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Course overview

Geometry is a fundamental topic in mathematics with links to algebra, analysis, number theory

and topology, as well as applied mathematics and theoretical physics, including classical mechanics,

mathematical biology and General Relativity. This course will introduce foundational geometric concepts,

such as submanifolds and manifolds, transversality and degree, which provide the essential tools for further

study in many aspects of algebraic and differential geometry and topology. The course will discuss key

examples of relevance both within and beyond geometry and give various applications of the theory.

Finally, the course will look at important examples of geometric structures and their symmetries, namely

projective and hyperbolic space. Aspects of these geometries are of central importance in many areas

of mathematics, and we will discuss several of these links, including to Möbius transformations from

complex analysis.

Course synopsis.

Review of derivative for functions between Euclidean spaces. Inverse and Implicit Function Theorems.

Manifolds arising as submanifolds of Euclidean space and from matrix groups. Lagrange multipliers.

Sard’s Theorem. Transversality and intersections of submanifolds. Degree of a map with applications,

including Fundamental Theorem of Algebra.

Abstract definition of manifold. Projective space and projective transformations, including intersections

and Möbius transformations. Hyperbolic space and transformations, with link to Möbius transformations.

Prerequisities. There are no prerequisites for this course, other than the core courses A2.1 Metric

Spaces and A2.2 Complex Analysis. Students would benefit from taking A5 Topology in conjunction

with this course, but it is certainly not essential.
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1 Introduction

Geometry is the study of shapes. A shape can be presented to us in many ways: as a physical object,

in terms of the properties it possesses, or (as is often the case) as the solution to an equation. We can

study shapes in many different ways and this leads us to various approaches to geometry which we will

explore throughout this course.

Algebra

A simple example of geometry is the set of solutions to

x21 + x22 + x23 = 1

for x1, x2, x3 ∈ R, which gives a round 2-dimensional sphere. For polynomial equations such as this we

can use algebra to study the geometry, and this is the starting point for algebraic geometry. As we know,

algebra is easiest over the complex numbers, so we might consider the same equation above but now for

x1, x2, x3 ∈ C: this already gives quite a different geometric object.

Analysis

Many equations are not polynomial and then it is more appropriate to use analysis to study the geometry.

This will allow us to discuss whether the geometry is smooth (or not).

Even though we gave the round 2-dimensional sphere in terms of an equation before, we can present it

in many different ways using different equations, by specifying its symmetry properties, as the quotient of

two groups and so on. This means it is advantageous to have an abstract notion of what a 2-dimensional

sphere is and thus of any other smooth geometric object. This is the concept of manifolds and they form

the foundation for differential geometry.

Intersections

An important but natural idea is to think about the solution to more than one equation: this corresponds

to thinking about the intersection of two geometric objects. For example:

x21 + x22 + x23 = 1 and x3 = c

for c ∈ R fixed and x1, x2, x3 ∈ R. We see that we get a circle if |c| < 1, nothing if |c| > 1 and just a point

if |c| = 1. In the last case, the two geometric objects just touch, i.e. they do not intersect transversely.

This idea of transversality is one we will examine and see that we can ensure it almost all of the time,

just like in this example.

Projective space

If we return to our discussion of algebra we can consider the equation

x21 + x22 + x23 = 0

for x1, x2, x3 ∈ C. We see that this equation has the attractive feature that it is invariant under multi-

plication by a non-zero complex number, i.e. (x1, x2, x3) is a solution if and only if (λx1, λx2, λx3) is a

solution for all λ ∈ C∗ = C\{0}. We can then consider the solutions of the equation up to multiplication

by C∗: this leads to the idea of projective space. We can also do this for other fields than C and it forms

a rich geometry. In particular, complex projective space is one of the key players in algebraic geometry

and has fascinating transformations.
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Hyperbolic space

As you may know, in Euclidean geometry one has the parallel postulate: for any straight line ℓ in the

plane and every point p not on the line there is a unique parallel straight line to ℓ passing through p.

It was a revolution in geometry in the 19th Century to discover that there is another geometry defined

on the (upper half) plane for which the parallel postulate fails. This is hyperbolic geometry and appears

in many different settings, from group theory to theoretical physics. We will conclude the course by

studying the fundamentals of hyperbolic space and see some of its surprising and beautiful properties.

4



Jason D. Lotay Part A Geometry

2 A little analysis

We may have an intuition about what it means for an object living in 3 dimensions to be smooth. For

example, it seems clear that the unit sphere in R3 is smooth but the unit cube in R3 is not. How do we

formalize this notion?

To do this, we first need to remind ourselves what it means for a function to be differentiable between

Euclidean spaces. Throughout we shall use ∥ · ∥ to denote the Euclidean norm (though, actually, any

norm can be used).

Definition 2.1. A function f : Rn → Rm is differentiable at a ∈ Rn if there exists a (unique) linear map

dfa : Rn → Rm such that

lim
h→0

∥f(a+ h)− f(a)− dfa(h)∥
∥h∥

= 0.

We call dfa the (total) derivative of f at a. (Some authors also call dfa the differential of f at a.) We

say that f is differentiable on an open set U ⊆ Rn if it is differentiable at all a ∈ U . (We may also define

f just on an open subset of Rn rather than all of Rn.)

Remark. It is natural to ask: why is the derivative dfa of f at a a linear map? For a function f : R → R
the usual derivative f ′(a) at a is the gradient of the line tangent to the graph of f in R2 at a: it defines

the “best linear approximation” to f at a. Defining the gradient of the line is the same as choosing a

linear map from x ∈ R to y ∈ R: it tells us how far we need to stretch in the y direction if we move

in the x direction, and this must be linear because we are defining a line. For a function f : Rn → Rm

therefore, we need to say how much we stretch in the (y1, . . . , ym) ∈ Rm directions if we move in the

(x1, . . . , xn) ∈ Rn directions to get the “gradient” of the graph of f . Moreover, it must be linear as we

want the “best linear approximation” to the graph, which will be an n-dimensional subspace in Rn+m.

This hopefully gives some motivation why dfa is a linear map from Rn to Rm.

Example. If f : R → R is differentiable at a ∈ R then, for h ∈ R,

dfa(h) = f ′(a)h.

Remark. Definition 2.1 above works perfectly well for a map between normed vector spaces. We can

also see that it is equivalent to asking for the existence of a linear map dfa such that

Ra(h) := f(a+ h)− f(a)− dfa(h) = o(∥h∥) as h→ 0,

i.e. ∥Ra(h)∥/∥h∥ → 0 as h→ 0.

Example. If we take the identity map id : Rn → Rn then id(a + h) − id(a) = h, so clearly id is

differentiable with derivative

d ida = id

for all a ∈ Rn. More generally, if f : Rn → Rm is a linear map then dfa = f for all a ∈ Rn.

Example. If f : Rn → Rm then, using the standard basis of Rm, we can write f as a vector of functions
f1
...

fm


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where fi : Rn → R for i = 1, . . . ,m. Then, using the standard bases of Rn and Rm and coordinates

(x1, . . . , xn) on Rn, the linear map dfa for a ∈ Rn has matrix

(
∂fi
∂xj

(a)

)
=


∂f1
∂x1

(a) . . . ∂f1
∂xn

(a)
...

. . .
...

∂fm
∂x1

(a) . . . ∂fm
∂xn

(a)

 .

This is called the Jacobian matrix of the partial derivatives of f at a. (Note that this formula shows that

dfa is unique.)

Example. Let f : C → C be holomorphic. If we identify C with R2 with coordinates (x, y) we can write

f(x+ iy) = u(x, y) + iv(x, y). Then dfa has matrix(
∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

)
=

(
∂u
∂x

∂u
∂y

−∂u
∂y

∂u
∂x

)
,

by the Cauchy–Riemann equations, which has determinant(
∂u
∂x

)2
+
(

∂u
∂y

)2
≥ 0,

with equality if and only if f is constant. (The fact that the Jacobian determinant is non-negative is the

statement that holomorphic maps “preserve orientation”: we shall return to this point later.)

Although the Jacobian matrix approach might look attractive, it is not always the best option, as the

next example shows.

Example. Let Mn(R) denote the n × n real matrices, which we may identify with Rn2

. Consider the

determinant map det : Mn(R) → R. We see that if I is the identity matrix then for any H = (hij) ∈
Mn(R) we have

det(I +H) = det


1 + h11 h12 . . . h1n

h21 1 + h22 . . . h2n
...

...
. . .

...

hn1 hn2 . . . 1 + hnn

 = 1 + h11 + h22 + . . .+ hnn +Q(H)

where Q(H) only contains terms which are quadratic or higher in the entries of H. We recognise that

the linear term in the entries of H is just tr(H), the trace of H, and so

∥ det(I +H)− det(I)− tr(H)∥
∥H∥

=
∥Q(H)∥
∥H∥

→ 0

as H → 0. Hence, det is differentiable at I and

d detI(H) = tr(H).

(We can also formalize this calculation by recognizing det(I +H) as the characteristic polynomial of H

evaluated at −1.)

Using the properties of the determinant, one can easily see that det is differentiable at any invertible

matrix A, i.e. at any element in the general linear group

GL(n,R) = {A ∈Mn(R) : detA ̸= 0}

and compute the differential d detA.

A very useful tool when computing derivatives is the Chain Rule. We are very familiar with this from

functions of one variable and there is a natural generalization as follows.
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Proposition 2.2 (Chain Rule). Let f : Rn → Rl and let g : Rl → Rm be such that f is differentiable at

a ∈ Rn and g is differentiable at f(a) ∈ Rl. Then g ◦ f : Rn → Rm is differentiable at a and

d(g ◦ f)a = dgf(a) ◦ dfa.

Proof. (Not examinable.) To help with notation we let f(a) = b. We also note that for a linear map

L between Euclidean spaces, there exists a least constant ∥L∥ ≥ 0 such that

∥Lx∥ ≤ ∥L∥∥x∥

for all x. This constant is called the operator norm of L.

We know that

f(a+ h) = f(a) + dfa(h) +Rfa(h)

where Rfa(h) = o(∥h∥) as h→ 0. We also know that

g(b+ k) = g(b) + dgb(k) +Rgb(k)

whereRgb(k) = o(∥k∥) as k → 0. Since dfa(h)+Rfa(h) → 0 as h→ 0, we may choose k = dfa(h)+Rfa(h)

in the formula above to see that

g(f(a+ h)) = g(b+ dfa(h) +Rfa(h))

= g(b) + dgb(dfa(h) +Rfa(h)) +Rgb(dfa(h) +Rfa(h)).

Re-arranging, we have that (using that dgb is linear)

g(f(a+ h))− g(f(a))− dgb ◦ dfa(h) = dgb(Rfa(h)) +Rgb(dfa(h) +Rfa(h)).

We see that
∥dgb(Rfa(h))∥

∥h∥
≤ ∥dgb∥

∥Rfa(h)∥
∥h∥

→ 0

as h→ 0. We also have that

∥Rgb(dfa(h) +Rfa(h))∥
∥h∥

=
∥Rgb(dfa(h) +Rfa(h))∥

∥dfa(h) +Rfa(h)∥
· ∥dfa(h) +Rfa(h)∥

∥h∥
.

The first term on the right-hand side tends to zero as h→ 0 since dfa(h) +Rfa(h) → 0, and the second

term is bounded as h → 0 because Rfa(h) = o(∥h∥) and ∥dfa(h)∥ ≤ ∥dfa∥∥h∥. This completes the

proof.

Example. If we define f : Mn(R) →Mn(R) by

f(A) = ATA

we see that for H ∈Mn(R):

f(A+H)− f(A) = (A+H)T(A+H)−ATA = ATH +HTA+HTH.

Therefore if we let

dfA(H) = ATH +HTA,

which is a linear map on H ∈Mn(R), then

f(A+H)− f(A)− dfA(H) = o(∥H∥) as H → 0.

Hence, f is differentiable at A and dfA is the derivative of f at A. We also see that f(I) = I.

If we define g :Mn(R) → R by

g(A) = det(A)
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then we saw that g is differentiable at I with dgI(H) = trH. We deduce from the Chain Rule that

g ◦ f(A) = det(ATA) is differentiable at I with

d(g ◦ f)I(H) = dgf(I) ◦ dfI(H) = dgI(H +HT) = tr(H +HT) = tr(H) + tr(HT) = 2 trH,

for any H ∈Mn(R). We can also see this from

g ◦ f(A) = det(ATA) = det(AT) det(A) = det(A)2

and the Chain Rule using g and the function x 7→ x2 on R.

In geometry we often want our functions to be more than just differentiable, so we have the following

notions.

Definition 2.3. A function f : Rn → Rm is Ck if all partial derivatives of f exist up to order k and are

all continuous. (For example, C1 just means all first order partial derivatives exist and are continuous.)

A function f : Rn → Rm is smooth (or C∞) if it is Ck for all k ∈ N. We will write Ck(Rn,Rm) and

C∞(Rn,Rm) for the sets of Ck and smooth functions from Rn to Rm, respectively. (Again, we can replace

Rn by an open set in Rn.)

Remark. If we want to differentiate functions f : Cn → Cm we can do this by identifying Cn with

R2n. We should take care because if f : C → C is differentiable then it is not necessarily the case that

dfa : C → C is given by dfa(h) = f ′(a)h. As we will see (on a problem sheet) this is only guaranteed

if f is holomorphic, which is perhaps not surprising. In fact, it can lead to an alternative definition of

holomorphic functions.

We know well that a smooth bijection need not have a smooth inverse. For example, f(x) = x3 is a

smooth bijection but its inverse is not even differentiable at 0. However, there are smooth bijections with

a smooth inverse, for example the identity f(x) = x, and these functions will be very important.

Definition 2.4. A function f : U → V between open sets U, V ⊆ Rn is a diffeomorphism if it is a smooth

bijection with smooth inverse.

Example. The function tan : (−π/2, π/2) → R is a diffeomorphism.

Example. Any A ∈ GL(n,R) defines a diffeomorphism of Rn since it defines an invertible linear map,

and linear maps are smooth.

A nice fact that we will use is the following which relates diffeomorpishisms to the differential.

Lemma 2.5. Let f : U → V be a diffeomorphism between open sets U, V in Rn and let a ∈ U . Then

dfa : Rn → Rn is an isomorphism.

Proof. By the Chain Rule we see that

id = d ida = d(f−1 ◦ f)a = df−1
f(a) ◦ dfa.

Similarly,

dfa ◦ df−1
f(a) = id .

The result follows.

Remark. Of course, we only need f and f−1 to be differentiable at a and f(a) respectively to obtain

that dfa is an isomorphism.

This relation between invertibility and the differential should remind us of the Inverse Function

Theorem, which you saw in the Metric Spaces course (for the case of maps from R2 to itself, but the

proof is the same in all dimensions – the proof is non-examinable.)
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Theorem 2.6 (Inverse Function Theorem). Let U ⊆ Rn be open, let a ∈ U and let f ∈ C1(U,Rn). If

dfa : Rn → Rn is an isomorphism then there exists an open set V ∋ a and an open set W ∋ f(a) such

that f : V →W is a bijection with inverse f−1 ∈ C1(W,V ). Moreover, for all x ∈ V ,

df−1
f(x) = (dfx)

−1.

Putting the Inverse Function Theorem together with Lemma 2.5 above we arrive at the following.

