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0. INTRODUCTORY MATERIAL

0.1 Syllabus

Real numbers: arithmetic, ordering, suprema, infima; the real numbers as a complete ordered
field. The triangle inequality. [3]

Definition of a countable set. The countability of the rational numbers. The reals are uncount-
able. The complex number system. [1.5]

Sequences of real or complex numbers. Definition of a limit of a sequence of numbers. Limits
and inequalities. The algebra of limits. Order notation: O,o0. Bounded monotone sequences
converge. [4]

Subsequences; a proof that every subsequence of a convergent sequence converges to the same
limit. Bolzano—Weierstrass Theorem. Cauchy’s convergence criterion. [2]

Series of real or complex numbers. Convergence of series. Simple examples to include geomet-
ric progressions and some power series. Absolute convergence, Comparison Test, Ratio Test,
Integral Test. Alternating Series Test. [2]

Power series, radius of convergence. Examples to include definition of and relationships between
exponential, trigonometric functions and hyperbolic functions. [2.5]

0.2 Reading list

) Introduction to real analysis, Robert Bartle, Donald Sherbert, Wiley 4th ed 2011
) Real analysis and infinity, H. Sedghat, OUP 2022

) Guide to analysis, Mary Hart, Macmillan 2nd ed 2001

) A radical approach to real analysis, David Bressoud, MAA 2007

)

)

0.3 Further Reading

1) Understanding analysis, Stephen Abbott, Springer 2nd ed 2015

2) A wvery short introduction to mathematical analysis, Richard Earl, OUP 2023
) The real numbers: an introduction to set theory and analysis, John Stillwell, Springer 2016
) A companion to analysis, T. W. Kérner, AMS 2003
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0.4 Introduction and Historical Background

The story of analysis, as a separate subject within mathematics, begins in the nineteenth
century. Three mathematicians, who might reasonably share the title of ‘fathers of analysis’ are
Bolzano, Cauchy and Weierstrass, who were working around 1817, 1821 and 1861 respectively.
Their names each arise in this Analysis I course but, however seminal their work, it was around
150 years later than ideal.

During your degree you will see that analysis has ideas and themes of its own — this will
be especially apparent when you meet metric spaces and complexr analysis in the second year.
But the biggest need driving a focus on analysis in the nineteenth century was the lack of
rigor in mathematics, particularly with regard to calculus. The origins of calculus are typically
associated with the work of Leibniz and Newton in the 1680s, though their work built on the
work of many others, especially Fermat. Their work was a great leap forward but was definitely
not the final word in the development of the calculus: neither Leibniz nor Newton could frame
their work without reference to infinitesimals, fluxions or other ill-defined terms. At this time
there were still no formal definitions of convergence or limit. Given the widespread impact of
calculus within mathematics and science, there was a desperate need for rigorous foundations;
Newton’s and Leibniz’s methods had been widely applied with success for 100 years or so,
but by the nineteenth century the need for more clarity and careful definitions was becoming
paramount.

Euler, in his seminal Introductio in Analysin Infinitorum of 1748, moved the discussion
forward significantly. Euler placed functions — as defined locally by power series — at the centre
of his work, and during his life calculated an amazing array of infinite sums. But still there was
no formal defintion of a limit. And whilst it was known that the general solution to the wave
equation was

y(z,t) = f(z +ct) + g(z — ct),

where f and g are arbitrary functions, what did this phrase mean? Certainly, in the case of a
plucked string, something different from Euler’s definition of what a function is. The physical
and mathematical descriptions just didn’t quite match.

Around 1816-17 in Prague, the mathematician and philosopher, Bernard Bolzano, first gave
the modern definition of a limit, introduced so-called e-¢ analysis, defined the notion of ‘great-
est lower bound’ and proved the intermediate value theorem (HT) and Bolzano- Weierstrass
theorem. Unfortunately Bolzano’s work would go unrecognized during his lifetime and only
surface some fifty years later. Instead the next (widely recognized) step forward would be
Augustin-Louis Cauchy’s Cours d’Analyse of 1821. The text implicitly involved e-d arguments,
and defined continuous functions (HT'), but still Cauchy referred to infinitely small quantities
and his proof of the Fundamental Theorem of Calculus (TT) is incomplete through a lack of
appreciation of uniform continuity (HT).

Finally we come to the work of Karl Weierstrass, lecturing in Berlin around 1861. Weier-
strass explicitly employs -0 arguments and defines convergence without any reference to infini-
tesimals. He appreciated the difference between pointwise and uniform convergence of functions
(HT), and between continuity and uniform continuity (HT'). He proved that a continuous func-
tion is bounded on a closed bounded interval and achieves its bounds — which is often referred
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to as Weierstrass’ Theorem (HT) — and he gave an example of a function which is continuous
but nowhere differentiable.

As far as this Analysis I course goes, the above describes the relevant history of the topics
you will meet (and more). But still there would be much work even within real analysis,
especially in the development of theories of integration (TT) (Riemann 1854, Darboux 1875,
Lebesgue 1902).

0.5 Motivation and Pedagogy

Rigour is at the heart of the three Prelims real analysis courses. These courses, more than any
others, instil a care of exposition and proof from foundational axioms. Given that many of the
results proven may seem obvious, some students (not unreasonably) find real analysis rather
dry and pedantic. This is also unfair to the broader subject, analysis, as it has many interesting
ideas of its own and doesn’t merely exist, say, to put calculus on a firmer footing. So why do
we teach real analysis in the first year?

The worth of a mathematics degree boils down to two, equally imporant, aims: the learning
of, understanding of, and facility with a wide range of concepts and method, that provide a
diverse toolkit for addressing physical and logical problems; and the means of exposition to be
able to share those ideas, especially when technical language is necessary, to convince others of
your bulletproof arguments.

A grounding in real analysis, being able to rigorously reason from precisely stated axioms,
and an ability to extend/adapt that thinking to new problems, are key aims of these courses.
The mathematical results you will meet in this course are at least a century old, and these results
are no longer in any doubt, but the technical communication skills and nuance of thought that
you learn will be paramount throughout your degree and beyond. In due course, you will be
proving results that don’t seem obvious, are subtle or even counter-intuitive; hopefully you will
at least appreciate where you originally learnt those skills.

The analysis courses present the axioms of the real numbers — the field, order and com-
pleteness axioms — and seek to build a comprehensive theory of real analysis with each result
building on what has been previously demonstrated. Early we may be proving that every real
square is non-negative, or demonstrating the existence of /2, but we will quickly develop an
array of theory that will allow us to deal with infinite series and define the elementary functions.

Whilst we will stick to that creed as much as possible, ultimately it is a pedagogical pipe
dream and there will be good reasons to step off that path on occasion. For example, to have
diverse enough examples of sequences we will early on refer to functions like sine, cosine and
logarithm, even though we won’t define them until the end of the course; the existence of the
real logarithm will rely of results from next term; differentiating power series likewise relies on
Hilary results; and we will introduce the integral test at the end of term, but not develop a
theory of integration till Trinity. But the alternative — leaving the integral test, which is a test
for convergence of infinite series, until Trinity term makes no pedagogical sense.

More disingenuously, the completeness axiom — the fundamental axiom to the real numbers
— states that every non-empty bounded set of real numbers has a least upper bound. Yet you
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won’t find in these notes quite what we mean by a set; that is rather brushed under the carpet.
You can find out more about set theory in the third year, if you wish, but if we insisted on a
treatment of the ZF (Zermelo-Fraenkel) axioms first then the pure mathematics streams would
take even longer to develop.

0.6 Notation

IMPORTANT SETS
N — the set of natural numbers {0,1,2,...}.
Z — the set of integers {0, £1,+2,...}.
Q — the set of rational numbers.
R — the set of real numbers.
C — the set of complex numbers.
Z,, — the integers, modulo n > 2.
R™ — n-dimensional real space — the set of all real n-tuples (z1,za,...,2,).
R [x] — the set of polynomials in x with real coefficients.
& — the empty set
For a,b € R with a < b we define
(a,b) ={r €eR|a<x<b}.
(a,b] ={r €eR|a<x<b}.
a,b)={reR|a<z<b}.
]

SET THEORETIC NOTATION

X UY —the union of X and Y —{s|se€ X orseY}.

X NY — the intersection of X and Y — {s|s€ X and s € Y}.

X x Y —the Cartesian product of X and Y — {(z,y) | v € X and y € Y'}.
Y¢ — the complement of a subset Y.

X\Y - the complement of Y in X —{s|se€ X and s € Y}.

P(X) — the power set of a set X, that is the set of subsets of X.

€ —is an element of, e.g. V2 € R and 7 & Q.

C,C —is a subset of, e g. NCZCQCRCC.

f: X — Y — fis a function, map, mapping from a set X (the domain) to a set Y (the
codomain).

f: X =Y — fis a injective function from a set X to a set Y.

f: X =Y — fis a surjective function from a set X to a set Y.

f (X)) — the image or range of the function f —i.e. the set {f (z) |z € X}.
g o f —the composition of the maps g and f — apply f first and then g.

| X| — the cardinality (size) of the set X.

NOTATION 4



LOGICAL NOTATION

vV for all — implies, is sufficient for, only if

3 there exists — is implied by, is necessary for, if

3! there exists unique — if and only if, is logically equivalent to
- negation, not :or | ors.t. such that

VvV  or O or QED  found at the end of a proof

A and

ANALYTICAL NOTATION

Re z — the real part of a complex number.

Im z — the imaginary part of a complex number.

(z,,), (zn)]" — a sequence of elements from a set, usually real or complex numbers
x), — the kth term of a sequence (z,,)

x, — L — the sequence (z,) converges to L.

lim z,, — the limit of the convergent sequence (z,,) .

(IN) (Yn > N) — eventually, or for a tail of the natural numbers

(VN) (dn > N) — for infinitely many, or for arbitrarily large, natural numbers
AC — absolutely convergent

> x, — the infinite series x; + z3 + 23 + - - -, whether convergent or not.

> 7 x, — when denoting a (real or complex) number, the infinite sum of the series.
O(n) — large O notation.

o(n) — small o notation.

The Greek Alphabet

A, alpha H,n eta N,v nu T, T tau
B,3 beta ©,0 theta =, xi Y, v upsilon
')y gamma I,. iota 0,0 omicron D 0,0 phi
A,6 delta K,k kappa IT, 7 pi X, x chi

E e epsilon A, XA lambda P.p rho U, ) psi

Z,( zeta M,p mu ¥, 0,¢ sigma Qw omega
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0.7 The Real Number Axioms

The Field Axioms

For every pair of real numbers a,b € R there is a unique real number a + b, called their ‘sum’.
For every pair of real numbers a,b € R there is a unique real number a x b, called their ‘product’.
For real number a € R there is a unique real number —a, called its ‘negative’ or ‘additive
inverse’.

For real number a € R, with a # 0, there is a unique real number a~
‘multiplicative inverse’.

There is a special element 0 € R called ‘zero’ or ‘the additive identity’.
There is a special element 1 € R called ‘one’ or ‘the multiplicative identity’.

! called its ‘reciprocal’ or

The following hold for all real numbers a, b, c:

Al a+b=b+a [+ is commutative]
A2 a+(b+c)=(a+b)+c [+ is associative]
A3 a+0=a [additive identity]
A4 a+(—a)=0 [additive inverse]
Ml axb=bxa [x is commutative]
M2 ax(bxec)=(axb)xc [x is associative]
M3 axl=a [multiplicative identity]
M4 Ifa#0thenaxa'=1 [multiplicative inverse]
D ax(b+c)=axb+axc [x distributes over +]
Z 0#1 [to avoid total collapse]
ab for axb
Notation: We write ¢ a —b for a+ (—b);
a/b  for axb

The Order Axioms

There exists a subset P of R called the ‘positive numbers’ such that for all a,b in R:

Pl IfacPandbePthena+0beP. [addition and the order]
P2 IfaecPandbePthenaxbelP. [multiplication and the order]
P3 Exactly one of a € P, a =0, —a € P is true [trichotomy]
a>"b for a—0belP
Notation: We write Z ; Z Ei Z:cg E §7U (0}
a<b for b—aecPU{0}.

The Completeness Axiom

Suppose that B C R, and that k£ € B is such that b > k for all b € B. We then say that ‘k is
a least (or minimal) element of B. By the trichotomy axiom P3 we can prove that if there is a
least element, there is only one, which we call ‘the least element of B’.

Suppose that S C R, and that b € R is such that b > s for all s € S. We then say that ‘b is an
upper bound of S’, and that ‘S is bounded above.’

C Let S be a non-empty subset of R which is bounded above; then the set of upper bounds
of S has a least element. [completeness|
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1. THE REAL NUMBERS

1.1 The Field Axioms

What do we mean by the real numbers? Certainly they include the natural numbers, integers
and rational numbers. But you are likely aware of the existence of irrational (= not rational)
numbers, such as /2 or 7, which are also real numbers. One answer would be that a real
number is a number with a decimal expansion, but then we are getting ahead of ourselves:
what is meant by saying 0.333 ... is the decimal expansion of %? Just what details are hiding
behind that ellipsis?

Rather we will simply present a set of azioms — statements we will assume to be true of
the real numbers. We will base all our arguments on these axioms, and develop theorems from
these axioms alone. In Remark 5.34 we will make some brief comments about how the natural
numbers, integers, rationals and reals can be constructed from simpler sets, but the details are
left to more advanced set-theoretic courses.

Unless otherwise made clear, the quantities a, b, x, etc. discussed in the following will be
real numbers. The labelling of these axioms largely follows the convention of Bartle & Sherbert.

Definition 1.1 The real numbers are a set R together with two binary operations

e addition +: R? — R,

o multiplication x: R? — R
which satisfy the following axioms

o the field axioms A1-Aj, M1-Mj, D, Z.
e the order axioms PI1-P3.

e the completeness axiom C.
described below. Recall that, as + and X are binary operations, associated with any ordered

pair (a,b) of real numbers are real numbers a +b and a X b, known as their sum and product
respectively.

The addition axioms Al-A4 require that

(Al) + is commutative, that is a + b = b+ a for all a, b.

(A2) + is associative, that is a + (b +c¢) = (a + b) + ¢ for all a,b, c.
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(A3) there is an additive identity 0, called zero, that satisfies a + 0 = a for all a.

(A4) for each a there is an additive inverse —a such that a + (—a) = 0.

Remark 1.2 Note that the axioms of addition A1-A4 are equivalent to (R, +) being an abelian
group.

Remark 1.3 Associativity guarantees that the sum of aq,...,a, is independent of how the
calculation is executed. For example, four terms can be summed in five ways:

((a+b)+c)+d, (a+(b+c)+d, (a+b+(c+d), a+((b+c)+d), a+(b+(c+d)),

c - 1 <2n>
n+1\n

ways to bracket a sum of n terms. (C,, denotes the nth Catalan number.)
It can be shown, say using strong induction, that these C,, calculations lead to the same sum
when the operation s associative.

and more generally there are

We now prove some basic first results about addition.
Proposition 1.4 If a + x = a for all a, then x = 0. Thus the additive identity 0 is unique.

Proof. As a + x = a is true for all a, then it is in particular true when a = 0. So we have

x = x+0 by definition of 0 (A3)
= 0+ by commutativity (Al)
=0 by hypothesis with a = 0.

As 0 has the given property, by the above it is the only real number with this property. m

Proposition 1.5 Ifa+x = a+y, for some a, then x = y. Thus additive inverses are unique.

Proof.
y = y+0 by definition of 0 (A3)

y+ (a+ (—a)) by definition of inverses (A4)
(y +a)+ (—a) by associativity (A2)
(a+y) + (—a) by commutativity (A1)
(a 4+ x) + (—a) by hypothesis

= (x+a)+ (—a) by commutativity (Al)

= x4+ (a+ (—a)) by associativity (A2)

= z+0 by definition of inverses (A4)

= z by definition of 0 (A3).

It follows that —a is the unique additive inverse of a: if x is an additive inverse of a then

a+(—a)=0=a+x
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and it follows that © = —a. m

I wouldn’t wish to suggest at this point that the previous and following proofs are the only
or even the best proofs. The above proof is reasonably slick, showing in one chain of equalities
that y equals x and applying one axiom at a time. But there are other proofs, some of which are
arguably more natural, and any proof that is logically correct and carefully justfied is adequate
to the task.

A much more natural chain of thought to get from a + x = a + y to x = y would involve
‘subtracting a from both sides’. And we can use the axioms to argue exactly along these lines.

Proof. (Alternative proof of Proposition 1.5) Say
a+r=a-+y.

Then
(a+z)+(—a)=(a+y)+ (—a).

By commutativity (A1) we have

(z+a)+ (—a) = (y+a)+ (—a)
and by associativity (A2) we then have

z+(a+(—a) =y+ (a+(—a)).

By A4 we have x +0 = y + 0 and finally by A3 we then have z = y. m

Proposition 1.6 — (—a) = a.
Proof.

(—a)+a = a+(—a) by commutativity (Al)
=0 by definition of inverses (A4)

and also
(—a) 4+ (= (—a)) = 0 by definition of inverses (A4).

Hence — (—a) = a as additive inverses are unique (Proposition 1.5). m
Proposition 1.7 — (a +b) = (—a) + (=b).

Proof. This is left as Sheet 1, Exercise 1(iii). m

Proposition 1.8 —0 = 0.

Proof. By definition 04 (—0) = 0 and 040 = 0. By the uniquness of additive inverses —0 = 0.

|
The multiplication axioms M1-M4 require that

(M1) x is commutative, that is a x b = b x a for all a, b.
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(M2) x is associative, that is a x (b x ¢) = (a x b) x ¢ for all a, b, c.
(M3) there is a multiplicative identity 1, called one, that satisfies a x 1 = a for all a.
(M4) for each a # 0 there is a multiplicative inverse, denoted a™!, such that a x (a™!) = 1.

Remark 1.9 The axioms of multiplication M1-Mj state that (R\{0}, X) is an abelian group.

There are then similar results for x to those proved previously for +.
Proposition 1.10 Ifa X z = a for all a then x = 1. So the multiplicative identity is unique.
Proposition 1.11 Ifa # 0 and a xx = a Xy then x = y. So multiplicative inverses are unique.
Proposition 1.12 Ifa # 0 then (a™')™! = a.
Proposition 1.13 Ifa #0#b and ab # 0 and (ab)™" =a™! x b1,

These results are left as exercises for the reader. Their proofs are very similar to the
corresponding results for addition. Further, we will soon see that if a # 0 # b then ab # 0
(Proposition 1.16) so the hypothesis that ab # 0 is in fact unnecessary in the last proposition.

There are two remaining field axioms to introduce.
(D) The distributive law states that x distributes over +. That is,
ax(b+c)=(axb)+ (axc)
for all a, b, c.

(Z) 04 1.

The importance of axiom Z may not be immediately obvious. If it were the case that 1 = 0,
we would have (by M3 and Proposition 1.15 below) that

r=xX1l=2zx0=0 for all z.

So the singleton set {0} satisfies all the other field axioms and we need axiom Z above to make
clear we are not discussing this example. We will also find axiom Z, or rather its negation,
a useful conclusion for proofs by contradiction — should an initial assumption lead to the
conclusion that 0 = 1, we would know the initial assumption to be incorrect.

Some important consequences of the distributive law appear below.

Proposition 1.14 (a +b) X c=axc+b X c.

Proof.
(a+b)xc = ec¢x(a+b) by commutativity (M1)
= cXa+cxb by distributivity (D)
= a X c+bxc by commutativity (M1) twice.
u
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Proposition 1.15 a x 0 = 0.

Proof.
ax0+0 = ax0 by definition of 0 (A3)
(A3

= ax(040) by definition of 0 )
= ax0+ax0 by distributivity (D).

Hence a x 0 = 0 by Proposition 1.5. m

Proposition 1.16 Ifa x b= 0 then either a =0 or b =10 (or both).

Proof. If a # 0 then we have

0 = atx0 by Proposition 1.15
= a ' x (axb) by hypothesis
= (a7! xa) x b by associativity of x (M2)
= 1xb by definition of inverse (M4)
= bxl1 by commutativity of x (M1)
=0 by definition of 1 (M3).

(Note the above proof amounts to carefully showing that if a # 0 then we can divide by a to
show b =0.) Thus b =0 if a # 0, or if a # 0 does not hold then a = 0 as required. m

Proposition 1.17
(=b) xa=—(bxa).

In particular (—1) X a = —a.

Proof.

(bxa)+ ((=b) xa) = (b+(=b)) xa by Proposition 1.14
= 0xa by definition of inverse (A4)
=0 by Proposition 1.15 and M1

and
(bxa)+ (—(bxa)) = 0 by definition of inverse (A4).

As additive inverses are unique then (—b) x a = —(b x a). The final part follows from setting
b =1 and applying M3 and M1. =

Proposition 1.18
(—1) x (=1)=1.

Proof.

(-1) x (-1) = —(—1) by Proposition 1.17
=1 by Proposition 1.6.
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Notation 1.19 From now on we will instead write

ab for aXxb
a—b  for a-+(=b)
a/bor$  for axbl.

Also, we define integer powers for a # 0 by

a® = 1
a"*tl = a*xa forallk=0,1,2,3,...
a”l = (al)_l foralll=1,2,3,....

Remark 1.20 Note that we have only defined integer powers of a here. For a > 0 and rational
q = m/n we will, in due course (Theorem 1.72 et seq.), define

a? = a™.

For general real x and a > 0, we will not be able to define

a® = e* loga

until we meet the exponential (Definition 7.17) and logartihm functions (Definition 7.18).

