = i sinh z, sinh iz = i sin z,

cosh (−z) = cosh z, sinh (−z) = − sinh z,

cosh′ z = sinh z, sinh′ z = cosh z,

sin (x+ iy) = sinx cosh y + i cosx sinh y,

cos (x+ iy) = cosx cosh y − i sinx sinh y,

cosh2 z − sinh2 z = 1.

13. (Inverse hyperbolic functions) (a) Let x ∈ R. Then

sinh−1 x = log
(
x+
√
x2 + 1

)
.

(b) Let x > 1

cosh−1 x = log
(
x+
√
x2 − 1

)
(c) Let −1 < x < 1. Then

tanh−1 x =
1

2
log

(
1 + x

1− x

)
.
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Proof. (a) We need to solve

ey − e−y
2

= x ⇐⇒ e2y − 2xey − 1 = 0 ⇐⇒ ey = x±
√
x2 + 1.

Only one of the options on the RHS (the plus option) is positive, so

y = sinh−1 x = log
(
x+
√
x2 + 1

)
.

Both (b) and (c) can be solved similarly by creating a quadratic in ey.

Example 7.26 (See also Sheet 7, Exercise 9.) Find the power series for tan z up to the z5

term.

Solution. As tan z is odd then we only have to calculate coeffi cients for z, z3 and z5 (Propo-
sition 7.16). One approach would involve differentiating repeatedly, but we would then need to
calculate the fifth derivative of tan z. Instead we will use the binomial theorem.
Recall that

sin z = z − z3

6
+

z5

120
+O(z7), cos z = 1− z2

2
+
z4

24
+O(z6),

so that

tan z =
z − z3

6
+ z5

120
+O(z7)

1− z2

2
+ z4

24
+O(z6)

.

By the binomial theorem, (1− y)−1 =
∑∞

0 y
n for |y| < 1, for suitably small z,(

1−
(
z2

2
− z4

24
+O(z6)

))−1
= 1 +

(
z2

2
− z4

24
+O(z6)

)
+

(
z2

2
− z4

24
+O(z6)

)2
+O(z6)

= 1 +

(
z2

2
− z4

24

)
+

(
z4

4

)
+O(z6)

= 1 +
z2

2
+

5z4

24
+O(z6).

So

tan z =

(
z − z3

6
+

z5

120
+O(z7)

)(
1 +

z2

2
+

5z4

24
+O(z6)

)
= z +

(
1

2
− 1

6

)
z3 +

(
1

120
− 1

12
+

5

24

)
z5 +O(z7)

= z +
1

3
z3 +

2

15
z5 +O(z7).
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Remark 7.27 Note that many of the properties of complex sine and cosine differ significantly
from their real counterparts. Whilst

cos2 z + sin2 z = 1

is true for all z, this does not mean that |cos z| 6 1 or |sin z| 6 1. In fact, cos : C→ C and
sin : C→ C are onto, and so in, particular, are unbounded.
Given w ∈ C then

sin z = w ⇐⇒ exp (iz)− exp (−iz)

2i
= w

⇐⇒ exp (iz)2 − 2iw exp (iz)− 1 = 0

⇐⇒ exp (iz) = i±
√

1− w2.

Recall exp takes all values except 0. So unless w2 = 1, the RHS represents two distinct complex
numbers, so there is a solution z to at least one of the two equations. And if w2 = 1 as i 6= 0
then exp (iz) = i has a solution. (See also Example 7.28.)
Also, whilst exp(iz) = cos z + i sin z is true for all complex z, it’s not generally true that

cos z = Re (exp (iz)) .

Example 7.28 Find all the solutions to sin z = 2.

Solution. Set z = x+ iy so that

sin (x+ iy) = sin x cosh y + i cosx sinh y = 2.

Comparing real and imaginary parts, we have

sinx cosh y = 2, cosx sinh y = 0.

If y = 0 then sinx = 2 which has no solutions. Hence cosx = 0 and x = (2n+ 1) π
2
. Then

2 = sin
(

(2n+ 1)
π

2

)
cosh y = (−1)n cosh y.

So n must be even and we have y = ± cosh−1 2. So the solutions to sin z = 2 are

z = (2n+ 1)
π

2
± i cosh−1 2.

Example 7.29 Show that cos z = Re (exp (iz)) holds if and only if z is real.

Solution. We know this is true for real z. To prove the converse, say z = x+ iy. Then

cos(x+ iy) = cosx cosh y − i sinx sinh y,

Re (exp (iz)) = Re (exp (−y + ix)) = e−y cosx.
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Comparing real and imaginary parts we have

e−y cosx = cosx cosh y, sinx sinh y = 0.

If y = 0 then both equations are satisfied and z is real. If y 6= 0 then sinx = 0 and so x = nπ
for some integer n, so that cosx = (−1)n 6= 0. Finally

cosh y = e−y ⇐⇒ ey + e−y

2
= e−y ⇐⇒ e2y = 1 ⇐⇒ y = 0,

and hence z is real.

Example 7.30 Show that |exp(iz)| = 1 if and only if z is real.

Solution. Let z = x+ iy. Note

1 = |exp(iz)| = |exp (−y + ix)| = e−y

if and only if y = 0 and so z is real.

Remark 7.31 (Complex Logarithm and Powers) (Off-syllabus) We saw that exp: C→ C
has image C\ {0} and has period 2πi. So for any z 6= 0 there is a solution w0 to exp (w0) = z
and for any integer n then

w = w0 + 2nπi

will also be a solution —in fact, these will be all the solutions. This can be argued as follows:

1 = ex+iy = ex (cos y + i sin y)

⇐⇒ ex = 1, cos y = 1, sin y = 0

⇐⇒ x = 0 and y = 2nπ for some n ∈ Z,

so that if expw = expw0 = z then

exp (w − w0) = 1 =⇒ w − w0 = 2nπi.