Proposition 2.7. Let W ⊆ Rn be open, let a ∈ W and let f : W → Rn be smooth. There exists an

open set U ∋ a and an open set V ∋ f(a) such that f : U → V is a diffeomorphism (i.e. f is a local

diffeomorphism at a) if and only if dfa is an isomorphism.

Example. If we take f : C → C given by

f(z) = ez

then, because f is holomorphic,

dfz(w) = ezw

for w ∈ C, so f is a local diffeomorphism at every point z ∈ C as ez ̸= 0. However, f is obviously not a

diffemorphism since it is not injective: f(z + 2nπi) = f(z) for all n ∈ Z. It is also not surjective, since

f(z) ̸= 0 for all z ∈ C.

Diffeomorphisms will provide the natural notion of equivalence in geometry. Much of geometry involves

relating local and global properties, and so local diffeomorphisms will turn out to be very useful.
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3 Submanifolds

We can now give the definition of smooth object we wanted inside Euclidean space.

Definition 3.1. A subset M of Rn is a k-dimensional (embedded) submanifold if for p ∈M there exists

an open set U ∋ p in Rn and a smooth function f : U → Rn−k such that M ∩ U = f−1(0) and 0 is a

regular value of f , i.e. dfa : Rn → Rn−k is surjective for all a ∈ f−1(0).

Before we give the motivation for this definition, let us just check some examples. Our first is actually

the local model for all submanifolds.

Example. Let F : Rk → Rn−k be a smooth function. Let

M = Graph(F ) = {(x, F (x)) : x ∈ Rk} ⊆ Rk × Rn−k = Rn

be the graph of F . Then we can let f : Rn = Rk × Rn−k → Rn−k be given by

f(x, y) = F (x)− y.

Then f is smooth because F is smooth, M = f−1(0) and, for all (a, b) ∈ Rk × Rn−k,

df(a,b) = (dFa − I)

where I is the identity matrix of size n− k. We see that df(a,b) has rank n− k because of the presence of

−I, so it is surjective, and thus 0 is a regular value of f . Hence M is a k-dimensional submanifold of Rn.

A very special case is to take F = 0 which shows that the plane

{(x1, . . . , xn) ∈ Rn : xk+1 = . . . = xn = 0}

is a k-dimensional submanifold. In this case f is (minus) the projection map to Rn−k.

We now show that the sphere is indeed a submanifold.

Example. Let Sn be the unit sphere in Rn+1:

Sn = {x = (x1, . . . , xn+1) ∈ Rn+1 : ∥x∥2 =

n+1∑
i=1

x2i = 1}.

If we define f : Rn+1 → R by

f(x1, . . . , xn+1) =

n+1∑
i=1

x2i − 1

then f is smooth because it is polynomial and Sn = f−1(0). We then see that

dfa = 2aT,

i.e. dfa(h) is 2 times the dot product of a with h. We see that dfa : Rn+1 → R is surjective except when

a = 0: for c ∈ R and a ̸= 0 take

h = c
a

2∥a∥2
⇒ dfa(h) = 2aTh = 2c

aTa

∥a∥2
= c.

However, 0 /∈ Sn, so 0 is a regular value of f and Sn is an n-dimensional submanifold of Rn+1.

To be slightly more sophisticated, we show that a certain matrix group is a submanifold.

Example. Let

SL(n,R) = {A ∈Mn(R) : detA = 1}

be the special linear group. If we let f : Mn(R) → R be

f(A) = detA− 1
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then f is smooth, as it is polynomial in the entries of A, and f−1(0) = SL(n,R). We can compute that,

at any A with detA = 1, we have

dfA(H) = tr(A−1H),

noting that A must be invertible. We want to show that dfA : Mn(R) → R is surjective. If we are given

c ∈ R then we can take

H =
c

n
A ⇒ dfA(

c
nA) =

c
n tr(I) = c

since tr I = n. Hence, 0 is a regular value and SL(n,R) is an n2 − 1-dimensional submanifold of Mn(R).

We will see that many matrix groups will be submanifolds. Let us do one more example.

Example. Let

O(n) = {A ∈Mn(R) : ATA = I}

be the orthogonal group. If we let f : Mn(R) →Mn(R) be given by

f(A) = ATA− I

then we already saw that f is differentiable and

dfA(H) = ATH +HTA.

We see that f−1(0) = O(n) so our goal should be show that 0 is a regular value.

However, we quickly realise that there is a problem: if this were the case, then O(n) would be 0-

dimensional, which it obviously isn’t. We see that dfA is in fact not surjective onto Mn(R). How do we

fix this?

The idea is to realise that f actually maps into a subspace of Mn(R), i.e. Symn(R), the symmetric

matrices, since f(A)T = f(A). Now our goal is to show that for all C ∈ Symn(R) and A ∈ O(n) there is

some H ∈Mn(R) such that

dfA(H) = C.

This we can achieve by choosing H = 1
2AC:

dfA(
1
2AC) =

1
2 (AC)

TA+ 1
2A

TAC

= 1
2C

TATA+ 1
2C

= 1
2C

T + 1
2C = C,

using the facts that ATA = I and CT = C. Thus, 0 is a regular value of f : Mn(R) → Symn(R) and,

since dimSymn(R) = 1
2n(n+1) we have Symn(R) = R 1

2n(n+1) and deduce that O(n) is a submanifold of

Mn(R) = Rn2

with

dimO(n) = dimMn(R)− dimSymn(R) = n2 − 1
2n(n+ 1) = 1

2n(n− 1).

Example. For the special orthogonal group

SO(n) = {A ∈ O(n) : detA = 1}

we notice if A ∈ O(n) then detA ∈ {−1,+1}, so

SO(n) = O(n) ∩ {A ∈Mn(R) : detA > 0}.

Since the set of matrices with positive determinant is open, we deduce that SO(n) is a submanifold of

Mn(R) of the same dimension as O(n), i.e. 1
2n(n− 1).

Another way to see that SO(n) is a submanifold of the same dimension as O(n) is to use a bit of

(metric space) topology: we realise that det : O(n) → {±1} is continuous and surjective, so SO(n) is just
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the connected component of O(n) containing I (i.e. it is a closed and open subset of O(n) containing I),

and hence is a submanifold of the same dimension 1
2n(n− 1).

We now have a classic warning example.

Example. Define f : R2 → R by

f(x, y) = x3 − y3.

Then we compute that

df(a,b) = (3a2,−3b2)

which is zero at (a, b) = (0, 0) and hence 0 is not a regular value of f . However, we see that

f−1(0) = {(x, y) ∈ R2 : x3 = y3} = {(x, y) ∈ R2 : x = y}

is definitely an embedded 1-dimensional submanifold of R2 (for example because it is the graph of the

identity map on R).
Hence, the regular value condition on f : Rn → Rn−k at 0 is sufficient but not necessary to guarantee

that f−1(0) is a k-dimensional submanifold.

Now that we have seen the definition seems to give us some good examples we can answer where the

definition comes from: the answer is the Implicit Function Theorem.

Theorem 3.2 (Implicit Function Theorem). Let f : Rn × Rm → Rm and (a, b) ∈ Rn × Rm such that f

is C1 in an open set U ∋ (a, b) and f(a, b) = 0. Write

df(a,b) = (A B)

for an m× n matrix A and B ∈Mm(R), i.e.

B = (bij) =

(
∂fi
∂xn+j

)
.

If detB ̸= 0, then there exists an open set V ∋ a in Rn, an open set W ∋ b in Rm and g ∈ C1(V,W )

such that

f−1(0) ∩ (V ×W ) = {(x, g(x)) : x ∈ V }.

Remarks.

(a) The condition on f in the Implicit Function Theorem implies that df(a,b) : Rn × Rm → Rm is

surjective, which shows the link to our embedded submanifold definition (Definition 3.1).

(b) Informally, the conclusion of the Implicit Function Theorem says that the zero set of f , near (a, b),

is the graph of g: this shows the connection to the graph example that we gave earlier.

(c) The restriction to f(a, b) = 0 is just for convenience: we can take f(a, b) = c for any fixed c ∈ Rm.

(d) If f is assumed to be Ck (for k ≥ 1) or C∞ on U in the Implicit Function Theorem then g will also

be Ck or C∞.

As we will now see, the main idea behind the proof of the Implicit Function Theorem is the Inverse

Function Theorem we saw earlier.

Proof of Implicit Function Theorem. Define F : Rn × Rm → Rn × Rm by

F (x, y) = (x, f(x, y)).

Then, writing in block notation as in the statement of the theorem (Theorem 3.2),

dF(a,b) =

(
I 0

A B

)
.

12
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Therefore det dF(a,b) = detB ̸= 0, so dF(a,b) is invertible.

By the Inverse Function Theorem (Theorem 2.6) there exists an open set Ṽ ∋ (a, b) and an open set

W̃ ∋ F (a, b) = (a, 0) such that f : Ṽ → W̃ is invertible with C1 inverse. We may choose open sets V ∋ a

and W ∋ b such that V ×W ⊆ Ṽ and make W̃ smaller if necessary (i.e. replace W̃ by F (V ×W )) so

that F : V ×W → W̃ is invertible with C1 inverse F−1 : W̃ → V ×W .

Since F (x, y) = (x, f(x, y)), there exists a surjective C1 function G : W̃ →W such that

F−1(x, y) = (x,G(x, y)).

Let π : Rn × Rm → Rm be the projection map. Then π ◦ F = f and

f(x,G(x, y)) = f ◦ F−1(x, y) = (π ◦ F ) ◦ F−1(x, y) = π ◦ (F ◦ F−1)(x, y) = π(x, y) = y

for all y ∈W . Thus,

f(x,G(x, 0)) = 0

and if we define g : V →W by

g(x) = G(x, 0)

then the result follows.

Remark. Since the function g in the Implicit Function Theorem satisfies f(x, g(x)) = 0 for all x, by

differentiating this equation and using the Chain Rule one can quite easily compute the derivative of g,

which can help to find what g is.

Let us look at a simple example to see the Implicit Function Theorem in action.

Example. Let f : Rn × R → R be given by

f(x, y) = ∥x∥2 + y2 − 1.

Then f is smooth as it is a polynomial and given (a, b) ∈ Rn × R with f(a, b) = 0 then

df(a,b) = 2(aT b).

We therefore see that the Implicit Function Theorem applies if b ̸= 0. Suppose that b > 0. In this case

we can of course find g by solving f(x, y) = 0:

g(x) =
√
1− ∥x∥2.

(We would have taken the negative square root if b < 0.) Here V is the open unit ball in Rn and

W = (0, 1) ⊆ R, which contains b. We therefore see that g : V → W is indeed a smooth map, but it is

not smooth (or even differentiable) in any neighbourhood of any x with ∥x∥ = 1.

There is a useful generalisation of the Implicit Function Theorem which we also give.

Theorem 3.3. Let f : Rn → Rn−k and a ∈ Rn such that f is C1 in an open set U ∋ a in Rn and

f(a) = 0. If dfa : Rn → Rn−k is surjective then there exists an open set V ∋ a contained in U , an open

set W ∋ 0 in Rn and ψ ∈ C1(W,V ) a bijection with C1 inverse such that ψ(0) = a and

f ◦ ψ(x1, . . . , xn) = (xk+1, . . . , xn).

Proof. Since dfa is surjective we can permute the coordinates on Rn so that the last n − k columns of

dfa form an invertible matrix, as in the statement of the Implicit Function Theorem (Theorem 3.2). If

σ denotes this permutation then f ◦ σ now satisfies the conditions of the Implicit Function Theorem, so

taking F essentially as in the proof of that theorem we have that

(f ◦ σ) ◦ F−1(x1, . . . , xn) = (xk+1, . . . , xn).

Taking ψ = σ ◦ F−1 gives the result.

13
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Remark. Theorem 3.3 implies that if we have a k-dimensional submanifoldM of Rn, then given any p ∈
M we can choose coordinates (given by the smooth function ψ with smooth inverse) on a neighbourhood

U ∋ p in Rn such that M ∩ U is just the plane where xk+1 = . . . = xn = 0.

Let us look at a slightly more sophisticated example.

Example. Given c ∈ R let us consider the map f : R3 → R given by

f(x1, x2, x3) = x21 + x22 − x23 − c.

We see that f is smooth (as it is a polynomial) and

df(a1,a2,a3) = 2(a1 a2 − a3).

If f(a) = 0 then we see that dfa is surjective as long as a ̸= 0.

If c < 0 and f(a1, a2, a3) = 0 then a3 ̸= 0 and so we are in the setting of the usual Implicit Function

Theorem. We then find that f−1(0) is locally the graph of

g(x1, x2) = ±
√
x21 + x22 − c,

which is smooth everywhere as c < 0 (where the sign is determined by the sign of a3). This makes sense

as in this case f−1(0) is a hyperboloid of two sheets, and so is the graph of two functions (whose images

are disjoint).

If c > 0 and f(a1, a2, a3) = 0 then now a3 can vanish, but then a21 + a22 = c > 0 so one of a1, a2 is

non-zero. If a2 ̸= 0, say, then we get that f−1(0) is locally the graph of

g(x1, x3) =
√
c+ x23 − x21.

We see that we have to change coordinates to describe the local graph and also that f−1(0) is no longer

a global graph: this makes sense again, as it is a hyperboloid of one sheet.

Finally, if c = 0 then 0 ∈ f−1(0) and none of our theorems apply. We see that the type of implicit

function we would be led to consider would be, for example,

g(x1, x2) =
√
x21 + x22

which is definitely not smooth near 0. One can use this to argue that f−1(0) is, in fact, not a submanifold

of R3, but we shall see a different argument later.

As we have seen, k-dimensional submanifolds of Rn are locally graphs over k-dimensional planes in

Rn, but what are these planes geometrically? The answer is that they are the tangent spaces to the

submanifold.

Definition 3.4. Let M ⊆ Rn be a k-dimensional submanifold and let p ∈M .

Let α : (−ϵ, ϵ) → M be a curve with α(0) = p. We say that α′(0) ∈ Rn is the tangent vector to α at

p. We let TpM be the set of all tangent vectors to curves α : (−ϵ, ϵ) → M with α(0) = p. Then TpM is

the tangent space to M at p.

Let us start with the simplest possible example, though it actually will be very useful.

Example. Let

M = {(x1, . . . , xn) ∈ Rn : xk+1 = . . . = xn = 0}.

Then any curve α in M will have α′(0) ∈ M . Therefore, TpM ⊆ M . Moreover, given any p, v ∈ M we

have that α(t) = p+ tv is a curve in M with α(0) = p and α′(0) = v, so v ∈ TpM . Hence,

TpM =M

for all p ∈M and is, in particular, a k-dimensional vector space.

We can now show how to find all tangent spaces to submanifolds.

14
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Proposition 3.5. Let M be a k-dimensional submanifold of Rn and let p ∈M . Then the tangent space

TpM to M at p is a k-dimensional vector space and if f : U ⊆ Rn → Rn−k, where U ∋ p is open, is

smooth with M ∩ U = f−1(0) and 0 is a regular value of f , then

TpM = ker dfp

Proof. Let α be any curve in M with α(0) = p. We know from our generalisation (Theorem 3.3) of the

Implicit Function Theorem that there exist open sets V ∋ p and W ∋ 0 in Rn and a diffeomorphism

ψ : W → V such that ψ(0) = p and, if π : Rn = Rk × Rn−k → Rn−k denotes the projection onto the last

n− k coordinates:

f ◦ ψ = π.