Remark 1.21 Other number systems also satisfy A1-A4, M1-Mj, D, Z. Such systems are
called fields. Fields are important algebraic structures in mathematics, and all the linear algebra
and matriz theory you are meeting in Linear Algebra I extends naturally over any given field.
The notion of a field was introduced by Richard Dedekind in 1871.

The rational numbers Q, the real numbers R and the complex numbers C are all examples
of fields. Other examples include Z,, that is the integers modulo a prime number p, and the
field with four elements. See extension exercises 7, 8§ and 9 on Sheet 1.

Z is not a field as it does not meet M4 (multiplicative inverses) though it does satisfy the
remainder of the field axioms. N further fails to meet A4 (additive inverses).

1.2  The Order Axioms

As there are many systems, fields, that satisfy the field axioms, we clearly require some further
axioms to fully characterize the real numbers. The real numbers are commonly represented by
a number line with the numbers increasing in a left-to-right fashion. So it is clear that the real
numbers have other properties which we need to capture, including notions of ‘being greater
than’ or ‘being to the right of’, together with other geometric notions such as distance.

There are various (ultimately equivalent) ways of introducing the notion of ‘greater than’.
We will again follow Bartle & Sherbert and address this by introducing axioms for what it is
to be positive.
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Definition 1.22 (Order Axioms) There is a subset P of R, of positive real numbers, that
satisfies the following three axioms.

(P1) If a and b are positive, then their sum a + b is positive.
(P2) If a and b are positive, then their product ab is positive.
(P3) For any a precisely one of the following is true:

a 18 positive; a=0; — a 1§ positive.

So to say ‘a is positive’ means a € P. Written as an interval, P = (0, 00).
The third axiom P3 is called the trichotomy axiom. By this axiom, 0 is not positive.

Remark 1.23 Any structure satisfying the field and order axioms is called an ordered field.
Q and R are ordered fields, and any subfield of R is an ordered field (see Sheet 1, Exercise
7 for such an example). However there is no subset P of C which makes it an ordered field
(Proposition 1.79).

Proposition 1.24 1 is positive.
Proof. By P3 precisely one of
1eP, 1=0, —1leP

must hold. Axiom Z discounts the second possibility. The third option, —1 € P, leads to a
contradiction as follows:
-1eP = (-1)(-1)eP by P2
— 1eP by Proposition 1.18
= —lc€Pand1eP

which contradicts P3. By elimination, it follows that 1 € P. m

There are alternative, equivalent, means of introducing order to the real numbers by defining
binary relations < or < with appropriate properties. The equivalence of the two approaches is
left to Sheet 1, Exercise 10. For now we introduce the following notation and definitions.

Notation 1.25 (a) We write

for a—bel.
for b—aclP.
for  a—-bePU{0}.

b
b
b
b for b—aePU{0}.

& 2 2 2
NNV NV

In this notation the trichotomy axiom, P3, reads as: ‘precisely one of a > 0,a = 0,a < 0
holds’.

(b) Elements of PU{0} = [0,00) are referred to as non-negative, of P° = (—o0,0] are
called non-positive and of (P U {0})¢ = (—00,0) are called negative.
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Proposition 1.26 a > b if and only if —a < —b. In particular, x > 0 if and only if —x < 0.

Proof.
a > b
— a—b € P by definition
<= —(—a)—b € P by Proposition 1.6
< —b—(—a) € P by commutativity of + (Al)
— —b > —a by definition
= —a < —b by definition.

The last claim follows as —0 = 0 (Proposition 1.8). m

Proposition 1.27 For all a, b, c

a < (1.1)
a < band b<a = a=b; (1.2)
a < band b<e = a<c (1.3)
eithera < borb<a (1.4)

Proof. You may recognize (1.1), (1.2), (1.3) as being the reflexivity, anti-symmetry and tran-
sitivity properties of a partial order. Combined with (1.4), this means < is a total order.

(a) By Ad we have a —a=0€ P U{0} and so a < a.
(b) By definition a < b and b < a mean
b—aePU{0} and a—b=—(b—a)ec P U{0}.
There are then two cases to consider:
(i) b—a € P and — (b —a) € P. This contradicts trichotomy (P3).
(ii) if b —a = 0 then a = b; similarly if a — b = 0.

(¢) If a = b or b = c this is trivial, so we need only consider the case where b — a € P and
c —b e P. We then have
c—a=(c—=b+(b—a)eP,

by P1 as required.

(d) For a,b € R, precisely one of the following holds

b—aclP — a<b;
b—a=0 =— a<b and b < q;
—(b—a)=a—-belP = b<a.
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Proposition 1.28 For a,b,c with a < b, thena+c <b+ec.

Proof. Note (b+¢) —(a+c¢)=b—acPU{0}. m

Proposition 1.29 For a,b,c with a < b and 0 < ¢, then ca < cb.

Proof. If ¢ = 0 or a = b then the result holds immediately. Otherwise b —a € P and ¢ € P so
that, by P2, ¢(b—a) € P. By D and Proposition 1.17 we see

clb—a)=cb+c(—a)=cb—caeP

and so ca < cb as required. m

Corollary 1.30 For a,b,c with a < b and ¢ < 0. Then ca > cb.

Proof. This is left as Sheet 1, Exercise 1(v). m

Corollary 1.31 a? > 0 for any real a.

Proof. By the trichotomy axiom we have a > 0 or a = 0 or a < 0. If a > 0 then a? € P by P1
and so a? > 0. If @ < 0 then a? > a0 = 0 by Corollary 1.30 and Proposition 1.15. If @ = 0 then
a2=0>0 again. m
Proposition 1.32 Ifa > 0 then a™* > 0.
Proof. Certainly a=! # 0 and if a=! < 0 then —a~! > 0 giving the contradiction

-1 = (—a’l) a>0

by P2. m

Corollary 1.33 If0 <a <b then b=! < a1
Proof. By the previous proposition and P2
al—bt=at"(b—a)>0.

]
Using the order axioms we may define the maximum and minimum of two numbers.

Definition 1.34 Define max: R?> — R and min: R? — R by

T oifr 2y : y if x>y
max(x,y):{y zfy;x mm(x,y):{x zfy;x

By the trichotomy axiom, these are well-defined functions.
We can extend these to functions of finitely many variables. For example, recursively we
can define
max (aq, ..., Gp, Apy1) = Max (max (ag, ..., a,), Gpe1) -
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Example 1.35 max (z,y) = —min (—x, —y) for any z,y.

Solution. We argue by cases, recalling that if x < y then —x > —y by Proposition 1.26.

| max(z,y) | | —min(—z, —y)
x>y x —z<—y| —(-z)==
T=1y T r=y —(—z)==x
<y Y —y<-z| —(-y) =y

n
Definition 1.36 We define the modulus function | |: R — R by

] = x if x = 0;
] -z if v < 0.

These cases are disjoint and cover all possibilities by the trichotomy axiom, so we obtain a
well-defined function. |x| is read as ‘mod x’ or ‘the modulus of x’, and also referred to as ‘the
absolute value of x’.

Remark 1.37 As the mazximum, minimum and modulus functions are defined in terms of
different cases, proofs involving them commonly need to demonstrate the result in a case-by-
case manner.

Proposition 1.38 For any x:
(a) 0 < |z|.
(b) x < |z|.

(¢) |=z| = |zl
() |2|* = 2>,

Proof. (a) For z > 0 this is obvious. If < 0 then |z| = —z > 0 by definition of >.
(b) If x > 0 then x = |z| and so x < |z|. If z < 0 then z < 0 < |z| from (a).
(c) If x > 0 then by Proposition 1.26 we have —z < —0 = 0. So by definition

=z = —(=2) =z = [z].
If <0 then —z > 0. So |—z| = —z = |z| by definition.
(d) In either case we have |z|> = 22 or |z|> = (—z)® = 22 by Proposition 1.17. m
Proposition 1.39 (Modulus of a product) |ab| = |a]| |b] .

Proof. If either a = 0 or b = 0 then the LHS and RHS are both zero. If a,b > 0 then there is
nothing to prove. If a > 0 > b then ab < 0 and

|ab] = — (ab) = a (=b) = |a] |0]
by Proposition 1.17. Any if a,b < 0 then ab > 0 and
|ab] = ab = (—a) (=b) = |a| [b]

by Proposition 1.17. m
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Definition 1.40 Let S CR and f: S — R. Then f is said to be:
e increasing if f(x) < f(y) whenever x < y.
e decreasing if f(x) > f(y) whenever x < y.
e strictly increasing if f(x) < f(y) whenever x < y.
o strictly decreasing if f(x) > f(y) whenever x < y.
Proposition 1.41 The function f(x) = z? is strictly increasing on [0, c0).
Proof. Given 0 < a < b,
f(b) = fa) =b* —a® = (b—a)(b +a).
Asb—a€Pand b+a € P then f(b) — f(a) € P and so f(b) > f(a), showing that f is strictly

increasing. m

Theorem 1.42 (Triangle Inequality) For any real numbers a, b,
|+ 0] < af + 0],

with equality if and only if (a >0 and b > 0) or (a < 0 and b < 0).

Proof. Note that

la+b? = (a+0b)? by Proposition 1.38(d)
= a®+2ab+1?
= |a|* + 2ab + |b]? by Proposition 1.38(d)
< af® +2|ab| + [b]? by Proposition 1.38(b)
= a|* +2|a| [b] + |b? by Proposition 1.39
= (Jal + o))"

As f(z) = 2? is strictly increasing on [0, o), then |a| +|b] < |a + b| is impossible and the result
follows. The cases when equality holds are left to Sheet 1, Exercise 3(i). m

See Remark 1.84 for an explanation of the inequality’s name.

Corollary 1.43 (Reverse triangle inequality) For any real numbers a, b,
la —b| > [[a] — ][
Proof. Note by the triangle inequality that

la=bl+ bl > la| = la—0bl=>la[-1[b],
b—al+la| = [of = |a—0b=b]—]a],

and as ||a| — |b|| equals |a| — |b] or |b| — |a| then the reverse triangle inequality follows. m

We can use the modulus function to define distance on the real line (which is the same as
difference).
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Definition 1.44 Given real numbers x,y, the distance d(x,y) between x and y is defined to
be

d(z,y) = |x —yl.

The function d: R? — R satisfies the properties of a metric, namely, for any real x,y, 2:
(M1) d(z,y) > 0 and d(z,y) = 0 if and only if v = y.

(M2) d(x,y) = d(y, r).
(M3) d(z,2) < d(z,y) + d(y, 2).

Property M3 is equivalent to the triangle inequality. Properties M1 and M2 follow readily
from properties of the modulus function.

We conclude with two useful inequalities.

Theorem 1.45 (Bernoulli’s inequality') Let x be a real number with x > —1 and let n be
a positive integer. Then
(1+2)">1+nx.

Proof. We shall prove the inequality by induction — note that the inequality is immediate
when n = 1. Suppose that
(1+ x)N >1+ Nz

holds for all real z > —1 and a particular N > 1. Then 1 +2 > 0 and N2? > 0 as N > 0 and
22 > 0. Hence

Q1+ = QG+2)1+2)Y by definition
> (1+2z)(1+ Nx) by hypothesis and Proposition 1.29
= 1+ (N+1)x+ Naz* by Al-A4
> 1+ (N+ 1)z by Proposition 1.28.

The result follows by induction. m

Proposition 1.46 (Powers dominate polynomials) Let a be a real number with a > 1, and
k be a positive integer. Then there exists ¢ > 0 such that

a">en® for n=1,23,...

Proof. Let a =1+ b, so that b > 0, and take n > k. Then

n—=k k k 1
=1--21-— = —.
n n k+1 k+1

nzk+1 —

'Named after Jacob Bernoulli (1655-1705) who applied the inequality frequently in a text of 1689.
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By the binomial theorem,

ni n n 2 DR n k .« .. 7
a" = 1+(1>b+(2)b+ +<k)b+ +b

n
> < k) V" [as all other terms are positive]

nn—1)---(n—k+1) ,
B k! ’

v n—k\",
T WU )"
b "
—n,
(kuk+1f>

with the last line following from the previous inequalities. We have thus

WV

bk
k! (k4 1)"

c =
is such that a"/n* > ¢ for n > k. If instead we set

a? a® bk
c = min a,?,...,ﬁ,m >0

then a"/n* > cholds for n > 1. (It’s important to note that the above choice of ¢ is independent
of n, depending only on @ and k.) =

Example 1.47 In each of the cases (a) and (b),

@ () = T ) o
w) oty = ZE = B

determine

(i) whether there exists ¢ > 0 such that x(n) > cy(n) for all n;
(ii) whether there exists ¢ > 0 such that x(n) < cy(n) for all n;
(i1i) whether neither (i) nor (ii) applies.

Thoughts: This example now has genuine flavours of analysis; we are no longer simply applying
axioms. First thoughts are often qualitative, appreciating which terms in the sequences are

significant and which are relatively negligible. For example, in answering (a) we will ultimately
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ignore the n® term in the numerator; it is helpful, in the sense its presence increases x(n), but
it is inconsequential by comparison with 3", so we simply do not need to make any use of it.
It’s also important to note that the example requires us to find a positive c, if it exists, and not
in any sense a minimum such c¢. The existence of any such c¢ is sufficient to answer the question;
see Sheet 1, Exercise 11 for further comment.

Solution. (a) Note that n®/2" > 0 for all n. By Proposition 1.46, there exist ¢;,c > 0 such

that ~N 3\
(§> > ent  and (5) > con’?

n 3 n
3"+n S §
on 2
1 3"+13”
21\ 2 2\ 2

for all n. Hence

\

c c
> Eln‘l + g (3n2)
> min <%, %) (n4 + 3n2) .

Hence (i) holds in this case by setting ¢ = min (¢;/2,¢2/6) .

(b) Note immediately that (ii) cannot hold as xz(n) is always positive and y(n) is negative
when n is odd. So (i) can only apply if z(n) exceeds some cy(n) for all even n. For even n the
inequality z(n) > cy(n) is equivalent to

2\ " 8 | 5
(n3—|—1) (§> —i—(n ;n)20n2.
By Proposition 1.46, there exists a number K which exceeds the LHS for all n, whilst the RHS

increases without bound as n increases. So no such c exists. To appreciate this in detail, note
that:

There exists ¢; > 0 such that (3/2)" > ¢;n® and hence n® (2/3)" < 1/¢;.

(2/3)" < 1.

There exists ¢, > 0 such that 3" > cyn® and hence n®/3" < 1/c,.

There exists c3 > 0 such that 3" > c3n® and hence n°/3" < 1/c3.

Thus we require there to be ¢ > 0 such that

1/1 11 )
—(=+1+—+—)=2n*>n
C \C Co C3

for all positive integers n. The LHS would then be an upper bound for the unbounded N which
does not exist. (See Corollary 1.55.) =
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1.3 The Completeness Axiom

At this stage we can surely persuade ourselves that we could write down proofs of all the usual
algebraic properties of R, and all the usual order properties of <.

Many structures share these properties — the ordered fields — and in particular both Q and
R are ordered fields. So why won’t Q suffice? Why do mathematicians not settle for working
with this rather nice field of easily understood ratios of integers; countable, too, so that we can
list the elements?

The ancient Greeks had at least one reason — in Q we can’t find an element to measure the
length of the hypotenuse of a right-angled isosceles triangle with two short sides of length 1.
Here is the proof of that fact.

Theorem 1.48 There is no element o € Q such that a® = 2

Proof. If there were such an «, then we could write a = m/n for some m,n € Z,n # 0.
Further we could assume that this fraction is in lowest terms, so that m and n are coprime.
Then 2n? = m?. As m? is even then m is also even as a product of odd numbers is odd. We
can then write m = 2k and hence n? = 2k2. But then n, too, is even by the same reasoning
and m/n wasn’t in lowest terms after all. This is the required contradiction. m

So Q is lacking in some ways, certainly if we wish to discuss distances, and we look to
describe the way(s) R is different from Q.

Definition 1.49 Let B C R.

We say that by is a least element or minimum of B if (i) by € B and (ii) by < b for all
b € B. In this case we write by = min B.

We say that by is a greatest element or maximum of B if (i) by € B and (ii) b < by for
all b € B. In this case we write by = max B.

Example 1.50 1 is the minimum of [1,2) but there is no mazimum for this set. If x € [1,2)
were a maximum then © < 2 and so 1+ /2 is a greater element of the set.

Proposition 1.51 A mazimum (if it exists) is unique. Similarly a minimum is unique.

Proof. Suppose that b and ¢ are both maxima of B. Then as b € B and c¢ is a maximum,
b<c¢ ascé€ B and bis a maximum then ¢ < b. By anti-symmetry b = ¢. Similarly minima
are unique if defined. m

Proposition 1.52 Every non-empty subset of N has a minimum.

Proof. Suppose, for a contradiction, that S is a non-empty subset of N with no minimum and
define
S*={neN |noneof0,1,...,nisin S}.

We shall show that S* = N and conclude that S is empty, a contradiction.

Note that 0 € S*. If not then 0 is in S and S has a minimum (namely 0). Now suppose
that n is in S*. This means that none of 0,1,...,n is in S. It follows that n + 1 is not in .S, or
else n + 1 would be the minimum of S. Hence none of 0,1,...,n,n 4+ 1 is in S or equivalently
n 4+ 11is in S*. By induction S* = N and so S is empty. ®
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Definition 1.53 Let B C R.
We say that | is a lower bound of B if | < b for all b € B and that B is bounded below.

We say that u is an upper bound of B if b < u for all b € B and that B is bounded
above.

We say that B C R is bounded if it is bounded above and below.

Example 1.54 (a) 23 and m are both upper bounds of [1,2). And 1 is a lower bound as is —37.
The set of upper bounds is [2,00) and the set of lower bounds is (—oo, 1].
(b) Q is neither bounded above nor below, N is bounded below, (—oo, €] is bounded above.
(c) @ is bounded. The set of upper bounds for & is R as is the set of lower bounds.

The below results follow from Proposition 1.52 or can be similarly proved.

Corollary 1.55 (a) A non-empty subset of Z which is bounded below has a minimum.
(b) A non-empty subset of Z or N which is bounded above has a mazimum.
(¢) N has no maximal element.

We are now ready to give our final axiom which characterises the real numbers.
Definition 1.56 (Completeness Axiom)

(C) Let S C R be a non-empty set which is bounded above. Then the set of upper bounds of
S has a least element.

Remark 1.57 (Equivalent axioms) There are various alternative axioms that are equivalent
to the completeness axiom as stated in C. One such is:

o Let A and B be non-empty bounded sets such that a < b for all a € A and b € B. Show
that there exists ¢ such that a < c¢ < b foralla e A andb € B.

This is shown to be equivalent to C in Sheet 2, Fxercise 10.

In this course we will meet further equivalent assumptions:

e Bounded, monotone sequences converge (Theorem 5.3, Sheet 4, Exercise 6).

e Cauchy completeness (Theorem 5.29) and the Archimedean property.

e The Nested Intervals Theorem (Theorem 5.7) and the Archimedean property.

e The Bolzano-Weierstrass Theorem (Theorem 5.20).

Another famous equivalent axiom is Dedekind completeness (which is off-syllabus):

o A Dedekind cut is a set @ #+# A & Q satisfying (i) if v < y,x € Q, y € A thenxz € A

and (i) if © € A then there exists y € A with y > x. Dedekind completeness states that
A = (—00,2)NQ for a unique real number z.
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Remark 1.58 (Uniqueness of the real numbers) The completeness aziom is the last aziom
we will introduce in defining the real numbers. Two natural questions arise: do the real numbers
exist and is the set of real numbers unique?

The first question is not meant ontologically. But, rather than just assuming that there is
a set R which satisfies the field axioms, the order axiom and completeness axiom, can such a
set be constructed with those properties from more concrete sets such as N, Z or Q¢ We will
address this aspect of the existence of R when we meet Cauchy sequences (Remark 5.534).

The second question — the uniqueness of R — is also a subtle one. What does uniqueness
mean here? It is true that, up to order isomorphism, there is a unique complete ordered field.
For those wishing to understand the details of this statement see Kdorner pp.359-360.

Definition 1.59 We call this least element the least upper bound or supremum of S, writ-
ten as sup S. Note that we can refer to sup E as the least upper bound as we have already shown
i Proposition 1.51 that minima are unique.

Example 1.60 2 is the supremum of [1,2).

Proof. For all z € [1,2), 1 < x < 2 by definition, so clearly 2 is an upper bound. Now suppose
that there was a smaller upper bound, t. So t < 2, and as ¢ is an upper bound, ¢ > 1. Then
% < % < 2. So % €[1,2) but t < % contradicting the fact that ¢ was an upper bound. =

Example 1.61 The set of upper bounds of & is R which has no minimum element.
Proposition 1.62 If S C R has a maximum then max S = sup S.

Proof. Note max S > x for all x € S by definition of being a maximum. Further if v is an
upper bound for S then u > max S by virtue of max S being an element of S. Hence max S is
the least upper bound. m

Proposition 1.63 (The Approximation Property) Let S be bounded above and non-empty
and let € > 0. Then there exists s € S such that

supS —e < s <supS.

Proof. If this were not the case, then sup S — ¢ is an upper bound of S less than the least
upper bound, which is a contradiction. m

Remark 1.64 To prove that a real number M 1is the supremum of a set S C R it is enough
to show that (i) s < M for all s € S and either (i) for any upper bound M' of S we have
M < M’ or alternatively (ii)’ for any € > 0 there is s € S such that M —e < s < M.

Corollary 1.65 Let S be bounded above and non-empty. There is a function a: N — R, such
that

1
supS — — < a(n) <sup S for allm > 1.
n

In due course, we will see that this means there is a sequence (a (n)) in S which converges to
sup S.