These w are the possible values of log z. So complex logarithm is an example of a multi-
function. Other examples of multifunctions include square root and the inverse trigonomet-
ric functions. We can make a genuine function from a multifunction by specifying certain
principal values on the domain, for example by taking the positive square root or insisting
sin−1 : [−1.1]→ [−π/2, π/2] .
Given z = r exp (iθ) 6= 0 then the possible values of log z are

log z = log r + iθ.

θ here is a choice of argument which needs specifying to define a single-valued function for log.
For z ∈ C\(−∞, 0] we can uniquely write z = r exp (iθ) where −π < θ < π. We will denote
this particular choice of log z as L(z) which agrees with the real logarithm on the positive real
axis (see Figure 6.3).
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If we were to take points z+ and z−, respectively just above and below the cut (−∞, 0], then
we would have

z+ = r exp (iθ+) where θ+ ≈ π; z− = r exp (iθ−) where θ− ≈ −π.

So
L(z+) ≈ log r + iπ; L(z−) ≈ log r − iπ.

So across the negative real axis there is a jump of ±2πi depending on which was the axis is
crossed. The function L satisfies exp (L(z)) = z for all w ∈ C\(−∞, 0] and L is differentiable
with L′(z) = z−1 on C\(−∞, 0].

Fig. 6.3 —a branch L of log

We refer to C\(−∞, 0] as a cut-plane and to L as a branch of log. It can be shown that
there is no differentiable branch of log on C\{0}, so some cut to the origin is necessary. The
only other differentiable branches of log on this cut-plane are

L(z) + 2nπi

for integers n.
In the same way we defined general real exponents, for z ∈ C\(−∞, 0] and α ∈ C, we can

define
zα = exp(αL(z)).

This defines a differentiable function on C\(−∞, 0] which has derivative αzα−1. Considering
the other possible branches of log, we note that zα takes a unique value if α is an integer, that
zα takes finitely many values if α is rational and otherwise zα takes infinitely many values.
When α = 1

2
then

(z+)1/2 ≈
√
r exp(iπ/2) = i

√
r; (z−)1/2 ≈

√
r exp(−iπ/2) = −i

√
r.
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We see this time that there is a sign change as we cross the cut.
The function in Figure 6.4a is z1/2 = exp (L(z)/2) and the only other differentiable function

on C\(−∞, 0] which satisfies w2 = z is −z1/2, depicted in Figure 6.4b. This is because

exp

{
L(z) + 2nπi

2

}
=

{
z1/2 if n is even,
−z1/2 if n is odd.

11 2 1z 1 2 i r

z 1 2 i r
3 2 1 1 2 3

Re

3

2

1

1

2

3
Im

Fig. 6.4a —a branch of
√
z

11 2 1z 1 2 i r

z 1 2 i r
3 2 1 1 2 3

Re

3

2

1

1

2

3
Im

Fig. 6.4b —another branch

Definition 7.32 (Logarithmic Series) Consider the power series

λ (z) =
∞∑
1

zn

n
.

The radius of convergence is 1 (by the ratio test) and so converges for |z| < 1.

For −1 < x < 1, by Theorem 7.13,

λ′ (x) =
∞∑
1

nxn−1

n
=
∞∑
1

xn−1 =
1

1− x.

Set
µ (x) = (1− x) exp (λ (x)) .

By the chain and product rules,

µ ′ (x) = −1× expλ (x) + (1− x)λ′ (x) expλ (x) = 0.

It follows that µ (x) is constant and equals µ (0) = expλ (0) = exp 0 = 1. Hence

exp (λ (x)) =
1

1− x for − 1 < x < 1
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and, with using the definition of real logarithm (Definition 7.18)

λ (x) = log

(
1

1− x

)
= − log (1− x) .

In terms of the branch L for complex logarithm defined earlier we have

λ(z) = −L (1− z) for |z| < 1.

Example 7.33 Let α, z ∈ C with |z| < 1. Find the power series of

B (z, α) = (1 + z)α = exp (αL (1 + z)) .

Solution. The composition of two analytic functions is itself analytic (which I do not prove
here), so we may set

B (z, α) =
∞∑
0

anz
n.

By the chain rule

B′ (z, α) = αL′ (1 + z) exp (αL (1 + z)) =
αB (z, α)

1 + z

and so
(1 + z)B′ (z, α) = αB (z, α) .

We note a0 = 1 and, focusing on the zn term on each side, we obtain the recurrence relation

(n+ 1) an+1 + nan = αan

so that
a0 = 1, an+1 =

α− n
n+ 1

for n > 0.

Hence

an =

(
α− n+ 1

n

)
an−1

=

(
α− n+ 1

n

)(
α− n+ 2

n− 1

)
an−2

= · · ·
=

(α− n+ 1)(α− n+ 2) · · · (α− 1)α

n (n− 1)× · · · × 2× 1
a0

=
(α− n+ 1)(α− n+ 2) · · · (α− 1)α

n (n− 1)× · · · × 2× 1
.

If we denote this last expression as
(
α
n

)
then we have determined the binomial series for a

general exponent:

B (z, α) = (1 + z)α =

∞∑
n=0

(
α

n

)
zn.

Note that if α is a natural number then this is a finite sum and otherwise the above series is
an infinite sum which converges for |z| < 1.
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