Let P = kerπ (which is just the plane from the example above). Then the formula above says that

M ∩ V = ψ(P ∩W ).

Therefore, as ψ is a diffeomorphism, there exists a curve β in W ∩ P with β(0) = 0 and ψ ◦ β = α on

M ∩ V ∋ p. Therefore, by the Chain Rule,

α′(0) = (ψ ◦ β)′(0) = dψβ(0) ◦ β′(0) = dψ0

(
β′(0)

)
.

Since dψ0 is an isomorphism (Lemma 2.5) and using the example above, we deduce that

dψ0(P ) = TpM

and hence is a k-dimensional vector space.

Now we observe that f ◦ α = 0 so by the Chain Rule:

0 = (f ◦ α)′(0) = dfα(0) ◦ α′(0) = dfp
(
α′(0)

)
.

Hence, TpM is contained in ker dfp, which is a k-dimensional vector space as well (by Rank-Nullity),

giving the result.

Let us apply this result to a simple example to see that it matches our intuition.

Example. Let us consider the unit sphere Sn in Rn+1. Then we know that Sn = f−1(0) where

f(x) = ∥x∥2 − 1

and

dfa = 2aT.

Therefore, by our result,

TpM = ker dfp = {y ∈ Rn+1 : pTy = 0} = ⟨p⟩⊥,

the vector space orthogonal to the span of p. This is clear geometrically.

We now revisit a previous example to see why it is not a submanifold.

Example. If we return to the example of f : R3 → R given by

f(x1, x2, x3) = x21 + x22 − x23

one can see that if we take a curve α in f−1(0) with α(0) = 0 then α′(0) ∈ f−1(0). Moreover, every

v ∈ f−1(0) is α′(0) for some curve α in f−1(0): just take α(t) = tv. However, f−1(0) is not a vector

space and so f−1(0) cannot be a submanifold of R3.

We now look at some examples of matrix groups which we showed were submanifolds.

15
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Example. If we consider SL(n,R) then by our earlier calculations we find that

TI SL(n,R) = {B ∈Mn(R) : trB = 0},

the trace-free matrices, which is a vector space of dimension n2 − 1.

Example. If we instead consider O(n) (or SO(n)) then again by our earlier calculations we find that

TI O(n) = {B ∈Mn(R) : BT +B = 0},

the skew-symmetric matrices, which is a vector space of dimension 1
2n(n− 1).

Remark. (Not examinable). The tangent space at the identity of matrix groups like this, which are

submanifolds, is particularly interesting as it is related to Lie algebras.

We now consider variational problems on submanifolds, that is, trying to minimize/maximize a func-

tion on the submanifold. This gives the theory of Lagrange multipliers.

We first start with an elementary observation.

Lemma 3.6. Let g : Rn → R be differentiable with a local minimum (or maximum) at a ∈ Rn, i.e. there

exists some open set U ∋ a such that for all x ∈ U we have g(x) ≥ g(a). Then

dga = 0.

Proof. Suppose, for a contradiction, that dga ̸= 0. Then there exists v ∈ Rn with ∥v∥ = 1 such that

dga(v) > 0.

Now, by the definition of the differential, we have for all t ∈ (−ϵ, ϵ) such that a+ tv ∈ U ,

g(a+ tv) = g(a) + tdga(v) + tη(t)

for a function η(t) with η(t) → 0 as t→ 0. Hence, by making ϵ smaller we can ensure that

|η(t)| < 1

2
dga(v)

for all t. This means that

0 ≤ g(a+ tv)− g(a) = t(dga(v) + η(t))

which is impossible for t < 0.

We can now prove our result.

Theorem 3.7 (Lagrange multipliers). Let M be a k-dimensional submanifold of Rn and let p ∈M . Let

f ∈ C1(U,Rn−k), where U ∋ p is open in Rn, be such that f−1(0) = M ∩ U and 0 is a regular value of

f . Suppose that g : Rn → R has a local minimum (or maximum) on M at p. Then if f = (f1, . . . , fn−k)

there exist λ1, . . . , λn−k ∈ R (called Lagrange multipliers) such that

dgp =

n−k∑
i=1

λidf
i
p.

Proof. Suppose first that

f(x1, . . . , xn) = (xk+1, . . . , xn).

Then

df ip = ei,

16
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the unit vector in the xi direction. We are then asking that g has a local minimum on Rk = {xk+1 =

. . . = xn = 0}, so dgp must vanish on directions in Rk by Lemma 3.6. This then means that dgp lies in

the Rn−k and hence in the span of the df ip.

In general, we know from our generalisation (Theorem 3.3) of the Implicit Function Theorem that

there exists a diffeomorphism ψ from some open set containing 0 to an open set in U containing p such

that

f ◦ ψ(x1, . . . , xn) = (xk+1, . . . , xn).

Therefore, by considering g ◦ ψ instead, which now has a local minimum at 0 in Rk, everything now

follows because dψ0 is an isomorphism (Lemma 2.5).

Remarks.

(a) The result says that dgp vanishes on TpM = ker dfp, which means that, viewed as a vector in Rn,

it is normal to TpM .

(b) Solving for the Lagrange multipliers finds a critical point for g on M , but it does not determine

what type of critical point this is. We usual need a separate argument (often involving bounds on

f, g) to show that the critical point is actually a minimum or maxium.

Example. Suppose we want to find the closest point to the origin on a given surface. For example, let

us take r > 0 and consider

M = {(x1, x2, x3) ∈ R3 : x21 + x22 − x23 = −r2, x3 > 0}.

We then have that

f(x1, x2, x3) = x21 + x22 − x23 + r2 and g(x1, x2, x3) = x21 + x22 + x23.

Then from our earlier calculations and Theorem 3.7, we have that at such a closest point (a1, a2, a3) on

M there must be a constant λ ∈ R such that

dga = 2(a1 a2 a3) = λdfa = 2λ(a1 a2 − a3)

Now since a3 ̸= 0 this forces λ = −1 and a1 = a2 = 0, so the only extremum of g on M is

(0, 0, r).

Indeed, since there is only one critical point and the function g must have a minimum, we see that it is

indeed the closest point (as we already knew).

To finish this section we look at level sets of functions f : M → N between submanifolds, i.e. the sets

f−1(c) where c ∈ N . We first need a definition.

Definition 3.8. Let M ⊆ Rm and N ⊆ Rn be submanifolds. A function f : M → N is smooth if for all

p ∈ M there is an open set U ∋ p in Rm such that f on U ∩M is the restriction of a smooth map from

U to Rn.

We now make an observation.

Lemma 3.9. Let M,N be submanifolds and let f : M → N be smooth. Then f induces a linear map

dfp : TpM → Tf(p)N.

Proof. Let α : (−ϵ, ϵ) → M be a curve with α(0) = p. Then f ◦ α is a curve in N with f ◦ α(0) = f(p).

By the Chain Rule,

(f ◦ α)′(0) = dfα(0) ◦ α′(0) = dfp(α
′(0)).

Since (f ◦ α)′(0) ∈ Tf(p)N the result follows.

17



Jason D. Lotay Part A Geometry

Remark. To compute the differential of f : M → N at p we take the smooth map F defined on the open

set U ⊆ Rm containing p which restricts to f , compute dFp : Rm → Rn as usual and then restrict the

differential to TpM to find dfp. We will see this in practice below.

We can now understand when level sets of functions between submanifolds are submanifolds.

Theorem 3.10 (Regular Value Theorem). Let M ⊆ Rm and N ⊆ Rn be submanifolds of dimensions

k and l respectively and let f : M → N be smooth. If c ∈ f(M) ⊆ N is a regular value of f , i.e. dfp :

TpM → TcN is surjective for all p ∈ f−1(c), then f−1(c) is a submanifold of dimension k − l and

Tpf
−1(c) = ker dfp.

The proof is a straightforward application of the Implicit Function Theorem and we leave it as an exercise.

Example. Let f : S2 → R be given by

f(x1, x2, x3) = x3.

Then f is smooth, as the restriction of a smooth map (which we also call f for simplicity) on R3 which

has differential

df(a1,a2,a3) = (0 0 1)

in R3. However we need to restrict the differential to TpS2, so we see that if we let p = (0, 0,±1) then

TpS2 = {(x1, x2, 0) : x1, x2 ∈ R2}

and so dfp : TpS2 → R is the zero map: this is exactly when f(p) = ±1. Otherwise, the differential dfp

is surjective (since there will be a vector in TpS2 with a component in the x3 direction).

The Regular Value Theorem then implies that f−1(c) is a 1-dimensional submanifold for c ∈ f(S2) =

[−1, 1] except when c = ±1. This makes sense as these are just lines of latitude when c ∈ (−1, 1).

Just to finish this section we explain why we have the word “embedded” highlighted in the definition

of submanifold by talking about three important classes of maps.

Definition 3.11. Let M,N be submanifolds and let f : M → N be smooth.

We say that f is an immersion at p ∈ M if dfp : TpM → Tf(p)N is injective, and say that f is an

immersion if it is an immersion at all p ∈M .

We say that an immersion f is an embedding if f : M → f(M) is a homeomorphism, i.e. a continuous

map with continuous inverse. An important fact is that if M is compact (which is the same as closed

and bounded) then an injective immersion will be an embedding.

We say that f is a submersion at p ∈ M if dfp : TpM → Tf(p)N is surjective, and say that f is a

submersion if it is a submersion at all p ∈M .

Example. Let f : R → R2 be given by

f(θ) = (cos θ, sin θ).

Then f is smooth and

dfθ =

(
− sin θ

cos θ

)
which is clearly an injective map from R to R2. Hence f is an immersion, but it is not an embedding

since it is not injective: f(θ + 2π) = f(θ) for all θ.

Example. If M is a k-dimensional submanifold of Rn then the inclusion map ι : M → Rn is an embed-

ding. More generally, if f : M → Rn is an embedding then f(M) is also a k-dimensional submanifold.
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Example. Let f : Rn+1 → R be given by projection onto the last coordinate:

f(x1, . . . , xn+1) = xn+1.

Then f is smooth and

df(x1,x2) = (0 . . . 0 1),

which is definitely surjective, so f is a submersion. However, if we restrict f to the sphere then f : Sn → R
is not a submersion at xn+1 = ±1 (as we saw).

This shows the relationships between submersions, projections and regular values.

Example. Let f : R× {0} ∪ R× {1} → R2 be given by

f(x, 0) = (x, 0) and f(x, 1) = (0, x).

Then f is smooth, it is an immersion (as it is effectively the identity on each copy of R) but it is not

injective as f(0, 0) = f(0, 1) = (0, 0). The image is two straight lines meeting at just one point: this is a

good local model for thinking about immersions which are not embeddings.

Remark. (Not examinable). The previous example and an example on a problem sheet hint at

a subtle issue we have avoided, namely the issue of immersed submanifolds, which are the images of

immersions. Many things are still true for immersed submanifolds as for embedded submanifolds, but

not everything, so this is why we restricted ourselves to the embedded ones.
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4 Transversality

Our next goal is to try to answer the following question: when is the intersection of two submanifolds

still a submanifold (of the dimension we think it should be)?

To begin with we have a fundamental and important result in analysis which plays a crucial role in

geometry and topology: Sard’s Theorem.

Theorem 4.1 (Sard’s Theorem). Let U be an open set in Rn and let f : U → Rm be a smooth map. Let

C be the set of critical points of f , i.e.

C = {a ∈ U : rank dfa < m}.

Then f(C), the set of critical values of f , has Lebesgue measure zero in Rm.

Remark. If you are not taking Integration, then f(C) having Lebesgue measure zero just means that

for all ϵ > 0 there exists a collection {Ij : j ∈ N} of cubes in Rm such that f(C) ⊆
⋃

j Ij and the sum of

the volumes of the Ij is strictly less than ϵ:
∑

j vol(Ij) < ϵ.

A corollary of Sard’s Theorem is the following, which is used frequently.

Corollary 4.2. Let f : M → N be a smooth map between submanifolds. Then the set of regular values

of f is dense in N .

Proof. (Not examinable). We can cover the k-dimensional submanifold M with a countable collection

of open sets {Vj : j ∈ N} where M is given by the graph of a function on an open set Uj in Rk. Using

this, we can consider f locally (i.e. on each Vj) as a function on an open set (namely Uj) in Rk. The

result then follows immediately from Sard’s Theorem.

Let us try to understand what Sard’s Theorem is saying in an example.

Example. Let f : R → R be smooth. The condition that rank dfa < 1 is just f ′(a) = 0, so in this case

C is just the critical points of f in the sense we already knew. Geometrically, these give the points on

the graph where it becomes horizontal. Sard’s Theorem then says that almost every horizontal line in

R2 which meets the graph will meet it transversely.

This clearly generalizes to f : Rn → R, where now Sard’s Theorem says that almost every hyperplane

in Rn+1 which meets the graph of f will do so transversely. As an explicit example, take

f(x1, x2) = x21 + x22.

Then C = {(0, 0)}, f(C) = {(0, 0)} (which clearly has measure zero) and the intersection of {x3 = c} in

R3 with the graph of f will be either empty if c < 0, a point if c = 0 or a circle if c > 0.

A nice application of Sard’s Theorem involves the closed unit ball

B
n
= {x ∈ Rn : ∥x∥ ≤ 1}.

This is not quite a submanifold of Rn, but instead is a submanifold with boundary. To define this we let

H
n
be the (closed) upper half-space

H
n
= {(x1, . . . , xn) ∈ Rn : xn ≥ 0}

and let its boundary be

∂H
n
= {(x1, . . . , xn) ∈ H

n
: xn = 0}.

Definition 4.3. A subset M of Rn is a k-dimensional (embedded) submanifold with boundary if for all

p ∈M there exists an open set U ∋ p in Rn, an open set V ⊆ H
k
and a diffeomorphism φ : U ∩M → V .

The boundary ∂M of M is the set of points p ∈M such that φ(p) ∈ ∂H
k
for some φ as above.
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Remarks.

(a) By our generalisation (Theorem 3.3) of the Implicit Function Theorem, this agrees with our previous

definition of submanifold if ∂M = ∅, i.e. if each open set V as above is actually contained in the

open upper half-plane Hk = H
k \ ∂Hk

.

(b) We see that M \ ∂M is a k-dimensional submanifold and ∂M is a (k− 1)-dimensional submanifold.

Example. The closed unit ball B
n ⊆ Rn is an n-dimensional submanifold with boundary ∂B

n
= Sn−1.

We will utilize several times the following important fact.

Lemma 4.4. Let M be a compact 1-dimensional submanifold with boundary. Then ∂M is a (finite) even

number of points.

Proof. It is a non-trivial fact the only compact 1-dimensional submanifolds with boundary are finite

disjoint unions of arcs of finite length. These arcs are then either loops (and so have no boundary) or

have two endpoints.

There is a slight extension of the Regular Value Theorem (Theorem 3.10) for submanifolds with

boundary that we shall use and so we will state it here (again, without proof).