THE COMPLETENESS AXIOM 23



We would like to make the symmetric definition for the maximum (if it exists) of the lower
bounds of a set which is bounded below. One way would be to introduce yet another axiom
guaranteeing its existence. But we don’t need to do this; we now have sufficient axioms to
prove this as a theorem.

Theorem 1.66 Let T be a non-empty set which is bounded below. Then the set of lower bounds
of T has a greatest element.

Proof. Let S={—t |t € T}. As T is non-empty then S is also non-empty.

In Proposition 1.26 we showed that * < y <= —y < —z. Let [ be a lower bound of T.
Then [ <tforallx € T and so —t < —{forallt € T. That is s < —I[ for all s € S. Hence S is
bounded above, and non-empty, so by the completeness axiom, sup S exists.

We shall prove (i) —sup S is a lower bound of 7', (ii) if [ is a lower bound of 7" then
[ < —supS.

(i) If t € T then —t € S and so —t < sup S. Hence t > —sup S and we see —sup S is a
lower bound of 7'

(ii) If I <tforall t € T then —1 > —t for all ¢t € T. Hence — > sup S by virtue of sup S
being the least upper bound of S. Finally [ < —sup S. =

Definition 1.67 This element is known as the greatest lower bound or infimum of T and
18 written inf T

e By an argument similar to Proposition 1.51 we can show easily show that infima are
unique.

e Note if 7" has a minimum element then min7 = inf 7.

Example 1.68 sup[l,2) = 2 and inf[1,2) = 1. Also min[l,2) = 1 whilst max[1,2) does not
exist.

Corollary 1.69 (The Approximation Property for infima) Let T be bounded below and
non-empty and let € > 0. Then there exists t € T' such that

mfT <t<infT +e.

Corollary 1.70 Let T be bounded below and non-empty. There is a function a: N — R, such
that for all n we have

1
inf7 <a(n) <infT + —.
n

Again we will shortly see that this means there is a sequence (a (n)) in T which converges to
infT.

Example 1.71 Let S be a bounded subset of R. Let ¢ < 0 and set ¢S = {cs | s € S}. Show
that ¢S bounded above, and that sup(cS) = cinf S.
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Solution. (i) As S is bounded below then s > inf S for all s € S. As ¢ < 0 then ¢s < cinf S
for all s € S and hence cinf S is an upper bound for ¢S. We now have to show that cinf .S is
the least upper bound of ¢S and there are two ways of showing this:

(ii) Suppose that u is an upper bound of ¢S. Then ¢s < u for all s € S and hence s > u/c
for all s € S. This means that u/c is a lower bound of S and in particular inf S > u/c as inf S
is the greatest lower bound of S. Then cinf S < u and we finally see that cinf S' is less than or
equal to any other upper bound of ¢S.

(ii)” Alternatively let ¢ > 0 and then, as inf S is the greatest lower bound for S, there is
s € S such that

infS<s<infS—¢/c - cinf S —e < e¢s < cinf S,
verifying the supremum approximation property. m
Theorem 1.72 (/2 exists) There erists a unique positive number o such that a® = 2.
Proof. Let S = {r € R | 2? < 2}. Note that 12 =1 < 2, so that 1 € S and in particular S is

non-empty. Further if x > 2 then

22 =xr>2>4>2.

Hence 2 is an upper bound for S and so we may define
o =sup S.

Note further that @ > 1 > 0 is positive. We split the remainder of the proof into showing that

a? < 2 and o > 2 both lead to contradictions. By the trichotomy axiom it then follows that
2

o = 2.

e Suppose for a contradiction that o < 2. Our aim is to show that (o + h)* < 2 for some
h > 0 which would give a contradiction. Let 0 < h < 1 so that h? < h in particular.
Then

(a+ h)> =a®+2ha+h* < a®+2ha+h=a*+ (2a + 1) h.
We will have a? 4 (2a 4 1) h < 2, and hence (o + h)* < 2, if further
< 2 — a?
200+ 1’

noting the RHS is positive. So we set

2 _ 2
0<h<min(1 a),

20+ 1

then a + h € S. But this contradicts a = sup S.
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e Suppose instead that a® > 2. Our aim is to show that (a — h)® > 2 for some h > 0 which
again gives a contradiction. Note

( — h)* = a® — 2ha + h? > o — 2ha.
So if further
a? =2
200

then (o — h)® > 2. As z +— 2?2 is an increasing function for 2 > 0 then no element of S
lies in the interval (o« — h, o) which contradicts the approximation property.

O0< h<

Finally, by trichotomy, a? = 2 is the only remaining possibility. To show uniqueness of «
suppose that /3 is a positive number such that 3? = 2. Then

2= = ol =(a+f)(a-p) =0

It follows that § = a or f = —a. As a > 0 then —a < 0 and so « is the only positive
solution of 22 = 2.

Remark 1.73 Note that this result shows that Q does not satisfy the completeness axiom as
the set {x € Q| 2% < 2} does not have a supremum in Q.

Notation 1.74 We write \/2 for a.

Theorem 1.75 Let a be any positive real number. Then there exists a unique real number —
denoted by v/a — whose square is a.

Proof. This just involves a refining of the previous argument. See also Example 5.9. m

We've already noted (Corollary 1.55) that N has no maximal element. This is something
that can be proved within the axioms for N. Situating N within R we now note:

Theorem 1.76 (Archimedean Property) N is not bounded within R. That is, for any x € R
there exists n € N such that © < n.

Proof. If not, N is bounded above and not empty. Set o = supN. Then so a — 1 < k for some
k € N by the approximation property. But as £k +1 € N and o < k + 1, contradicting « being
an upper bound for N. m

Corollary 1.77 Lete > 0. Then 0 < % < € for somen € N.
Proof. Apply the Archimedean Property to 1/c. ®

Corollary 1.78 Given reals a,b with a < b then there exists a rational number q and an
wrrational number v such that a < ¢ < b and a < r < b.

Proof. Left as Sheet 2, Exercises 5ii and biii. m
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1.4 Complex numbers

[This section is by way of recap from the Introduction to Complex Numbers course. and will
not be lectured.]

We can define C from R by taking the set C to be R2, the set of real ordered pairs and
defining addition 4+ and multiplication x by

(a1,b1) + (az,b2) = (a1 + az,by + b2)
(a1,b1) X (az,b2) = (ajag — bibe, ashy + a1bs).

So that, for example
(0,1)*> = (0,1) x (0,1) = (0> = 12,0 x 1 + 0 x 1) = (=1,0).

We more commonly write ¢ for (0,1) and write a + bi for (a,b), so that the above equation
states 12 = —1. Further we identify each real number r with r +0i and so can think of the reals
as a subset of the complex numbers.

It is not hard to check that the field axioms A1-A4, M1-M4, D, Z are all true of the complex
numbers.

Proposition 1.79 There is no subset P of C which satisfies the order axioms P1-P3.

Proof. Suppose for a contradiction that such P C C exists. By P3, precisely one of the
following holds:
1€ Py 1= 0; —ieP.

If i = 0 then 1 = i* = 0* = 0 which contradicts Z. If i € P then by P2 we have —i = i € P,
but then +¢ € P which contradicts P3. Assuming —i € P leads to the same contradiction.
Hence not one of the the possibilities required by P3 holds and no subset P C C exists with
the requisite properties. m

So the complex numbers cannot be made into an ordered field. There is, though, the
complex modulus function, that we can use to determine the ‘size’ of complex numbers. Let
z = x + yi, where x = Re z and y = Im 2z, throughout the following.

Definition 1.80 The modulus of z, written |z|, is given by
2 = Vo
This makes sense as x* + y? > 0.
Definition 1.81 The conjugate of z, written z (or z* in some texts), is given by
Z=x— yi.
None of the following properties is at all difficult to prove — they are algebra, not analysis.
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1. If z is real (i.e. z = x 4 0i) then |z| = |z|; that is the definitions of real and complex
modulus agree where applicable.

5. z+zZ=2Rez.

6. 2—z2=2iImz.

Theorem 1.82 For z,w € C,
|zw| = |z] [w] .

Proof. Let z = z + yi and w = u + vi. Then all we need is the factorisation
(v +yu)? + (vu — yv)? = (2% + ) (u® + v?)
and the existence of unique non-negative square roots. m
Theorem 1.83 (Triangle Inequality) For complex numbers z,w,
2+ w| < 2] + [w].

Proof. Using the above properties.

lz+wf = (z4+w)(z+w)

(z +w) (Z+ w)

= 2z+4 (20 + zZw) + ww
2Z 4+ 2Re (20W0) + ww
2Z + 2|z0| + ww
|2 + 2[z] ] + ]
(1] + Jw])*.

| I7AN

Remark 1.84 The name ‘triangle inequality’ is clearer to explain in C rather than in R.
Consider the triangle in C with vertices A =0, B =z and C = z +w. Then |z + w| = |AC],
|z| = |AB| and |BC| = |(z + w) — z| = |w|. So the triangle inequality states that the length of
one edge is less than the sum of the lenghts of the other two edges.
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2. COUNTABILITY

In this section we introduce some of the simplest ideas about the size or cardinality of a set.
(You should probably note, but not be too concerned, that we have not rigorously defined what
a set is. Most (but by no means all) mathematicians agree on what a set is, but you will have
to wait till the third year B1.2 option Set Theory to find out what the current consensus is.)

Almost all the results in this section are due to the German mathematician Georg Cantor (1845-
1918). The lectures will focus mainly on the notion of countability and in particular that the
real numbers are uncountable. The cardinality of finite sets was discussed in the Introduction
to Unwersity Mathematics course.

Definition 2.1 Let A and B be sets. We say A and B are equinumerous, and write A ~ B,
if there is a bijection f: A — B.

Note that for any sets A, B, C,
A= A;
Ar B < B= A
Ax B, Bx=(C = A=xC.

These properties rely on the identity map being a bijection, bijections being invertible and the
composition of two bijections being a bijection.

Example 2.2 The sets A = {0,1,2,3,...} and B = {1,2,3,4,...} are equinumerous despite
B being a proper subset of A; we can see this by considering the bijection f: A — B given by
f(n)=n+1.

Definition 2.3 A set A is called finite if either A = & or we have that A ~ {1,2,... k} for
some non-zero natural number k. In the former case we say that A has cardinality 0, in the
latter has cardinality k. We denote the cardinality of A by |A|.

Remark 2.4 Note that the cardinality of a finite set is well-defined. There would be issues
with the above definition if it were possible to find a set A and distinct k,l such that

A=~A{1,2,...k}, and A={1,2,...,1}.

To sketch a ‘least criminal’ proof, consider the smallest k for which A ~ {1,2,... k} and
distinct | with A ~ {1,2,...,1}. We could then construct a bijection f from {1,... k} to
{1,...,1}. Remove k and f(k), and (with some adjustment) we’d get two equinumerous sets of
sizesk —1 andl — 1. But k — 1 # [ — 1 which contradicts the minimality of k.

Exercise 2.5 How would you prove the following for finite sets A and B?
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e If AC B then |[A| < |B|.
o If f: A— Bisa l-1 map then |[A| < |B|.
e If g: A — B is an onto map then |A| > |B|.

Remark 2.6 (Off-syllabus) More generally given two (possibly infinite) sets A and B we write
|A| < |B| if there is a 1-1 map from A to B. The Cantor-Bernstein-Schréder Theorem
states that

if |A| <|B| and |B| < |A| then A=~ B,

i.e. if there is a 1-1 maps A — B and B — A then there is a bijection from A to B.

Cantor was the first to publish this result, without proof, in 1887. A later proof by Cantor
relied on the Axiom of Choice, which is a non-stand axiom of set theory, and unnecessary to
this theorem. In 1887 Dedekind proved the theorem, without reference to the Axiom of Choice
but did not publish his result. In 1897 Bernstein and Schroder independently published proofs.

Definition 2.7 A set which is not finite is called infinite.

Remark 2.8 An equivalent definition for a set to be infinite is that the set has an equinumerous
proper subset.

Example 2.9 The sets N, Z, Q, R, and C are all infinite.
Somewhat surprisingly, we will see that the above sets are not all equinumerous.

Definition 2.10 A set A is called countably infinite (or denumerable) if N ~ A We say
A is countable if A is finite or countably infinite. A set which is not countable is called
uncountable. (Note some authors use ‘countable’ to mean ‘countably infinite’.)

We then have:
Proposition 2.11 A set A is countable if and only if there is a 1-1 map f: A — N.

Corollary 2.12 If B C A and A is countable then B is also countable. Equivalently if B is
uncountable then A is uncountable.

Example 2.13 The set of integers is countably infinite.

Solution. A bijection from N = {0,1,2,...} to Z can be described using the list
0,1,-1,2,-2,3, -3, ...

or more formally by setting

f(n):{ (n+1)/2 nisodd

—n/2  niseven

|
We can generalise this approach to show:
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Proposition 2.14 Suppose that A, and As are disjoint and countably infinite. Then A; U A
18 countably infinite.

Proof. As A; is countably infinite then there is a bijection f;: N — A;. We define the map
g: N — AU A; by

- f (Q) if n is even
9(n) —{ f;(%) if n is odd

This map can be readily checked to be a bijection onto A; U A;. =

Remark 2.15 The above proposition still holds even if A1 and Ay are not disjoint; essentially
the same g can be used to list Ay and Ay but skipping over any repetitions as they occur.

Proposition 2.16 Suppose that A and B are countably infinite. Then the Cartesian prodcut
A X B is countably infinite.

Proof. As both sets are countably infinite then they can be listed as
ap, A1, a9, ... bg,bl,bg,...

The elements (a;, b;) of A x B can be put into a grid as below

(Go, bo) - (Gl, bo) (G2, bo) - (G3, bo) (G4, bo)
/ / e /!

(ao, bl) (al, bl) (az, bl) (a3, bl) (a4, bl)
! / e /! e

(Clo, b2) (Cll, b2) (GQ, b2) (Cl3, b2) (Cl4, b2)
/ / / /

(ao, bs) (al, bs) (a2, bs) (a3, bs) (a4, bs)
! /! e /! e

(ao, b4) (al, b4) (CL2, b4) (Cl3, b4) (Cl4, b4)

and then can themselves be listed, in accordance with the arrows, as
(ap,bo), (a1,bo), (ap,b1), (ao,bs), (a1,b1), (az,bo), (as,bo),-..
]
Corollary 2.17 If Ay, Ay, As, ... are countable sets then so is their union |J2,A;.
Proof. As each set A; is countable then it can be listed as
Ai0, Ai1, Qs - - -

By placing the a;; into a square grid as in the previous proof then these can be counted in a
similar fashion, omitting any repetitions of elements that arise. =

Remark 2.18 For those with a particular interest in set theory, note that the above proof relies
on the Axiom of Choice in a subtle way. In listing each set A; we are effectively choosing a
bijection f;: N — A; and to do so for each i requires the Axiom of Choice.
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Notation 2.19 The symbol Xq is used to denote the cardinality |N| of N, or any countably
infinite set. N is aleph, the first letter of the Hebrew alphabet and Ry is read as ‘aleph-null’ or
‘aleph-nought’.

Example 2.20 The set N> = N x N is countable as we have seen. An explicit example of an
injection f: N*> — N is the map
f(m,n)=2m3"

Example 2.21 The set QT of positive rationals is countable as the map taking a rational m/n
in its lowest form to (m,n) is an injection from QT toN? ~ N. So Q = {0}UQTU{—¢q | ¢ € QT}
15 also countable.

However it turns out that not all infinite sets are countable. In particular it is a fact
of considerable importance that R is uncountable. This was first shown in 1874 by Cantor,
producing a second more intuitive proof using his diagonal argument in 1891. Below we give
two proofs. The second is Cantor’s diagonal argument which makes use of decimal expansions
— something we are yet to define and construct (see Example 5.12) — whilst the first proof uses
results we have so far demonstrated.

Theorem 2.22 R is uncountable.

Proof. Proof 1: If R were countable, then so too would be [0,1]. Clearly [0, 1] is not finite as
it contains all % where k > 1. We proceed now with a proof by contradiction to show that [0, 1]
is not countably infinite. Suppose f : N — [0, 1] is a bijection and we write x; = f(k).

e We choose distinct ag, by so that z¢ & [ag, bo]. If 29 # 1 then we can find ag and by such
that xo < ap < by < 1 and if g = 1 then we can take the interval [0, 1/2].

e Having chosen ag, by we then select ay, by so that ag < a3 < by < by and x1 ¢ [a1,b1]. In a
similar fashion to the above if 27 < by we can find a; and b; so that

max (ao,.flfl) <a; < b <b

and if z; > by then we can take the interval [(2a¢ + by) /3, (ag + 2bo) /3], i.e. the middle
third of the previous interval.

e We repeat this process producing reals a; and b; such that
O<ap<ar<ag<---<by<b <b«1
and x; ¢ [a;, b;] for each i.

Now set S = {a; | j € N} which is bounded above by 1 and 7" = {b; | j € N} is bounded below
by 0. So we may define
A=supS and p =infT.
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For all m,n we have a,, < b,. In particular, each b, is an upper bound of S and so A < b,, for
all n as A is the least upper bound of S. So A is lower bound of 7" which means A\ < p as p is
the greatest lower bound of 7. Then

ap, <A< p<b, foralln.

For all n we have \ € [a,,b,] and z,, ¢ [a,,b,] and so A # z,, for all n which contradicts the
fact that f is a bijection. m

Proof. Proof 2 (diagonal argument): We will prove R is uncountable by showing that the
interval (0, 1] is uncountable. To each x in this interval corresponds a unique decimal expansion
0.ayaza3 . .. which does not end in a string of zeros.

Suppose for a contradiction that f: N — (0,1] is a bijection. Then we may uniquely write

out the decimal expansions of f (1), f(2),.... Say:
fQ) = 0rurigrizria. ..
f (2) = 0.rg17r92723724 . . .
f3) = 0r3irsarasraa. ..

Cantor then created a real o not on the list by setting
a = 0.a1a0a3 . ..
where

i 6 1frkk7é6
W = 7 lkak:6

The decimal expansion of « is allowed (in that it doesn’t conclude in a string of 0s) and we see,
for any k, that o # f (k) as « and f (k) disagree in the kth decimal position. This contradicts
the surjectivity of f. m

Notation 2.23 The symbol ¢, which stands for ‘continuum’ (an old name for the real line),
denotes the cardinality of R.

Corollary 2.24 C is uncountable. (In fact, C ~ R, which can be proved using the Cantor-
Bernstein-Schroder theorem )

The following result, known as Cantor’s Theorem. It shows that any set has more subsets
than elements. It further proves that there are ever increasingly large sets that can be formed.

Theorem 2.25 (Cantor’s Theorem, 1891) Let A be a set, and let P (A) be the power set
of A, that is the set of subsets of A. Then

Al <[P (A)].

This means there is an injection from A to P (A) but there is no bijection from A to P (A).
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Proof. The map A — P (A) given by a +— {a} is an injection.
Suppose we have a map f: A — P(A). We show that f cannot be a surjection, and so
cannot be a bijection. We consider the set

X={acAlad fa)},

and will show that X ¢ f(A). Hence f is not onto.

Suppose to the contrary that X = f(x) for some x € A. Then either x € X or x ¢ X. From
the definition of X, we know that x € X if and only if x ¢ f(x) = X. This is the required
contradiction and so X ¢ f(A), as claimed. m

Example 2.26 Let A = {1,2,3} and define f: A — P (A) by
f)=a,  f2)=A4  [fB3)={L2}.
Find the set X C A guaranteed by Cantor’s theorem not to be in f(A).
Solution. As 1 & f(1),2 € f(2),3 ¢ f(3) then X ={1,3}. =
Example 2.27 P (N) ~ R. (This can be proved using the Cantor-Bernstein-Schréder theorem.)

Remark 2.28 In the remainder of the course there will be very few explicit references to the
uncountability of the real numbers. Having said that, it is the uncountability of R that charac-
terises how we describe real numbers and impacts the nature of analysis.

The integers, rational numbers, algebraic numbers (Sheet 2, Fxercise 6) are all countable
sets. Further the computable numbers can be shown to be countable.

A real number is said to be computable if there is a finite length computer program, written
in a finite alphabet, that can (in principle) calculate that real number to any required accuracy.
Essentially the set of computable numbers comprises all real numbers that can be described by
finite means. However Cantor’s proofs can be readily adapted to show that there are countably
many such programs and so countably many computable numbers. This means, to describe the
uncountably many real numbers, some infinite description is necessary — such as infinite decimal
expansions.

Quite what this means is somewhat contentious. In this course we will consider arbitrary
decimal expansions tnvolving 0,1, ...,9, but some logicians and mathematical philosophers take
1ssue with this. In particular, ‘“intuitionists’ would be content only with a decimal expansion
that is defined constructively.

COUNTABILITY 34



3. SEQUENCES AND CONVERGENCE

How do we handle a specific real number in practice? Omne option is to look at successive
approximations. For example, we could have the following approximations for v/2:
14 141 1414
’107 100 1000° "
— namely the truncated decimal expansions for /2 — or we could approaximate = with the
sequence

22 333 103993
T 771067 331027
which are the ‘continued fraction convergents’ of 7. Our first task is to make precise the idea
that these approximations approach the real numbers that they represent.

Definition 3.1 A sequence of real numbers or, more simply, a real sequence is a function
a: N — R.

Definition 3.2 A sequence of complex numbers or, more simply, a complex sequence
s a function a: N — C.

In these definitions we typically take N to be the set {0,1,2,...} or {1,2,3,...}.

Definition 3.3 Given a natural number n, the nth term of the sequence a is a(n) and we
denote this a,,.

Example 3.4 Here are some sequences:

e n—a(n)=(-1)",

e ni— [J(n)=0,
e n—vy(n)=n.
Note, in practice, we often just give the sequence’s values, and say ‘the sequence 1, %, %, o if

it is clear what the function ‘must be’. Or we may be more explicit and write ‘the sequence
(an)$e,’ or ‘the sequence (a,)’ where a,, is a formula in n.

Note also that although n determines the nth value of a sequence, the nth value does not
determine n because the defining function need not be injective. Consider the sequences o and
[ above for example.

The space of real (or complex) sequences is naturally a vector space; in fact it is naturally
an algebra where elements can be multiplied. Suppose that (a,) and (b,) are sequences of real
(or complex) numbers and ¢ € R (or C). We define the sequences

(an + by), (can), (anby), (an/by)

in the obvious, termwise way. All are well defined except possibly the quotient, where we must
insist on all the terms of (b,) being non-zero.
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Example 3.5 a, = (—1)" and b, =1 for alln > 0.

(an + by) = (0,2,0,2,0,2,0,...); (—ay) = (=1)";
(anbn) = (an)§ (ai) = (bn)

3.1 Convergence

Definition 3.6 Let (a,) be a real sequence and L € R. We say that (a,,) converges to L if
Ve>0 dANeN Vn>N Ja,—L|<e.
We also say that (a,) tends to L. We write this as
(an) — L or a, — L as n— oo or just a, — L.

Note than N can, and typically will, depend on . The smaller ¢ 1s, the larger N will typically
need to be.

Definition 3.7 If (a,) — L then we say that L is a limit of (a,) and we write

L= lim a, or just L =lima,.
n—oo

Definition 3.8 We say that (a,) converges or is convergent if there exists L € R such that
(an) — L. In full

(a,) converges <<= 3JLeR Ve>0 INeN Vn>N Ja,—L|<e.
Definition 3.9 We say that (a,) diverges or is divergent if it does not converge. In full
(a,) diverges <= VLeR Je>0 VNeN In=>N |a,—L|>c

Remark 3.10 In the above, € is an arbitrary positive number though instinctively we usually
think of € as being very small. The smaller the value of € the further into the sequence we will
usually have to look to find a value of N that will suffice.

an

3.0¢

25L

Lz.og— ————————————————— o - ®

150
100

05[ [

A;Z

Fig. 3.1 — Graphing a Real Sequence
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In Figure 8.1 we have L = 2 and ¢ = 0.5. Note that ay lies in the range (L — e, L + €) though 2
cannot act as N here as az is not in the required range. It seems, from the figure, that N = 4
would suffice as each of x4, x5, Tg, ... appears to lie in (L —e, L+ ¢). In fact any N > 4 would
be satisfactory, it doesn’t have to be first such N. For € much smaller than 0.5 then the larger
N will need to be.

Looking then at the definition of a, — L, we need to find some N, not necessarily the
smallest, such that an,ani1,an42, ... lies in (L —e, L+ ¢) and we need to be able to do this
for all e > 0.

The definition of (a,) converges’ makes no specific mention of the limit L, and so to demon-
strate this the first task is to determine the candidate limit L and then to show a, — L.

Remark 3.11 We also note from the above that showing
dLeR Vee(0,1) INeN VYn>2N |a,—L|<e¢

s sufficient to show convergence. That is, WLOG, we can assume 0 < ¢ < 1. Previously
we had to concern ourselves with, say, finding the sequence eventually in (L — 2, L+ 2). But
as we can find the sequence eventually in (L — 0.5, L 4+ 0.5) then the sequence is eventually in
(L—2,L+2) as well.

And there’s nothing special about assuming € < 1 here. If it suited us we could assume
0 < e < g for any positive €.

Definition 3.12 (Tails and Neighbourhoods) Let (a,) be a sequence, and let k be a natural
number. Then the kth tail of (a,) is the sequence n v a, i.e. it equals the sequence

(aka Ak41, Af4-25 Ak43, - - )

which we will also write as (anyk),—q 0T (an);, -

For L € R and € > 0, we refer to the set (L —e, L+ ¢) as a neighbourhood of L (or
sometimes a basic neighbourhood of L ).
So we can rephrase ((a,) converges to L’ as ‘any neighbourhood of L contains a tail of (a,).’

In practice, we will not be interested in a specific kth tail so much as in some (unspecified)
tail or all tails past a certain point in the sequence. The tails give a way of focusing on the
long-term behaviour of a sequence ignoring any short-term aberrant behaviour at the start of
a sequence. Whether or not a sequence converges purely depends on the long-term behaviour
of the sequence as we see in the next proposition.

Proposition 3.13 Let (a,) be a real sequence and let L € R. Then the following three state-
ments are equivalent.

(a) (a,) converges (to L);

(b) some tail of (a,) converges (to L);

(c) all tails of (a,) converge (to L).

Proof. We shall demonstrate the implications as (a) implies (c), (c) implies (b) and (b) implies

(a).
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(a) = (c): Suppose that (a,) converges to L and let k € N, ¢ > 0. As (a,) — L then
there exists N such that
Vn>=N la,— L|<e.
For such n, we have n +k > n > N and so
Vn>=N J|anp— L] <e.

Hence, for any k € N, the kth tail of (a,) converges to L.
(¢) = (b): (c) clearly implies (b).
(b) = (a) : Suppose that the kth tail of (a,) converges to L. Let € > 0. Then there
exists N such that
Vn>=N J|ap— L] <e.
Hence
Vn>2N+k l|a,—L|<e
and we see that (a,) converges to L. m

Remark 3.14 (Intersection of tails) We will often find ourselves in a situation where we know
something is true of a sequence (ay) for n = Ni and a second thing is true for n > Nj. Note
that both facts will apply for the tails’ intersection, which is when n > max(Ny, Ns), which is
itself a tail of the sequence.

This argument can be applied finitely many times, but only finitely many. The intersection
of infinitely many tails can be empty — e.g. when Ny = k? say.

Before giving some examples, we show that a limit, if it exists, is unique. So we are justified
in the use of the language ‘the limit’.

Theorem 3.15 (Uniqueness of Limits) Let (a,) be a real sequence and suppose that a, —
L1 and a,, — Ly as n — oo. Then L; = Ls.

Thoughts: Proofs of uniqueness usually begin by assuming non-uniqueness and obtaining a
contradiction or assuming there are two such elements and showing they’re equal. Our proof
is by contractions. If there were two limits, [.; # Lo, then the would be tails of the sequence
in a neighbourhood of each. Provided these neighbourhoods are disjoint, there is nowhere for
the tails’ intersection to be.

Proof. Suppose not and set € = |L; — Ly| > 0. Then /2 > 0 and there exists /N7 such that
n=2N = la,— L1 <¢/2

Likewise there exists Ny such that
n>=Ny, = |a,— Lo| <e/2.

Then for n > max(Ny, N2) both inequalities hold and

Ly — Lo| = [(L1 — an) + (an — Lo))]
< Ly —ap| + |a, — Lo by the triangle law
< €/24¢/2
= |L1— Ly

which is the required contradiction. m
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Example 3.16 Let
2" — 1

2n

Qp = forn > 1.

Then (a,) — 1.

Thoughts: Here the limit is given, namely L = 1, so we don’t have to put any thought into
deciding what the limit is (as in the next example). The statement of (a,) — 1 is

Ve>0 INeN V>N Ja,—L|<e.

To address the first quantifier all we need do is introduce a positive €. Given this €, our task
is to find a suitable N. In the example below we include the necessary ‘back of the envelop’
calculation as part of the proof.

Solution. Note
a, 1| =[1-27" 1| =2""

Let € > 0. We need to find N such that
n>N = 2"<e¢.

But note that 2" > n for all n € N and so if N > 1/e (which we know to exist by the
Archimedean Property) and n > N we have

1
jan =1 =27"= oo <~ < <

S|

1
2n
|

Example 3.17 The sequence

n>4+n+1
ay = ———
3n2+4

18 convergent.

Thoughts: Because the statement for convergence is
dLeR Ve>0 INeN Yn>2N |a,—L|<c¢e

our first work is in deciding what the limit L is. Note the limit was given to us in the previous
example. Our ‘back of the envelop’ argument might go: 1 for large positive n,
n2+n+171+%+n—12 1

=32 ra T 3+% T3

We give no exact definition of &~ (approximately equal to) but none of the above is part of our,
rather informal first thoughts. So % seems the obvious candidate for our limit. To begin the

proof then, looking at the quantifiers we need to address:
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Solution. Let € > 0. Note
n+n+1 1
3n2+4 5‘
3n—1
3(3n2 +4)
3n
3(3n2 +4)
3n

3 % 3n?

1
< —.
n

By the Archimedean Property, there exists N € N such that N > % Then, for any n > N, we
have

1 < 1 < 1 <
a, —-| < —< —=<e¢
3 n N
to complete the proof. m
Example 3.18 Let
(~1)"n?
n= 5 >1).
¢ n?+1 (n=1)

Then (a,,) diverges.
Thoughts: The quantified definition of divergence is
VLeER Je>0 VNeN dn>N Ja,—L| >¢,

so we need to show that any limit real L cannot be a limit.
Looking at the sequence we can see that for large even n

(—1)"n? B 1
n2+1 1+n2

an = ~ 1,

whilst for large odd n we have

_(—1)”n2_ —1
" op241 14n2

~

A natural way forward seems to be to suppose, for a contradiction, that a limit exists and argue
(carefully!) that this limit would need to be both near 1 and —1; this would be the required
contradiction. In fact, if we look in more detail at the sequence we see that a,, > % for all n

and ag,_1 < —%, so we will take € in such a way that 2e < % + % = % which is the closest the

even and odd terms get. Our proof thus begins:

Solution. Suppose, for a contradiction, that a limit L exists and set ¢ = % Then there exists

N such that forn > N
(_1)nn2

— L
n?2+1

< -
2
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In particular, for even n > N we have

n? 1
— L <
n?+1 2’
1 1 1 1 3

— L> —— > =
1+n2 275/4 2 10

Similarly, for odd n > N we have

n? 1

L < =

+nQ+1 2’

:>L<1 1 <1 1—O
2 1+4+n2 2 2 7

The necessary inequalities L > % and L < 0 give us our required contradiction. m

Corollary 3.19 Let a be a real number with a > 1, and k be a positive integer. Then

nk

— — 0 as n— oo.

an
Proof. This is a corollary to Proposition 1.46. There we showed that There is some ¢ > 0 such
that

CLTL

k=
for all n > 1. Replacing k with k + 1 there exists ¢ > 0 such that a™/n*™! > ¢ for all n > 1;
hence

n” 1

0<— < —.

a” cn
Given € > 0, by the Archimedean property there exists N such that }nk / a”‘ <eforalln > N.
That is n*/a"™ — 0 as n — co. ™

Proposition 3.20 (Convergent sequences are bounded) Let (a,) be a real convergent se-
quence. Then (a,) is bounded.

Thoughts: Pick any neighbourhood of the limit and a tail of the sequence of the sequence will
be in that neighbourhood. Only finitely many terms of the sequence aren’t in that tail.

Proof. Say that (a,) — L and set ¢ = 1. Then |a, — L| < 1 for some tail n > N and, in
particular, |a,| < |L| 4+ 1 by the triangle inequality. Then |a,| < M for all n where

M = max{|ao|,|a1],...,|lan-1|,|L| +1} + 1.
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3.2 Complex Sequences

Definition 3.21 Let (z,) be a sequence of complex numbers and let w € C. We say that (z,)
converges L and write (z,) — L orlim z, = L if

Ve>0 INeN Vn>=N |z,—L|<e.
That is |z, — L| — 0 as n — oo.

Corollary 3.22 (Uniqueness of Limits) Let (a,) be a complex sequence and suppose that
a, — L1 and a,, — Ly as n — 0o. Then Ly = Ls.

Proof. The proof of uniqueness is identical to the previous proof for real sequences. m
Corollary 3.23 Let (a,) be a convergent complex sequence. Then the sequence is bounded.
Proof. The proof of boundedness is identical to the previous proof for real sequences. m

Remark 3.24 (Graphing complex sequences) We can represent the behaviour of complex
sequences in C by plotting the terms in the Argand diagram. In Figure 3.2 below, the sequence’s
limit is L = 1+i and ¢ = 0.3. Rather than an open interval (L — ¢, L + €) , the region |z — L| < ¢
is an open disc with centre L and radius . That is the (basic) neighbourhoods of L are discs
centred at L. Again z, — L if every neighbourhood of L contains a tail of (z,). In the figure it
appears that any tail of the sequence from N =5 is inside the sketched disc.

Im

1.4

1.2)

1.0f

o0.8ff

0.6 ®Z3 &

oz, ez

0.4f

0.2

2950 02 04 06 08 0 2 e Re

Fig 3.2 — graphing convergence in C

Theorem 3.25 Let z, = x, + 1y,. Then (z,) converges if and only if (x,) and (y,) both
converge.
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Thoughts: Visually this result is not surprising. For z, to be within a radius € disc of L; +iL-
means T, + iy, is within a square of side 2¢. For a tail of x,, to be within £/2 of L; and a tail
of y, to be within £/2 of L, means the tails’ interection of x,, + iy, is within a quare of side ¢
which itself is within a radius ¢ disc of Ly + iLo.

Proof. Suppose that =, and y, both converge and that ¢ > 0. Set z = limx,,, y = limy, and
L = x + 1y. By the Triangle Inequality

120 — L| = |(zn — ) + 1 (yn — y)| < |20 — 2| + |y — 9.
As x,, — x and y,, — y then we can find N; and N, such that

N17

|z, — x| < /2 whenever n >
lyn —y| < €/2 whenever n > Ns.

So if n > max (N1, N2) we have |z, — L| < e/2 + /2 = ¢ and we see that z, — L.
Conversely suppose that z, converges to L and let ¢ > 0. Then there exists N € N such
that |z, — L| < ¢ whenever n > N. As |Rew| < |w| and [Imw| < |w| for any w € C then

|z, —2z| = |Re(z,—L)| < |z, — L| <& whenever n > N,
| <| n >

lyn —yl = [Im(z, — L) zn — L| < € whenever N.

Hence x,, — x and y,, — y as required. m

(i)
Zn, .
142

Example 3.26 Let

Then z, — 0.

Proof. Let £ > 0. Note

=0=|(e) |-l - ()
Z’I’L_ - = — = _ .
1+ 11+ V2

We have already shown that 27% < ¢ for k > 1/¢ and so (\/§)n <ecforn>2/c. m

B 1
142

Remark 3.27 Note that in the above example Theorem 3.25 is not particularly useful. It is
often simpler to work with a complex sequence as such rather than as a sequence made up of
its real and complex parts. By De Moivre’s Theorem, the real and imaginary parts of z, are

. Re(cos(ﬂ/él)—isin(w/él))” 1 (15,

- on/2 ¢ )

V2 4
cos (m/4) —isin (w/4)\" )" . /nr
BN CUT BT S o)

and it only makes for more work to show that both of these tend to 0.
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Notation 3.28 (Asymptotic notation) Let a,, b, be sequences.
(a) We write a,, = O(by,) if there exist ¢ such that for some N

n=N = |a,| <cby,.

This is referred to as big O.
(b) We write a,, = o(by,) if a,/by is defined and

This is referred to as little o.
(c) We write
an ~ b,

if an/b, — 1 as n — oco. We say that a,, and b, are asymptotically equal.
Example 3.29 As erxamples

e n=0 (n?

e n=o0(n?

e sinn=0(1)

3.3 Infinity

Definition 3.30 (Real Infinities) Let a,, be a sequence of real numbers. We say ‘a, tends to
mfinity’ and write a,, — 0o as n — oo to mean

VM eR dNeN Vn>N a, > M.

Similarly we write b, — —oo if
VM eR INeN Vn>N b, <M.

(Here we tend to think of M as being a very large positive/negative number.)

Definition 3.31 (Complex Infinity) Let z, be a complex sequence. We say that z, — oo if
VMeR dINeN Vn>N |z,|> M.

That is |z,| — oo as a real sequence.
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e Note that the real infinities +oo are not real numbers and complex infinity oo
is not a complex number and should not be treated as such.

e Certainly you should never be writing anything like the following:

lim —~ :gzl, or lim & =2 —1.
n—oon+1 00

The first limit, by a fluke, is correct and the second is false; if properly argued it would
be seen that the second limit exists and equals 0.

Remark 3.32 (Indeterminate forms) If a, — 0o and b, — oo then there is nothing that
can be said about the long term behaviour of a, /b, as seen from the examples above. This can
be expressed as ‘%2 is an indeterminate form’. The other indeterminate forms are
E, 9, 0 x oo, 00 — 00, 0°, 10, oo’
00 0
It can be useful to talk about " type limits but this is only informal, shorthand language to
describe a family of such sequences. For a specific example, a limit might be found using careful
analysis, but there is no single answer for limits of such sequences.
Note that oo + 0o and 0o x 0o are not on the list of indeterminates because if a, — oo and
b, — oo then a,, + b, — oo and a,b, — oo.
Below is a list of examples to show that the other examples above are indeed indeterminates.

Type G, by, form long term | Type | a, b, | form long term
8 : (% " 1 — 1 0 |2 = [ 1/¢/n — 1

a 2 — (=1)" | nolimit | 0° |27 |1 11/2 I 3

0 x o0 % n 1 —1 1 1+% n (1+%) — e
0xoo |4 n’ n — 00 1 J1+5n [1+5)"][—1

’I’L2

Oxoo | (=2)7"|2" (=1)" |molimit |1° |[1+1 |n?| (1+1)" | -0

00 —00 | n 2n —n — —00 o’ |n = | n —1

00— 00 | N n-+sinn | —sinn | no limit | oc® | 2" e — 2

Remark 3.33 (Hyperreals — off-syllabus) There are ways to formally treat infinities and
infinitesimals. One such approach is the hyperreals which were first studied by Edwin Hewitt
in 1948 and greatly extended by Abraham Robinson in 1966. The use of hyperreals is called
‘non-standard analysis’. For more see Sheet 3, Exercises 10 and 11.

Remark 3.34 (Neighbourhoods of Infinity — off-syllabus) Note that a real sequence (a,,)
converges to L € R if every (L — e, L + ¢) contains a tail of (a,). The interval (L —e, L + ¢)
15 called a neighbourhood of L.

Now (a,) — oo if every interval (M, o0) contains a tail of (a,) and we call (M,o0) a
neighbourhood of co. Note that a,, # oo for all n as (a,) is a sequence of real numbers.

By comparison, when we have a real sequence (ay,) in the interal (—oo,r] with a, # r for
all n, then (a,) — r if every interval (M,r) contains a tail of (a,) .

So when we include oo and —oo to make an ‘extended real line’ then we essentially make
the closed interval [—o0, 00 .

INFINITY 45



The situation is rather different with the ‘extended complex plane’. There is only one complex
infinity which is ‘out there’ in all directions. A neighbourhood of oo is a set

{z€C||z| > M}.

Effectively we are wrapping up the complex plane with a single point at infinity and, topologically,
this creates a sphere, commonly known as the Riemann sphere. There are actually quite
detailed connections between the geometry of the sphere and that of the extended complex plane,
which can be made explicit via stereographic projection.

Fig. 3.3 — Stereographic Projection

Let S denote the unit sphere in R3. Thinking of C as the xy-plane, every complex number
P = X + Y1 can be identified with a point @ on S by drawing a line from (X,Y,0) in the
xy-plane to the sphere’s north pole N = (0,0, 1); this line intersects the sphere at two points Q)
and N. We define a map 7 from the sphere S\{N} to C by setting 7(Q)) = P. The points Q
that are near N are mapped to P with large moduli, so it makes sense to extend m by setting
7(N) = oo and then we have a bijection from S to Co, = CU{o0} which is called stereographic
projection.

Specifically this defines

oty z#1
— 1-z
repn)={ 05 7
with inverse
2X 2y X?24+YvY%2-1
—1 .
X +iY) =

T (XY (1+X2+Y2’1+X2+Y2’1+X2+Y2>

But 7 s much more than a simple bijection. It has important geometric properties.

e Under stereographic projection, circles on S which pass through N correspond to lines in
C, and circles on S which don’t pass through N correspond to circles in C.

e The map 7 is conformal, meaning it is angle-preserving.
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e The Mobius transformations z — (az + b)/(cz + d), where ad # be, are bijections of Cy,
which correspond to the conformal bijections of the sphere.

Returning now to real and complex sequences:

Proposition 3.35 (a) Let (a,) be a sequence of positive real numbers. The following are
equivalent:

(i) a, — o0 as n — oo;

(i1) 1/an, — 0 as n — oc.

The equivalence fails if the (a,) are simply non-zero.

(b) Let (a,) be a sequence of non-zero complex numbers. The following are equivalent:

(i) a, — o0 as n — oo;

(i) 1/a, — 0 as n — oco.

Proof. (a): (i) = (ii) Let ¢ > 0 and set M = 1/¢. As a,, — oo then there exists N such that
a, > M for all n > N. But then 0 < 1/a,, < ¢ for all n > N and 1/a, — 0.

(a): (i) = (i): Let M > 0and ¢ = 1/M. As 1/a, — 0 then there exists N such that
1/a, < ¢ for all n > N. But then a,, > 1/e = M for all n > N and a,, — oc.

(a): If we set a, = (—1)"n then 1/a, = (—=1)" /n — 0 but a, - oo as ay, — 00 yet
Qop4+1 — —OQ.