Theorem 4.5. Let M ⊆ Rm be a k-dimensional submanifold with boundary, let N ⊆ Rn be an l-

dimensional submanifold and let f : M → N be smooth. If c ∈ f(M) ⊆ N is a regular value of f and of

f |∂M , i.e. both dfp : TpM → TcN is surjective for all p ∈ f−1(c) and dfq : Tq∂M → TcN is surjective

for all q ∈ f−1(c) ∩ ∂M , then f−1(c) ⊆ Rm is a (k − l)-dimensional submanifold with boundary and

∂f−1(c) = f−1(c) ∩ ∂M.

Given this, we can now prove the key lemma that will give our nice application.

Lemma 4.6. There is no smooth map f : B
n → Sn−1 such that f |Sn−1 = id.

Proof. Suppose for a contradiction that f exists. Let y ∈ Sn−1 be a regular value of f , which must

exist by Sard’s Theorem. Then certainly y is a regular value for f |Sn−1 = id as well. Therefore, by

the extension of the Regular Value Theorem (Theorem 4.5), f−1(y) is a 1-dimensional submanifold with

boundary and

∂f−1(y) = ∂Bn ∩ f−1(y) = Sn−1 ∩ f−1(y) = {y}.

Moreover, f−1(y) is compact. (To see this: if (xj) is a sequence in f−1(y) converging to x then we see

that f(xj) → f(x) as j → ∞ since f is continuous, so x ∈ f−1(y) and thus f−1(y) is closed; and f−1(y)

is bounded in Rn because it is contained in B
n
which is bounded.) Hence, by Lemma 4.4, ∂f−1(y) must

be an even number of points, which is a contradiction.

Theorem 4.7 (Brouwer’s Fixed Point Theorem). Every continuous map F : B
n → B

n
has a fixed point.

Proof. We will do the proof just in the case when F is smooth. When F is not smooth, one just

approximates it by a smooth (in fact polynomial) map G using the Weierstrass Approximation Theorem

(and performs a suitable rescaling so that G maps B
n
to B

n
still).

Suppose for a contradiction that F has no fixed point. For x ∈ B
n
we let ℓx be the straight line

through x and F (x), which meets Sn−1 in two points. We let f(x) be the point in ℓx ∩ Sn−1 which is

closer to x than F (x). Then f : B
n → Sn−1 is smooth and f(x) = x for all x ∈ Sn−1, which is impossible

by Lemma 4.6.

We will now explain how to prove Sard’s Theorem (in a special case).
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Proof of Sard’s Theorem (special case). (Not examinable). We will only do the special case where

n = m, which is the “easy” case. The general case can be tackled using an induction argument involving

the number of partial derivatives which vanish at a given point in C. This is subtle and in fact shows

that the smoothness of f is important.

We know that U can be written as the countable union of compact cubes in Rn (Analysis I). We also

know that a countable union of sets with measure zero still has measure zero: this is straightforward from

the definition. We can therefore restrict to f defined on a compact cube K ⊆ U with sides of length l.

Let a ∈ C ∩K. Then dfa(Rn) is a proper subspace of Rn (as rank dfa < n = m) so there exists a

non-zero linear map π : Rn → R such that

π ◦ dfa = 0.

Let H be the following hyperplane containing f(a):

H = {x ∈ Rn : π(x− f(a)) = 0}.

Then f(a) + dfa(y) ∈ H for all y ∈ Rn and so we must have that

d(f(x),H) ≤ ∥f(x)− f(a)− dfa(x− a)∥.

Since f is smooth and K is compact, we may apply Taylor’s Theorem to deduce that there is a

constant λ > 0 such that for all x, y ∈ K:

∥f(x)− f(y)− dfy(x− y)∥ ≤ λ∥x− y∥2.

We deduce that

d(f(x),H) ≤ λ∥x− a∥2.

Let ϵ > 0 and let

µ = sup{∥dfx∥ : x ∈ K},

which is finite as K is compact. If ∥x− a∥ ≤ ϵ then d(f(x),H) ≤ λϵ2 and by the Mean Value Theorem

∥f(x)− f(a)∥ ≤ µ∥x− a∥ ≤ µϵ.

Hence,

{f(x) : x ∈ K, ∥x− a∥ ≤ ϵ}

is contained in a neighbourhood of width 2λϵ2 around H and a cube of side length 2µϵ, which has volume

v(ϵ) ≤ 2λϵ2(2µϵ)n−1 = 2nλµn−1ϵn+1.

If we now subdivide K into Nn cubes of side length l/N , we can repeat the argument above for each

of these cubes. In each of these small cubes K̃ we will have

∥x− y∥ ≤ l
√
n

N

and so if C ∩ K̃ ̸= ∅ then

{f(x) : x ∈ K̃}

will be contained in a set of volume (taking ϵ = l
√
n

N )

V (N) ≤ v

(
l
√
n

N

)
≤ 2nλµn−1

(
l
√
n

N

)n+1

.

There are at most Nn such contributions to the total volume, so we have that f(C ∩ K) is certainly

contained in a set of volume

V ≤ NnV (N) ≤ 2nλµn−1ln+1n
n+1
2

N
.

Since this tends to zero as N → ∞, we deduce that f(C∩K) has measure zero, which gives the result.
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As we saw, Sard’s Theorem implied a transversality result for graphs of functions and hyperplanes.

We want to formalize now what we mean by transversality.

Definition 4.8. Let M1,M2 be submanifolds of Rn. We say that M1,M2 intersect transversely if for all

p ∈M1 ∩M2 we have

Rn = TpM1 + TpM2.

If this holds we may write M1 ⋔M2.

Example. If we take M1,M2 to be curves in R2 then they intersect transversely if and only if their

tangent spaces are distinct at any intersection point. For example, any two distinct straight lines in the

plane through 0 must intersect transversely, but two distinct circles which touch at one point do not.

Remark. If dimM1 + dimM2 = n then for M1 ⋔M2 to hold we must have

Rn = TpM1 ⊕ TpM2

at all intersection points p ∈M1∩M2. If instead dimM1+dimM2 > n then the sum can never be direct.

We can generalize the notion of transversality further to talk about maps.

Definition 4.9. Let M,N be submanifolds and let f : M → N be smooth. Let L ⊆ N be another

submanifold and let K ⊆M . We say that f is tranverse to L along K, and write f ⋔K L, if for all p ∈ K

such that f(p) ∈ L we have that

Tf(p)N = dfp(TpM) + Tf(p)L.

If K =M we just write f ⋔ L and say f is transverse to L.

Remark. Note that K is just a subset of M : it need not be a submanifold.

Example. Let us see how this relates to our previous definition (Definition 4.8). Let M = M1 and

L =M2 be submanifolds of N = Rn, let f : M → Rn be the inclusion map and let K =M∩L =M1∩M2.

We see that f(p) = p ∈ L for all p ∈ K and dfp : TpM → Rn is the inclusion map. Therefore f is

transverse to L along K if and only if

Rn = Tf(p)N = TpM + TpL = TpM1 + TpM2.

This says that the two submanifoldsM1,M2 intersect transversely. In fact, we can just takeK =M =M1

and get that f ⋔ L.

Remark. Roughly speaking, the more general notion of transversality in Definition 4.9 means we are

thinking about the intersection between f(M) and L in N at the points in f(K) ∩ L.

Using the notion of transversality in Definition 4.9 we can generalize the Regular Value Theorem

(Theorem 3.10) even further.

Theorem 4.10. Let M,N be submanifolds, let f ∈ C∞(M,N) and let L ⊆ N be a submanifold. If f is

transverse to L (f ⋔ L) then f−1(L) is a submanifold. Moreover, the codimension of f−1(L) in M is

dimM − dim f−1(L) = dimN − dimL.

Proof. Suppose first that N = U×V where U ⊆ Rk, V ⊆ Rl are open sets containing 0, and L = U×{0}.
Let π : Rk × Rl → Rl be the projection map and let g = π ◦ f : M → Rl so that

f−1(L) = f−1(U × {0}) = g−1(0).
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Then f : M → U × V is transverse to U × {0} if and only if

dfp(TpM) + Rk = Rk × Rl.

Since π is a linear map we have dπa = π and therefore

dgp = dπf(p) ◦ dfp = π ◦ dfp.

We deduce that f ⋔ U × {0} if and only if 0 is a regular value of g. This shows that f−1(U × {0}) is a
submanifold of codimension l.

By the Implicit Function Theorem, we can always locally (i.e. in an open neighbourhood of any p ∈ L)

reduce to the case above, which then gives the result as the property of being a submanifold is a local

condition (see Definition 3.1).

We can now answer the question about intersections of submanifolds that we posed at the start of

this section.

Corollary 4.11. If two submanifolds M1,M2 in Rn intersect transversely (M1 ⋔M2) and M1∩M2 ̸= ∅,
then M1 ∩M2 is a submanifold of Rn of dimension dimM1 + dimM2 − n.

Proof. As in the example we take M = M1, L = M2, K = M1 ∩ M2, N = Rn and f : M → Rn

is the inclusion map. Then, as we saw in the example, f ⋔ L. Applying Theorem 4.10, we see that

f−1(L) = K =M1 ∩M2 is a submanifold and

dimM1 − dimM1 ∩M2 = dimM − dim f−1(L) = dimN − dimL = n− dimM2.

Re-arranging gives the result.

Example. If M1,M2 are submanifolds in Rn with dimM1 +dimM2 = n and they intersect transversely

then M1 ∩M2 consists of a (possibly empty) collection of isolated points.

Suppose we have two circles C1, C2 in the plane. It could happen that C1 ∩ C2 consists of one point

and the intersection is not transverse. However, if we translate C2 slightly then the intersection will

become empty (so trivially transverse) or two points and transverse. Thus we might expect that we can

achieve transversality most of the time. This in fact turns out to be true: we shall omit the proof as it

is a bit technically challenging, but a key ingredient is Sard’s Theorem.

Theorem 4.12 (Transversality Theorem). Let L,M,N be submanifolds with L ⊆ N .

(a) The set

{f ∈ C∞(M,N) : f ⋔ L}

is dense in C∞(M,N).

(b) Let L be closed and K ⊆M be compact. Then the set

{f ∈ C∞(M,N) : f ⋔K L}

is open and dense in C∞(M,N).

Remark. (Not examinable). We will not give the details of what being open in C∞(M,N) means,

but we can say that f1, f2 ∈ C∞(M,N) are “close” if all the derivatives of f1, f2 are close to each

other. Moreover, we can do better in (a) and say that the set is residual, i.e. contains the intersection of

countably many open dense sets.

The application of the Transversality Theorem we care about is for intersections of submanifolds.
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Corollary 4.13. Let M1,M2 be submanifolds of Rn and let ι : M1 → Rn be the inclusion map. Given

any open set U ∋ ι in C∞(M1,Rn) there exists f ∈ U such that f is an embedding and

M2 ⋔ f(M1).

Proof. Being an embedding is an open condition on f ∈ C∞(M1,Rn). The Transversality Theorem says

that the set of such f so that f ⋔M1 is dense in C∞(M1,Rn), so we are done.

Remark. Corollary 4.13 says that any two submanifolds M1,M2 of dimensions k, l in Rn can be put in

general position, i.e. we can perturb one of them (e.g. M1) by an arbitrarily small amount so that they

now intersect transversely. In particular, M1 ∩M2 is then a submanifold of Rn of dimension k + l − n,

as one might expect.

Example. If M1,M2 are submanifolds of Rn of dimensions k, l such that k + l < n then Corollary 4.13

says that, after a small perturbation, we can ensure that M1 ∩M2 = ∅. In particular, if we add enough

dimensions to Rn we can always separate two submanifolds, which is intuitively clear: e.g. take two circles

in the plane which intersect, but if we view them as in R3 we can just move one circle vertically out of

the plane.

Example. One of the most interesting examples is if we take M1,M2 to be submanifolds in Rn of

dimensions k, l such that k + l = n. In this case, the transversality result (Corollary 4.13) shows that

(after a small perturbation) M1 ∩M2 is a 0-dimensional submanifold. If M1,M2 are compact, this will

be a finite number of points.

We saw that the number of intersection points we get if M1,M2 are both circles in R2 intersecting

transversely is 2 (or 0). If we instead take a circle and a sphere in R3 the answer is again 2 (or 0): we

can see this by taking a planar circle that intersects the equator transversely. We shall see, by ideas in

the next section, that the answer always has to be even.

Example. Another interesting case is when we take M1 = M2 = M . We then see that we can perturb

M1 =M to f(M) and talk about the self-intersection of M as the transverse intersection M ∩ f(M). If

dimM = n, M is compact and M ⊆ R2n, then this intersection is a finite number of points. Again, we

will see that the number of such points has to be even.

Example. If we take two spheres in R3 that intersect transversely then if they intersect their intersection

is a circle and thus a (2+2−3 = 1)-dimensional submanifold. More generally, a k-sphere and an l-sphere

in Rn will meet in a (k + l − n)-sphere if k + l ≥ n, if they meet at all: note that this still makes sense

for k + l = n since a 0-sphere is just two points.
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5 Degree

We now want to move onto a different application of Sard’s Theorem, namely to the degree of a map

between submanifolds. For this we need to think about M,N being of the same dimension and M being

compact, i.e. a closed and bounded subset of Rn. The first thing we notice is the following.

Lemma 5.1. Let M,N both be k-dimensional submanifolds and suppose that M is compact. Let f : M →
N be smooth and let x be a regular value of f . Then f−1(x) is finite and there exists an open set U ∋ x

such that, for all y ∈ U ,

|f−1(x)| = |f−1(y)|.

Proof. We know that f−1(x) is a 0-dimensional manifold by the Regular Value Theorem (Theorem 3.10).

It is also a closed set (we saw this in the proof of Lemma 4.6) and M is compact (and thus bounded)

so f−1(x) is compact (as it is closed and bounded), which means it is a finite number of isolated points

{p1, . . . , pm}. Since dfpj : TpjM → TxN is an isomorphism for each pj we know that there exists a small

open set W ∋ x and disjoint open sets Vj ∋ pj for j = 1, . . . ,m so that f : Vj → W is a diffeomorphism

for all j. Then we can take

U =W \ f(M \
m⋃
j=1

Vj),

which is open.

Now that we know the set |f−1(x)| is finite for a regular value as above and that it is locally constant,

it is tempting to ask whether it is actually constant. This leads us to the following notion, where we recall

that N ⊆ Rn is connected if there do not exist open sets U, V in Rn such that U ∩N ̸= ∅, V ∩N ̸= ∅ and

N ⊆ U ∪ V and U ∩ V ∩N = ∅.

Very informally, this means that N is made up of only “one piece”.

Definition 5.2. Let M,N be k-dimensional submanifolds with M compact and N connected and let

f : M → N be smooth. We define the mod 2 degree of f to be

deg2(f) = |f−1(x)| (mod 2),

where x ∈ N is a regular value of f (which must exist by Sard’s Theorem).

Remark. The reason to impose N connected is to avoid silly situations. For example, we could take

L,M to be disjoint compact k-dimensional submanifolds in Rn, let N = L ∪M and let f : M → N be

the identity map on M . Then N is not connected, f is smooth, and if we take x ∈ N then the number of

points in f−1(x) is 1 for x ∈M but 0 for x ∈ L, which means the mod 2 degree could never make sense.

As it stands, the notion of mod 2 degree might not be well-defined, but this is exactly what we now

want to show. To do this we need to introduce an equivalence relation on maps known as homotopy.