(b) : (i) = (ii) Let € > 0 and set M = 1/e. As a, — oo then there exists N such that
la,| > M for all n > N. But then |1/a,| < e for all n > N and 1/a,, — 0.

(b): (ii) = (i): Let M > 0 and ¢ = 1/M. As 1/a, — 0 then there exists N such that
|1/a,| < e for all n > N. But then |a,| > 1/e = M for all n > N and a,, — co. m

Example 3.36 Let (a,) be a real sequence such that a, — oo as n — oo. Prove, or disprove
with a counter-example, each of the following statements.

(a) If (b,) is a bounded, non-zero sequence then a,, /b, — 0.

(b) If (by) is a bounded, positive sequence then a, /b, — 0.

(¢) If by, is a non-zero sequence which converges to L > 0 then a, /b, — 0.

Solution. (a) False. We can see this by taking a,, = n and b, = (—1)". Then a, /b, = (—1)"n
does not tend to co. [Note that part (a) is a trivial consequence of (b) and so it would have
made for an odd question if (a) had been true.]

(b) True. As b, is bounded then there exists K > 0 such that 0 < b, < K for all n. Let
M € R. As a,, — oo then there exists NV € N such that for all n > N we have a,, > M K. So
for all n > N we have a, /b, > (MK) /K = M and we see a, /b, — oc.

(c) True. Taking ¢ = L/2 > 0 we see that there exists N with |b, — L| < L/2 for alln > N.
In particular, 0 < L/2 < b, < 3L/2 for n > N. By the previous part, the tail of (a,/b,)%
tends to oo and hence so does the whole sequence (a,/b,). =

Example 3.37 Let (a,) be a real sequence.
(a) If a,, — oo as a real sequence, need a, — oo as a complex sequence?
(b) If a,, — oo as a complexr sequence, need a, — oo as a real sequence?
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Solution. (a) True: As a, — oo then |a,| — oo which is equivalent to a,, — co as a complex

sequence.
(b) False: A counter-example is a, = (—1)"n. m

Example 3.38 (Harmonic numbers) The nth harmonic number is

1 1 1
H,=1+=-+=+4--+=
MR R
where n > 1. Show that H,, — 00 as n — oo.
Solution. Note that
Hy = 1+ (2o (b v Dy (Ll
» = 2 " \3 "4 5 8 k-1 ok
S T (L [ (TSI R
2 4 4 8 8 2k 2k
S P S
N 2 2 2 2
k
= 14 —.
+2

Given M > 0 there is a positive integer k such that Hox > 1+ k/2 > M. Hence H,, > M for

all n > 2% as H, is increasing. m
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4. THE ALGEBRA OF LIMITS

Reassuringly limits respect important relations and algebraic operations that mean we can
don’t need to go back to first principle definitions of convergence and divergence to analyze
more complicated sequences.

Theorem 4.1 (Limits respect weak inequalities) Let (a,) and (b,) be real sequences such
that (a,) — L and (b,) — M. If a, < b, for all n, then L < M.

Thoughts: A proof by contradiction. If L > M then there would be a tail of the a, in a
neighbourhood of L and a tail of the b, near M. If these neighbourhoods are small enough to
be disjoint, then a,, > b, in the tails’ intersection. Note ¢ is chosen in the proof below so that
(L — ¢, L+ ¢) is disjoint from and to the right of (M —e, M +¢).

Proof. Suppose, for a contradiction, that L > M. Set e = (L — M) /2 > 0.

As a,, — L then there exists Nj such that n > Ny — |a, — L| < ¢;
as b, — M then there exists Ny such that n > Ny = |b, — M| <e.

So
L
n > N — ; =L—¢e¢<a,
L+ M
n = Ny — b, <M+e= J;

which contradicts a,, < b,, for all n. =

Remark 4.2 Note lim does not respect strict inequalities: e.g. % > 0 for all n > 1 but

0= lim% > 1im 0 = 0 s false.
Note in the above proof that n > max(Ny, No) is the intersection of both tails, so both
inequalities hold there.

A second important result that helps us ignore or bound unimportant expressions in a
sequence is the following. This result is also referred to as the ‘squeeze theorem’.

Theorem 4.3 (Sandwich Rule) Suppose that x,, < a, < y, for all n and that
L =limz, = limy,.

Then a, — L as n — oo.
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Thoughts: Given any neighbourhood of L, there will be tails of (z,,) and (y,) in that neigh-
bourhood. These tails bound a tail of (a,,) .

Proof. Let ¢ > 0. Then there exist N; and N, such that

T, — L > —¢e forall n > Ny,
=

yn — L < e forall n > Ns.

So for n > max (N1, N3) we have
—e<xp,—L<a,—L<y,—L<e¢,
which shows that a,, — L also. m

Example 4.4 Show that the sequence

2n + cos(n?)
U = gt
3n? — sin(n?)

converges.
Solution. We note for all n > 1,

_ 2
1 n <2n 1< :2n+cos(n)<2n—|—1<3n 3

%:%\m\an 37’L2—Sin(n3> \3n2_1 \2n2 27’L

As the LHS and RHS both tend to 0 then a,, — 0 by sandwiching. m

Most sequences can be built up from simpler ones using addition, multiplication, etc. The
algebra of limits (AOL) tells us how the corresponding limits behave. Throughout the following
(a,) and (b,) denote real or complex sequences.

Proposition 4.5 (AOL: Constants) If a, = a for all n, then a, — a.
Proof. For any ¢ > 0,take N=1;n> N = |a, —a|=0<c. m

Proposition 4.6 (AOL: Sums) If a,, — a and b, — b then a,, + b, — a + b.

Thoughts: We need to show that |(a, + b,) — (a + b)| is eventually small given that |a, — a]
and |b, — b| are each eventually small. The triangle inequality helps here by noting

l(a, +b,) — (a+b)| < |a, — al + |b, — b

In the following proof we use two standard techniques of analysis. We know two facts which
hold in two tails of a sequence, so we take the tails’ intersection where both are true — we’ve
employed this idea before. The second issue is that we need a final inequality to hold within a
margin of €. But the final inequality relies on two previous inequalities. The idea is to achieve
each of the first two inequalities with margins of £/2 and then the triangle inequality, within
the tails’ intersection, shows the final inequality holds with a margin of £/2 4+ ¢/2 = «.
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Proof. Let € > 0. Then £/2 > 0 and so

Ny n > N = la,—al <eg/2,

Put N3 = max(Ny, N3). Then

n> N3 = (an +b,) — (a+b)]
< lap—al 4+ |bn—0b Dby the A law
< e/2 + /2

€

Proposition 4.7 (AOL: Scalar Products) If a, — a asn — oo and A\ € R (or C) then
Aa, — Aa.

Proof. Let ¢ > 0. Then ¢/ (J]A\] + 1) > 0 and so there exists N such that |a,, — a| <&/ (|]A] + 1)

for all n > N. Hence
|\l e

Al +1
for all n > N. (Note that we use ¢/ (|A| + 1) rather than ¢/ |\| to avoid the possibility of
dividing by zero.) =

|Aa, — Aa| = || |an, — a| <

<e€

Corollary 4.8 (AOL: Differences) If a,, — a and b, — b then a,, — b, — a — b.
Corollary 4.9 (AOL: Translations) If a,, — a and ¢ € R (or C) then a, + ¢ — a + c.
Lemma 4.10 If x,, — 0 and y, — 0 then x,y, — 0.

Proof. Let ¢ > 0. By Remark 3.11, WLOG we can further assume that ¢ < 1. Then

AN, n > Ny = |z.| <el,
ElNQ n = N2 — ‘yn|<€l'

So if n > max(Ny, N3) we have
|2yl < |2l lyal < €” <,
which completes the proof. m
Proposition 4.11 (AOL: Products) If a,, — a and b, — b then a,b, — ab.
Proof. Note that
anb, —ab = (a, — a)(b, — b) + b(a, — a) + a(b, — b),

that (a, —a) (b, —b) — 0 by the previous lemma, that b(a, —a) — 0 and a (b, —b) — 0 by
Proposition 4.7. Hence a,b, — ab by Proposition 4.6. m
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Proposition 4.12 (AOL: Reciprocals) If a,, — a # 0 and a,, # 0 for alln, then1/a, — 1/a.

Thoughts: Our aim is to show
1 1

an, @

N a, — al

|an||al
is arbitrary small in a tail, and we know |a,, —a| is small. The |a| in the denominator is non-zero
and constant and so is not problematic. At first glance though, whilst |a,| is non-zero it might
be arbitrarily small, which would be problematic. But remembering a,, — a # 0 then we can
focus on a tail of a,, suitably close to a. If a,, is within |a| /2 of a, then a,, will be at least |a| /2
away from zero.

Proof. Let € > 0. As a # 0 then |a| /2 > 0. So there exists N such that for n > N; we have
la, — a| < |a| /2. By the triangle inequality
la| < an| + |a = an| = [an| + [an — a
and so |a,| > |a| /2 and |1/a,| < 2/]a].
Further, as |a|*c/2 > 0 then there exists N, such that for n > N,

5
|a, — a| < |a|® 3

For n > max(Ny, N3) we have

1 1

a, a

o 2 1
= —]a al < <|a|2 6) €.

 an|la] 2/ al la]

Corollary 4.13 (AOL: Quotients) If a, — a, b, — b, and b, # 0 for alln and b # 0, then
an /b, — a/b.

Proof. This follows from Propositions 4.11 and 4.12. =
Proposition 4.14 (AOL: Modulus) If a,, — a then |a,| — |a|.
Proof. By the reverse triangle inequality

0 < llan| — [all < la, —a| =0
So ||a,| — |a|| — 0 by sandwiching. =

Example 4.15 Show

n24+n+1 1
p = —— — —.
3n? 44 3

Solution. We write
n?+n+1 14,45 14040 1

= — =
3n? + 4 3445, 3+0 3
by the algebra of limits, specifically noting
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% — 0 by the Archimedean property;

# — 0 by Proposition 4.11;

1 — 1 by Proposition 4.5;

1+ <+ % — 1 by Proposition 4.6;

3+ % — 3 by Proposition 4.6;

3+1i — % by Corollary 4.13;

® a, — % by Proposition 4.11.
|
Example 4.16 (Fibonacci numbers) Suppose Fy = 1, Fy, = 1, and we recuresively define
Foo=F,1+ F,, forn>1.

It is easy to prove by induction on n that there is then a unique sequence of natural numbers
satisfying these requirements. They are called the Fibonacci numbers.

Proposition 4.17 F,/F, is convergent.
Proof. By induction, F, > 1 for all n. So forn > 1
(Fn+2> 14 <Fn+1)_1'
Fn+1 Fn
Write x,, = F,.1/F, for n > 1. Note that F,, > 0 for all n. Then

r1=2 and x,11 =1+ 1/x,.

Suppose that we did have convergence and that x,, — L so that x,,.;1 — L. Note L > 1 > 0 as
Fop1 > Fyandso 14 .- — 1+ ¢ by AOL. So

1
L—142
T

by the uniqueness of limits. Hence L? — L — 1 = 0 giving L = %‘?’ But L > 1 giving

1++5
2

L= > 1.

All the above was based on the assumption that z, converged. We will show that z,, is

convergent to #, which we will denote ¢, and is called the golden ratio.
1 1 1 1 1 n—
T —p=lt——p=l4——1l-—=———=0F
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as > =@ +1. So

mecel L L]
Tn — @ |$n||90| PIn b ¥
as x,, > 1 for all n. By induction we get
1 1
- STh — P S ey
2 2

1
and are done by the sandwich rule, since ¢ > 1 and so £— — 0. =
SOTL

Example 4.18 Which of the following statements are true of the given non-zero real or complex
sequence (ay)? Provide a proof or a counter-example.

(a) If (ay,) converges then ani1 — a, — 0.

(b) If apy1 — a, — 0 then (a,) converges.

(c¢) If (a,) converges then a,1/a, — 1.

(d) If a, — L # 0 then ani1/a, — 1.

(e) If api1/an, — 1 then (a,) converges.

(f) If ani1/a, — 1 and (a,) is bounded then (a,) converges.

Solution. Let H,, denote the nth harmonic number.
(a) True: If a, — L then by the algebra of limits a,,y; — a, — L — L = 0.
(b) False: Let a,, = H,. Then a,41 —a, = (n+1)"' — 0 yet H,, — oo (see Example 3.38).
(c) False: Let a, = (=1)" /n so that a, — 0. However a,1/a, = =15 — —1.
(d) True: If a,, — L # 0 then by the algebra of limits a,41/a, — L/L = 1.
(e) False: Let a, = n. Then a,,1/a, =1+n"t — 1 but a, — .
(f) False: Let a, = e'fi». Then

an+1/an _ eZ(HnJrl—Hn) — ez/(n—l—l) N 60 — 17

as n — oo but eI* does not converge as H,, — co. =

Remark 4.19 The necessary AOL properties to justify the answer to (f) won’t be proven until
Analysis II in Hilary Term. The notion of a continuous function will be defined there and we
will see that if a, — L and f is continuous then f(a,) — f(L). In fact, this property is an
alternative definition of f being continuous.

As was commented in Remark 3.32, there are several indeterminate forms including oo, so
we cannot expect any AOL results re

00 — 00, —, 0 x oo.
00

But there are some cases where AOL-like results are true.
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Proposition 4.20 (AOL: Infinity) Let (a,) and (b,) be real sequences.
(a) If a,, — oo and b, — oo then a, + b, — occ.
(b) If a,, — oo and b, — oo then a,b, — oo.
(c¢) If a,, — oo and b, — —oo then a,b, — —o0.
(d) If a, — oo and and (b,) is bounded then a, + b, — oc.
(e) If a,, — oo and and (b,) is bounded then b, /a, — 0.
(f) If a,, — oo and b, — L > 0 then a,b, — oc.

Solution. These are left as exercises. m

Proposition 4.21 (AOL: Asymptotics) Let (a,,), (o), (by) and (5,,) be real sequences.
(a) If an, = O (o) and b, = O (B,,) then ayb, = O(a,53,,).
(b) If a,, = O (a,) and b, = O (p,,) then a, + b, = O(max(|a,|,|5,])).
(c) If ay, ~ ,, and b, ~ B, then apb, ~ a0,
(d) If ap, ~ o, and b, ~ [, then a, /b, ~ a,/B,,.

Solution. These are left as exercises. ®m

Remark 4.22 (The Relative Orders of Terms) Our first thoughts, when considering the
long term behaviour of a sequence which has various components to it, should be on which terms
dictate the sequence’s behaviour in the long term. Usually, for this, we need to appreciate the
relative magnitudes of the terms as n becomes large. As a rule of thumb, when it comes to the
long term behaviour of functions

bounded trig functions and constants < logarithms < polynomials < exponentials.
More precisely:
e |cosn| <1 and |sinn| < 1 for all n.
e For any rational ¢ > 0, logn/n? — 0 as n — oc.
e For any a > 1 and polynomial p then p(n) /a™ — 0 as n — oo.

The third bullet point is a consequence of Corollary 3.19. The second bullet point is essen-
tially the same result. If we write n = et then

1 t
Ogn:. :0

lim

! 7
n—oo N4 t—o0 (QQ)

as el > 1.

Example 4.23 Qualitatively describe the long-term behaviour of the following sequences.

This will tend to 0 (albeit in an oscillatory way) as the dominant term is 2".
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2n+3
COS 7.
3n+ 8

At first glance the polynomial terms seem dominant. But being of the same degree, and
working to counter one another, we see (2n+3)/(3n+8) — 2/3. So actually it is the
oscillating behaviour of cosn which stops the sequence from converging.

logn 2" —n
cos .
vn n?+3n—6
As|cosf] < 1 for all 6 then the cosine takes the sting out of the term (2™ — n) / (n? 4+ 3n — 6)

which is just a red herring. In the long term /n dominates logn and logn/v/n — 0. The
messy cosine term has no crucial effect on this behaviour.

o How would you make these first thoughts into rigourous proofs using the algebra of limits,
sandwich rule, etc.?
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5. MORE ON SEQUENCES

5.1 Monotone Sequences

We now turn to a crucially important kind of sequence.

Definition 5.1 Let (a,) be a real sequence.
We say (a,) is increasing if a,, < a,, whenever n < m.
We say (a,) is decreasing if a,, > a,, whenever n < m.
We say (a,) is strictly increasing if a,, < a,, whenever n < m.
We say (a,) is strictly decreasing if a,, > a,, whenever n < m.
We say (a,) is monotone if it is either decreasing or increasing.

Example 5.2 Let a, = n. Then (a,) is increasing. So is a, = (2n+1)*.
The sequence a, = (—1)" is not monotone as a; < az and ay > as.

Theorem 5.3 Let (a,) be an increasing, bounded above sequence. Then (a,) converges.

Proof. Let L = sup{a, | n € N}, this exists by the completeness axiom as the set is bounded
above and non-empty. Let € > 0. By the approximation property there exists N € N such that

L—cs<an<L.
As the sequence is increasing then for any n > N
L—e<any<a, <L,

and so
Vn>=N la,— L|<e.

That isa,, — L. m

Corollary 5.4 An increasing real sequence either converges or tends to infinity.

Proof. Let (a,) be an increasing real sequence. If it is bounded above, then (a,) converges.
Otherwise for any M > 0 then M is not an upper bound to (a,). Hence there exists N € N
such that ay > M. Now as (a,) is increasing a,, > M for all n > N. That is a,, — co. =
Corollary 5.5 Let (a,) be a decreasing, bounded below sequence. Then (a,) converges.
Proof. (—a,) is increasing and bounded above so —a,, — L by the previous result. Hence

a, — —L by AOL. m
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Remark 5.6 Theorem 5.3 is in fact equivalent to the completeness axiom. That is, the axioms
of an ordered field together with Theorem 5.3 characterize the real numbers. Details are left to
Sheet 4, Ezercise 6.

The next theorem, the Nested Intervals Theorem, together with the Archimedean property,
form another alternative to the completeness azxiom.

Theorem 5.7 (Nested Intervals Theorem — Cantor, 1872) Let I, = |an,b,] be a nested
sequence of closed bounded intervals. (That is I,,+1 C I, for alln >1.)

(a) Then NI, # 2.

(b) If I(1,,) = b, — a, — 0 as n — oo then (), I, is a singleton.

(c) Note the theorem need not hold if the intervals are bounded but not closed, e.g. I, =
(0,1/n), or closed but not bounded, e.g. I, = [n, o).

Proof. (a) As [ani1,bn11] C [an, by] then a, < apy1 < bpy1 < by So (ay,) is an increasing
sequence which is bounded above, and (b,) is a decreasing sequence bounded below. This
means both sequences converge and set a = lima,, and 8 = lim b,,.
As a,, < a < < by, for all m,n, then [, §] C I, for all n and so () I, # @.
(b) As b, — a,, > B — «a for each n and b,, — a,, — 0 then o = . Certainly o € (;° I,. And
if ,y € ;" I, with < y then
O<y—x<b,—a,

for all n, a contradiction as b, — a, — 0. Hence (° I, = {a}. =

Example 5.8 (a) Let x € R. Show that z™/n! — 0.
(b) Deduce that 2" /n! — 0 for z € C.

Solution. (a) If x = 0 this is clear. Otherwise set a,, = |z|" /n! and note

n+1 |ZE|

ans1 1! || B
a,  (n+Dz[" n+1

— 0 asn— oo.

So in some tail a,1/a, <1 and (a,) is eventually decreasing and bounded below by 0. Hence

a, converges to some limit L.
Gpi1 = =1 a
n+1 n+ 1 n-

We have
Letting n — oo and applying AOL, we have

L=0xL=0,

as required.
(b) Now take z € C. By (a) |2"/n!| = |z|" /n! — 0 and hence 2" /n! — 0. =

Example 5.9 (a) Let a > 1. By considering the iteration

1 a
Ty = a, xnﬂzi(xn—i—x—) forn >0,

show the existence and uniqueness of \/a.
(b) Deduce the existence and uniqueness of \/a for 0 < a < 1.
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Remark 5.10 This iteration was known to the Babylonians for finding square roots. From a
modern perspective it is an instance of the Newton- Raphson method applied to the function

f(x) =2 —a.

4

#

Xn+1 Xn

y=f(x)

Fig. 5.1 — Newton-Raphson method

The Newton-Raphson iteration seeks to solve an equation f(x) = 0. It takes an estimate x,, for
a root and replaces it with

n

This estimate x,11 s achieved (as in Figure 5.1) by drawing the tangent to the curve y = f(x)
at the point (z,, f(x,)) and intersecting it with the x-axis.
In this particular case f(x) = 2* — a and so

2 —a 1 n a
.In — ‘/ETL — = — ‘/ETL R .
1 2x, 2 Ty

Solution. (a) I claim the following to be true of the sequence (z,,):
(i) a < 22 for all n;
(ii) (x,) is decreasing;
(iii) L = lim z,, satisfies L? = a.

(i) As zop = a then (i) is true forn =0 as a> —a=a(a—1) > 0. If a < 22 then

2
9 1 a
Tpip — 0 = {5(:1:”—1-%—)} —a

= o [+ - 0]
= é [xi — 2a72 + a2]
— é [xn — af >0
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Hence (i) follows by induction.

(ii) Note that

by (i).
(iii) So (x,) is decreasing and bounded below and therefore converges. Let L = limz,.

Letting n — oo in the iteration
1 a
Tn+1 = 5 | Tn + —
2 Ty

1 a
L:—<L —)
s\ T

by AOL and the uniqueness of limits. This rearranges to L? = a. As z,, > 0 for all n then
L = \/a (as opposed to —+/a).

Now L is a root of 22 = a. As 2?2 —a = (v — L)(x + L) then we see that the two roots of
22 — a are +L. From this we also see that the two square roots of a are +/a, showing there is
a unique positive square root of a.

we get

(b) Clearly 0 is the only square root of 0. Say now that 0 < a < 1 so that a™! > 1. By (a)

1\ 2
2 _ _ -1
T =a — (—) =a —

1
— =+Vval,
x T

~1
only one root of which is positive. Hence /a is uniquely defined with \/a = ( a*1> . u

Remark 5.11 (Cobwebbing) The previous iteration can also be achieved via cobwebbing which
aims to solve equations of the form x = f(x). The previous Newton-Raphson iteration took the

form
1 n a
Tpi1 == | Ty + —
+17 5 .

which, if it converges, leads to a solution of x = f(x) where

f0=3(e+2)
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y=X

y:f(x) (X4X1) (Xgx1)

Fig. 5.2 — Cobwebbing

We sketch y = x and y = f(x) on the same axes. Given an initial estimate xy we draw a
vertical line to the curve to get to (zo,x1) and then move horizontally to (x1,x1) and so on to
(x1,22), (T2, 22) , (T2, x3) ,.... If the sequence (x,) converges to «, say, then « is a fized point.
That is o = f(«); this essentially follows by AOL.

We can see from Figure 5.2 how any sequence beginning with xoy > \/a will monotonically
decrease to v/a. Any sequence beginning with 0 < xo < /a will jump to 1 > /a and then
decrease again to \/a. Of course, the figure itself proves nothing but provides useful qualitative
information for what needs proving.

In this particular case the iteration converges quickly. As f(a) = a then

Tny1 —a = fl(a)(z, — a),

and for this particular iteration —1 < f'(a) <1 as

f’(ﬁ):%<1_<£>2>20

When |f' ()| < 1 the the fized point « is said to be an attracting fixed point.

The convergence will be monotonic if 0 < f'(«) < 1 and will be oscillatory if —1 < f'(«a) <
0. When |f' ()] > 1 the fized point is called repelling and the iteration will not generally
converge.

We conclude this section by defining the decimal expansion (and more generally base expan-
sions) for a real number. For uniqueness we do this in such a way that the truncated decimal
expansions form a strictly convergent sequence converging to the real number in question.

Example 5.12 (Decimal Expansions) Let 0 < © < 1. Then there is a unique sequence of
integers ay, as, as, . .. such that
(a) 0 < a, <9 for each n;
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(b) for each n,

(¢)

Solution. We will proceed inductively. The integer a; needs to satisfy
r——< —<z — 10z — 1 < a; < 10z.

The interval [10z — 1,10x) contains a unique integer a; and further, as
—1<10z -1<a; <10z <10

then 0 < a; <09.
Suppose now, as our inductive hypothesis, that a;,as,...,ay have been uniquely found

satisfying (i) and (ii). Then
N+1

which rearranges to

1 ag aAN+1 ag
T qovE T 2L qor S v <7 g
k=1

and then to

( 0N+1 ZloNJrl k > ~-1< ant1 < ( 0N+1 ZloNJrl k )

There is a unique integer in this range, and we set ay.; to be this integer. Further, by
hypothesis,

ant1 > 107 <I — ZivzllO_kaO —1> -1,
1
any1 < 10N <$ — Z{lelo—’“ak> <10V x — = 10.

10V
So 0 < anyy1 <9 as required. Finally, letting n — oo and applying the sandwich rule to

we find

This sequence is called the decimal expansion of = and we write
xz = 0.a1a9as3 . ...
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Remark 5.13 In the sense of the above example % would have decimal expansion 0.1999. ..
rather than 0.200 . .. To avoid any ambiguity for those reals with two different decimal expansions
(in the usual sense) the above example chooses decimal expansions whose terminating decimal
expansions never equal the real in question.

A similar argument to that above shows the uniqueness for any base b > 2 expansions. As

with the example of % in decimal, in binary, b = 2, we would have % = 0.0111... rather than
1

= =0.1.

2

5.2  Subsequences

Example 5.14 Let a, = n—12 so that

(o) (1111
=\ 1625 )

We can get new sequences by selectively looking at

everything after second place (é, %, %, . )
all odd terms (1§ 35---)
all prime terms (i,%,%,ﬁa---)

etc.. These are examples of subsequences of (a,) .

Definition 5.15 Let (a,) be a sequence. We say that a sequence (b,) is a subsequence of (ay,)
if there is a strictly increasing sequence of natural numbers (f (n)) that (b,) = (apw)). (There

may be more than one such function f.) Often we write n, for f(r) and write a subsequence

as (a’n'r> or (anr>f‘O:1 .

Example 5.16 In the previous example n, = r + 2, n, = 2r — 1 and n, = p, (the rth prime)
respectively.

Example 5.17 Let

(an) = (n*)=(1,4,9,16,...);  (b,) = (0) =(0,0,0,0,...);
(f(n) = (2n)=1(2,4,6,8,...); (g(n)=02n—-1)=(1,3,5,7,...).
Then
(af(”)) = (aQn) = (47 16, 36, 64, . . ) ) (ag(n)) - (a2n+1) = (17 9,25,49,.. ) ;
(bf(n)) = <b2n) = (07 07 07 Oa - ) ) (bg(n)) = (b2n+1) = (0, O, O, 0, .. ) .

Proposition 5.18 Suppose that the sequence (a,) converges to L. Then every subsequence
(an,) also converges to L.
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Proof. Let ¢ > 0. Then there exist /N such that
nzN = J|a,—L|<c¢
As r — n, is strictly increasing then n, > r for all  and so
r=N = n >N = |a, —L|<c¢
and hence a,, — Lasr —oo. m

The converse in the form ‘if all subsequences of (a,) converge to L then (a,) — L’ is true
because the whole sequence is a subsequence of itself. However, just one subsequence converging
is clearly not enough to guarantee convergence of the whole sequence. For example a,, = (—1)"
which is divergent despite as, — 1.

Theorem 5.19 Let (a,) be a real sequence. Then (a,) has a montone subsequence.
Proof. We consider the set
V={keN|m>k= a, < a}.

This is the set of ‘scenic viewpoints’ — were we to plot the points (k,a;) in R? then from a
scenic viewpoint we could see all the way to co with no greater a, getting in the way. There
are two cases to consider: the set V' is either finite or infinite.

e V is infinite. Listing the elements of V' in increasing order: k; < ko < ... we see (ay, ) is
a subsequence with
r>s =— k. >k = a <a,

That is (ay,) is strictly decreasing.

e V is finite. Let m; be the last viewpoint and consider a,,, 1.

As my + 1 is not a viewpoint then there exists mg > m; + 1 such that a,,, > an,, .

1. As my is not a viewpoint then there exists ms > mqy such that a,,, = an,.

Continuing in this way and we can generate an increasing sequence (an, ) -
[

Theorem 5.20 (Bolzano- Weierstrass Theorem, Bolzano 1817, Weierstrass c. 1861)
Let (a,) be a real bounded sequence. Then (a,) has a convergent subsequence.

Proof. By the previous theorem (a,) has a monotone subsequence which is also bounded. By
Theorem 5.3 this subsequence converges. m

Theorem 5.21 (Bolzano-Weierstrass Theorem in C) A bounded sequence in C has a
convergent subsequence.
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Proof. Let (z,) be a bounded sequence in C. If we write z, = x, + iy, then we also have
that (z,,) and (y,) are bounded sequences. By the Bolzano-Weierstrass Theorem (z,,) has a
convergent subsequence (x,, ) which converges to Ly, say. As (y,,) is also bounded then it in
turn has a convergent subsequence (Z/nkr) which converges to Lo, say.

As (xnkr) is a subsequence of (z,,) then it too converges to L, by Proposition 5.18. We
then have that (me) converges to Ly +iLs as its real and imaginary parts converge (Theorem
3.25). m

Here is alternative way of phrasing the Bolzano-Weierstrass Theorem.

Definition 5.22 Let S C R We say that x is a limit point or accumulation point of S if
for every € > 0 there exists y € S, such that

0<|y—z|<e.
Note that x itself need not be in the set. The set of limit points of S is denoted S'.

Example 5.23 The set of limit points of (0,1) is [0, 1]

The set of limit points of Q is R.

The set of limit points of Z is @.

The set of limit points of {1, %, %, .. } is {0} .
Remark 5.24 The Bolzano-Weierstrass Theorem can be rephrased as: ’An infinite bounded
subset of R or C has a limit point’. Given such a set, S, then we can select a sequence ()
of points of S and by the Bolzano-Weierstrass Theorem this sequence has a subsequence (x,, )
which converges to a limit L. It is not hard to show that L is then a limit point of the set
{Tny, Tngy Ty, ..+ TS and so of the set S.

5.3 The Cauchy Convergence Criterion

A first difficulty in proving that a sequence converges is in investigating the limit. Cauchy
saw that a (real or complex) sequence would converge if and only if the sequence’s terms got
sufficiently close. This makes it possible to demonstrate convergence without knowing the limit.
Further, Cauchy’s insight can be used to construct the reals from the rationals so that we could
show the existence of a complete ordered field rather than assuming that a field satisfying all
our axioms exists (see Remark 5.34).

Definition 5.25 Let (a,,) be a real or complex sequence. We say that (a,) is a Cauchy se-
quence, or simply is Cauchy, if

Ve>0 INeN VYVmn>N |a,—a,] <e.

Note that the definition makes no mention of a limit, but we shall see that this criterion is in
fact equivalent to convergence in R or C (but not in Q!).
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Proposition 5.26 A convergent sequence is Cauchy.

Proof. Let (a,) be a convergent sequence with limit L, and let ¢ > 0. Then there exists a
natural number N such that

lap, — L| < e/2 forall k > N.

So for all m,n > N,
€

7 —

|y — an| < |am — L]+ |L — a,] < %—f—
by the triangle inequality and hence (a,) is Cauchy. m

Proposition 5.27 A (real or complex) Cauchy sequence is bounded.

Proof. Let (a,) be a real or complex Cauchy sequence. Taking ¢ = 1, we know there exists N
such that
la, —an| <1 whenever n > N.

Hence, by the triangle inequality
la,| < lan| +1 for all n > N.
The above inequality bounds all but finitely many terms. So for all m we have
|am| < max{lail,las|, ... Jan-1], an] + 1}
and we see that the sequence is bounded. =

Lemma 5.28 If (a,,) is a real or complex Cauchy sequence such that a subsequence (a,, ) con-
verges to L, then (a,) converges to L.

Proof. Let € > 0. So there exists K € N such that
la,, — L] <e/2 whenever k> K.
As the sequence (a,,) is Cauchy then there exists N € N such that
la, — am| < €/2 whenever m,n > N.

If we select take k& > max (K, N) so that ny > N then we have, by the triangle inequality

lan, — L| < |ay, — an, | + |an, — L| < §+§:€ foralln > N
and the proof is complete. m

Theorem 5.29 (Cauchy, 1821) A real or complexr Cauchy sequence is convergent.
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Proof. Let (a,) be a real or complex Cauchy sequence. By Proposition 5.27 (a,) is bounded,
and so by the Bolzano-Weierstrass Theorem (a,) has a convergent subsequence (a,, ). By the
previous lemma (a,) converges to the same limit. m

We have then establishded the Cauchy Convergence Criterion for real and complex
sequences:
(ay) is convergent <= (a,) is Cauchy.

Remark 5.30 The Cauchy convergence criterion, together with the Archimedean property, is
equivalent to the completeness axiom.

Example 5.31 The terminating decimal expansions of /2, namely the sequence (Gn):
1, 14, 141, 1414,...

is a sequence of rational numbers which is Cauchy (for example, because it is a convergent real
sequence) but it is not convergent in the rationals — that is, it does not satisfy

dALeQ Ve>0 IANeN Vn>N g, — L|<e.

Example 5.32 (Mercator’s series) For n € N let

1 1 1
n=1l—c 4+ 4. (="
s 5+t + (1) -
Then with m > n > 0, and m —n even we have
>0 >0 >0
"1 11 1 1 1

Sm — Sn -

n+1_n+2+n+3_n+4+.“+m—1 m

B 1 1 1 1 1 1
 n+1 n+2 n+3 xm—2 m—1 m
20 <0 <0
< 1
S on+1
If m —n is odd, we write
>0 >0 >0
1 11 1 T 11
Sm_sn — J— J— + — JE—
n+1 n+2 n+3 n+4 m—-—2 m-—1 m
B 1 1 n 1 1 +1
 n+1 n+2 n+3 m—1 m
~ ~—_————
<0 <0
1
<
n+1
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Let e > 0 and take N > 1. Then |s, — s,| < € whenever m,n > N and we see that (s,) is
Cauchy. This shows that the sequence is convergent even though we currently have no idea of
its limit. In due course we shall see that the limit is log2 (Sheet 6, Exercise 6). The sum was
first published by Mercator in 1668.

Remark 5.33 (Double sequences) A (real) double sequence is a map z: N> — R and we
write Ty, for x (m,n). We write that

lim xz,,, =1L

m,n— 00

if
Ve>0 INeN Vmn>N |o,,—L| <e.

So we may rewrite the Cauchy convergence criterion as
(a,) is Cauchy if |an —am| — 0 asm,n — oo.

Given a double sequence (x,,) the limits

lim z,,. lim <lim T, n) lim ( lim z,, n)
m,n— 00 ’ m—o0 \n—oo ’ n—oo \m—oo ’
are different notions and may independently exist or not as seen in Sheet 5, Ezxercise 8.

Remark 5.34 (Construction of the real numbers) (Off-syllabus)
We mentioned in Remark 1.58 the matter of existence and uniqueness of the real numbers.

These issues were posed in the sense of ‘can the real numbers be constructed from more concrete
sets such as N, Z or Q¥¢’

Construction of the natural numbers.

One approach to define the natural numbers is due to Peano from 1889. Peano’s description
essentially states:

N is the smallest set such that (i) 0 € N, (i) if n € N thenn +1 € N,

A later model, in the style of the Zermelo-Fraenkel axioms for set theory (1908,1922), was
Von Neumann’s model from 1923 where he identified 0 with &, 1 with {@}, 2 with {&,{2}}
and in general n with {0,1,...,n —1}. as a collection of sets meeting Peano’s axioms.

Construction of the integers.

From the set N we can define the set of integers Z from N%. We define the equivalence
relation ~ on N? by (my,my) ~ (n1,ns) iff my +ng = ny +my. Then Z = N?/ ~. Essentially
we are identifying an integer with pairs of natural numbers that differ by that integer.

Construction of the rational numbers.

Having defined 7 we can define Q as a set of equivalence classes of Z x (N\ {0}). We
set (my,ny) ~ (ma,ng) iff ming = nymy. Then Q =7 x (N\{0})/ ~. Essentially we are
identifying an rational with all fractions ™ which represent that rational.

Construction of the real numbers. Having defined Q we set

S ={(a,) | (an) is a rational Cauchy sequence} .
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At this point we have yet to define the real numbers, but we know that a rational Cauchy
sequence converges to some real limit. These limits are what we want as our model of the real
numbers but we can’t refer to such limits, irrational ones in particular, whilst only being able
to refer to the rational numbers. Also many sequences in S will converge to the same limit so
at this stage each real is overrepresented.

We can deal at least with this last point within the context of real numbers: for (a,), (b,) € S
we set

(an) ~ (by) ~ a,—0b,—0.

As we see in Sheet 5, Exercise 2, for (a,), (b,) € S and ¢ € R then

(an £b,), (can), (anby)

are in S and if a, - 0 then 1/a, € S.
Further these operation are well-defined in S/ ~ . So if (a,) ~ (ay,) and (a,) ~ (5,) then

(an £bp) ~ (£ 8,),  (can) ~ (can), (anbn) ~ (nB,),

and if a, - 0 and oy, - 0 then (1/a,) ~ (1/a,) . All these results follow bt AOL.
Regarding order we define (a,) < (by) if by, — a, = 0 in some tail.
All this gives R = S/ ~ the structure of an ordered field. It can further be shown that

any non-empty bounded subset of S/ ~ has a least upper bound; this result is not particularly
difficult but is non-trivial (Korner pp. 352-353).

Construction of the complex numbers.

We showed in Section 1.4 how C can be constructed from R by identifying a complex number
with an ordered pair of real numbers and defining addition and multiplication as one would expect
of complex numbers.
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6. SERIES

6.1 Infinite Series

Looking back at the field axioms, given any pair of real numbers a,b we can form their sum
a + b. By induction, we can form any finite sum )} a;. The associative law means we don’t
have to worry about the order is which the necessary additions are executed.

What our axioms don’t do is licence us to start writing down infinite sums, and behaving
as though the mere act of writing down similar looking signs (> (", say) entitles us to assume
that all the properties of finite sums still hold. In fact, we will see that there are conditionally
convergent series that give different sums depending on the order in which the terms are added.
(See Sheet 6, Exercise 8 for the Cauchy Root Test and Dirichlet’s Test.)

Definition 6.1 Let (a,)]" be a sequence of (real or complex) numbers. For n > 1, the nth
partial sum of (a,) is the finite sum

n
Sp = E ar =a1 +as+ -+ a,.
k=1

By the series
Z ar or just Zak,
k=1
we mean the sequence of partial sums (sy).
Example 6.2 (a) The geometric series. Let x € C, and let a,, = ™ Then > x" is
(1, 142, 14+o+2% ..., I+z+a®+---+a" ...).

(b) The harmonic series. Let a, = ~. Then Y * is

1, 1+ L 1+ L + =
: 5 5tg )
(c) The exponential series. Let v € C and let a,, = 2" /n!. Then > z"/n! is

33'2
(1, Lo, T+a+ o, )

(d) The cosine series. Let v € C and set

me m .
— W(_l) if n=2m
" 0 otherwise.
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Then " ay, 18

112 .172 172 1'4
(1, Ll-Gp =g 1=+ o >

Definition 6.3 Let (a,) be a (real or complex) sequence. We say that the series Y 7" aj con-
verges (resp. diverges) if the sequence (s,) of partial sums converges (resp. diverges). If
s, — L as n — oo then we write

Z ap = L.

k=1

We refer to L as the sum (or infinite sum) of the series.

Remark 6.4 Our earlier results regarding the tails of sequences still apply — it follows that
Y7 ax, converges if and only Y% aj, converges for some K (Proposition 8.13). Consequently it
makes sense to discuss the convergence (or otherwise) of > ay without needing to identify the
wnitial term. But to determine the sum of a convergent series exactly we do need to specify the
wnatial term.

Proposition 6.5 Say that > a,, is convergent. Then a,, — 0 but the converse is not true.
Proof. Let s, denote the nth partial sum; then s, — L for some sum L. By AOL

Ap = Sp — Sp1 — L — L =0.
But recall from Example 3.38 that Z% is divergent, yet a,, = % —0. =

Example 6.6 Let a, = x" for n > 0 where x € C.
(a) If © # 1 then

1 — xn—i—l
Sp=1+ac+a>+ 2" ="—""—

1—x
(b) If |z| < 1 then >  a™ is convergent noting " — 0 and using the algebra of limits.
(c) If |z| = 1 then > a™ is divergent as a, = z" - 0.

Example 6.7 Let a, = n—lg Then S~ - is convergent.

n2

Proof. Clearly the partial sums form an increasing sequence. By comparison with a telescoping
sum we note

kT (k1) k-1 k ko —k no

Hence (s,) is a bounded increasing sequence and so convergent. [In due course we will meet,
with the Integral Test, a systematic way of dealing with such series and won’t have to resort
to such algebraic tricks.] m

Remark 6.8 The exact sum y | # is known to be w2 /6. This sum was first found by Euler
m 1734 and is known as the Basel problem, Basel being Fuler’s hometoun.
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Applying Cauchy’s criterion for convergence for sequences to series (which, recall, is just a
sequence of partial sums) we have:

Theorem 6.9 (Cauchy’s Criterion for Series) The series Y " aj, converges if and only if
for all € > 0 there exists N such that for all m,n > N we have

n
D o

m+1

|Sn — Sm| = <e.

Definition 6.10 Let (a,,) be a real or complex sequence. Then we say that > a,, is absolutely
convergent or AC if the series Y |a,| converges. A series which is convergent, but not
absolutely convergent, is called conditionally convergent.

Theorem 6.11 An AC (real or complex) series is convergent

Proof. Suppose that > a, is AC and let ¢ > 0. By Cauchy’s criterion there exists N such

that l

>l

k+1

[ >k>N— < €.

By the triangle inequality

[>k>N—= <,

l
2 o]

k+1

!
< Z‘an‘ =

k+1

l
2

k+1

and hence ) a, is Cauchy and so converges. m

Example 6.12 (a) Y 2™ is AC if |z| < 1 and diverges for |z| > 1.
(b) o7 s AC.
(c) 37 =5t is AC.

(d) >°7° (_17):+1 is conditionally convergent.

Solution. (a) See Example 6.6.
(b) See Example 6.7.
(c) Note that the partial sums

form an increasing bounded sequence. Hence they converge.
(d) See Examples 5.32 and 3.38 m

Definition 6.13 Let p: N — N be a bijection and set b, = a,p). Then > by is called a
rearrangement of the series » . a,.
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Example 6.14 (See also Sheet 6, Exercise 6) If we rearrange the log?2 series from Example
5.32 then we can change the sum:—

1 1 1
l—— 44 = log2
53 1" 08
IR S S T
3 2577 1 B

Theorem 6.15 (Dirichlet, 1837) (Off-syllabus) If Y a, is AC then ) apw) is AC for any

rearrangement p and
[ee] [ee]
Yo=Yty
1 1

Theorem 6.16 (Riemann Rearrangment Theorem, 1853) (Off-syllabus) If Y 7" a, is a
real conditionally convergent series and —oo < L < oo then there exists a bijection p: N — N

such that .
Z ap(n) = L.
1

Hence a real series is AC if and only if it unconditionally convergent.