Definition 5.3. Let M,N be submanifolds and let f, g : M → N be smooth. Then f is smoothly

homotopic to g if and only if there exists a smooth map h :M × [0, 1] → N such that

h(p, 0) = f(p) and h(p, 1) = g(p)

for all p ∈ M . (In other words, we can interpolate smoothly from the map f to the map g.) The map

h is then called a smooth homotopy (from f to g) and we write f ∼h g or just f ∼ g. Note that being

smoothly homotopic is an equivalence relation (see problem sheet).

Definition 5.3 leads us to the following lemma, which shows the relation between smooth homotopy

and mod 2 degree. For the purposes of notation we let

deg2(f, x) = |f−1(x)| (mod 2).
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Lemma 5.4. Let M,N be k-dimensional submanifolds, let M be compact and let f, g : M → N be

smoothly homotopic. If x ∈ N is a regular value of f and g then

deg2(f, x) = deg2(g, x).

Proof. Let f ∼h g. Using Sard’s Theorem (Theorem 4.1) and the fact that |f−1(x)| and |g−1(x)| are
locally constant (Lemma 5.1) we can assume, possibly by perturbing x slightly, that x is also a regular

value of h. Then by the extension of the Regular Value Theorem (Theorem 4.5), h−1(x) is a compact

1-dimensional submanifold with boundary given by

∂h−1(x) = f−1(x)× {0} ∪ g−1(x)× {1}.

Since the number of boundary points of a compact 1-dimensional submanifold with boundary has to be

even (Lemma 4.4) we see that

|f−1(x)|+ |g−1(x)| = 0 (mod 2),

which gives the result.

We can now prove that the mod 2 degree is indeed well-defined.

Theorem 5.5. Let M,N be k-dimensional submanifolds with M compact and N connected. Let f : M →
N be smooth. The mod 2 degree deg2 f of f is well-defined and if f ∼ g then deg2 f = deg2 g

Proof. Suppose that x, y ∈ N are two distinct regular values of f . Then I claim there exists a smooth

map H : N × [0, 1] → N such that, for all p ∈ N ,

H(p, 0) = p, H(x, 1) = y and H : N × {t} → N is a diffeomorphism for all t ∈ [0, 1].

We will not prove this, but it uses the connectedness of N . Let F : N → N be given by F = H|N×{1}.

The last condition on H means that it is a smooth isotopy from id to F , and we say that F is smoothly

isotopic to the identity id.

We then define g : M → N by

g = F ◦ f.

Then g is smooth and

g−1(y) = f−1(F−1(y)) = f−1(x).

Therefore, for all a ∈ g−1(y) we have by the Chain Rule that

dga = d(F ◦ f)a = dFf(a) ◦ dfa

is surjective as dfa is surjective (as a ∈ f−1(x) and x is a regular value of f) and dFf(a) is an isomorphism

by Lemma 2.5 as F is a diffeomorphism. Therefore, y is a regular value of g and f ∼h g where

h(p, t) = H(f(p), t).

Hence, by Lemma 5.4 and the fact that g−1(y) = f−1(x), we have

deg2(f, y) = deg2(g, y) = deg2(f, x).

Thus deg2 f is well-defined (it is independent of the choice of regular value x).

Now let f ∼ g (this is any g, not just the specific one above). By Sard’s Theorem there exists x ∈ N

which is a regular value of both f and g. The result now follows by Lemma 5.4.

Example. Let M be a compact connected submanifold of dimension at least 1.

Let c ∈M and let f : M →M be f(p) = c for all p ∈M . Then f has mod 2 degree 0, just by taking

any x ̸= c in M (such x exists as dimM ≥ 1) which is then trivially a regular value.
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The identity map id : M → M has mod 2 degree 1 since id(p) = p for all p ∈ M . Hence, id is not

smoothly homotopic to the constant map f .

We deduce that there does not exist a smooth map f : Bn+1 → Sn such that f |Sn = id (as we already

saw in Lemma 4.6): if there were such a map then we could define h : Sn × [0, 1] → Sn by

h(p, t) = f(tp)

which would then give a smooth homotopy between the constant map where c = f(0) and the identity

map, which is a contradiction.

We can also refine the notion of degree to give an integer rather than an integer mod 2, but for that

we need to introduce the important idea of orientation.

Definition 5.6. Let V be an n-dimensional real vector space. Suppose that we have two ordered bases

{u1, . . . , un} and {v1, . . . , vn} of V . Then there exists a matrix A = (aij) ∈ GL(n,R) such that

vi =

n∑
j=1

aijuj .

We say that the bases define the same orientation if detA > 0 and the opposite orientation if detA < 0.

The property of defining the same orientation is an equivalence relation on ordered bases, so an

orientation on V is a choice of equivalence class of ordered bases. We see that V always has exactly two

possible orientations (since either detA > 0 or detA < 0). A vector space endowed with an orientation

is called oriented. An ordered basis of an oriented vector space will then be positively oriented if it lies

in the orientation, and negatively oriented otherwise.

Remark. In practice we define an orientation on a vector space V by choosing one ordered basis for V

and then the orientation is just its equivalence class.

Example. On Rn the standard ordered basis {e1, . . . , en} where ei is 1 in the ith entry and 0 otherwise

defines the standard orientation. If we permute the elements of the basis by σ ∈ Sn then this new basis

will be positively/negatively oriented when σ is even/odd.

We now have distinguished maps between oriented vector spaces.

Definition 5.7. Let T : V → W be an isomorphism between oriented vector spaces with positively

oriented bases {v1, . . . , vn} and {w1, . . . , wn}. Let A ∈ GL(n,R) be the matrix of T with respect to these

bases. Then T is orientation preserving if detA > 0 (i.e. sign detA = +1) and orientation reversing if

detA < 0 (i.e. sign detA = −1). This notion does not depend on the choice of positively oriented bases.

Example. The elements of the orthogonal group O(n) which are orientation preserving on Rn are

precisely those in SO(n). This fits with our intuition that rotations preserve orientation whereas reflections

are orientation reversing.

Now that we have orientations on vector spaces we want to define orientations on submanifolds in Rn,

including those with boundary as this will be important for our applications.

Definition 5.8. Let M be a k-dimensional submanifold (with boundary) in Rn. An orientation on M

is a continuous choice of orientation on each tangent space TpM , given by an ordered basis {v1, . . . , vk},
for all p ∈ M so that we can choose a diffeomorphism φ : U ∩M → V , where U ∋ p is open in Rn, V is

open in Rk (or H
k
) and dφp(vi) = ei for i = 1, . . . , k (i.e. dφp is orientation preserving).

If there exists an orientation on M we say it is orientable (and non-orientable if not) and if it is

endowed with an orientation it is called oriented.
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Remark. Strictly speaking we have not defined TpM for k-dimensional submanifold M ⊆ Rn with

∂M ̸= ∅ if p ∈ ∂M . If we take the tangent vectors to all curves in M at p this will form a half-space (a

copy of Hk) in Rn, but we define TpM to be the vector space generated by vectors in that half-space.

We therefore get three kinds of tangent vectors in TpM : those which are tangent to ∂M , so lie in Tp∂M ;

those which are “inward pointing”, so there is a curve α in M with α′(0) ∈ TpM ; and those which are

“outward pointing”.

Orientations may seem a bit unfamiliar, but we will now see that they are not so complicated in easy

concrete examples.

Example. Take the circle S1 in R2. A choice of orientation is then either clockwise or anticlockwise

around the circle, i.e. we choose the orientation on each line TpS1 to point following either the clockwise

or anticlockwise direction.

Remark. For a 0-dimensional submanifold, which is just a collection of points, we have a separate

convention: we say that an orientation is just a choice of either +1 or −1 at each point.

Most submanifolds we will encounter are orientable but some are not, including some famous ones.

Example. The Möbius band M in R3 is not orientable: this makes sense since if we try to choose an

orientation on the line TpM then if we go around the band and come back to p “on the other side” then

we will have to reverse the orientation on TpM , so no orientation on M can exist.

Just like for oriented vector spaces we have distinguished maps between oriented submanifolds.

Definition 5.9. A diffeomorphism f : M → N between oriented k-dimensional submanifolds will have

that dfp : TpM → Tf(p)N is an isomorphism between oriented vector spaces for all p ∈ M , and so the

notion of sign det dfp is well-defined. We say that f is orientation preserving if

sign det dfp = +1

for all p ∈M and orientation reversing if

sign det dfp = −1

for all p ∈M .

Remark. If f : M → N is a map between connected oriented k-dimensional submanifolds so that

dfp : TpM → Tf(p)N is an isomorphism for all p ∈M , then sign det dfp is independent of p ∈M .

Example. Consider − id : Rn → Rn. This is a diffeomorphism and for all p ∈ Rn

det d(− id)p = det(− id) = (−1)n.

Hence − id is orientation preserving if n is even and orientation reversing if n is odd.

One small issue that we have to deal with in the case where M has boundary is what the orientation

on ∂M should be.

Definition 5.10. Let M ⊆ Rn be an oriented k-dimensional submanifold with boundary. Let p ∈ ∂M

and let U ∋ p be open in Rn, let V ⊆ Hk be open and let φ : U ∩M → V be an orientation preserving

diffeomorphism (as given by the orientation onM). Choose an ordered basis {v1, . . . , vk} for TpM defining

the orientation such that dφp(vj) ∈ Hk ∩ (Rk−1 × {0}) for j ≥ 2 and dφp(v1) is outward pointing, i.e. its

inner product with −ek is positive (so it points out of the upper half-space H
k
). Then {v2, . . . , vn} defines

an orientation on Tp∂M .

This procedure defines an orientation on ∂M called the induced orientation.
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Example. The case of 1-dimensional manifolds with boundary is special. Let [−1, 1] be the straight

line in R with the standard orientation, i.e. in the positive direction along the line. The orientation then

points inward at −1, so we assign the orientation to be −1 there, and similarly outward at +1 so we

assign +1 there.

More generally, if M is an oriented submanifold and M × [−1, 1] is oriented in the obvious way from

the orientations on M and [−1, 1], then the induced orientation on M ×{1} agrees with the given one on

M , but it is reversed on M × {−1}.

Example. Using the standard orientation on the closed unit ball B
n+1

coming from Rn+1 we get an

induced orientation on Sn = ∂Bn+1. For n = 1, we see that the ordered basis we would take in the

definition above at (1, 0) would just be {e1, e2} (since e1 points outward at (1, 0)) so we would take {e2}
to define the orientation at (1, 0) on S1, i.e. the induced orientation is anticlockwise.

Example. If we take Sn in Rn+1 with the orientation as above, then − id preserves Sn, is a diffeomor-

phism, and will have

det d(− id)p = (−1)n+1

for all p ∈ Sn, so it is orientation preserving/reversing if n is odd/even.

Armed with all of these ideas about orientations, we can now extend our notion of degree of a map.

Definition 5.11. Let M,N be oriented k-dimensional submanifolds and let M be compact and N

connected. Let f : M → N be smooth. The degree of f is

deg f =
∑

p∈f−1(x)

sign det dfp

where x ∈ N is a regular value of f . Notice that sign det dfp makes sense since dfp : TpM → TxN will

be an isomorphism between oriented vector spaces.

The proof that the degree is well-defined is now pretty much the same as before, except we have

to work slightly harder at the first step in the argument, taking into account the orientations. This is

achieved by the following result where, again, for notational purposes we write

deg(f, x) =
∑

p∈f−1(x)

sign det dfp.

Lemma 5.12. Let M,N be k-dimensional oriented submanifolds, let M be compact and let f, g :M → N

be smoothly homotopic. If x ∈ N is a regular value of f and g then

deg(f, x) = deg(g, x).

Proof. Let f ∼h g. As we saw before in the proof of Lemma 5.4, we may assume (by Sard’s Theorem

and by possibly perturbing x) that x is also a regular value of h. Again, by the extension (Theorem 4.5)

of the Regular Value Theorem, h−1(x) is a compact 1-dimensional submanifold with boundary with

∂h−1(x) = f−1(x)× {0} ∪ g−1(x)× {1}.

Therefore, h−1(x) is a finite disjoint union of arcs Aj , j = 1, . . . ,m, such that

∂Aj = {(pj , 0)} ∪ {(qj , 1)}.

We can now define an orientation on Aj as follows. We have an orientation on M × [0, 1] given

by the orientation on M and the standard one on [0, 1]. For (p, t) ∈ Aj we choose an oriented basis

{v1(p, t), . . . , vk+1(p, t)} for T(p,t)(M × [0, 1]) such that v1(p, t) ∈ T(p,t)Aj and

{dh(p,t)(v2(p, t)), . . . , dh(p,t)(vk+1(p, t))} ⊆ Th(p,t)N
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is an oriented basis. In this way we see that v1(p, t) will point outward at one end of Aj , say at (qj , 1),

and inward at the other (pj , 0).

Hence,

sign det d(h|M×{0})(pj ,0) + sign det d(h|M×{1})(qj ,1) = 0.

Recall that h|M×{0} = f and h|M×{1} = g. We also recall the induced orientation on M × {1} will agree

with the given one on M and be opposite on M × {0}. We deduce that

− sign det dfpj
+ sign det dgqj = 0.

Taking the sum over j then gives the answer we wanted.

Now the same proof for Theorem 5.5 as before for the mod 2 degree goes through to yield the following.

Theorem 5.13. Let M,N be oriented k-dimensional submanifolds with M compact and N connected.

Let f : M → N be smooth. The degree deg f of f is well-defined and if f ∼ g then deg f = deg g.

Example. If f : M → N is not surjective then deg f = 0, since any point in N \ f(M) is trivially a

regular value of f .

Example. The degree of id :M →M is +1 but if f : M →M is an orientation reversing diffemorphism

then deg f = −1. Hence f is not smoothly homotopic to id. In particular, if n is even, − id on Sn is not

smoothly homotopic to id.

We have a very nice application of this fact, for which we need a definition.

Definition 5.14. Let M ⊆ Rn be a submanifold. A vector field on M is a smooth map X : M → Rn

such that X(p) ∈ TpM for all p ∈M .

Theorem 5.15. The sphere Sn admits a nowhere vanishing vector field if and only if n is odd.

Remark. This is a version of the “Hairy Ball Theorem”, which says that every continuous vector field

on S2n has a zero. The idea is that no matter how you comb the hairs on the sphere there will always

be a point which looks like a bald spot.

Proof. Suppose that n = 2k is even and there exists a nowhere vanishing vector field X on Sn. Define

h : Sn × [0, 1] → Sn by

h(p, t) = p cos(πt) +
X(p)

∥X(p)∥
sin(πt).

Since X is nowhere vanishing X(p) ∈ ⟨p⟩⊥ for all p, h is well-defined and maps into Sn. As X is smooth,

h is smooth and for all p ∈ Sn we have

h(p, 0) = p and h(p, 1) = −p

Hence h is a smooth homotopy from id to − id on Sn, which is a contradiction as n = 2k is even.

If n = 2k + 1 is odd, then we can define

X(x1, . . . , x2k+2) = (x2,−x1, . . . , x2k+2,−x2k+1)

which is a smooth map X : S2k+1 → R2k+2 such that X(p) ∈ TpS2k+1 and has ∥X(p)∥ = 1 for all p.

Example. Let f : C → C be given by f(z) = zk for k ∈ N, k > 0. Then

dfz = kzk−1
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and so 1 is a regular value of f . As we saw right at the start of the course, det dfz > 0 for all z ̸= 0 as f

is holomorphic, so since f−1(1) consists of k points, the kth roots of unity, we have that

deg f = k.