Theorem 6.17 (Cauchy Multiplication of Series, 1821) (Off-syllabus) Suppose > o an
and Y o b, are AC. For each n € N we set

Cp = Z akbn_k.
k=0
Then > 7 ¢, is AC and

S () (54)

Proof. See Sheet 6, Exercise 7. m

Remark 6.18 Mertens, in 1875, showed that if just one of Y o a, and Y " b, is AC and the
other convergent, then Y o ¢, converges. (See Apostol, Theorem 12-46.)

(55) (55) -

0

Example 6.19 For x,y € C

Proof. Let a, = . b, = 3;’1—7,1 Then the series ) a, and > b, are absolutely convergent (see

n!’

Example 6.26). Then

— xT‘yS_ 1 & n Tn—r_(x+y)n

r+s=n

by the binomial theorem. m
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6.2 Some Tests for Convergence

Here we discuss some classic tests for convergence and divergence. The idea that there are
‘tests’ is very attractive, but in practice (for problems arising from real-word situations) these
tests may not apply. However the tests do give us clues, suggest ways of thinking about series,
what sort of estimates need to be made, and a sense of the relative magnitude of terms.

Proposition 6.20 (A Simple Test for Divergence) If > a, converges then a, — 0. The
converse 18 not true.

As the converse is not true then, in practice, the contrapositive is used more: if a, does not
tend to 0 then > a, diverges.

Proof. We already noted this in Proposition 6.5. m

Theorem 6.21 (The Comparison Test) Let (a,), (b,) be real sequences with 0 < a,, < by,.
Then

e > b, is convergent => > a, is convergent;
e > a, is divergent => Y b, is divergent.

Proof. Note that the second statement is just the contrapositive of the first, and so it is enough
to just prove the first. Suppose that > by converges. Then the partial sums ) aj, satisfy

n n o0
g ag < E b < E by,
1 1 1
and hence form an increasing bounded sequence which converges. m

Remark 6.22 At first glance, the comparison test seems limited as it only applies to non-
negative terms. In practice, however, it is often used to show a series is AC and hence conver-
gent. (See Example 6.23 (d).)

And as with the sandwich test for sequences, the comparison test can be used to take care of
expresssions that are awkward without being impactful. For example, the term (2 4 cos n)fl mn
Ezample 6.23 (b) lies between 1/3 and 1.

Example 6.23 The following sequences

o0 oo 1
—5/2 b
(a) ;n - () ;n(n—i-l)(Q—i-cosn)’
= z" = sinn
—  wh 1 d —_
€ YT wherldl <1 @ S

1 1

all converge.
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Solution. (a) This converges by comparison with > n=2.

(b) This converges by comparison with > n~2.

(c) Even though the terms are not non-negative, this is AC by comparison with 3 |z|" and
hence is convergent.

(d) Even though the terms are not non-negative, this is AC by comparison with > n~
hence is convergent. m

2 and

Theorem 6.24 (The Ratio Test) Let (a,) be a real or complex sequence with a, # 0 for all
n. Suppose that

n—o0

=L

Qn

exists.
e If L <1 then > a, converges absolutely;
o [f L >1 then > a, diverges;
o If L =1 then > a, may converge or diverge (that is, the test is inconclusive).

Proof. (a) Choose K such that |[L| < K < 1. Ase = K — |L| > 0 there exists N such that

Ap41
n=>N — "L <,
Gp,
so that forn > N
Ap+1
Rl <et|L =K
n
Sofor k>0
ANk AN +E—1 AN 1 k
|an | = x lan| < an| K"
AN +k-1 AN+k—2

Now > K* is a convergent geometric series, and so the tail > % an is AC by the comparison
test. Hence > a, is AC as it has an AC tail.
(b) Choose K such that 1 < K < |L|. Then there exists N such that

Qp+1
G,

n>N — > K.

Arguing as in (a), |ayix| = K*|ay| and hence we see a, does not tend to 0. So > a, is
divergent by Proposition 6.20.

(c) For each of the series Y- n~ ! and > n~? we have L = 1 yet the former diverges and the
latter converges. m

Remark 6.25 If a, > 0 for all n and )_ a, converges, this does not mean that im |a,1/a,|

exists; for example

TIEEIE I I S
372794 278" 381

converges absolutely whilst |a,1/a,| does not have a limit.
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Example 6.26 (Ezxzponential Series) For all x € C, the exponential series

o0 n

X
>

0

converges absolutely.
Solution. The case z = 0 is trivial. If x # 0 then

= |x| —0<1 asn—
n+1

Ap+1
Qn,

and apply the ratio test. m

Example 6.27 The series
Z (sinhn) z"
1
1

Y and diverges for || > et

converges absolutely for |x| < e~

Solution. By definition sinhn = (" —e™™) /2 and so

sinh(n—|—1)| |
= ———— |z

sinh n
€n+1 _ e—n—l

= e

Ap+1
Qn

1—e2n

— elz]
as n — oo. If x = e~! then the ratio test is inconclusive but
. |
a, = sinhn x e —>§7é()
and so the series does not converge. m

Theorem 6.28 (Leibniz Alternating Series Test, 1676) Let (a,) be a non-negative de-
creasing series which tends to 0. Then

[e.e]

<_1)n Qn

n

CONVETGES.
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Proof. If we consider the partial sums s, = ,_, (=1)* a), we see that

sok = (ao—a1) + (a2 — ag) + - + (azk—2 — az—1) + az
>0 >0 >0
= ap+ (—a1+a) + (—az+as) + -+ (—az + aq)
N - J/ N -~ -4 \H/_/
<0 <0 <0
< agp.

Hence sy, is an increasing sequence bounded above by ag and so sg;, converges to a limit L. We
also have
Sok41 = Sop — Qg1 — L —0= L

by AOL. Hence s; converges to L by Sheet 5, Exercise 4(i). m

Remark 6.29 Nothing we have done so far lets us tackle series like > o m, to evaluate

O %ﬂﬂ or define general exponents. In the remainder of this section we deal with these:
but in order to do so we need to make use of the properties of integration and logarithms. We
will define logarithms and general powers in the next chapter but we will not meet integration
rigorously until Analysis III in Trinity. At the end of the year you will be able to persuade
yourself that these properties which we now use do not depend on any of the results of this
section, and that no circular arguments have been made. Basically, it is just impatience that
forces us to deal with this test now and not wait until Trinity Term.

Theorem 6.30 Let K € N and let f: [K,00) — [0,00) be continuous and decreasing. For
n > K we define

n—1

5=t~ [ f@)

Then forn > K
0

N

and hence 9,, converges.

Corollary 6.31 (The Integral Test) With f as above, the series Y 5 f (k) is convergent if
and only if [ f () da is convergent.

We postpone the proof for now and instead apply the integral test to a few series.

Example 6.32 a, = 1/n®* where o € R. (We will not properly define general exponents until
the next chapter.) If a < 0 then a, does not tend to 0 and so > a, diverges. Let a > 0.

Consider the function f (x) = x=* > 0 which is continuous and decreasing on (0,00). We take
K =1 and note if a # 1 that

n tl—a n nl—a_l
t)dt = = —
/1f<) {1—04]1 1—a

SOME TESTS FOR CONVERGENCE 7




which converges as n — oo if a > 1 and diverges if « < 1. If « =1 then

/n f(t)dt = [logt]] =logn
1

which diverges. Hence

=1
2

converges when o > 1 and diverges for a < 1.

Example 6.33 a, = (nlogn)~" forn > 2. Hence we define f(x)
f(x) is decreasing as x and logx are increasing. Then

|
/ dr = loglogn —loglog2 — oo as n — oo.
o zlogx

Therefore >~ —L— is divergent.

nlogn

Proof. (Of Theorem 6.30) We set

n—1

5= F )= [ @) e

In the diagram below, which includes a graph of y = 1/x for x > K = 1 we can see d, as the
"excess area" above the graph between 1 < z < 4.

10

08 d4

04 -

02

0.0

04

T zlogx

Fig. 6.1 — Proving the Integral Test

As f is decreasing,

2

FE+1) < flo) < flk), if k<z<k+1

We use the following properties of integration:

e [ preserves weak inequalities;
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° f:+1 ldxr =1;

o [ is additive: ff = fac—i—fcb;

e [ is a linear map on the space of integrable functions.

So we get:
k41
fk+1) < f(z)dz < f(k)
k
and we can add such equations to get
FUS 1)+ SO +2) o £ < [ 5O < JE) + S+ 1) -+ f(n—1).
So using the second inequality above we have
n—1 n
0<Y ) [ s
r=K K
which shows 0 < §,,. Using the first inequality we have
n—1 n n—1
D V(R IWICITED SYIC R Dt ~ Jn) < £(K),
r=K K r=K r=K+1

We also have

n+1
s — 60 = f(n) — / f(tydi >0

Hence (6,,) is bounded above, increasing and so convergent.

Finally
%f(k:) and /Kf(x)dx

differ by a convergent sequence. Therefore they both converge or both diverge by AOL. =

Example 6.34 (Euler’s Constant vy, 1734) If we apply Theorem 6.30 to f(x) = 1/x we get

1 1
Yy = 1+=-+--+——logn
2 n

1 1 " dx
— 1+——|—...+__ -
2 n . T
1
= 0, +—
n

1s convergent. This limit is called Fuler’s constant, and often denoted as ~y:

1
v = lim (ZE—logn).
1

SOME TESTS FOR CONVERGENCE 79



The approximate numerical value of 7y is
0.57721566490153286060 . . .

Relatively little is known about v — for example, it is an open problem still as to whether ~y is
wrrational.
Example 6.35 We make use of v in Sheet 6, Ezxercise 6 to show that
1 L + L1 + L1 + log 2
— — — — ... =10 .
273 475 6 s

Example 6.36 (FEuler’s Number ¢) In Sheet 4, Exercise 5, we showed that

[e.e]

1 1 1 1
€:1+1+5+§+a+"':Zﬁ

r=0

converges to an wrrational number e. Its approrimate numerical value is
2.7182818284590452353 . ..

In fact, the constant e had been studied well before Euler, with some interest in the constant
shown by Napier, Harriot and Huygens. The constant was explicitly defined by Jacob Bernoulli
in 1683 as lim,, . (1 + %)n while investigating ‘continuous compounding’ but it was Euler who
recognized the importance of the constant and its connection with the ‘antilogarithm’ function.

1 n
e = lim (1 + —) .
n—oo n

\" "1
cyn:(l—l——) and [ :5 —.
n |

n kzok'

It was shown in Sheet 4, Exercise 5 that lim 3, exists and we defined e as this limit. It was
also shown in Sheet 1, Exercise 6, that «,, is an increasing sequence bounded above and so also
converges. By the binomial theorem

o e () () B (Y

= 1_|_1_|_l 1_1 _|_i 1_1 1_2 _|_..._|_i 1_l 1_2 l
21 n 3! n n n! n n n

< 141 1 1 1_
< + +5+§+"'+a—ﬁn.

From this we have lim«,, < e. On the other hand for 1 < m < n and focusing on the first
m + 1 terms in the binomial expansion of «,, we see

1\ 1 1 2 m—1
1+41+({1—=)=+---+([1—— 1—=]---(1— — < Q.
n /) 2| n n n m!
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Proof. Let




Fixing m and letting n — oo we have, using AOL and recalling that limits respect weak
inequalities,
1 1 1 .
1+1+g+§+~~+ﬁ<hman.
Finally letting m — oo we have e < lim o, and the result follows. m

Remark 6.38 [t’s important to note why we took the first m~+1 terms in the binomial expansion
of o, earlier. In that expansion there are n+1 terms and so, as n variees, the number of terms
varies. AOL applies to a fixed finite number of terms — fived in the sense of not depending on
the variable that’s tending. For exampl it’s clear

n times

If AOL could be applied to a varying number of terms, letting n — co we would find
1=04+04+0+---=0,

which is false.

Whilst the tests are useful series are not usually met in such a straightforward way that a
single convergence test can be employed. If they can be employed at all, some combination of
the tests may be needed.

Example 6.39 Discuss the convergence or divergence of the following series.

o
Z cos (n? + 1)
n?2 +logn

We note that
1 1

cos (n? + 1)
n? + logn

0<
= S n24logn - n?

and so the series is AC by comparison with Y, n=2.

n log (n” 4+ 1)
e =

Ify (x) =log (z2 + 1) (z +2)/? then
1 2x 1

y'(z) = \/I——l-2($2+1)_2(x+2)3/210g($ +1)

B 1 [21‘(1‘-}-2) —%log (x2+1>]

(x+2)%? [ 22+1
1 1
< ———|4-<1lo x2—|—1}
(x+2)3/2[ 2 B )

< 0 forxz > e
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So y(n) is eventually decreasing — using a result from Analysis II and by Leibniz’s Test a
tail of the series converges. Hence the whole series converges.

1
P Dhyra
1 1 1

> e
VnZ4+n o V2on2 a2

and so the series diverges by comparison with the harmonic series.

We see

SV

VnZ+n
Note
Vn+l—yn 1 1
RV TN R e
and hence

—1 as N — 0.

ZN—le——
LoVnZean VN +1

Proposition 6.40 (Stirling’s Approximation, 1730) (Proof off-syllabus) As n — oo then

n!

vamn (3)"

— 1.

This same result is often written as

n! ~V2mn (E) )
e

Proof. Firstly we note
logn! =log2 +log3 + --- + logn.

We can find a good approximation to the sum on the RHS by applying the trapezium rule to
log z on the interval [1,n]. Let f(z) denote the approximating function to log x whose integral
the trapezium rule determines using n — 1 steps — that is f(z) satisfies f(k) = logk for each
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integer £ = 1,2,...,n and is piecewise linear between those values.

y

1.4)
1.2 /

1.0

0.8J
y=log(x)
0.6ff
0.4
y=f(x)
0.2f

1i5 2.0 2‘.5 3.0 315 4.0 X
Fig. 6.2 — Trapezium Rule for log x

Note for z in the range k < x < k + 1 we have

1 1 1
k+1 "o "k
and so integrating we have
Todt /”“dt Tdt
r k+1 gt K
or equivalently
x—k x—k
log k — ] <1 < logk — .
og +(k—|—1> ogx < log +< 2 >

Now log x is concave (that is, a chord connecting two points of the graph lies under the graph),
and so f(z) < logx on the interval [k, k + 1]. Further as f’(z) > (k+1)~! on the interval (that
being the minimum gradient of log x whilst f’(x) has the average gradient) we have

x—k

logk—l—(k—_i_l)gf(a:)glog:c fork<z<k+1.

So we have the inequalities

1 1
< — <[ - — — < <
0 <logzx f(x)\<k k:—l—l)(x k) for k <z <k+1,

and integrating on the interval [k, k 4+ 1] we find

k+1 k+1
og/k (1ogm—f(x>)dx<<%—k+l)/k (x—k)dx—%(%—%ﬂ).
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Summing up the contributions from the intervals [1,2],[2,3],...,[n — 1,n] we find

n 1271 1 1 1
0< [ oga -~ fa) d“’%}_}(rm) :5(1—5),

as most of the terms in the above sum cancel consecutively.
Recalling an antiderivative of log x to be xlog x — x and using the formula for the trapezium
rule we then have

I, = /1 (logx — f(x)) dz
log 1

1
+log2+log3+---+log(n—1)+ Ogn)

— [zlogz—a]" =1
[zlog x — 2]} ( 5

1
= nlogn—n+1-— (logn! — §logn)

1
= <n+§) logn —n+1—lognl!.

So we have

" 1 1 1
0</ (logx — f(x)) dox = (n+§) logn—n+1—logn!<§(1——).
1

n

(I,) is an increasing sequence of numbers which we see are bounded above by 1/2 and hence
they converge to some L.
Applying the exponential function we find

(n/e)"vn

n!

el = lim

Whilst in Sheet 6, Exercise 11(ii) , we proved

(-

We can combine these facts to note

. 2n/! . Vvn (2 "\ ?
— \/5 x lim <W) x lim (%)
 Vax (() 7 x ()
_ \/§€L—1

oS

SOME TESTS FOR CONVERGENCE 84



Hence e!~% = /27 and
n! e

Vmn (2)" Ver

e

Remark 6.41 In terms of relative error, Stirling’s formula is a very accurate underestimate.

For n = 10 the relative error is under 1%.
An tmprovement on the above approximation is

nl = v2mn (g)" (1 +0 (%))

and there are yet more accurate approrimations

n! = 27m<g) exp{zk nk1+0<

where By, is the kth Bernoulli number (see Sheet 7, Exercise 9).
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7. POWER SERIES

7.1 The Disc and Radius of Convergence

Definition 7.1 By a power series we will mean a series of the form

o0
g anz"”
n=0

where (ay), s a complex sequence and z € C. We consider (a,,) as fized for this series, and z
as a variable. Clearly the series might converge for some values of z and not for others.

Remark 7.2 The above power series is a power series centred at the origin. Given zg € C
then we can also consider power series centred at zy, which take the form

o0
Z an(z — 20)".
n=0

Though we will not consider such power series in this chapter, the theory we will develop literally
translates to an identical theory for power series centred at zy # 0.

Example 7.3 e a,=1:>2": Geometric series : as we have already seen (Example

6.6), this series is convergent when |z| < 1 and divergent when |z| > 1.

o a,=1/nl: > " 2"/n! : Exponential series : we have shown (Example 6.26) that this
series is convergent for all z € C.

® a,=1/n:Y " z"/n: Logarithmic series : convergent for |z| < 1. This follows from
the ratio test as

n+1 1
2"/ (n+1) :n|z| N
2" /n n+1
The series converges at z = —1 (Leibniz test and Sheet 6, Ezxercise 6) and diverges at

z =1 (as it’s the harmonic series). What about for other values where |z| = 12 Well at
z =1 we have

2N

Zin— L +(_1>N cif1-t ! +<_1)N_1
n \ 271 6 2N ! 375 IN — 1

1

and we see that both real and imaginary parts converge by the Leibniz test. In fact we
know the above partial sums to converge to —% log 2 + %r (Sheet 6, Ezercise 6 and Sheet 5,
Ezxercise 6). More generally it can be shown that the logarithmic series converges on the
circle |z| = 1 except at z = —1.
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as, = (=1)"/(2n)! | (—1)"
agny1 = 0 } 2>
ratio test.

2?7 : Cosine series : convergent for all z by the

as, = 0 . (=1)" . o
*am = (-1)"/@2n+1)! } ' Zmz " Sine series : convergent for all z

by the ratio test again.

Definition 7.4 Given a power series a,z" the set
S = {z eC| Zanz” converges} CcC

18 either bounded or unbounded. Note also, that S is non-empty as 0 € S. We define the power
series’ radius of convergence R as

R sup{|z| | z € S}  when S is bounded,
N 00 when S is unbounded.

Lemma 7.5 Suppose that the power series . a, (20)" converges. Then > a,z™ converges ab-
solutely when |z| < |zo| .

Proof. As > a, (z)" converges then a, (29)" — 0 and in particular the sequence a,, (z0)" is
bounded; say |a, (20)"| < M for all n. Then, for |z| < |z,

n

|anz"| = lan (20)"]

and so Y |a,2"| converges by comparison with the convergent geometric series Y M |z/z|".
]

Theorem 7.6 Given a power series Y a,z" with radius of convergence R,
e > a,z" is AC when |z| < R,
e > a,z" diverges when |z| > R.

Note that when R = oo then ) a,2" converges absolutely for all z € C.

Proof. If |z| < R then, by the approximation property, |z| < |20| < R for some z, € S and
hence » a,z" is AC by the previous lemma. On the other hand if |z| > R then z ¢ S and
hence > a,2™ diverges. m

Definition 7.7 The set S is called the disc of convergence.

Remark 7.8 So a power series is AC strictly within its radus of convergence and diverges
strictly beyond the disc of convergence. For z on the boundary |z| = R the series may converge
or diverge. It’s quite easy to construct power series that converge at only finitely many points
of the boundary, or power series that converge everywhere on the boundary except finitely many
points. The general question — for which subsets of |z| = R is there a power series which
converges exactly on that subset? — remains an open problem.
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Remark 7.9 Commonly we will use the ratio test to determine the radius of convergence, but
it is not hard to produce examples where the ratio test can not be employed, or at least has to
be used more subtly. See the third example below.

Remark 7.10 (Off-syllabus) As a consequence of Cauchy’s root test (Sheet 6, Exercise 8(i))
an exact formula for the radius of convergence is

R= (lim sup (L/m)_l : (7.1)

Example 7.11 Find the radius of convergence of the following examples, and consider the
series’ convergence on the disc’s boundary.

o > °2"/n% If we set a, = 2"/n? then

n+1 2 2
z n+1 1
I ):<LWQIAHVL

2" /n?

Ap+1
(079

Hence, by the ratio test the series converges absolutely when |z| < 1 but diverges when
|z| > 1. In fact, by comparison with > n~% we see that the series is AC when |z| = 1.

e > z"/n. If we set a, = z"/n we can argue as above to see R = 1. This is the logarithmic
series and we have commented that it diverges at z = 1 and otherwise converges on |z| = 1.

e > zP where the sum is taken over all primes p. Then R = 1. To see this we can note
2P does not tend to 0 when |z| = 1. On the other hand ) zP is AC when |z| < 1 by
comparison with the geometric series » | 2™.

o Cosine series: y o (—=1)" 22"/ (2n)! If we set a, = (—=1)" 2"/ (2n)! then, for all z € C,

Ap+1
Qp,

]z\2”+2/(2n+2)! \z|2
= 5y = — 0 asn — oo.
|z|™" /] (2n)! (2n+2)(2n+1)

Hence by the ratio test the cosine series is AC for all z.

o Sine series: Y o (—1)" 22"/ (2n + 1)! If we set a,, = (—=1)" 22"/ (2n 4+ 1)! then, for all
z € C,

P/ 2n ) El
12|/ (2n+ 1)) (2n+2)(2n+3)

Hence by the ratio test the sine series is AC for all z.