This example leads us to prove a nice fact in our next example.

Example. Let us take a monomial of degree k > 0 on C:

zk + ak−1z
k−1 + . . .+ a0.

This extends to a smooth map f : S2 → S2 by identifying C ∪ {∞} with S2 and setting f(∞) = ∞.

We can define a smooth map h : S2 × [0, 1] → S2 by

h(z, t) = zk + t(ak−1z
k−1 + . . .+ a0) and h(∞, t) = ∞.

Then

h(z, 0) = zk and h(z, 1) = f(z).

By the degree theorem (Theorem 5.13) and the previous example we deduce that

deg f = deg(z 7→ zk) = k.

In particular this means that f is surjective (since deg f ̸= 0) and so f(z) = w has a solution in C for

every w ∈ C: this is the Fundamental Theorem of Algebra.

We now have two more interesting interpretations of the degree.

Definition 5.16. Let γ : S1 → R2 be a smooth closed curve and let w ∈ R2 such that γ−1(w) = ∅.
Consider the smooth map f : S1 → S1 given by

f(z) =
γ(z)− w

∥γ(z)− w∥
.

(This is well-defined and smooth as γ(z) ̸= w.) Then deg f is the winding number wind(γ,w) of γ around

w. If we have a smooth homotopy h between smooth closed curves γ1, γ2 : S1 → R2 such that h(p, t) ̸= w

for all p ∈ S1 and t ∈ [0, 1], then we see that wind(γ1, w) = wind(γ2, w).

This is related to complex analysis as one can see from the example below.

Example. View R2 = C and let γk : S1 → C be given by γk(z) = zk for k ∈ N, k > 0. We see that

wind(γk, 0) = deg f where f(z) = zk. By our previous calculations we see that wind(γk, 0) = k for k > 0,

which makes intuitive sense. In fact, one can see that wind(γk, 0) = k for any k ∈ Z. This reminds us of

the answer from Cauchy’s Residue Theorem and indeed there is a relation, which one will see in Part C

Differentiable Manifolds.

We now want instead to think about two closed curves in R3 and try to build a number like we had

the winding number above.

Definition 5.17. Let γ1, γ2 : S1 → R3 be smooth closed curves such that γ1(S1)∩ γ2(S1) = ∅. Consider
the smooth map f : S1 × S1 → S2

f(p, q) =
γ1(p)− γ2(q)

∥γ1(p)− γ2(q)∥
.

(Again, this is well-defined and smooth as γ1, γ2 do not intersect.) Then deg f is the linking number

link(γ1, γ2) of the curves γ1, γ2. Again, if we perform smooth homotopies on the curves γ1, γ2 such that

the curves never intersect along the homotopies, then the linking number stays the same.

Example. If we take γ1, γ2 : S1 → R3 given by

γ1(x1, x2) = (x1 + 2, x2, 0) and γ2(x1, x2) = (x1 − 2, x2, 0),

32



Jason D. Lotay Part A Geometry

so we have unit circles in the plane x3 = 0 with centres at (2, 0, 0) and (−2, 0, 0). Then f can never equal

(0, 0, 1) for example, and thus f is not surjective. Hence deg f = 0 and the linking number of γ1 and γ2

is 0. This makes sense as we can just pull the two circles apart.

Example. A non-trivial example is given by γ1, γ2 : S1 → R3 with

γ1(x1, x2) = (x1 − 1, x2, 0) and γ2(x1, x2) = (x1, 0, x2).

Then

f(x1, x2, y1, y2) =
(x1 − y1 − 1, x2,−y2)√
(x1 − y1 − 1)2 + x22 + y22

.

We see that f−1(0, 1, 0) = {(0, 1,−1, 0)} and from this one can deduce that |deg f | = 1 and thus

|link(γ1, γ2)| = 1. We can see visually that these two circles are linked.

Remark. (Not examinable.) We can construct more complicated versions of winding and linking

numbers by thinking more generally about appropriate non-intersecting pairs of submanifolds: the wind-

ing number is for a non-intersecting pair of compact 1-dimensional submanifold (a curve) and a connected

0-dimensional submanifold (a point) in R2, whereas the linking number is for a pair of non-intersecting

compact 1-dimensional submanifolds in R3. This is interseting, but we shall not pursue it.

Remark. Given two compact submanifolds M1,M2 in Rn with dimensions k, l such that k + l = n, we

can (after a small perturbation so that M1 ⋔M2) count the number of intersection points M1 ∩M2 mod

2, and if M1,M2 are oriented we can count the intersection points with appropriate signs, measuring

the relative orientations of M1,M2 at the intersection points. These numbers again turn out to be well-

defined and smooth homotopy invariants. However, we can always translate M1 (say) sufficiently far in

Rn such that M1 ∩M2 = ∅ (since M2 is bounded). Therefore, these numbers must always be zero. This

gives an explanation as to why the number of transverse intersection points is always even.
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6 Manifolds

We have so far only thought about smooth objects (i.e. submanifolds) in Rn but, as we said in the

introduction, it is useful to have an abstract definition of what a smooth object is, independent of any

ambient space. This leads us to the notion of manifolds.

Definition 6.1. A set M is an n-dimensional manifold if there exists a family A = {(Ui, φi) : i ∈ I}
(for some indexing set I) where:

(a) Ui ⊆M for each i and
⋃

i∈I Ui =M ;

(b) φi : Ui → Rn is a bijection onto an open set φi(Ui);

(c) for all i, j ∈ I, φi(Ui ∩ Uj) is open in Rn;

(d) whenever Ui ∩ Uj ̸= ∅ the transition map

φj ◦ φ−1
i : φi(Ui ∩ Uj) → φj(Ui ∩ Uj)

is a diffeomorphism.

Each pair (Ui, φi) is called a chart and the set of all charts A is called an atlas.

Remarks.

(a) The idea is that we are describing the space M by pasting together little flat maps (given by the

charts in the atlas), just like the regular atlas describes the Earth. In this way we can describe

objects which can be complicated globally in a way which is easy locally. The transition maps

ensure that as we change chart (like when we turn the page of the atlas) things fit together nicely.

(b) (Not examinable.) One could ask what happens if we have two different atlases A1,A2 on the

same set M . Well, we say that they are equivalent if A1 ∪A2 is still an atlas. An equivalence class

of atlases is then called a smooth structure. So, really, a manifold is a set with a smooth structure.

However, we can just take one atlas to find out what the smooth structure is, as in the definition.

(c) (Not examinable.) Given an atlas we can define a topology on M by saying that V is open in M

if and only if φi(V ∩ Ui) is open in Rn for all i ∈ I. Technically, we would then demand that this

topology is Hausdorff (i.e. given any two distinct points p, q there are two disjoint open sets U ∋ p

and V ∋ q) and second countable (i.e. there is a countable collection of open sets {Vk : k ∈ N}
such every open set is a union of some of these Vk). However, we will not be concerned with such

topological issues in this course.

(d) Condition (d) in Definition 6.1 is exactly where the smoothness comes in. (Not examinable.)

We can replace this condition by asking that the transition maps and their inverses are continuous,

Ck, real analytic, or holomorphic: this will then define manifolds which are topological, Ck, real

analytic or complex respectively.

Example. The simplest example of an n-dimensional manifold is Rn where we can take A = {(Rn, id)}.
This also shows that any open set in Rn is an n-dimensional manifold.

Example. Since GL(n,R) is open in Rn2

it is an n2-dimensional manifold.

We now show one of the simplest, but non-trivial, examples is an n-dimensional manifold: Sn.

Example. Consider Sn.

(a) Let N = (0, . . . , 0, 1) and S = (0, . . . , 0,−1) be the “North” and “South” poles. Let UN = Sn \{N}
and US = Sn \ {S}. These satisfy UN ∪ US = Sn.

34



Jason D. Lotay Part A Geometry

(b) Let φN : UN → Rn be given by

φN (x) =
(x1, . . . , xn)

1− xn+1

and φS : US → Rn be given by

φS(x) =
(x1, . . . , xn)

1 + xn+1
.

(These are the stereographic projections.) We have explicit inverses:

φ−1
N (y) =

(
2y1

1 + ∥y∥2
, . . . ,

2yn
1 + ∥y∥2

,
∥y∥2 − 1

1 + ∥y∥2

)
and

φ−1
S (y) =

(
2y1

1 + ∥y∥2
, . . . ,

2yn
1 + ∥y∥2

,
1− ∥y∥2

1 + ∥y∥2

)
,

so φN , φS are clearly bijections onto the open set Rn.

(c) We see that UN ∩ US = Sn \ {N,S} so φN (UN ∩ US) = Rn \ {0} = φS(UN ∩ US), which is open.

(d) We now calculate that φS ◦ φ−1
N : Rn \ {0} → Rn \ {0} is

φS ◦ φ−1
N (y) =

y

∥y∥2
,

which is a diffeomorphism because it is smooth, as y ̸= 0, and it is its own inverse. (Essentially the

transition map is the “inversion” map.)

We deduce that Sn is an n-dimensional manifold.

We know that Sn is an n-dimensional submanifold or Rn+1, so it would be nice if all submanifolds

were manifolds. This is precisely what we now show.

Proposition 6.2. A k-dimensional submanifold M in Rn is a k-dimensional manifold.

Proof. Let p ∈ M . By the generalisation of the Implicit Function Theorem (Theorem 3.3) there is an

open set U ′
p ∋ p in Rn, an open set Vp ∋ 0 in Rk, an open set Wp ⊆ Rn−k and a diffeomorphism

ψp : Vp ×Wp → U ′
p with ψp(0) = p such that

M ∩ U ′
p = ψp(Vp × {0}).

We therefore let

Up =M ∩ U ′
p

and φp : Up → Vp ⊆ Rk be given by

φp(ψp(x, 0)) = x

for all x ∈ Up. Then ∪p∈MUp = M , φp(Up) = Vp is open and φp : Up → Vp is a bijection. This defines

A = {(Up, φp) : p ∈M}.
We see that Up ∩ Uq will be given by U ′ ∩M for some (possibly empty) open set U ′ ⊆ U ′

p in Rn and

therefore, since ψ is a diffeomorphism, φp(Up ∩ Uq) will also be open in Rk.

Finally, if p, q are such that Up ∩ Uq ̸= ∅ then

φq ◦ φ−1
p (x) = φq(ψp(x, 0)) = ψ−1

q ◦ ψp(x, 0).

Since ψp, ψq are diffeomorphisms, the transition map is a diffeomorphism.

Remark. (Not examinable). A deep result, known as the (strong) Whitney Embedding Theorem,

states that every n-dimensional manifold can be realised as an embedded submanifold in R2n. This

further motivates why at the start of the course we restricted to submanifolds as this is really every

manifold. It is interesting to note that the proof of the Whitney Embedding Theorem relies on the

transversality results we gave earlier.
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We now want to say what it means for a map between manifolds to be smooth.

Definition 6.3. Let M be an m-dimensional manifold and N be an n-dimensional manifold. Then

f : M → N is smooth at p ∈M if there exist coordinate charts (U,φ) on M with p ∈ U and (V, ψ) on N

with f(p) ∈ V such that the map

ψ ◦ f ◦ φ−1 : φ(U) ⊆ Rm → ψ(V ) ⊆ Rn

is smooth where it is defined. We say f is smooth if it is smooth at all p ∈M .

Remark. This definition makes sense precisely because the transition maps are diffeomorphisms. If we

had two charts (U1, φ1), (U2, φ2) at p ∈M and (V1, ψ1), (V2, ψ2) at f(p) ∈ N , then

ψ2 ◦ f ◦ φ−1
2 = (ψ2 ◦ ψ−1

1 ) ◦ (ψ1 ◦ f ◦ φ−1
1 ) ◦ (φ1 ◦ φ−1

2 ).

Hence ψ2 ◦ f ◦ φ−1
2 is smooth if and only if ψ1 ◦ f ◦ φ−1

1 is smooth.

Many natural maps are smooth.

Example. The identity map id :M →M is smooth because given any chart (U,φ) on M we have that

φ ◦ id ◦φ−1 = id on φ(U), and the identity map on Rn is smooth.

Example. If M ⊆ Rm is a submanifold, then the restriction of any smooth map f : Rm → Rn to M is a

smooth map in the sense above. If N ⊆ Rn is also a submanifold and the map f : Rm → Rn is smooth

such that f(M) ⊆ N then the restriction f : M → N is smooth.

Example. For any of the groups G of matrices we have shown are manifolds, the multiplication map

m : G × G → G given by m(A,B) = AB and the inversion map i : G → G given by i(A) = A−1 are

smooth. This is what makes them Lie groups.

The left and right multiplication maps LA : G → G and RA : G → G given by LA(B) = AB and

RA(B) = BA are smooth. Moreover, the determinant det : G→ R and trace tr : G→ R are smooth.

We are particularly interested in special types of smooth maps, as for submanifolds.

Definition 6.4. Let M,N be manifolds. A map f : M → N is a diffeomorphism if it is a smooth

bijection with a smooth inverse. The manifolds M and N are said to be diffeomorphic if there exists a

diffeomorphism between them.

A diffeomorphism is the natural notion of equivalence between manifolds, so diffeomorphic manifolds

are “the same”.

Example. The identity map id : M → M is a diffeomorphism. If f, g are diffeomorphisms then so is

f ◦ g and so is f−1. Hence, the diffeomorphisms form a group which we write Diff(M).

Example. On the matrix groups we have seen are manifolds, the left and right multiplication maps

LA, RA are diffeomorphisms (since their inverses are LA−1 , RA−1).
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7 Projective space

In this section we focus on very important examples of manifolds which play a key role in geometry,

particularly algebraic geometry: projective spaces.

Definition 7.1. Let V be a finite-dimensional vector space over a field F, which in practice we will take

to be either R or C. The projective space P(V ) associated to V is the set of 1-dimensional subspaces of

V . Equivalently, P(V ) is the quotient V \ {0}/ ∼ where ∼ is the equivalence relation

v ∼ w ⇔ v = λw for some λ ∈ F∗ = F \ {0}.

Another equivalent definition is that P(V ) is the quotient of V \ {0} under the action of F∗ given by

scalar multiplication.

Points in P(V ) are denoted [v] for v ∈ V \ {0}. We define the dimension of P(V ) by

dimP(V ) = dimV − 1,

where we use the convention that the empty set has dimension −1. Therefore, if dimV = 2 we say that

P(V ) is the projective line and if dimV = 3 then P(V ) is the projective plane.

There is an important special case that will be our main concern.

Definition 7.2. If V = Fn we write P(Fn+1) = FPn. Points on FPn are represented by equivalence

classes of points (x0, . . . , xn) ∈ Fn+1 where the coordinates are not all zero. We then use the notation

[x0 : . . . : xn]

for these points and see that

[x0 : . . . : xn] = [λx0 : . . . : λxn]

for all λ ∈ F∗. These are called homogeneous coordinates on FPn.

Example. Consider FP1 where points are given in homogeneous coordinates as [x0 : x1]. We see that if

x0 = 0 this gives one point [0 : x1] = [0 : 1] as x1 ̸= 0. If x0 ̸= 0 we can rescale it to be 1 and get the

point [x0 : x1] = [1 : t] for t = x1/x0 which can be any element of F. In this way we have decomposed

FP1 = F ⊔ {[0 : 1]}.

(Here ⊔ means “disjoint union”.) Moreover, [1 : t] = [t−1 : 1] for t ̸= 0, so we see that [0 : 1] is the point

we get by letting t→ ∞.

In particular, we see that RP1 = S1 (since we take R and add one point at infinity) and CP1 = S2

(since we take C and add a point at infinity).

We saw that RP1 and CP1 are manifolds of dimension 1 and 2: this is part of a general trend.

Lemma 7.3. The real projective n-space RPn is an n-dimensional manifold.

Proof. For i = 0, . . . , n we define

Ui = {[x0 : . . . : xn] ∈ RPn : xi ̸= 0}.

We then define φi : Ui → Rn by

φi([x0 : . . . : xn]) =

(
x0
xi
, . . . ,

xi−1

xi
,
xi+1

xi
, . . . ,

xn
xi

)
.

It then follows that A = {(Ui, φi) : i = 0, . . . , n} is an atlas on RPn. The details are left as an exercise.

Lemma 7.4. The complex projective n-space CPn is a 2n-dimensional manifold.
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Proof. The definition is the same as above except we replace Cn by Rn, i.e. for i = 0, . . . , n we let

Ui = {[z0 : . . . : zn] ∈ CPn : zi ̸= 0}

and φi : Ui → Cn be

φi[z0 : . . . : zn]) =

(
z0
zi
, . . . ,

zi−1

zi
,
zi+1

zi
, . . . ,

zn
zi

)
.

Again, this gives an atlas on CPn: the details are left as an exercise.

Remark. (Not examinable). Actually, one sees that CPn is an n-dimensional complex manifold, since

the transition maps are holomorphic.

The constructions above suggest a general discussion.

Definition 7.5. On FPn the subsets

Ui = {[x0 : . . . : xn] : xi ̸= 0}

for i = 0, . . . , n are called affine patches. These are copies of Fn and we see that

FPn \ Ui = {[x0 : . . . : xn] : xi = 0} ∼= FPn−1.

Hence we can decompose

FPn = Fn ⊔ FPn−1

in several different ways. In each case, we are adding in points at infinity to Fn to obtain FPn.

Projective spaces have distinguished subobjects which are also projective spaces.

Definition 7.6. If V is a finite-dimensional vector space over a field F and U is a subspace of V , then

P(U) ⊆ P(V ) is called a projective linear subspace. If dimU = 2 then P(U) is a projective line in P(V )

and if dimU = dimV − 1 then P(U) is called a hyperplane.

We now want to think about intersections of projective linear subspaces in P(V ). The first is familiar

just from usual Euclidean geometry.

Lemma 7.7. Given any two distinct points in P(V ) there is a unique projective line in P(V ) passing

through the points.

Proof. If the two distinct points are [v], [w] for v, w non-zero vectors in V , then v, w must be linearly

independent. Therefore the projective line is P⟨v, w⟩.

However, the next result is definitely false in the Euclidean case.

Lemma 7.8. In the projective plane any two distinct projective lines meet in a unique point.

Proof. The projective plane is P(V ) for a 3-dimensional vector space V . The lines are given by P(U1),

P(U2) for 2-dimensional subspaces U1, U2 of V . The dimension formula says that

dim(U1 + U2) + dim(U1 ∩ U2) = dimU1 + dimU2.

Since U1, U2 define distinct lines U1 +U2 contains both U1, U2 and has strictly larger dimension, so must

equal V . The dimension formula then implies that

dim(U1 ∩ U2) = 1.

We then see that P(U1 ∩ U2) is the unique intersection point.

We can generalise this as follows, with the proof left as an exercise.
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Theorem 7.9. Let L1 = P(U1), L2 = P(U2) be projective linear subspaces of P(V ). We define the

projective span of L1, L2 by

⟨L1, L2⟩ = P(U1 + U2).

Then

dim(L1 ∩ L2) = dim(L1) + dim(L2)− dim⟨L1, L2⟩.

We can also relate projective subspaces, and other subobjects in projective space, to homogeneous

polynomials.

Definition 7.10. Let f be a homogeneous polynomial on Fn+1, i.e.

f(λx0, . . . , λxn) = λdf(x0, . . . , xn)

for all λ ∈ F∗ and all (x0, . . . , xn) ∈ Fn+1. Then the equation

f [x0 : . . . : xn] = 0

is well-defined on FPn.

A subset M ⊆ FPn is a projective algebraic variety if there exist homogeneous polynomials f1, . . . , fk

on Fn+1 such that

M = {[x] ∈ FPn : f1(x) = . . . = fk(x) = 0}.

Example. If f ̸= 0 is a homogeneous polynomial of degree 1 on Fn+1 then f(x) = 0 defines a subspace

U of Fn+1 of dimension n. Hence the projective algebraic variety defined by f is just P(U), which is a

hyperplane.

It is perhaps natural to ask when a projective algebraic variety over R or C is a manifold. This can

be achieved by the following result.

Proposition 7.11. Let F = R or C. Let M ⊆ FPn be a projective algebraic variety defined by homoge-

neous polynomials f1, . . . , fk on Fn+1. If the Jacobian matrix(
∂fi
∂xj

)
has rank k at every x ∈ Fn+1 \ {0} such that [x] ∈ M , then M is an (n − k)-dimensional manifold if

F = R or a 2(n− k)-dimensional manifold if F = C.

Proof. (Not examinable.) Define f : FPn → Fk by f = (f1, . . . , fk). Then f is smooth (since it is

defined by polynomials) and M = f−1(0). The assumption on the Jacobian matrix is exactly that 0 is a

regular value of f . A version of the Regular Value Theorem for maps between manifolds then shows that

M is a manifold.

Example. Suppose that M ⊆ FPn is a projective algebraic variety defined by a single homogeneous

polynomial f of degree d ≥ 1 on Fn+1, i.e.

M = {[x] ∈ Fn+1 : f(x) = 0}.

In this case,M is called a divisor If F = R or C, the condition forM to be a manifold of (real or complex)

dimension n− 1 is that the polynomials

f,
∂f

∂x0
, . . . ,

∂f

∂xn

do not have a common zero in Fn+1 \ {0}. For example, if we take

f(z0, . . . , zn) = zd0 + . . .+ zdn
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we see that
∂f

∂zj
= dzd−1

j = 0

if and only if zj = 0, so the only common zero of f and ∂f
∂zj

for all j is the origin. We deduce that M is

a manifold, often known as a Fermat hypersurface.

Remark. (Not examinable.) The special case of divisors in CP2 are examples of algebraic curves,

which are the subject of a Part B course. A fundamental result in that course will concern intersections

of pairs of algebraic curves. In general, the study of intersections of projective algebraic varieties is an

important part of algebraic geometry.

We now want to talk about transformations of projective space. Clearly if T : V →W is a linear map

then

T (λv) = λTv

for v ∈ V and λ ∈ F∗, which means that

[Tv] = [T (λv)] ∈ P(W )

provided Tv ̸= 0. Hence we need T : V →W to be injective.

Definition 7.12. Let V,W be finite-dimensional vector spaces over F and let T : V →W be an injective

linear map. The associated projective linear transformation τ : P(V ) → P(W ) is defined by

τ [v] = [Tv]

for v ∈ V \ {0}.

A particularly interesting case is when V = W . In this case T : V → V lies in GL(V ), the invertible

linear maps from V to V , and the map T 7→ τ is a homomorphism ϕ from GL(V ) to the group of

projection linear transformations of V . It is clear that

kerϕ = {λI : λ ∈ F∗}.

By the First Isomorphism Theorem (for groups) we have the following definition.

Definition 7.13. The group PGL(V ) of projective linear transformations of a finite-dimensional vector

space V over F is given by the quotient group:

PGL(V ) = GL(V )/{λI : λ ∈ F∗}.

We write PGL(n+ 1,F) = PGL(Fn+1), the projective linear group.

To close this section we relate the projective linear group in the case n = 2 to maps which we already

know very well.

Example. Let T : F2 → F2 be an invertible linear map. Then we can write it as

T (x0, x1) = (ax0 + bx1, cx0 + dx1)

where ad− bc ̸= 0. The associated projective linear transformation on FP1 is then

τ : [x0 : x1] → [ax0 + bx1 : cx0 + dx1].

If we consider the affine patch where x1 ̸= 0 then

τ :

[
x0
x1

: 1

]
7→
[
ax0 + bx1
cx0 + dy1

: 1

]
.
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In terms of z = x0

x1
on this affine patch τ is just

τ : z 7→ az + b

cz + d
,

which is a Möbius transformation when F = C.
In particular, what we have shown is that PGL(2,C) is nothing other than the Möbius group. We

should also notice that we can always rescale the representative of a class in PGL(2,C) to have determinant

1, i.e. lie in SL(2,C), and the remaining freedom in the equivalence class is to multiply by elements in

{λI : λ ∈ C, det(λI) = 1} = {±I}. Hence

PGL(2,C) = PSL(2,C) = SL(2,C)/{±I};

that is, matrices in M2(C) with determinant 1, up to sign. Note also that to compose Möbius transfor-

mations you can just multiply matrices in SL(2,C) representing the classes in PSL(2,C).

We conclude this section by discussing the notion of projective duality. For this we first recall some

ideas from Part A Linear Algebra. If V is a finite-dimensional vector space over F, then its dual space

V ∗ = Hom(V,F) = {f : V → F : F is linear}.

Then dimV = dimV ∗ and V, V ∗ are isomorphic provided we choose a basis for V . However, if we take

the dual of the dual space V ∗∗ (often called the double dual), we have a canonical isomorphism between

V and V ∗∗:

ϕ : V → V ∗∗, ϕ(v)(f) = f(v) for f ∈ V ∗.

In this way, we can identify V ∗∗ with V and drop the notation ϕ.

Another important construction is the annihilator U◦ ⩽ V ∗ of a subspace U ⩽ V :

U◦ = {f ∈ V ∗ : f(u) = 0 for all u ∈ U.

Recall that

dimU◦ = dimV − dimU

and

U◦◦ = U.

Hence, the map U 7→ U◦ defines a bijection between subspaces of V and subspaces of V ∗. Moreover, if

U1, U2 ⩽ V ,

U1 ⩽ U2 ⇒ U◦
2 ⩽ U◦

1

so the bijection is inclusion-reversing. This leads us to the following definition.

Definition 7.14. The projective duality correspondence Φ between linear subspaces of P(V ) and linear

subspaces of P(V ∗) is the inclusion-reversing bijection given by

Φ(P(U)) = P(U◦)

for U ⩽ V . Note that dimP(V ) = n and dimP(U) = m implies that

dimP(U◦) = dimU◦ − 1 = dimV − dimU − 1 = (n+ 1)− (m+ 1)− 1 = n−m− 1.

Example. Let dimV = n+ 1. Then if [f ] ∈ P(V )∗ we have that P(U) = Φ−1[f ] ∈ P(V ) has dimension

n− 0− 1 = n− 1, i.e. P(U) is a hyperplane. Using the isomorphism ϕ and the fact that [f ] = P(⟨f⟩), we
see that U = ker f :

U = {x ∈ V : f(x) = 0}.

Conversely hyperplanes in P(V ) correspond to points in P(V ∗) under Φ. Concretely, if V = Fn and

f = [a0 : . . . : an] in homogeneous coordinates we see that

U = {[x0 : . . . : xn] ∈ FPn : a0x0 + . . .+ anxn = 0}

in the correspondence between [f ] and U .
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Remark. It can be useful to use the following identities from Part A Linear Algebra for subspaces U1, U2

in V :

(U1 + U2)
◦ = U◦

1 ∩ U◦
2 and (U1 ∩ U2)

◦ = U◦
1 + U◦

2 .

For example, if v, w ∈ V \ {0} then

⟨v, w⟩◦ = ⟨v⟩◦ ∩ ⟨w⟩◦.

Example. In the projective plane P(V ) (for dimV = 3) projective duality exchanges points and projec-

tive lines. Let [v], [w] be two distinct points on the projective line P⟨v, w, ⟩. We see that dim⟨v⟩◦ = 2 so

P(⟨v⟩◦) is a projective line and, by the remark above,

dim⟨v, w⟩◦ = dim⟨v⟩◦ ∩ ⟨w⟩◦ = dim⟨v⟩◦ + dim⟨w⟩◦ − 3 = 1,

so P⟨v, w⟩◦ is a point. Hence, the projective lines P(⟨v⟩◦),P(⟨w⟩◦) meet at the point P(⟨v, w⟩◦). By

extending this, we see that collinear points in FP2 (i.e. points lying along a line) corresponds under

duality to a set of concurrent lines.

A consequence of this discussion is that P⟨v⟩◦ ⊆ P(V ∗) can be viewed as the set of points parametrising

lines through [v] in P(V ).

Remark. The example above shows that Lemma 7.7 and Lemma 7.8 are duals of each other. This is a

general phenomenon: for every result in projective geometry there will be a dual version, and we need

only prove one to deduce the other.

Remark. Projective geometry can be used to tackle classical problems in plane geometry: we will see

such applications on a problem sheet.
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8 Hyperbolic space

In this final section of the course, we now want to introduce a new kind of geometry: hyperbolic geometry.

Its study represented one of the most important developments in geometry and continues to play a key

role in many aspects of current mathematics. It can be defined in all dimensions, but in this course we

will restrict ourselves to 2 dimensions.

We will see a number of different ways of thinking of hyperbolic geometry, but we will start with an

analogue of the construction of the sphere. Remember that on R3 we have the inner product

⟨(u1, u2, u3), (v1, v2, v3)⟩ = u1v1 + u2v2 + u3v3.

The unit 2-sphere is then given by the points where ⟨x, x⟩ = 1.

We can think of R3 = R× R2 and give coordinates (x0, x1, x2) where we think of x0 as “time”: this

is relevant for relativity in physics. We can then define a new “inner product” as follows.

Definition 8.1. We define the Lorentz inner product on R× R2 by

⟨(u0, u1, u2), (v0, v1, v2)⟩L = u0v0 − u1v1 − u2v2.

We often denote R× R2 with the Lorentz inner product as R1,2. Let H2 ⊆ R1,2 be given by

H2 = {x = (x0, x1, x2) ∈ R3 : ⟨x, x⟩L = x20 − x21 − x22 = 1, x0 > 0}.

The reason for x0 > 0 is because the hyperboloid defined by ⟨x, x⟩L = 1 has two components.

We have already seen that H2 is a 2-dimensional manifold diffeomorphic to R2. Note that any x ∈ H2

can be written as x = (cosh t, sinh t cos θ, sinh t sin θ).

Remark. It is clear how to define Hn in all dimensions, by adding more “space directions” x1, x2, . . . , xn

to give Hn ⊆ R1,n.

We now want to define the hyperbolic geometry on H2. The easiest way to think about it is to think

about what the shortest paths between two points in H2 look like: these are called geodesics.

Definition 8.2. A Lorentz plane through the origin in R1,2 is one containing a vector x such that

x ·L x > 0. Lorentz planes are those which can meet H2.

A geodesic hyperbola in H2 is the intersection of a Lorentz plane through the origin in R1,2 with H2.

The arcs of geodesic hyperbolae are called geodesics.

Example. The plane Π = {(x0, x1, x2) : x2 = 0} contains the vector x = (1, 0, 0) which satisfies,

x ·L x = 1 > 0. Hence Π is a Lorentz plane.