Ap+1
Qn

— 0 asn — oo.

Example 7.12 Use (7.1) to determine the radii of convergence of the series

00 0o
2" » 2"
DIE-SEED DI Dt
1 prime p 0 ’

Solution.
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e a, =1 Now n'/" — 1 (Sheet 3, Exercise 3) and so
limsup {/|a,| = lim (%)_1 =1
so that R = 1.

e a, = 1. As there are infinitely many primes then limsup {/|a,| = limsup1 = 1 and so
R=1.

e a, = 1/n!. By Stirling’s formula

n!l ~ V2mn <§>

e
and hence ] ]
e
limsup {/|a,| = limsup — = lim —— (—) =0,
P | P Vn! X/2mn \n
giving R = oo.

]

The following theorem is beyond the scope of this course, but will be proved in Hilary term.
This theorem will prove very useful when proving various properties of the elementary functions
in the next section.

Theorem 7.13 (Term-by-term differentiation) Suppose the (real or complex) power series
Yo anz™ has radius of convergence R. Then the power series defines a differentiable function
on |z| < R.

Term-by-term differentiation is valid within |z| < R so that

o0

% (i anz") = i na,z" = Z (n+1)ap12".
0 1

0

The power series > o (n+ 1) a,112" is called the derived series and also has radius of con-
vergence R.

Remark 7.14 (Uniqueness of Coefficients) Say that a function f(x) = Y " a,a” is defined
on the interval |x| < R. By repeated differentiation we see that

So, if a function is locally defined by a power series, that is f(x) is analytic, then the coefficients
an are UNiQue.

As a corollary to this, if an analytic function satisfies f'(x) = 0 for all x then a, = 0 for
alln > 1, and f(x) = ag is constant.
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Remark 7.15 (Existence of Coefficients) A real function is said to be analytic (at 0) if it
can be locally defined by a power series on some (—R, R) . As we may differentiate term-by-term,
then f(x) is necessarily smooth — that is, f (x) has derivatives of all orders. Unfortunately
smoothness is not a sufficient condition though. For example, the function

exp (—1/2?) x #0,
f(x):{ ar z =0,

can be shown to have derivatives of all orders at x = 0 with f™(0) = 0 for all n > 0. So if
f(x) could be defined by a power series on some (—R, R) then we’d have

> fn)
fay =3 LW =g,

n!
0

but f(x) # 0 except at x = 0. So f(x) is smooth, but isn’t analytic.

In the Part A Complexr Analysis course, you will see that the situation is very different for
complex functions. A complex function which is differentiable (just once!) on an open disc
about the origin will be analytic.

Proposition 7.16 Let f(z) =), a,z" converge on (—R, R).
(a) f(z) is an even function if and only if as,,1 = 0 for each n = 0.
(b) f(x) is an odd function if and only if as, = 0 for each n > 0.

Proof. (a) If ay,+1 = 0 for each n > 0, then
f@) = a2™ = ag(—2)™" = f(~x)
n=0 n=0

is even. Conversely say that f(z) is even. Then f(™(x) is even when n is even and odd
when 7 is odd — these facts follow from the chain rule. So f "+ (z) is odd and in particular
f@r(0) = 0. Hence

f (2n+1) (0)

2n+1)!

as required. The proof of (b) is almost identical. m

A2n+1 =

7.2 The Elementary Functions

The elementary functions include polynomials, rational functions, exponentials, logarithms and
trigonometric functions. In contrast there are special functions such as Bessel functions (Sheet
7, Exercise 4), Gauss’s error function, the gamma function, etc. and there are deep theorems
showing the special functions cannot be expressed in terms of the elementary functions.

In this section we give rigorous definitions for exponentials, logarithms, general exponents
and the trigonometric and hyperbolic functions.
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Definition 7.17 (Exponential Function) The exponential function exp: C — C is defined

by the infinite series
X _n

exp(z) = Z %

0
1. For all z € C, )" 2™/n! is convergent by the ratio test (Example 6.26): so R = oc.
2. exp(0) =1
3. exp(l)=¢e

4. exp’ (z) = exp(2).
Proof. We use Theorem 7.13 for this. Note

d d [ 2" Z(n+1)2" &K
|

5. exp(z +y) = exp(x) exp(y).

Proof. We proved this in Example 6.19. We can also use Theorem 7.13 to show this: for
fixed ¢ € C we define
F(z)=exp(z+c)exp(—2).

By the product rule
F'(z) =exp(z+c)exp(—z) —exp(z+ c)exp (—z) = 0.
So F'(z) is constant by Remark 7.14 and, as F'(0) = exp (c), then
exp (z + ¢)exp (—z) = exp () for all z € C.
Set ¢ = x +y and z = —y for the required result. m

6. exp(z) # 0. (In fact we will see below that the image of exp is C\ {0} .)

Proof. For any z € C we have
exp (z)exp (—z) = exp (0) = 1.
m

7. exp (q) = e? for rational q.

Proof. Say ¢ = m/n then

(exp (%))n = exp (n%) =exp(mx1)=(expl)” =e™.

n

By the uniqueness of positive nth roots, we have exp (¢) = exp (m/n) = /e™ =el. m
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It seems appropriate to make the following definitions here, though some of what follows
requires theory from Hilary Term. We now restrict our attention to the real exponential
exp: R — R. It is clear from the power series definition of exp that expx > 0 if z > 0.

Further if z < 0 then i
=— >0
exp () op (=7)

also. So exp (R) C (0, c0).

Now exp’x = expx > 0 and so exp is an increasing function; in particular this means that
exp: R — (0,00) is injective. Also for z > 0, expz > x and so exp takes arbitrarily large
values of z and similarly exp (—x) = 1/exp (z) takes arbitrarily small positive values. So, by
the Intermediate Value Theorem (proved in HT), we have

e exp: R — (0,00) is a bijection and hence invertible.
e The inverse is denoted as log: (0,00) — R, and by a HT result log is differentiable.

Definition 7.18 The natural logarithm logx, or Inx, is the inverse of the real exponential
function exp: R — (0, 00) .

Proposition 7.19 For x > 0,
log'z = ~.
x
Proof. As exp (logz) = z on (0.00) then, by the chain rule,
log’ (z) x exp (logz) =1
and the result follows. m

Example 7.20 The image of exp: C — C is C\ {0} .

Solution. We previously showed 0 is not in the image. Take z = re? # 0. We need to find
w = z + iy € C such that exp (w) = z. This means e%e™ = re?. Setting

x =logr and y=40,
gives one solution to exp (w) = z. =
Definition 7.21 (General Exponents) Given a > 0 and x € R, we define
a” = exp (zloga).

Note, with this definition,
e* =expx forx € R.

Proposition 7.22 Let a,b > 0 and x € R. Then

log (ab) = log a + log b, log (a®) = xloga.
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Proof. Note
exp (loga + logb) = exp (log a) exp (log b) = ab = exp (log (ab))
and then take the log of both sides. Also
log (a®) = log (exp (zloga)) = zloga.
u

Proposition 7.23 Let a >0 and x,y € R. Then

a” v = a”aY, (a®)! = a(™¥).
Proof. Note
a™tv exp ((z +y)loga)
= exp((zloga) + (yloga))
= exp(zloga)exp (yloga)
= a"a”.
Also

log (a®)? = ylog (a*) = y (zloga) = (zy)loga = log (a(”))
and apply the expoential to both sides. m

Proposition 7.24 For x > 0 and real a,

d
L (%) = ar® ',

Proof. By the chain rule

d d a 1

4 ey = 4 ] _¢ logx) = az~
e (%) e (exp (alogx)) xexp(a ogx) = ax

% = qx® L.

|
Definition 7.25 (The Trigonometric and Hyperbolic Functions)
1. For all z € C we define cosine and sine by

exp (iz) — exp (—iz)
21

cos 5 — XD (iz) —|—2exp (—zz)’ Gin s
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2. Then

0o (_1)n22n . e (_1)n22n+1
cos z = — and sin z = —_
L S
with these series converging for all z € C.
Proof.
exp (iz) +exp (—iz) 1~ (" +(=9)") ,
2 T2 ; n
I VARG YY)
| [
2 £~ (2k)! > (2k)!
exp (iz) — exp (—iz) 1 (" —(=)") ,
= — z
2i 2i n!

0

3. cos0=1,sin0 = 0.

* exp (iz) = cos z + isin z.
Proof.
082 4 isinz — <exp (1z) + exp (—iz)) v (exp (iz) — exp (—iz)) _ exp (iz).
2 2
u
5. cosz = cos(—z) and sin z = —sin(—z).

Proof. The powers series of cos (resp. sin) involves only even (resp. odd) powers. m

cos'(z) = —sinz  and sin’(z) = cos z.

Proof. Using exp’ z = exp z then

d d (exp(iz)+exp(—iz)) d (z’exp(iz)—z’exp(—iz))

&) =g 2 T dz 2

— (sinz) =

dz dz 2% T4z 2

or we can just calculate the derived series of cosz and sinz. m

THE ELEMENTARY FUNCTIONS

(1 i (<D i gy (D)2
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sin(z +w) = sinzcosw + cos z sinw,

cos (z +w) = coszcosw — sin zsinw.

Proof. By definition sin z cos w + cos z sinw equals
exp (iz) —exp (—iz)\ [ exp (iw) + exp (—iw)
21 2
N (exp (iz) 4+ exp (—zz)) (exp (iw) — exp (—iw))

2 21

which rearranges to

N [2exp (iz) exp (iw) — 2 exp (—iz) exp (—iw)]

exp (iz + tw) — exp (—iz — iw)
N 2
= sin(z +w).

The second identity can be proved in a similar manner or by differentiating the first
identity with respect to z. m

8.
cos’ z+sinz =1

Proof. Set z = —w in the previous identity for cos(z + w). Alternatively, differentiating
gives

d

P (cos.2 2 + sin? z) = —2coszsinz + 2sinzcosz = 0.

z

So cos? z + sin? z is constant by Remark 7.14 and takes value 1> +0% = 1 at z = 0. Or we
can argue

cos® z +sin z = (cos z +isin z) (cos z — isin z) = exp (iz) exp (—iz) = exp (iz —iz) = 1.
m

9. It is easy to note that cos0 = 1 and that

= (—1)" 2
cos2 = ZL

=~ (2n)!
22 o4 26 98
B I TR T T
2 26 22 210 22
= 1-2+--=(1- ~Z _(1- —
3 6! 7x8 10! 11 x 12
D N ~ / ~~ -
<0 >0 >0

< 0.

It follows from theorems we will meet in Hilary Term that there exists a smallest positive
root to the equation cosz = 0. We will define 7/2 as the smallest root of cosine.
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10. As cos? z +sin? z = 1 then sin (7/2) = £1 (in fact it equals 1 as we know) and
exp (mi/2) = cos (7/2) +isin (7/2) =

Then .
exp (z + 27mi) = exp z (exp %) = (exp2) ()" = exp 2.

Hence exp has period 272 and cosine and sine have period 27 — i.e.

cos(z + 2m) = cos(z) and sin(z + 2m) = sin(z).

11. For the other trigonometric functions we define

1 sinx
secr = , tanx =
CcOoS T CcoS T
CcoS T
cscr = —, cotr = ——.
sin x sin x

12. We define hyperbolic cosine and and hyperbolic sine by

2n

o0
~exp(2) + eXp B 2
coshz = = ; o)l
e 2n+1
. exp (z) — exp
sinhz = =
Zo: 2n +1)!
where these series converge for all z € C. Note that
costz = coshz, coshiz = cos z,
siniz = 4sinh z, sinh iz = ¢sin z,
cosh (—z) = coshz, sinh (—z) = —sinh z,
cosh’ 2z = sinhz, sinh’ z = cosh z,
sin (x +dy) = sinzcoshy + icosxsinhy,
cos (x +1iy) = cosxcoshy — isinzsinhy,
cosh®? z —sinh®’z = 1.

13. (Inverse hyperbolic functions) (a) Let x € R. Then
sinh ™!z = log (x + Va2 + 1> .

(b) Let x > 1
cosh™ z = log (:1: + Va2 — 1)

(c) Let —1 <z < 1. Then
1 1
tanh_lxzilog( +$>.

l1—=x
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Proof. (a) We need to solve

ey — e_y

5 =7 <= -2 —-1=0 <+ =x+V22+1.

Only one of the options on the RHS (the plus option) is positive, so
y =sinh 'z = log <$ + Va2 + 1) .
Both (b) and (c¢) can be solved similarly by creating a quadratic in ¢/. =

Example 7.26 (See also Sheet 7, Exercise 9.) Find the power series for tanz up to the z°
term.

Solution. As tan z is odd then we only have to calculate coefficients for z, 2% and 2° (Propo-
sition 7.16). One approach would involve differentiating repeatedly, but we would then need to
calculate the fifth derivative of tan z. Instead we will use the binomial theorem.

Recall that

3 25 22 24

sinz:z—g—l—m#—O(z?), Cosz:1—§+ﬂ+0(26),
so that . .
z— 2+ 5+ 0(2")

tanz = o a— o
1—3+ﬁ+0(2)

By the binomial theorem, (1 — y)f1 =35 y" for |y| < 1, for suitably small z,

2 24 2 24
22 2 24
= 1 -z - 6
H(5-5)+(5) o
2 524 6
= 1+3+g+0(z)
So
22 20 7 22 b2t
= = 14+ 4+ == 6
tan z (z 5 +120+O(z ))( t5 51 + O(z ))
B I 1\ ;4 1 1 5\ 5 7
= z—|—<2 6>z +<120 12+24>z +0(2")
2
_ 13, 4.5 7
z~|—3z ~|—15z +O(z")
|
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Remark 7.27 Note that many of the properties of complex sine and cosine differ significantly
from thewr real counterparts. Whilst

2,=1

cos® z + sin
is true for all z, this does mnot mean that |cosz| < 1 or |sinz| < 1. In fact, cos: C — C and
sin: C — C are onto, and so in, particular, are unbounded.

Given w € C then
exp (1z) —e —1
sinz = w = p (z) .xp( ZZ):w
21
= exp (iz)* — 2iwexp (iz) —1 =0

= exp (iz) =i £ V1 —w

Recall exp takes all values except 0. So unless w? = 1, the RHS represents two distinct complex
numbers, so there is a solution z to at least one of the two equations. And if w?> =1 asi # 0
then exp (iz) =i has a solution. (See also Example 7.28.)

Also, whilst exp(iz) = cosz + isinz is true for all complex z, it’s not generally true that
cos z = Re (exp (iz)) .

Example 7.28 Find all the solutions to sin z = 2.
Solution. Set z = = + iy so that
sin (x + iy) = sinz coshy + i cos x sinh y = 2.
Comparing real and imaginary parts, we have
sinz coshy = 2, cosxsinhy = 0.
If y = 0 then sinz = 2 which has no solutions. Hence cosz = 0 and x = (2n + 1) 5. Then
2 = sin ((2n +1) g) coshy = (—1)" coshy.
So n must be even and we have y = 4 cosh™* 2. So the solutions to sin z = 2 are
z=(2n+1) g +icosh™' 2.
]
Example 7.29 Show that cos z = Re (exp (iz)) holds if and only if z is real.
Solution. We know this is true for real z. To prove the converse, say z = = + 1y. Then
cos(z +1iy) = cosxcoshy —isinzsinhy,

Re (exp (iz)) = Re(exp(—y+ix)) =e Ycosx.
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Comparing real and imaginary parts we have
e Y cosx = cosx cosh y, sinx sinhy = 0.

If y = 0 then both equations are satisfied and z is real. If y # 0 then sinxz = 0 and so x = n7w
for some integer n, so that cosz = (—1)" # 0. Finally

ey +eY
coshy=¢" <« +T —eV = H=1 = y=0,

and hence z is real. ®
Example 7.30 Show that |exp(iz)| = 1 if and only if z is real.
Solution. Let z = = + 7y. Note

1 = lexp(iz)| = |exp (—y + iz)| = e™*
if and only if y = 0 and so z is real. ®

Remark 7.31 (Complex Logarithm and Powers) (Off-syllabus) We saw that exp: C — C
has image C\ {0} and has period 2mi. So for any z # 0 there is a solution wy to exp (wgy) = z
and for any integer n then

w = wy + 2nmi

will also be a solution — in fact, these will be all the solutions. This can be argued as follows:

1 = € =¢"(cosy+isiny)
— e =1, cosy=1, siny =0
<— r=0 and y=2nmw  for somen € Z,

so that if expw = expwy = z then
exp(w—wp) =1 = w—wy=2nmi.

These w are the possible values of logz. So complex logarithm is an example of a multi-
function. Other examples of multifunctions include square root and the inverse trigonomet-
ric functions. We can make a genuine function from a multifunction by specifying certain
principal values on the domain, for example by taking the positive square root or insisting
sin™': [-1.1] — [-7/2,7/2].

Given z = rexp (i0) # 0 then the possible values of log z are

log z = logr + 6.

0 here is a choice of argument which needs specifying to define a single-valued function for log.
For z € C\(—00,0] we can uniquely write z = rexp (i0) where —m < 0 < m. We will denote
this particular choice of logz as L(z) which agrees with the real logarithm on the positive real
axis (see Figure 6.3).
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If we were to take points z, and z_, respectively just above and below the cut (—oo, 0], then
we would have

zy =rexp(ifly) where 0, ~ 7; z_ =rexp(il_) where_ ~ —m.
So
L(zy) = logr +im; L(z_) = logr —im.

So across the negative real axis there is a jump of £2mwi depending on which was the axis is
crossed. The function L satisfies exp (L(z)) = z for all w € C\(—00,0] and L is differentiable
with L'(z) = 271 on C\(—00,0].

L[z+]f;logr+m' L[1]=0
— 2 Re

-3 -2 -1

L[z_] = Iogr—n]'v

2+

ke

Fig. 6.3 — a branch L of log

We refer to C\(—o0,0] as a cut-plane and to L as a branch of log. It can be shown that
there is no differentiable branch of log on C\{0}, so some cut to the origin is necessary. The
only other differentiable branches of log on this cut-plane are

L(2) 4 2nmi

for integers n.
In the same way we defined general real exponents, for z € C\(—o00,0] and o € C, we can
define
2% = exp(alL(z)).

This defines a differentiable function on C\(—ooc,0] which has derivative az*"'. Considering
the other possible branches of log, we note that z* takes a unique value if o is an integer, that
2% takes finitely many values if o is rational and otherwise z takes infinitely many values.

When a = % then

(z)V2 = Vrexplin/2) =ivr;  (22)Y2 = /rexp(—in/2) = —i\/r.
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We see this time that there is a sign change as we cross the cut.
The function in Figure 6.4a is z'/? = exp (L(2)/2) and the only other differentiable function
on C\(—o0,0] which satisfies w? = z is —2'/2 depicted in Figure 6.4b. This is because

o L(z)+2nmi\ [ 2Y2 ifn is even,
P 2 T\ =22 ifn s odd.

Im Im

| (z+)‘1./2 z‘i\/T 12 = 1

)2 ~ -V

(272~ fi‘/_f_ 112= 1

@)Y ~ivr]

2+ -2

-3 -3l

Fig. 6.4a — a branch of \/z Fig. 6.4b — another branch

Definition 7.32 (Logarithmic Series) Consider the power series
o0 Zn
Az) = Z —.
— n
The radius of convergence is 1 (by the ratio test) and so converges for |z| < 1.

For —1 < x < 1, by Theorem 7.13,

Set

By the chain and product rules,
p'(z) = =1 xexpA(z)+ (1 —2)N(2)exp A (z) = 0.
It follows that p (x) is constant and equals 1 (0) = exp A (0) = exp0 = 1. Hence

1
exp()\(x))zl_x for —1<z<1
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and, with using the definition of real logarithm (Definition 7.18)

A(x) = log (i) =—log(1—2x).
In terms of the branch L for complex logarithm defined earlier we have
AMz)=—-L(1-2) for |z| < 1.
Example 7.33 Let a,z € C with |z| < 1. Find the power series of
B(z,a) = (14 2)" =exp (aL (14 2)).

Solution. The composition of two analytic functions is itself analytic (which I do not prove

here), so we may set
(0.0
a) = E anz"
0

By the chain rule

B'(z,a) =al' (14 2)exp (oL (14 2)) = %

and so
(14 2)B'(z,a) =aB(z,a).
We note ag = 1 and, focusing on the z" term on each side, we obtain the recurrence relation
(n+1)a,1 + na, = aa,

so that
a—n

n-+1

ag =1, Qpy1 = forn > 0.

Hence

<a—n+1
a, =

)
- (=) (52

(Oz—n+1)(a—n+2)~-(a—1)a
nn—1)x---x2x1
(a—n+1)(a—n+2)---(a—1a
nn—1)x---x2x1

Qo

If we denote this last expression as (2) then we have determined the binomial series for a

general exponent:
N
B = (1 ¢ = "
(z,a) = (1+ 2) Z (n)z

n=0
Note that if « is a natural number then this is a finite sum and otherwise the above series is
an infinite sum which converges for |[z| < 1. =
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