This gives a geodesic hyperbola as

Π ∩H2 = {(x0, x1, 0) : x20 − x21 = 1, x0 > 0} = {(cosh t, sinh t, 0) : t ∈ R}.

In other words, we can define it as x2 = 0 on H2.

We have the following easy fact which reminds us of both Euclidean and projection geometry.

Lemma 8.3. Given any two distinct points in H2 there is a unique geodesic between them.

Proof. Given any two points in H2, there is a unique Lorentz plane through the origin containing the

two points.

Example. Suppose we have two geodesic hyperbolae defined by distinct Lorentz planes Π1,Π2. Then,

by the dimension formula for vector spaces, we know that Π1 ∩Π2 = Span{x} and there are three cases.
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(a) x ·L x < 0 (x is ‘space-like’): the hyperbolae are disjoint and diverge.

If we let Π1 = Span{(1, 0, 0), (0, 1, 0)} and Π2 = Span{(2, 0, 1), (0, 1, 0)} then Π1∩Π2 is spanned by

x = (0, 1, 0), so x ·L x = −1. Then the hyperbolae are {(cosh t, sinh t, 0)}, corresponding to x2 = 0,

and the one given by x0 = 2x2:

{(2x0, x1, x0) : 4x20 − x21 − x20 = 3x20 − x21 = 1, x0 > 0} = {( 2√
3
cosh t, sinh t,

1√
3
cosh t)},

so they diverge (the x2 component of the second goes to infinity whilst the other remains 0).

(b) x ·L x > 0 (x is ‘time-like’): the hyperbolae intersect at one point.

If we let Π1 = Span{(1, 0, 0), (0, 1, 0)} and Π2 = {(1, 0, 0), (0, 0, 1)} then Π1 ∩ Π2 is spanned by

x = (1, 0, 0) so x ·L x = 1 and the hyperbolae are x2 = 0: {(cosh t, sinh t, 0) : t ∈ R} and x1 = 0:

{(cosh t, 0, sinh t) : t ∈ R} which only meet at (1, 0, 0).

(c) x ·L x = 0 (x is ‘null’): the hyperbolae are disjoint but approach each other at infinity, and are

called ultraparallel.

If we let Π1 = Span{(2, 0, 1), (1, 1, 0)} and Π2 = Span{(2, 0,−1), (1, 1, 0)} then Π1 ∩Π2 is spanned

by x = (1, 1, 0) so x ·L x = 0 and the hyperbolae are given by x0 = x1 ± 2x2:

{(2x0 + x1, x1,±x0) : (2x0 + x1)
2 − x21 − x20 = x0(3x0 + 4x1) = 1, 2x0 + x1 > 0}

which are disjoint because we cannot have x0 = 0 and we see that as x1 → ∞ we must have x0 → 0,

so they approach each other.

The Lorentz inner product looks bad because it can be positive, negative and even zero. However, on

H2 it is well-behaved as we now see.

Lemma 8.4. Given any two points x, y in H2 we can choose coordinates, preserving the Lorentz inner

product, on R1,2 so that x = (1, 0, 0) and y = (cosh t, sinh t, 0).

Hence ⟨x, y⟩L ≥ 1 with equality if and only if x = y.

Proof. Let x, y ∈ H2. Since ⟨x, x⟩L = 1 we can choose a Lorentz orthonormal basis {e0, e1, e2} for R1,2

with e0 = x. We can then rotate the plane ⟨e1, e2⟩ so that the coefficient of y in the e2 direction is

zero (and this preserves H2). In these coordinates x = (1, 0, 0) and y = (y0, y1, 0). Since y ∈ H2,

y = (cosh t, sinh t, 0).

Hence ⟨x, y⟩L = cosh t ≥ 1 and ⟨x, y⟩L = 1 if and only if t = 0, which is equivalent to x = y.

Remark. The fact that one can choose good coordinates as in Lemma 8.4 is a useful tool.

We now want to introduce the notion of distance that defines the hyperbolic geometry on H2.

Definition 8.5. The hyperbolic distance d(x, y) between x, y ∈ H2 is given by

d(x, y) = cosh−1(⟨x, y⟩L),

where cosh−1 takes values in [0,∞). Lemma 8.4 shows that this is well-defined and we will see on a

problem sheet that (H2, d) is a metric space which we call the hyperbolic 2-space. (It is clear how to

generalise the definition to define the hyperbolic n-space (Hn, d).)

Example. Like R2, but unlike S2, distances in (H2, d) can be arbitrarily large. For example, if x =

(1, 0, 0) and y = (cosh t, sinh t, 0) then d(x, y) = t.

We now discuss very briefly isometries of the hyperboloid model as we will be more focussed on

isometries for the other models. Let us briefly recall the definition of isometry.
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Definition 8.6. An isometry between metric spaces (M1, d1) and (M2, d2) is a map T : (M1, d1) →
(M2, d2) such that d(T (x), T (y)) = d(x, y) for all x, y. (Note this forces T to be injective.) The set of

bijective isometries from a metric space (M,d) to itself forms a group Isom(M) called the isometry group.

The group we are interested for hyperbolic geometry is the following.

Definition 8.7. Let

g =

 1 0 0

0 −1 0

0 0 −1

 .

We define O+(1, 2) to be the set of A = (aij) ∈M3(R) (where i, j ∈ {0, 1, 2}) such that

ATgA = g

and a00 > 0. This forms a group of orthochronous Lorentz transformations of R1,2. (Orthochronous is

because a00 > 0, which means that “time” points in the same direction after the Lorentz transformation.)

We may also define

SO+(1, 2) = {A ∈ O+(1, 2) : detA = 1},

the group of proper orthochronous Lorentz transformations of R1,2.

We see that the Lorentz group contains a familiar subgroup.

Example. We see that O(2) is a subgroup of O+(1, 2), since if B ∈ O(2) then

A =

(
1 0

0 B

)

lies in O+(1, 2). Hence rotations in the plane x0 = 0, and reflections in planes of the form R× ℓ where ℓ

is a line through 0 which lies in the plane x0 = 0, both lie in O+(1, 2).

The following theorem is proved just like in the case of R2 so we will omit it.

Theorem 8.8. Any isometry of H2 is given by T (x) = Ax where A ∈ O+(1, 2) and sends geodesics to

geodesics. Hence Isom(H2) = O+(1, 2) and the group of orientation-preserving isometries Isom+(H2) =

SO+(1, 2).

Example. We see that  cosh s sinh s 0

sinh s cosh s 0

0 0 ±1

 ∈ O+(1, 2).

These are examples of what are sometimes known as Lorentz translations/glides (for +1 or −1)

Remark. (Not examinable). We can generate all of Isom(H2) using elements in O(2) together with

Lorentz translations and glides.

I want to continue this section by giving two more ways of thinking about hyperbolic 2-space, which

are useful for different purposes.

(Not examinable). Consider the map f : H2 → C given by

f(x0, x1, x2) =
−x2 + i

x0 − x1
.

Since x20 − x21 − x22 = 1 and x0 > 0 we see that

(x0 − x1)(x0 + x1) = 1 + x22 ≥ 1
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and hence either x0 ± x1 are both positive or both negative. Since (1, 0, 0) ∈ H2 which is connected and

x0 ± x1 is continuous, we must have x0 ± x1 > 0 and thus x0 − x1 > 0. This means that f maps H2 into

the open upper half-plane H2. We also see that f is invertible:

f−1(x+ iy) =
(x2 + y2 + 1, x2 + y2 − 1,−2x)

2y
,

so f : H2 → H2 is a bijection. If z1, z2 ∈ H then one may easily calculate that

⟨f−1(z1), f
−1(z2)⟩L = 1 +

|z1 − z2|2

2Imz1Imz2
.

Therefore, if we declare f to be an isometry, we can define a new hyperbolic distance on the upper

half-space.

This gives our second model of hyperbolic 2-space.

Definition 8.9. The upper half-space model of hyperbolic 2-space is the (open) upper half-space

H2 = {x+ iy ∈ C : y > 0}

with distance

d(z1, z2) = cosh−1

(
1 +

|z1 − z2|2

2Imz1Imz2

)
.

(If we write d(x1 + iy1, x2 + iy2) in real coordinates it is then clear how to extend the definition to give

the hyperbolic distance on Hn.)

Let us look at how this distance behaves on H2.

Example. Let z1 = iy1 and z2 = iy2 where 0 < y1 ≤ y2. Then

cosh d(iy1, iy2) = 1 +
(y1 − y2)

2

2y1y2
=

1

2

(
y2
y1

+
y1
y2

)
= cosh

(
log

y2
y1

)
.

Hence d(iy1, iy2) = log y2

y1
≥ 0. We deduce that d(ir, i) = log 1

r → ∞ as r → 0, and d(i, ir) = log r → ∞
as r → ∞.

The examples shows that d is quite different from the Euclidean metric on H2, since distances are

now “becoming stretched” as we approach the real axis, which is the boundary ∂H
2
of H2.

The formula for the distance is not that important, but what we do care about is what the isometries

and geodesics in (H2, d) looks like. We already know, in some sense, what the isometries of (H2, d) are,

but we want to give another interpretation in terms of complex analysis.

Theorem 8.10. The group Isom+(H2) of orientation-preserving isometries of the hyperbolic upper half-

place (H2, d) is the Möbius group of H2, Möb(H2) ∼= PSL(2,R) = SL(2,R)/{±I}. Moreover, Isom(H2)

is generated by Möb(H2) together with the map z 7→ −z̄.

Remark. We know that a Möbius transformation preserves H2 if and only if T (z) = az+b
cz+d with a, b, c, d ∈

R and ad− bc = 1, which is how we see that Möb(H2) = PSL(2,R).

Proof. (Not examinable). Using the formula T (z) = az+b
cz+d for a, b, c, d ∈ R with ad − bc = 1, we may

calculate that

ImT (z) =
Imz

|cz + d|2

and that

|T (z1)− T (z2)|2 =
|(az1 + b)(cz2 + d)− (az2 + b)(cz1 + d)|2

|cz1 + d|2|cz2 + d|2
=

|z1 − z2|2

|cz1 + d|2|cz2 + d|2
.

Therefore d(T (z1), T (z2)) = d(z1, z2) and T is an orientation-preserving (as it is holomorphic) isometry.
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It takes more work to show that these are the only orientation-preserving isometries, so I will not

prove this.

The map T : z 7→ −z̄ preserves H2 and is an orientation-reversing isometry just by looking at the

formula. Again, I will not show that it suffices to take the group generated by Isom+(H2) and T to

obtain Isom(H2).

Example. We have that translations T (z) = z + b lie in Isom(H2), just like in R2.

We also have that dilations T (z) = a2z are isometries of (H2, d): this is very surprising, as these are

definitely not isometries in R2.

Using the description of the isometries and the fact that the map f : H2 → H2 above takes geodesics

to geodesics, we can describe the geodesics on (H2, d).

Theorem 8.11. The geodesics in the hyperbolic upper-half space consist of vertical half-lines given by

Re z = c for c ∈ R and semi-circles with centre on the real axis.

We finish the course with our third model of hyperbolic 2-space.

(Not examinable). Consider the map f : H2 → C given by

f(x0, x1, x2) =
x1 + ix2
1 + x0

,

which looks like stereographic projection. Since x20 − x21 − x22 = 1 we see that

|f(x0, x1, x2)|2 =
x21 + x22
(1 + x0)2

=
x20 − 1

x20 + 2x0 + 1
< 1.

Hence f : H2 → B2, the open unit disk in C. We also see that f is invertible:

f−1(x+ iy) =
(1 + x2 + y2, 2x, 2y)

1− x2 − y2
,

so f is a bijection. If z1, z2 ∈ B2 then we may calculate that

⟨f−1(z1), f
−1(z2)⟩L =

(1 + |z1|2)(1 + |z2|2)− 4Re (z1z̄2)

(1− |z1|2)(1− |z2|2)
= 1 +

2|z1 − z2|2

(1− |z1|2)(1− |z2|2)
.

Therefore, if we declare f to be an isometry, we can define a new distance on the unit disk.

This gives us our final model of hyperbolic space.

Definition 8.12. The Poincaré disk model of hyperbolic 2-space is the (open) unit disk

D = B2 = {z ∈ C : |z| < 1}

with distance given by

d(z1, z2) = cosh−1

(
1 +

2|z1 − z2|2

(1− |z1|2)(1− |z2|2)

)
.
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(We clearly see how to extend this to all dimensions to define the hyperbolic metric on the open unit ball

Bn in Rn.)

Again, let us examine how the distance behaves.

Example. We see that if z1 = 0 and |z2| = r where r ∈ [0, 1] is real, then

d(0, r) = cosh−1

(
1 + r2

1− r2

)
.

We see that as r → 1 then d(0, z2) → ∞.

This example shows that distances “become stretched” as we get closer to the boundary ∂B
2
of

the disk D = B2, just like in the upper half-space model. We may now describe the isometries of the

hyperbolic disk.

Theorem 8.13. The group Isom+(D) of orientation-preserving isometries of the hyperbolic disk is the

Möbius group of the disk Möb(D). Moreover, Isom(D) is generated by Möb(D) together with complex

conjugation z 7→ z̄.

Remark. We know that T ∈ Möb(D) if and only if we can write T (z) = az+b
b̄z+ā

with |a|2 − |b|2 = 1.

Proof. (Not examinable). Using the formula T (z) = az+b
b̄z+ā

with |a|2 − |b|2 = 1 we may calculate that

|T (z1)− T (z2)|2 =
|(az1 + b)(b̄z2 + ā)− (az2 + b)(b̄z1 + ā)|2

|b̄z1 + ā|2|b̄z2 + ā|2
=

|z1 − z2|2

|b̄z1 + ā|2|b̄z2 + ā|2

since |a|2 − |b|2 = 1. We can then see that

(1− |T (z1)|2)(1− |T (z2)|2) =
(|b̄z1 + ā|2 − |az1 + b|2)(|b̄z2 + ā|2 − |az2 + b|2)

|b̄z1 + ā|2|b̄z2 + ā|2
=

(1− |z1|2)(1− |z2|2)
|b̄z1 + ā|2|b̄z2 + ā|2

and compute

|b̄z + ā|2 − |az + b|2 = (|a|2 − |b|2)(1− |z|2) = 1− |z|2

to deduce that
|T (z1)− T (z2)|2

(1− |T (z1)|2)(1− |T (z2)|2)
=

|z1 − z2|2

(1− |z1|2)(1− |z2|2)
.

Hence d(T (z1), T (z2)) = d(z1, z2) and thus T is an isometry.

Therefore, Isom+(D) contains Möb(D). It also contains complex conjugation, by inspection, which is

orientation-reversing. Again, I will not prove that these transformation generate the isometries.

Again, using similar techniques as for the hyperbolic upper-half space, we can understand the geodesics

as follows.

Theorem 8.14. The geodesics in the hyperbolic disk consist of straight lines through 0 and arcs of circles

which meet the unit circle orthogonally.

In fact, we can see that the geodesics are projections of the geodesics in the hyperboloid model to the

unit disc.
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Remark. There is much more one can say about hyperbolic space, particularly about the geodesics and

its curvature. We will see some of this on the problem sheet, but this will be discussed in detail in Part

B Geometry of Surfaces.
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